
Advanced Bash Commands
Course titleCourse title

Bash Lecture 2 – Advanced Bash Commands

Advanced Bash Commands 2/27

★ Bibliography:

https://www.rigacci.org/docs/biblio/online/sysadmin/toc.htm

https://www.tldp.org/LDP/abs/html/

★ Learning Materials:

http://www.ee.surrey.ac.uk/Teaching/Unix/

https://github.com/bertocco/abilita_info_units_2021

Traditional service delivery
Bibliography and learning materials

https://www.rigacci.org/docs/biblio/online/sysadmin/toc.htm
https://www.tldp.org/LDP/abs/html/

Advanced Bash Commands 3/27

★Bash configuration and user’s environment
manipulation
★Locating commands (which)
★File information commands (find, file)
★UNIX processes
★Process related commands (kill, ps, wait)

Traditional service delivery
Arguments of this lesson

Advanced Bash Commands 4/27

Bash has more configuration startup files.
They are executed at bash start-up time.
The files and sequence of the files executed differ from the
type of shell. Shell can be:

★Interactive
★Non-interactive
★Login shell
★Non-login shell

Traditional service delivery
Bash configuration

Advanced Bash Commands 5/27

★Interactive: means that the commands are run with user-
interaction from keyboard. E.g. the shell can prompt the
user to enter input.

★Non-interactive: the shell is probably run from an
automated process. Typically input from standard input and
output to log file.

★Login: shell is run as part of the login of the user to the
system.

★Non-login: any shell run by the user after logging on, or
run by any automated process not coupled to a logged in
user.

Traditional service delivery
Bash types

Advanced Bash Commands 6/27

http://www.gnu.org/software/bash/manual/html_node/Bash-Startup-Files.html

★Interactive login shell, or with –login:
/etc/profile, if that file exists
~/.bash_profile,
~/.bash_login
~/.profile, in that order, and reads and executes
 --noprofile option may be used to inhibit this behavior.

When an interactive login shell exits, or a non-
interactive login shell executes the exit builtin
command, Bash reads and executes commands from
the file ~/.bash_logout, if it exists.

Traditional service delivery
Bash startup files (1)

http://www.gnu.org/software/bash/manual/html_node/Bash-Startup-Files.html

Advanced Bash Commands 7/27

http://www.gnu.org/software/bash/manual/html_node/Bash-Startup-Files.html

★interactive non-login shell
[Example: when you open a new terminal window by
pressing Ctrl+Alt+T, or just open a new terminal tab.]

bash reads and executes commands from
~/.bashrc, if that file exists.
 --norc option ti inhibit this behaviour.
 --rcfile file option will force Bash to read and execute
 commands from file instead of ~/.bashrc.
So, typically, your ~/.bash_profile contains the line
if [-f ~/.bashrc]; then . ~/.bashrc; fi
after (or before) any login-specific initializations.

Traditional service delivery
Bash startup files (2)

http://www.gnu.org/software/bash/manual/html_node/Bash-Startup-Files.html

Advanced Bash Commands 8/27

http://www.gnu.org/software/bash/manual/html_node/Bash-Startu
p-Files.html
★Invoked non-interactively

[Example: to run a shell script]
bash looks for the variable BASH_ENV in the environment,
expands its value if it appears there, and uses the expanded
value as the name of a file to read and execute. Bash behaves as
if the following command were executed:
if [-n "$BASH_ENV"]; then . "$BASH_ENV"; fi
but the value of the PATH variable is not used to search for the
filename.
If a non-interactive shell is invoked with the --login option, Bash
attempts to read and execute commands from the login shell
startup files.

Traditional service delivery
Bash startup files (3)

http://www.gnu.org/software/bash/manual/html_node/Bash-Startup-Files.html
http://www.gnu.org/software/bash/manual/html_node/Bash-Startup-Files.html

Advanced Bash Commands 9/27

$ cat .profile
~/.profile: executed by the command interpreter for login shells.
This file is not read by bash(1), if ~/.bash_profile or
~/.bash_login exists.

if running bash
if [-n "$BASH_VERSION"]; then
 # include .bashrc if it exists
 if [-f "$HOME/.bashrc"]; then
. "$HOME/.bashrc"
 fi
fi
set PATH so it includes user's private bin directories
PATH="$HOME/bin:$HOME/.local/bin:$PATH"

Traditional service delivery
Set user’s PATH environment variable

Advanced Bash Commands 10/27

User specific, hidden by default.

~/.bashrc
If not there simply create one.

System wide:

/etc/bash.bashrc

Traditional service delivery
~/.bashrc file

Advanced Bash Commands 11/27

`export` exports environment variables (also to children of
the current process). Example:
ubuntu~$ export a=test_env
ubuntu:~$ echo $a
test_env
ubuntu:~$ /bin/bash
ubuntu:~$ echo $a
test_env
ubuntu:~$ exit
exit
ubuntu:~$ echo $a
test_env
`export` called with no arguments prints all of the variables
in the shell's environment.
`unset` frees variables

Traditional service delivery
`export`

Advanced Bash Commands 12/27

A shell alias is a shortcut to reference a command.
It can be used to avoid typing long commands or as a
means to correct incorrect input.

Example: it is used to set default options on commands

alias ls=`ls -l`
alias rm=`rm -i`
Exercises:
1) try to define and use the previous aliases
2) Define the aliases in the ~/.bashrc, open a new terminal
and verify the aliases running them

Shell alias

Advanced Bash Commands 13/27

★To execute a command, UNIX has to locate the
command before it can execute it

★UNIX uses the concept of search path to locate the
commands.

