
Bash scripting
Course titleCourse title

Bash Lecture 3 – Bash Scripting

Bash scripting 2/65

★ Bibliography:

https://www.rigacci.org/docs/biblio/online/sysadmin/toc.htm

https://www.tldp.org/LDP/abs/html/

★ Learning Materials:

http://www.ee.surrey.ac.uk/Teaching/Unix/

https://github.com/bertocco/abilita_info_units_2021

Traditional service delivery
Bibliography and learning materials

https://www.rigacci.org/docs/biblio/online/sysadmin/toc.htm
https://www.tldp.org/LDP/abs/html/

Bash scripting 3/65

★Process related commands (nohup, sleep)
★File content related commands (more, less, tail, read,

tee, wc)

★Redirection
★File content search commands (grep, egrep)

★Status commands

★Unix wildcards (* ? [])

★Editors

★Bash scripting programming:

– Scripts

– Variables

Traditional service delivery
Arguments of this lesson

Bash scripting 4/65

Traditional service delivery
`nohup`

★When you are executing processes under UNIX, they can be
running in foreground or background. In a foreground process,
you are waiting at the terminal for the process to finish. Under
such circumstances, you cannot use the terminal until the
process is finished. You can put the foreground process into
background as follows:

ctrl-z

bg
The processes in UNIX will be terminated when you logout of
the system or exit the current shell whether they are running in
foreground or background. The only way to ensure that the
process currently running is not terminated when you exit is to
use the nohup command.

Bash scripting 5/65

Traditional service delivery
`nohup`

The nohup command has default redirection for the standard
output. It redirects the messages to a file called nohup.out
under the directory from which the command was executed.
That is, if you want to execute a script called sample_script in
background from the current directory, use the following
command:
nohup sample_script &
The & (ampersand) tells UNIX to execute the command in
background. If you omit the &, the command is executed in
foreground. In this case, all the messages will be redirected to
nohup.out under the current directory. If the nohup.out file
already exists, the output will be appended to it.

Bash scripting 6/65

Traditional service delivery
`nohup`: Examples

nohup grep sample_string * &

nohup grep sample_string * > mygrep.out &

nohup my_script > my_script.out &

Bash scripting 7/65

Traditional service delivery
`sleep`

`sleep` wait for a certain period of time between execution of
commands. This can be used in cases where you want to
check for, say, the presence of a file, every 15 minutes. The
argument is specified in seconds.
Examples: If you want to wait for 5 minutes between
commands, use:
sleep 300
Small shell script that reminds you twice to go home, with a 5-
minute wait between reminders:
echo "Time to go home"
sleep 300
echo "Final call to go home"

Bash scripting 8/65

Traditional service delivery
File Content Related Commands

★Commands that can be used to look at the contents
of the file or parts of it. You can use these commands
to look at the top or bottom of a file, search for
strings in the file, and so on.

Bash scripting 9/65

Traditional service delivery
`more`

★`more` can be used to display the contents of a file
one screen at a time. By default, the more command
displays one screen worth of data at a time. The
more command pauses at the end of display of each
page. To continue, press a space bar so that the next
page is displayed or press the Return or Enter key to
display the next line. Mostly the more command is
used where output from other commands are piped
into the more command for display.
★Try

Bash scripting 10/65

Traditional service delivery
`less`

★`less` is to view the contents of a file. This may
not be available by default on all UNIX systems. It
behaves similarly to the more command. The less
command allows you to go backward as well as
forward in the file by default.
★Try
★Cat <a big file> | less

Bash scripting 11/65

Traditional service delivery
`tail`

★`tail` to display, on standard output, a file
starting from a specified point from the start or
bottom of the file. Whether it starts from the top of
the file or end of the file depends on the
parameter and flags used. One of the flags, -f,
can be used to look at the bottom of a file
continuously as it grows in size. By default, tail
displays the last 10 lines of the file.

Bash scripting 12/65

Traditional service delivery
`tail` exercises

tail -f500 /var/log/syslog

list of flags that can be used with the tail command:
-c number to start from the specified character position number.
-b number to start from the specified 512-byte block position
number.
-k number to start from the specified 1024-byte block position
number.
-n number to start display of the file in the specified line
number.
-r number to display lines from the file in reverse order.
-f to display the end of the file continuously as it grows in size.

