
Laboratory Exercise 7
Finite State Machines

This is an exercise in using finite state machines.

Part I
We wish to implement a finite state machine (FSM) that recognizes two specific sequences of applied input sym-
bols, namely four consecutive 1s or four consecutive 0s. There is an input w and an output z. Whenever w = 1 or
w = 0 for four consecutive clock pulses the value of z has to be 1; otherwise, z = 0. Overlapping sequences are
allowed, so that if w = 1 for five consecutive clock pulses the output z will be equal to 1 after the fourth and fifth
pulses. Figure 1 illustrates the required relationship between w and z.

Clock

w

z

Figure 1: Required timing for the output z.

A state diagram for this FSM is shown in Figure 2. For this part you are to manually derive an FSM circuit that
implements this state diagram, including the logic expressions that feed each of the state flip-flops. To implement
the FSM use nine state flip-flops called y8, . . . , y0 and the one-hot state assignment given in Table 1.

1

E/10

Reset

w = 0

D/0

w = 0

C/0

w = 0

B/0

A/0

I/1 1

 1

H/0

1

G/0

1

F/0

w = 1w = 0
1

0

1

1

1

0

0

0

Figure 2: A state diagram for the FSM.

State Code
Name y8y7y6y5y4y3y2y1y0

A 000000001

B 000000010
C 000000100
D 000001000
E 000010000
F 000100000
G 001000000
H 010000000
I 100000000

Table 1: One-hot codes for the FSM.

Design and implement your circuit on your DE-series board as follows:

1. Create a new Quartus R© project for the FSM circuit.

2. Write a VHDL file that instantiates the nine flip-flops in the circuit and which specifies the logic expressions
that drive the flip-flop input ports. Use only simple assignment statements in your VHDL code to specify the
logic feeding the flip-flops. Note that the one-hot code enables you to derive these expressions by inspection.

Use the toggle switch SW0 as an active-low synchronous reset input for the FSM, use SW1 as the w input,
and the pushbutton KEY0 as the clock input which is applied manually. Use the red light LEDR9 as the
output z, and assign the state flip-flop outputs to the red lights LEDR8 to LEDR0.

3. Include the VHDL file in your project, and assign the pins on the FPGA to connect to the switches and the
LEDs.

2

4. Simulate the behavior of your circuit.

5. Once you are confident that the circuit works properly as a result of your simulation, download the circuit
into the FPGA chip. Test the functionality of your design by applying the input sequences and observing
the output LEDs. Make sure that the FSM properly transitions between states as displayed on the red LEDs,
and that it produces the correct output values on LEDR9.

6. Finally, consider a modification of the one-hot code given in Table 1. It is often desirable to set all flip-flop
outputs to the value 0 in the reset state.

Table 2 shows a modified one-hot state assignment in which the reset state, A, uses all 0s. This is accom-
plished by inverting the state variable y0. Create a modified version of your VHDL code that implements
this state assignment. (Hint: you should need to make very few changes to the logic expressions in your
circuit to implement the modified state assignment.)

7. Compile your new circuit and test it.

State Code
Name y8y7y6y5y4y3y2y1y0

A 000000000

B 000000011
C 000000101
D 000001001
E 000010001
F 000100001
G 001000001
H 010000001
I 100000001

Table 2: Modified one-hot codes for the FSM.

Part II
For this part you are to write another style of Verilog code for the FSM in Figure 2. In this version of the code
you should not manually derive the logic expressions needed for each state flip-flop. Instead, describe the state
table for the FSM by using a VHDL CASE statement in a PROCESS block, and use another PROCESS block to
instantiate the state flip-flops. You can use a third PROCESS block or simple assignment statements to specify the
output z. To implement the FSM, use four state flip-flops y3, . . . , y0 and binary codes, as shown in Table 3.

State Code
Name y3y2y1y0

A 0000

B 0001
C 0010
D 0011
E 0100
F 0101
G 0110
H 0111
I 1000

Table 3: Binary codes for the FSM.

3

A suggested skeleton of the VHDL code is given in Figure 3.

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY part2 IS
PORT (. . . define input and output ports

. . .);
END part2;

ARCHITECTURE Behavior OF part2 IS
. . . declare signals
TYPE State_type IS (A, B, C, D, E, F, G, H, I);
– Attribute to declare a specific encoding for the states
attribute syn_encoding : string;
attribute syn_encoding of State_type : type is "0000 0001 0010 0011 0100 0101 0110 0111 1000";

SIGNAL y_Q, Y_D : State_type; - - y_Q is present state, y_D is next state
BEGIN

. . .
PROCESS (w, y_Q) - - state table
BEGIN

case y_Q IS
WHEN A IF (w = ’0’) THEN Y_D <= B;

ELSE Y_D <= F;
END IF;

. . . other states
END CASE;

END PROCESS; - - state table

PROCESS (Clock) - - state flip-flops
BEGIN

. . .
END PROCESS;

. . . assignments for output z and the LEDs
END Behavior;

Figure 3: Skeleton VHDL code for the FSM.

