MATHEMATICS CLASS

from November 12 to December 3, 2020

Exercise 1. For each of the following periodic functions, find its minimum period.

a.
$$g(x) = \frac{1}{2}\sin\left(\frac{x}{3}\right)$$
 b. $i(x) = \tan(\pi x)$ c. $h(x) = \sin(-2x)$

Solutions

$$a. 6\pi$$
 $b. 1$ $c. \pi$

Exercise 2. Let us consider the following function:

$$f(x) = \begin{cases} -1 & \text{if } x < 0,\\ \cos\left(\frac{x}{2}\right) & \text{if } 0 \le x < 2\pi,\\ 2x - (4\pi + 1) & \text{if } x \ge 2\pi. \end{cases}$$

- i) Draw the graph of the function f.
- *ii*) Is the function continuous at x = 0 and $x = 2\pi$? Justify your answers.
- iii) Determine a possible modification of the function f in a neighbourhood of x = 0 or of $x = 2\pi$, so that to obtain a continuous function in the whole \mathbb{R} .

Solutions

i)

- *ii*) f is not continuous at x = 0, whereas it is continuous at $x = 2\pi$.
- *iii*) A possible modification of f in a neighbourhood of x = 0 is given by $\overline{f} : \mathbb{R} \to \mathbb{R}$, with

$$\bar{f}(x) = \begin{cases} -1 & \text{if } x < -1, \\ 2x + 1 & \text{if } -1 \le x < 0, \\ \cos\left(\frac{x}{2}\right) & \text{if } 0 \le x < 2\pi, \\ 2x - (4\pi + 1) & \text{if } x \ge 2\pi. \end{cases}$$

Exercise 3. Let us consider the following functions, defined in $\mathbb{R} \setminus \{0\}$:

$$f(x) = 1,$$
 $g(x) = \begin{cases} 1 & \text{if } x < 0, \\ 2 & \text{if } x > 0. \end{cases}$

Is it possible to extend them so that to make them continuous at x = 0? If so, how? If not, why?

Solutions

f is continuous in $\mathbb{R} \setminus \{0\}$ and the unique way to extend f in order to obtain a continuous function in \mathbb{R} is defining $\overline{f}(0) = 1$, and $\overline{f}(x) = f(x)$, for all $x \in \mathbb{R} \setminus \{0\}$;

g is continuous in $\mathbb{R} \setminus \{0\}$ but it is not extendible to a continuous function in \mathbb{R} .

Exercise 4. Let us consider $f : [0, 4] \to f([0, 4])$, which is a continuous, strictly monotone function, such that f(0) = -2 and f(4) = 3.

- i) According to the sign of f at the extreme points of the domain, which type of monotonicity in [0, 4] does f display?
- ii) How many times does the graph of f intersect the x-axis? How many the graph of the inverse f^{-1} ? Justify your answers, by means of some theoretical results studied.

Solutions

- i) f is increasing.
- ii) By the Bolzano theorem and the strictly monotonicity follows the graph of f intersects once time the x-axis. The inverse f^{-1} is continuous by the Theorem on the continuity of the inverse, therefore the same conclusion as f holds.

Exercise 5. Let us consider the following function:

$$f: \mathbb{R} \to \mathbb{R}, \quad f(x) = \begin{cases} \frac{1}{x+2} & \text{if } x < -2, \\ (x+2)(x-4) & \text{if } -2 \le x < 4, \\ \frac{1}{2}(4-x) & \text{if } 4 \le x. \end{cases}$$

Determine

- i) the sign of f;
- *ii*) the image of $f, f(\mathbb{R})$;

 $iii) \lim_{x \to -\infty} f(x), \quad f(-3), \quad \lim_{x \to (-2)^{-}} f(x), \quad f(-2), \quad \lim_{x \to 4} f(x), \quad f(6), \lim_{x \to +\infty} f(x).$

Moreover say whether the function f is continuous in its domain and draw its graph. Solutions

- i) $f(x) \leq 0$ for all $x \in \mathbb{R}$, with f(x) = 0 if and only if $x \in \{-2, 4\}$;
- *ii*) $f(\mathbb{R}) =] \infty, 0];$

iii)
$$\lim_{x \to -\infty} f(x) = 0, \quad f(-3) = -1, \quad \lim_{x \to (-2)^{-}} f(x) = -\infty, \quad f(-2) = 0,$$
$$\lim_{x \to 4} f(x) = 0, \quad f(6) = -1, \quad \lim_{x \to +\infty} f(x) = -\infty.$$