Bash scripting 13/65

Traditional service delivery
`read`

`read` is used in shell scripts to read each field
from a file and assign them to shell variables.

A field is a string of bytes that are separated by a
space or newline character. If the number of fields
read is less than the number of variables
specified, the rest of the fields are unassigned.

Flag -r to treat a \(backslash) as part of the input
record and not as a control character.

Bash scripting 14/65

Traditional service delivery
`read` Examples

Example following is a piece of shell script code that reads first
name and last name from namefile and prints them:
- create the file
cat <<EOF > names_list.txt
Sara Bertocco
Mario Rossi
John Doe
EOF
- Read the file by line and print on standard output
while read -r lname fname
do
 echo $lname","$fname
done < names_list.txt

Bash scripting 15/65

Traditional service delivery
`read` Examples

Example following is a piece of shell script code
that reads a file by line:

while read -r line
do
 printf 'Line: %s\n' "$line"
done < names_list.txt

The file name can be indicated also with full path
name.

Bash scripting 16/65

Traditional service delivery
`tee`

`tee` to execute a command and want its output
redirected to multiple files in addition to the standard
output. The tee command accepts input from the
standard input, so it is possible to pipe another
command to the tee command.

The default of the tee command is to overwrite the
specified file.

-a is an optional flag to append to the end of the
specified file

Bash scripting 17/65

Traditional service delivery
`tee` Examples (try)

- use the cat command on file1 to display on the
screen and make a copy of file1 on file2, use the tee
command as follows:

cat file1 | tee file2 | more

- make the same but appending file1 to the end of an
already existing file2 using the flag -a :

cat file1 | tee -a file2 | more

Bash scripting 18/65

Traditional service delivery
`wc`

`wc` counts the number of bytes, words, and lines in
specified files. A word is a number of characters stringed
together delimited either by a space or a newline character.

Following is a list of flags that can be used with the wc
command:

-l to count only the number of lines in the file.
-w to count only the number of words in the file.
-c to count only the number of bytes in the file.

You can use multiple filenames as argument to the wc
command.

Bash scripting 19/65

Traditional service delivery
`wc` exercices

wc file

wc -w file

cat <file> | wc -l

wc -w <file1> <file2>

Bash scripting 20/65

Traditional service delivery
Redirection (1)

Each UNIX command (or program) is connected to three communication channels
between the command and its environment:

 Standard input (stdin) where the command read its input
 Standard output (stdout) where the command writes its output
 Standard error (stderr) where the command writes its error

 When a command is executed via an interactive shell, the streams are typically
connected to the text terminal on which the shell is running, but can be changed with
redirection or with a pipeline

Standard Input, Standard Output and Standard Error Symbols:

redirect stdout to a file redirect stderr and stdout to a file

redirect stderr to a file redirect stderr and stdout to stdout

redirect stdout to stderr redirect stderr and stdout to stderr

redirect stderr to stdout

standard input 0<

standard output 1>

standard error 2>

Bash scripting 21/65

Traditional service delivery
Redirection (2)

Redirection [> &> >& >>].
● Redirect stdout to file (overwrite filename if it already exists):

scriptname > filename
scriptname >> filename # appends the output of scriptname to file filename. If
 # filename does not already exist, it is created

● Redirect stderr to file (overwrite filename if it already exists):
scriptname 2> filename

● Redirect both the stdout and the stderr of command to filename:
command &> filename redirects both the stdout and the stderr of command to filename

● Redirects stdout of command to stderr:
command >&2

● Redirects stderr of command to stdout:
command 2>&1

Bash scripting 22/65

Traditional service delivery
Redirection: Examples

● Stdout redirected to file
find . -name pippo > find-output.txt

● Stderr redirected to file
find . -name pippo 2> find-errors.txt

● discards any errors that are generated by the find command
find / -name "*" -print 2> /dev/null
/dev/null is a simple device (implemented in software and not corresponding to any
hardware device on the system).
 /dev/null looks empty when you read from it.
 Writing to /dev/null does nothing: data written to this device simply "disappear."
Often a command's standard output is silenced by redirecting it to /dev/null, and this is
perhaps the null device's commonest use in shell scripting:
command > /dev/null

● Redirect both stdout and stderr to file
find . -name pippo &> out_and_err.txt

● Redirect stderr to stdout: find . -name filename 2>&1
● Redirect stdout to stderr: find . -name filename 1>&2

Bash scripting 23/65

Traditional service delivery
Special characters: Pipe

Pipe [|]. Passes the output (stdout) of a previous command to the input (stdin) of the
next one, or to the shell. This is a method of chaining commands together.

echo ls -l | sh
Passes the output of "echo ls -l" to the shell,
#+ with the same result as a simple "ls -l".

cat *.lst | sort | uniq
Merges and sorts all ".lst" files, then deletes duplicate lines.