Implement your circuit as follows.

1. Create a new project for the FSM.

2. Include in the project your VHDL file that uses the style of code in Figure 3. Use the same switches,
pushbuttons, and lights that were used in Part I.

3. Before compiling your code it is necessary to explicitly tell the Synthesis tool in Quartus that you wish to
have the finite state machine implemented using the state assignment specified in your VHDL code. If you
do not explicitly give this setting to Quartus, the Synthesis tool will automatically use a state assignment
of its own choosing, and it will ignore the state codes specified in your VHDL code. To make this setting,
choose Assignments > Settings in Quartus, and click on the Compiler Settings item on the left side of

4

the window, then click on the Advanced Settings (Synthesis) button. As indicated in Figure 4, change
the parameter State Machine Processing to the setting User-Encoded.

4. Compile your project. To examine the circuit produced by Quartus open the RTL Viewer tool. Double-click
on the box shown in the circuit that represents the finite state machine, and determine whether the state
diagram that it shows properly corresponds to the one in Figure 2. To see the state codes used for your FSM,
open the Compilation Report, select the Analysis and Synthesis section of the report, and click on State
Machines.

5. Download the circuit into the FPGA chip and test its functionality.

6. In step 3 you instructed the Quartus Synthesis tool to use the state assignment given in your VHDL code. To
see the result of removing this setting, open again the Quartus settings window by choosing Assignments >
Settings, and Compiler Settings item on the left side of the window, then click on the Advanced Settings
(Synthesis) button. Change the setting for State Machine Processing from User-Encoded to One-Hot.
Recompile the circuit and then open the report file, select the Analysis and Synthesis section of the report,
and click on State Machines. Compare the state codes shown to those given in Table 2, and discuss any
differences that you observe.

Figure 4: Specifying the state assignment method in Quartus.

Part III
The sequence detector can be implemented in a straightforward manner using shift registers, instead of using the
more formal approach described above. Create VHDL code that instantiates two 4-bit shift registers; one is for
recognizing a sequence of four 0s, and the other for four 1s. Include the appropriate logic expressions in your
design to produce the output z. Make a Quartus project for your design and implement the circuit on your DE-
series board. Use the switches and LEDs on the board in a similar way as you did for Parts I and II and observe
the behavior of your shift registers and the output z. Answer the following question: could you use just one 4-bit
shift register, rather than two? Explain your answer.

5

Part IV
In this part of the exercise you are to implement a Morse-code encoder using an FSM. The Morse code uses pat-
terns of short and long pulses to represent a message. Each letter is represented as a sequence of dots (a short
pulse), and dashes (a long pulse). For example, the first eight letters of the alphabet have the following represen-
tation:

A • —
B — • • •
C — • — •
D — • •
E •
F • • — •
G — — •
H • • • •

Design and implement a Morse-code encoder circuit using an FSM. Your circuit should take as input one of
the first eight letters of the alphabet and display the Morse code for it on a red LED. Use switches SW2−0 and
pushbuttons KEY1−0 as inputs. When a user presses KEY1, the circuit should display the Morse code for a letter
specified by SW2−0 (000 for A, 001 for B, etc.), using 0.5-second pulses to represent dots, and 1.5-second pulses
to represent dashes. Pushbutton KEY0 should function as an asynchronous reset.
A high-level schematic diagram of a possible circuit for the Morse-code encoder is shown in Figure 5.

Morse code length counter

Enable
Load

Data

Morse code shift register

Enable
Load

Data

FSM
Letter

selection
logic

LEDR0

Half-second counter

Pushbuttons and switches

Figure 5: High-level schematic diagram of the circuit for Part IV.

6

Copyright c© Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Avalon, Cyclone, En-
pirion, MAX, Nios, Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in
the U.S. and/or other countries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel’s standard warranty, but reserves the right to make changes to any products
and services at any time without notice. Intel assumes no responsibility or liability arising out of the application
or use of any information, product, or service described herein except as expressly agreed to in writing by Intel.
Intel customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.

*Other names and brands may be claimed as the property of others.

7

	Part I
	Part II
	Part III
	Part IV

