Mathematics Class

November 16, 2020

Exercise 1. Determine the image set of each function, then draw its graph and determine its inverse function.

$$
\begin{array}{ll}
f(x)= \begin{cases}-(x-1)^{2} & \text { if } x<1 \\
\sqrt{x-1} & \text { if } x \geq 1\end{cases} & g(x)= \begin{cases}x^{2}-1 & \text { if } x<0 \\
-\sqrt{x}-1 & \text { if } x \geq 0\end{cases} \\
h(x)= \begin{cases}x^{3}-2 & \text { if } x<0 \\
\sqrt{x}+2 & \text { if } x \geq 0\end{cases} & i(x)= \begin{cases}\frac{x}{x+1} & \text { if } x<-1 \\
1-(x+1)^{2} & \text { if } x \geq-1\end{cases}
\end{array}
$$

Exercise 2. Determine the domain of the following function:

$$
f(x)=\arcsin \left(\frac{1}{\sqrt{x+5}-\sqrt{x}}\right)
$$

Exercise 3. Consider the following function, depending on the parameters a and b :

$$
f: \mathbb{R} \rightarrow \mathbb{R}, \quad f(x)= \begin{cases}-x+4 & \text { if } x<-2 \\ -2 \sin (a x)+b & \text { if }-2 \leq x \leq 0 \\ x^{a}-2 x & \text { if } 0<x\end{cases}
$$

a) For which values of a and b the conditions $f(-1)=2$ and $f(3)=-5$ are satisfied?
b) Draw the graph of the function obtained.
c) Is the function injective? Is it surjective? If not, determine a modification of f in the interval $[-2,0[$ so that to obtain a monotone function.

Exercise 4. Recognise which graphs represent monotone functions and, for each of the remaining ones, determine the maximal intervals of monotonicity.