A pipe sends the stdout of one process to the stdin of another. In a typical case, a
command, such as cat or echo, pipes a stream of data to a command that transforms it
in input for processing:

cat $filename1 $filename2 | grep $search_word

Bash scripting 24/65

Traditional service delivery
Redirection with pipe and tee examples

Examples of redirection of the output of a command to be used as input of another:
● Display the output of a command (in this case ls) by pages:

ls -la | less
● Count files in a directory:

ls -l | wc -l
● Count the number of rows containing of the word “canadesi” in the file vialactea.txt

grep canadesi vialactea.txt | wc -l
● Count the number of words in the rows containing the word “canadesi”

`tee` is useful to redirect output both to stdout and to a file. Example:
find . -name filename.ext 2>&1 | tee -a log.txt
This will take stdout and append it to log file. The stderr will then get converted to
stdout which is piped to tee which appends it to the log and sends it to stdout which
will either appear on the tty or can be piped to another command.

To go deep: https://stackoverflow.com/questions/2871233/write-stdout-stderr-to-a-
logfile-also-write-stderr-to-screen

Bash scripting 25/65

Traditional service delivery
Exercise: redirection

Create a directory and file tree like this one:
my_examples /ex1.dir
 /ex2.txt
 /ex3.dir
 /ex3.dir/file1.txt
 /ex3.dir/file2.txt
 /ex3.dir/file3.txt

Remove read permissions to directory /ex2.dir
Redirect output on a file. Error is displayed on terminal
Redirect error on a file. Output is displayed on terminal
Verify the content of the files
Stderr redirected to file
Redirect output and errors symultaneously

Use pipe to redirect the output of a command to another command and to a file
Use tee to redirect output both to stdout and to a file

Bash scripting 26/65

Traditional service delivery
File Content Search Commands

For searching for a pattern in one or more files,
use the grep series of commands. The grep
commands search for a string in the specified
files and display the output on standard output.

Bash scripting 27/65

Traditional service delivery
`egrep`

`egrep` extended version of grep command. This
command searches for a specified pattern in one or
more files and displays the output to standard output.
The pattern can be a regular expression to match
any single character.

* to match one or more single characters that precede the
asterisk.
^ to match the regular expression at the beginning of a line.
$ to match the regular expression at the end of a line.
+ to match one or more occurrences of a preceding regular
expression.
? to match zero or more occurrences of a preceding regular
expression.
[] to match any of the characters specified within the brackets.

Bash scripting 28/65

Traditional service delivery
`egrep` Examples

Let us assume that we have a file called file1 whose contents
are shown below using the more command:

more file1
***** This file is a dummy file *****
which has been created
to run a test for egrep
grep series of commands are used by the following types of
people
 programmers
 end users
Believe it or not, grep series of commands are used by pros and
novices alike
***** THIS FILE IS A DUMMY FILE *****

Bash scripting 29/65

● If you are just interested in finding the number of lines in which
the specified pattern occurs, use the -c flag as in the following
command:

 egrep -i -c dummy file1

● If you want to get a list of all lines that do not contain the
specified pattern, use the -v flag as in the following command:

 egrep -i -v dummy file1

● If you are interested in searching for a pattern that you want to
search as a word, use the -w flag as in the following command:

 egrep -w grep file1

Traditional service delivery
`egrep` Examples

Bash scripting 30/65

● If you want to find all occurrences of dummy, use the following
command:

egrep dummy file1
***** This file is a dummy file *****

● If you want to find all occurrences of dummy, irrespective of the case,
use the -i flag as in the following command:

egrep -i dummy file1
***** This file is a dummy file *****
***** THIS FILE IS A DUMMY FILE *****

● If you want to display the relative line number of the line that contains
the pattern being searched, use the -n flag as in the following
command:

egrep -i -n dummy file1
1:***** This file is a dummy file *****
8:***** THIS FILE IS A DUMMY FILE *****

Traditional service delivery
`egrep` Examples

Bash scripting 31/65

★Several commands that display the status of

various parts of the system. These commands

can be used to monitor the system status at any

point in time.

