SOLUTIONS
November 16, 2020

Exercise 1. Determine the image set of each function, then draw its graph and determine
its inverse function.
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The graphs of the functions f, g, h, 7 are represented in the next page.






Exercise 2. Determine the domain of the following function:

F(z) = arcsin (ﬁ)

Solution
The domain of f is [0, 4].

Exercise 3. Consider the following function, depending on the parameters a and b:

—r 44 if z < —2,
fR—=R, f(z)=4 —2sin(az)+b if —2<z<0,
z® — 2z if 0 <a.

a) For which values of a and b the conditions f(—1) =2 and f(3) = —5 are satisfied?
b) Draw the graph of the function obtained.
¢) Is the function injective? Is it surjective? If not, determine a possible modification
of f in the interval [—2,0] so that to obtain a monotone function.
Solutions
a) a=0,b=2.
b) The graph of the function f obtained with the choices a = 0 and b = 2 is the following.

c¢) The function f is not injective, since in the interval [—2, 0] the value of f is constantly 2;
the function is not surjective anymore, since
f(R) =] —o00,1[U {2} U]6, +-00.

A possible modification of f in the interval [—2, 0] in order to make the function bijective

is
f(®)=1— 3=, forallze€[-2,0].

Exercise 4. Recognise which graphs represent monotone functions and, for each of the
remaining ones, determine the maximal intervals of monotonicity.
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Solutions

1.

The function is increasing in its domain, which is ]0, 4oo[, then it is strictly monotone in
10, 4+o0l.

The function is increasing in | — 0o, ¢] and in [d, +oo[, decreasing in [c, d] (see the graph:
¢ is a local maximum point, d a local minimum point of the function).

The function is increasing in R, then it is strictly monotone in R.

The function is increasing in | — oo, 1[ and in ]1,+4oco[, but not in the whole domain
] — o0, 1[U]1, +ool.

The function is non-increasing in R, then it is monotone in R, in particular it is decreasing
in ] — 00, 1] and in [4, +oo[, constant (non-decreasing and non-increasing) in [1, 4].