★Search path is a list of directories in the order to be
searched for locating commands. Usually it contains
standard paths (/bin, /usr/bin, …)

★Modify the search path for your environment
modifying the PATH environment variable

Traditional service delivery
Locating commands

Advanced Bash Commands 14/27

Traditional service delivery
`which`

★`which` can be used to find whether a particular
command exists in you search path. If it does exist,
which tells you which directory contains that
command.

Examples (try with existing and not existing
commands):
which pippo
which gedit
which vim

Advanced Bash Commands 15/27

★`passwd` changes user’s password

Example: type `passwd`
$ passwd
Changing password for bertocco.
(current) UNIX password:
Enter new UNIX password:
Retype new UNIX password:
Sorry, passwords do not match
passwd: Authentication token manipulation error
passwd: password unchanged
$ passwd
Changing password for bertocco.
(current) UNIX password:
Enter new UNIX password:
Retype new UNIX password:
passwd: password updated successfully

Traditional service delivery
User related commands: passwd

Advanced Bash Commands 16/27

★`who` show who is logged on

Print information about users who are currently logged in.

★`whoami`

Print the user name associated with the current

effective user ID.

Exercise:

try the commands and then type `man who`

and try some option

Traditional service delivery
User related commands: who and whoami

Advanced Bash Commands 17/27

Traditional service delivery
File information commands

★Each file and directory in UNIX has several
attributes associated with it. UNIX provides several
commands to inquire about and process these
attributes

Advanced Bash Commands 18/27

Traditional service delivery
`find`

★`find` searches for the particular file giving the
flexibility to search for a file by various attributes:
name, size, permission, and so on.

Command general form:
find directory-name search-expression

Advanced Bash Commands 19/27

Traditional service delivery
`find` Examples (try)

find . -name pippo
find /etc -name networking
find /etc -name netw # nothing found
find /etc -name netw*

find -size 18 # 18 blocks files
find -size 1024c # 1024 bytes

find . -print

Read the manual and try other options
Try, if possible, a find case insensitive

Advanced Bash Commands 20/27

Traditional service delivery
`file`

★`file` can be used to determine the type of the
specified file.
Examples (try):
$ file /etc/networking/interfaces
/etc/networking/interfaces: cannot open

`/etc/networking/interfaces’ (No such file or directory)
$ file /etc/network/interfaces
/etc/network/interfaces: ASCII text

Advanced Bash Commands 21/27

Traditional service delivery
UNIX Processes

Usually, a command or a script that you can execute consists of one or

more processes.
The processes can be categorized into the following broad groups:
★ Interactive processes, which are those executed at the terminal.

Can execute either in foreground or in background. In a foreground
process, the input is accepted from standard input, output is
displayed to standard output, and error messages to standard error.
In background, the terminal is detached from the process so that it
can be used for executing other commands. It is possible to move a
process from foreground to background and vice versa (<ctrl+bg>;
<ctrl+fg>.

★ Batch processes are not submitted from terminals. They are
submitted to job queues to be executed sequentially.

★ Deamons are never-ending processes that wait to service requests
from other processes.

Advanced Bash Commands 22/27

Traditional service delivery
Process Related Commands

★a command or a script that you can execute
consists of one or more processes.
The main are:

– `ps`
– `kill`
– `wait`
– `nohup`
– `sleep`

Advanced Bash Commands 23/27

Traditional service delivery
`ps`

★`ps` command is used to find out which processes
are currently running.
Exercises:
– Try the following commands, check the differences

in the output. Read the flag meaning using

`man ps`:

ps

ps -ef

ps -aux

Advanced Bash Commands 24/27

Traditional service delivery
`kill`

★`kill` is used to send signals to an executing process. The process must
be a nonforeground process for you to be able to send a signal to it using
this command.

★The default action of the command is to terminate the process by sending
it a signal. If the process has been programmed for receiving such a
signal. In such a case, the process will process the signal as programmed.

★ You can kill only the processes initiated by you. However, the root user
can kill any process in the system.

★The flags associated with the kill commands are as follows:
-l to obtain a list of all the signal numbers and their names that are
supported by the system.
-’signal number’ is the signal number to be sent to the process. You can
also use a signal name in place of the number. The strongest signal you
can send to a process is 9 or kill.

Advanced Bash Commands 25/27

Traditional service delivery
`kill` Exercises

★Look for a process PID of a process belonging of
you (using ps) and kill it using two different signals:
-9 and -15.

★List all available signals and red the differences
between the two signal previously used

Advanced Bash Commands 26/27

Traditional service delivery
`wait` with exercises

★`wait` is tp wait for completion of jobs. It takes one or more process IDs
as arguments. This is useful while doing shell programming when you
want a process to be finished before the next process is invoked.
If you do not specify a process ID, UNIX will find out all the processes
running for the current environment and wait for termination of all of
them.

★Examples:

– `wait` If you want to find out whether all the processes you have
started have completed

– `wait 15060` If you want to find out whether the process ID 15060
has completed

★The return code from the wait command is zero if you invoked the wait
command without any arguments. If you invoked the wait command
with multiple process IDs, the return code depends on the return code
from the last process ID specified.

Advanced Bash Commands 27/27

Traditional service delivery
`wait`: exercise

★From a shell launch an infinite process using:
`while true; do echo looping; sleep 2; done`

★From another shell find the pid of this process using
`ps` command
★From a third shell launch a process waiting for the
end of the initial infinite loop
pid=<your_process_pid>; wait $pid

★From a fourth shell kill the first process (pid)
★ Check in the third shell that your waiting process
ended

NOT WORKING using shells. Needs scripting: next time.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