Traditional service delivery
Status commands

Bash scripting 32/65

`date` command to display the current date and time in a specified format. If
you are root user, use the date command to set the system date.
To display the date and time, you must specify a + (plus) sign followed by the
format. The format can be as follows:
%A to display date complete with weekday name.
%b or %h to display short month name.
%B to display complete month name.
%c to display default date and time representation.
%d to display the day of the month as a number from 1 through 31.
%D to display the date in mm/dd/yy format.
%H to display the hour as a number from 00 through 23.
%I to display the hour as a number from 00 through 12.
%j to display the day of year as a number from 1 through 366.
%m to display the month as a number from 1 through 12.
%M to display the minutes as a number from 0 through 59.
%p to display AM or PM appropriately.
%r to display 12-hour clock time (01-12) using the AM-PM notation.
%S to display the seconds as a number from 0 through 59.

Traditional service delivery
`date`

Bash scripting 33/65

Other format flags:
%T to display the time in hh:mm:ss format for 24 hour clock.
%U to display the week number of the year as a number from 1 through 53
counting Sunday as first day of the week.
%w to display the day of the week as a number from 0 through 6 with Sunday
counted as 0.
%W to display the week number of the year as a number from 1 through 53
counting Monday as first day of the week.
%x to display the default date format.
%X to display the time format.
%y to display the last two digits of the year from 00 through 99.
%Y to display the year with century as a decimal number.
%Z to display the time-zone name, if available.

Traditional service delivery
`date`

Bash scripting 34/65

Try some example of `date` command usage with different display of day,
month, year
★If you want to display the date without formatting, use date without any

formatting descriptor as follows:
date
Sat Dec 7 11:50:59 EST 1996
★If you want to display only the date in mm/dd/yy format, use the following

commands:
date +%m/%d/%y
12/07/96
★If you want to format the date in yy/mm/dd format and time in hh:mm:ss

format, use the following command:
date "+%y/%m/%d %H:%M:%S"
96/12/07 11:57:27
★Following is another way of formatting the date:

date +%A","%B" "%d","%Y
Sunday,December 15,1996

Traditional service delivery
`date`: Exercises

Bash scripting 35/65

There are three main wildcards in Linux:

 Asterisk (*) – matches one or more occurrences of
any character, including no character.

 Question mark (?) – represents or matches a
single occurrence of any character.

 Bracketed characters ([]) – matches any
occurrence of character enclosed in the square
brackets.

Traditional service delivery
Linux wildcards

Bash scripting 36/65

 Editor

★In dictionary.cambridge.org: is a piece of software for

editing text on a compute

★In www.merriam-webster.com: is a computer program

that permits the user to create or modify data (such as

text or graphics) especially on a display screen

Traditional service delivery
Editors

http://www.merriam-webster.com/

Bash scripting 37/65

 In Linux, text editor are of two kinds:

★ graphical user interface (GUI) based

– gedit

– bluefish

– lime ……...

★ command line text editors (console or terminal)

– nano

– pico

– vi/vim

– emacs …….

Traditional service delivery
Editor types

Bash scripting 38/65

Nano is the built-in basic text editor for many popular linux distros.
It doesn’t take any learning or getting used to, and all its commands and
prompts are displayed at the bottom.
★ Use Nano if:

– You’re new to the terminal

– you just need to get into a file for a quick change.
Compared to more advanced editors in the hands of someone who
knows what they’re doing, some tasks are cumbersome and non-
customizable.
★ How to Nano:

from your terminal, enter `nano` and the filename you want to edit.
If the file doesn’t already exist, it will once you save it.
Commands are listed across the bottom and are triggered with the
Control (CTRL) key. For example, to find something in your file, hold
CTRL and press W, tell it what you’re searching for, and press Enter.
Press CTRL+X to exit, then follow the prompts at the bottom of the
screen.

Traditional service delivery
Nano

Bash scripting 39/65

Emacs has so many available features like a terminal, calculator,
calendar, email client, web browser, and Tetris, it’s often spoken of as an
operating system itself.
Starting Emacs is relatively simple, but more you learn, the more there is
to learn.

