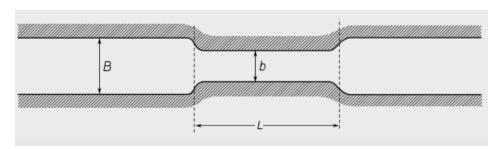
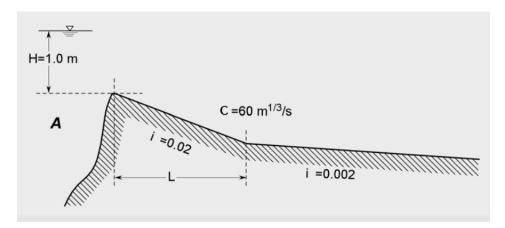

Esercizio 1

 $\overline{\Pi}$ canale in figura, infinitamente lungo e di sezione rettangolare molto larga, presenta un tratto centrale di lunghezza L, caratterizzato da una pendenza relativamente modesta. Il coefficiente di scabrezza nella formula di Gauckler-Stricler vale $c=50\,m^{1/3}/s$ e la portata fluente, per unitá di larghezza, vale $q=1.0\,m^2/s$. Si ricostruiscano i possibili profili di moto permanente lungo il canale al variare di L e si rappresentino le diverse soluzioni anche nel diagramma E-h.

Esercizio 2

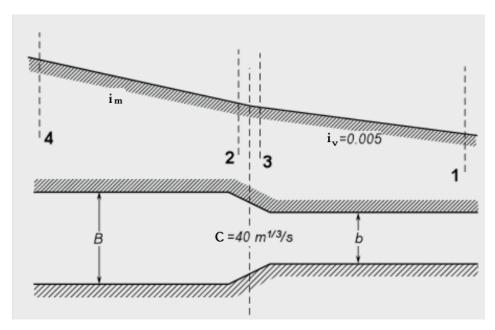

Lungo il canale di figura, infinitamente lungo e di sezione rettangolare larga è presente una sottrazione localizzata di portata, ΔQ a causa della quale la portata per unità di largezza passa dal valore $q_m = 1.2\,m^2/s$ al valore $q_v = 0.8\,m^2/s$. In corrispondenza della sottrazione localizzata, inoltre, vi è anche un cambio di pendenza dal valore $i_m = 0.02$ al valore i_v . Si ricostruiscano i possibili profili lungo il canale al variare della pendenza i_v , indicando i tipi di profilo di moto gradualmente vario che si sviluppano. Si rappresentino inoltre le diverse soluzioni anche nel diagramma E-h.

Esercizio 3

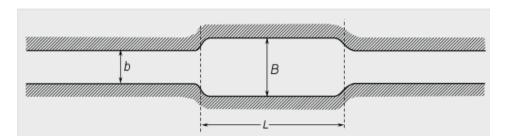

Il canale di figura, infinitamente lungo e di sezione rettangolare di larghezza $B=5\,m$, presenta un tratto centrale, largo b, caratterizzato da una lunghezza L non trascurabile ma al tempo stesso non sufficiente affichè si instaurino condizioni di moto uniforme. Sapendo che il canale è caratterizzato da un coefficiente di resistenza $c=60\,m^{1/3}/s$, che la pendenza del fondo è

i=0.008 e che la portata fluente vale $Q=5\,m^3/s$, si ricostruiscano i profili di moto permanente al variare della lunghezza L, quando il tratto centrale è largo $b=1\,m$ e $b=3\,m$. Si fornisca inoltre la rappresentazione nel diagramma E-h delle caratteristiche di ciascun profilo. NOTA: Non è corretto in questo caso assumere l'ipotesi di sezione rettangolare larga.

Esercizio 4


Il canale di figura, infinitamente lungo e di sezione rettangolare larga $B=10\,m$, scarica l'acqua contenuta nel serbatoio A il cui livello rispetto al fondo della sezione iniziale vale $H=1.0\,m$. Il primo tratto di canale, lungo L, è caratterizzato da una pendenza del fondo $i_1=0.02$ superiore a quella critica, il tratto successivo, infinitamente lungo, è caratterizzato da una pendenza del fondo $i_2=0.002$. Si ricostruiscano i possibili profili di moto permanente lungo il canale al variare della lunghezza L del tratto iniziale. Si rappresentino inoltre le diverse soluzioni anche nel diagramma E-h.

Esercizio 5


Il canale di figura, infinitamente lungo e di sezione rettangolare, presenta un tratto di valle di larghezza $b=5\,m$ e pendenza del fondo $i_v=0.005$, e un tratto di monte di larghezza $B=8\,m$. La portata fluente è $Q=5\,m^3/s$ e il coefficiente di resistenza della formula di Gauckler-Strickler vale $c=40m^{1/3}/s$. Valutate preliminarmente l'altezza di moto uniforme di valle e le altezze critiche di monte e di valle si ricostruiscano i diversi possibili

profili di moto permanente lungo il canale al variare della pendenza i_m del tratto di monte. Si trascurino le dissipazioni di energia localizzate in corrispondenza del restringimento. Si fornisca inoltre la rappresentazione nel diagramma E-h delle caratteristiche di ciascun profilo.

Esercizio 6

Il canale di figura, infinitamente lungo e di sezione rettangolare di larghezza $b=2\,m$, presenta un tratto centrale, largo B, caratterizzato da una lunghezza L non trascurabile ma al tempo stesso non sufficiente affichè si instaurino condizioni di moto uniforme. Sapendo che il canale è caratterizzato da un coefficiente di resistenza $c=70m^{1/3}/s$, che la pendenza del fondo è i=0.005 e che la portata fluente vale $Q=40\,m^3/s$, si ricostruiscano i profili di moto permanente al variare della lunghezza L, quando il tratto centrale è largo $B=2.5\,m$. Si fornisca inoltre la rappresentazione nel diagramma E-h delle caratteristiche di ciascun profilo. NOTA: Non è corretto assumere l'ipotesi di sezione rettangolare larga.