★ How to Emacs:
Emacs commands are accessed through keyboard combinations of
CTRL or ALT and another keystroke. When you see shortcuts that read
C-h or M-x, C stands for the control key and M stands for the Alt key (or
Escape, depending on your system).

Enter `emacs` in your terminal, and access the built-in tutorial with C-h t.
That means, while holding CTRL, press H, then T.

Or, try key combination C-h r to open the manual within Emacs. You can
also use the manual as a playground; just remember to quit without
saving by pressing key combination C-x C-c.

Traditional service delivery
GNU emacs

Bash scripting 40/65

★ Emacs wiki
https://www.emacswiki.org/emacs/SiteMap

★ GNU Guided Tour
https://www.gnu.org/software/emacs/tour/

★ Cornell Emacs Quick Reference
https://www.cs.cornell.edu/courses/cs312/2006fa/software/quick-emacs.html

Traditional service delivery
Helpful Emacs links

https://www.emacswiki.org/emacs/SiteMap
https://www.gnu.org/software/emacs/tour/

Bash scripting 41/65

 http://www.di.unipi.it/~bozzo/fino/appunti/node2.html

Traditional service delivery
Main Emacs commands

Bash scripting 42/65

Vi, typically comes with your distro-of-choice.
Vim is a vi successor with some improvements. It runs by default on
OS X and some Linux distributions when `vi` is run.

VI has two modes of operation (is a “modal” editor):

● Command mode for navigating files: commands which
cause action to be taken on the file

● Insert mode for editing text: in which entered text is inserted
into the file.

Because Vi is navigated through the use of keyboard
commands and shortcuts, it is better experienced than
explained.

Traditional service delivery
vi/vim

Bash scripting 43/65

Enter `vi` or `vim` in your terminal.
When you enter Vi, you begin in command mode and navigate using keyboard
commands and the H, J, K, and L keys to move left, down, up, and right,
respectively (but arrows use is possible in the most recent versions).

To enter in editing mode press:
‘a’ to append to the file
‘i’ to insert
pressing the <Esc> (Escape) key turns off the Insert mode.

To exit Vim without saving, press ESC to enter command mode, then press :
(colon) to access the command line (a prompt appears at the very bottom) and
enter q!.
To save and quit, you could use that prompt and the key combination :wq, or
hold down SHIFT and press Z two times (the shortcut SHIFT+ZZ).

The : (colon) operator begins many commands like :help for help, or :w to
save.

If you’re stuck at the prompt and don’t remember the operator you want to use,
enter : (colon), then press CTRL+D for a list of possibilities.

Traditional service delivery
How to Vi or Vim

Bash scripting 44/65

★ Basic vi Commands
https://www.cs.colostate.edu/helpdocs/vi.html

★ Swathmore’s Tips and Tricks
https://www.cs.swarthmore.edu/oldhelp/vim/home.html

★ Linux Academy’s Vim Reference Guide
https://www.linuxtrainingacademy.com/vim-cheat-sheet/
https://acloudguru.com/blog/engineering/a-vim-cheat-sheet-reference-guide

Traditional service delivery
Helpful VI links

https://www.linuxtrainingacademy.com/vim-cheat-sheet/

Bash scripting 45/65

Bash scripting 46/65

Technologies available in Information Technology are a lot.

Often, to solve a problem, you can choose between

different instruments. The rule to base your choose is:

It does not exist “the best tool” but “the best tool to solve

your specific problem”.

Sometimes different tools are more or less equivalent.

This is the case of editors emacs and vim:

https://en.wikipedia.org/wiki/Editor_war

Traditional service delivery
The editor war

Bash scripting 47/65

Try an editor and its tutorial,
watch videos on how to use it for your intended purpose,
spend a day or two using it with real files training your fingers.

The best editor for you is the one that makes you feel like
you’re easily getting things done.

Traditional service delivery
Choose your editor

Bash scripting 48/65

Many shells have scripting abilities:

Executes sequentially multiple commands written

in a script as if they were typed from the

keyboard.

Most shells offer additional programming

constructs that extend the scripting feature into a

programming language.

Traditional service delivery
Shell scripting abilities

Bash scripting 49/65

A script is, in the simplest case, a list of system

commands stored in a file.

Place commands in a script is useful

● to avoid having to retype them time and again

● to be able to modify and customize the script for a

particular application

● to use the script as a program/command

Traditional service delivery
What is a script

Bash scripting 50/65

Every script starts with the sha-bang (#!) at the head, followed by
the full path name of an interpreter.

Examples:
#!/bin/sh
#!/bin/bash
#!/usr/bin/perl

This tells your system that the file is a set of commands to be fed
to the command interpreter indicated by the path.

The command interpreter executes the commands in the script,
starting at the top (the line following the sha-bang line), and
ignoring comments.

Traditional service delivery
The sha-bang #!

Bash scripting 51/65

Traditional service delivery
Execute the script

★ The script execution requires the script has “execute”
permissions:

 chmod +rx scriptname (gives everyone read/execute permission)
 chmod u+rx scriptname (gives only the script owner read/execute
 permission)

★ The script can be executed issuing:
./scriptname

★ The script can be made available as a command:

– moving the script to /usr/local/bin (as root), making it available
to all users as a system wide executable. The script could then
be invoked by simply typing scriptname [ENTER] from the
command-line.

– Including the directory containing the script in the user's $PATH

Bash scripting 52/65

Traditional service delivery
Exercise: a first script

★ Write a script that upon invocation

1) Says “Hello!”

2) shows the time and date

3) The script then saves this information to a logfile

★ Make the script executable

★ Execute the script

★ Make the script available as a command

Bash scripting 53/65

Traditional service delivery
Special characters (1)

★ Special characters have a meaning beyond its literal meaning

Comments [#]. Lines beginning with a # (with the exception of #!)
This line is a comment.
Comments may also occur following the end of a command.
echo "A comment will follow." # Comment here.
Comments may also follow whitespace at the beginning of a line.
 # Note

Command separator [semicolon ;] Permits putting two or more commands on the same
line.
echo hello; echo world

Escape [backslash \] This is a mechanism to express litterally a special charactrer.
For example the \ may be used to escape " and ' echoing a string:
echo This is a double quote \” # This is a double quote ”

Bash scripting 54/65

Traditional service delivery
Special characters (2)

Command substitution [backquotes or backticks `]. The `command` construct makes
available the output of command for assignment to a variable.
a=`pwd`
echo $a # display the path of your location

Wild card [asterisk *]. The * character serves as a "wild card", it matches every filename
in a given directory or every character in a string.

Run job in background [and &]. A command followed by an & will run in the background.
 bash$ sleep 10 &
 [1] 850
 [1]+ Done sleep 10
Within a script, commands and even loops may run in the background.
To bring the script in foreground type `fg` or `CTRL Z fg`
To bring the script in background type `fg` or `CTRL Z bg`

Complete reference:
https://www.tldp.org/LDP/abs/html/special-chars.html

Bash scripting 55/65

 Write a commented command and execute it

 Write two commands on the same row and execute them

 Make the echo of a string containing one or more escaped
characters

 Make the echo of a command (like ls or pwd) output

 Use wildcard to list all files starting with ‘a’ in your directory

 Download from github the script infinite_loop_noout.sh, make
it executable if needed, execute it in background, recall it in
foreground, stop it

Exercise: special characters

Bash scripting 56/65

★ Variables are how programming and scripting languages represent
data. A variable is a label, a name assigned to a location holding
data.

★ Standard UNIX variables are split into two categories:
– environment variables:

if set at login, are valid for the duration of the session
– shell variables:

apply only to the current instance of the shell and are used to set
short-term working conditions;

By convention, environment variables have UPPER CASE and shell
variables have lower case names.
★ Environment variables are a way of passing information from the

shell to programs when you run them. Programs look "in the
environment" for variables and if found, will use the values stored.

★ Variables can be set: by the system, by you, by the shell, by any
program that loads another program.

Traditional service delivery
UNIX Variables

Bash scripting 57/65

Variable in bash are untyped.

★ Bash variables are character strings: can contain a
number, a character, a string of characters.

★ Depending on context (i.e. depending whether the
value of a variable contains only digits or not), bash
permits arithmetic operations and comparisons on
variables.

★There is no need to declare a variable, just assigning a
value to its reference will create it.

Traditional service delivery
bash variables

Bash scripting 58/65

It must distinguish between the name (right value) of a variable and its value
(left value).

If variable1 is the name of a variable,
then $variable1 is a reference to its value, i.e. the data item it contains.

$variable1 is actually a simplified form of ${variable1}. In contexts where the
$variable syntax causes an error, the longer form ${variable} may work.

Referencing (retrieving) the variable value is called variable substitution.

=> No space permitted on either side of = sign when initializing variables.

Example:
a=375 # Initialize variable
hello=$a # No space permitted on either side of = sign when initializing variables.
^ ^
What happens if there is a space? Bash will treat the variable name as a program to
execute, and the = as its first parameter. TRY
#
echo hello # hello ## Not a variable reference, just the string "hello" ...
echo $hello # 375 ## This *is* a variable reference, i.e. shows the value.
echo ${hello} # 375 ## Likewise a variable reference, as above.

Traditional service delivery
bash variables: assignment (1)

Bash scripting 59/65

In the previous slide: “In contexts where the $variable syntax causes
an error, the longer form ${variable} may work”. This is called variable
disambiguation.

Example:
If the variable $type contains a singular noun and we want to
transform it on a plural one adding an ‘s’, we can't simply add an ‘s’
character to $type since that would turn it into a different variable,
$types.
Although we could utilize code contortions such as
echo "Found 42 "$type"s"

the best way to solve this problem is to use curly braces:
echo "Found 42 ${type}s",
which allows us to tell bash where the name of a variable starts and
ends

Traditional service delivery
assignment disambiguation with {}

Bash scripting 60/65

Try:

1) STR=’Hello World!’
 echo $STR

2) Try assignment and echo the variable content:

a=5324

a=(1, 3, 4, 6, 5, “otto”) # array

3) Very simple backup script example:
 OF=/tmp/my-backup-$(date +%Y%m%d).tgz
 tar -czf $OF ./subdir_of_where_i_am

Traditional service delivery
Exercise: bash variables

Bash scripting 61/65

“naked variable”, i.e. lacking ‘$’ in front, is when a variable is being assigned,
rather than referenced.
Assignment simple
a=879 ; echo "The value of \"a\" is $a."

Assignment using 'let' (arithmetic expression)
let a=16+5; echo "The value of \"a\" is now $a."

In a 'for' loop (see for details later in this lesson):
echo -n "Values of \"a\" in the loop are: "
for a in 7 8 9 11
do
 echo -n "$a "
done

In a 'read' statement (also a type of assignment):
echo -n "Enter \"a\" "
read a
echo "The value of \"a\" is now $a."

Traditional service delivery
bash variables: assignment examples

Bash scripting 62/65

#!/bin/bash
With command substitution

a=`echo Hello!` # Assigns result of 'echo' command to 'a' ...
echo $a

a=`ls -l` # Assigns result of 'ls -l' command to 'a'
echo $a # Unquoted, however, it removes tabs and newlines.

echo "$a" # The quoted variable preserves whitespace.

Traditional service delivery
bash variables: assignment examples(2)

Bash scripting 63/65

Try different variable assignments and print the variable
content to standard output

 Simple assignment

 Command output assignment

Exercise 3: practice with variables assignment

Bash scripting 64/65

Quoting means just that, bracketing a string in quotes.
This has the effect of protecting special characters in the string from
reinterpretation or expansion by the shell or shell script. (A character is "special"
if it has an interpretation other than its literal meaning. For example, the asterisk
* represents a wild card character in Regular Expressions).

Partial quoting consists in enclosing a referenced value in double quotes (" ... ").
This does not interfere with variable substitution. Sometimes referred also as
"weak quoting."

Full quoting consists in using single quotes ('...').
It causes the variable name to be used literally, and no substitution will take
place.

Examples (Try):
a=352
echo $a # 352
echo “$a” # 352
echo ‘$a’ # $a
=> Quoting a variable preserves white spaces.

Traditional service delivery
bash variables: quoting

Bash scripting 65/65

In a bash script:

 Assign a variable
 Print the variable value
 Print a string containing the variable value
 Print a string containing the partial quoted variable
 Print the same string fully quoted
 Assign a variable containing multiple spaces
 Print this new variable
 Print this new variable quoted

 Run the script
 Run the script redirecting the output on a file

Traditional service delivery
Exercise 2: variables assignment and quoting

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65