The function f is continuous in $] - \infty, -2[\cup] - 2, +\infty[$, but not at x = -2, since $\lim_{x \to (-2)^{-}} f(x) = -\infty$. The graph of f is represented below:

Exercise 6. Compute the following limits, whenever it is possible:

1)
$$\lim_{x \to -1} (x^3 - 3)$$
, 2) $\lim_{x \to 3} \frac{x^2 - 5x + 6}{x - 3}$, 3) $\lim_{x \to \pi} \cos(3x)$,
4) $\lim_{x \to +\infty} x \cos\left(\frac{1}{x}\right)$, 5) $\lim_{x \to 0} \frac{7}{x}$, 6) $\lim_{x \to 0} \frac{7}{x^2}$,
7) $\lim_{x \to +\infty} \frac{\arctan x}{3}$, 8) $\lim_{x \to 0} \sqrt[3]{1 + \frac{1}{x}}$, 9) $\lim_{x \to +\infty} \frac{\cos^2 x}{x}$

Solutions

1)
$$-4$$
,2) 1,3) -1 ,4) $+\infty$,5) it does not exist,6) $+\infty$,7) $\frac{\pi}{6}$,8) it does not exist,9) 0.

Exercise 7. Compute the following limits of sequences, whenever it is possible:

$$\begin{array}{ll} 1) \lim_{n \to +\infty} \frac{4 - n^2}{n - 2}, \\ 4) \lim_{n \to +\infty} \left(\sqrt{n - 5} - \sqrt{n + 3}\right), \\ 7) \lim_{n \to +\infty} (-1)^n \frac{7 \sqrt[4]{n}}{n^2 + 5 + \tan(\frac{1}{n})}, \\ 10) \lim_{n \to +\infty} \frac{n}{\sin(2n\pi) + \cos((2n + 1)^2\pi)}. \end{array} \begin{array}{ll} 2) \lim_{n \to +\infty} \frac{9n^2 + 2}{6 - n + n^2}, \\ 3) \lim_{n \to +\infty} \frac{n - 2 - 3n^2}{4 - 5n^2 + 6n^3}, \\ 3) \lim_{n \to +\infty} \frac{n - 2 - 3n^2}{4 - 5n^2 + 6n^3}, \\ 3) \lim_{n \to +\infty} \frac{n - 2 - 3n^2}{4 - 5n^2 + 6n^3}, \\ 3) \lim_{n \to +\infty} \frac{n - 2 - 3n^2}{4 - 5n^2 + 6n^3}, \\ 3) \lim_{n \to +\infty} \frac{n - 2 - 3n^2}{4 - 5n^2 + 6n^3}, \\ 3) \lim_{n \to +\infty} \frac{n - 2 - 3n^2}{4 - 5n^2 + 6n^3}, \\ 3) \lim_{n \to +\infty} \frac{n - 2 - 3n^2}{4 - 5n^2 + 6n^3}, \\ 3) \lim_{n \to +\infty} \frac{n - 2 - 3n^2}{4 - 5n^2 + 6n^3}, \\ 3) \lim_{n \to +\infty} \frac{n - 2 - 3n^2}{4 - 5n^2 + 6n^3}, \\ 3) \lim_{n \to +\infty} \frac{n - 2 - 3n^2}{4 - 5n^2 + 6n^3}, \\ 3) \lim_{n \to +\infty} \frac{n - 2 - 3n^2}{4 - 5n^2 + 6n^3}, \\ 3) \lim_{n \to +\infty} \frac{n - 2 - 3n^2}{4 - 5n^2 + 6n^3}, \\ 3) \lim_{n \to +\infty} \frac{n - 2 - 3n^2}{4 - 5n^2 + 6n^3}, \\ 3) \lim_{n \to +\infty} \frac{n - 2 - 3n^2}{4 - 5n^2 + 6n^3}, \\ 3) \lim_{n \to +\infty} \frac{n - 2 - 3n^2}{4 - 5n^2 + 6n^3}, \\ 3) \lim_{n \to +\infty} \frac{n - 2 - 3n^2}{4 - 5n^2 + 6n^3}, \\ 3) \lim_{n \to +\infty} \frac{n - 2 - 3n^2}{4 - 5n^2 + 6n^3}, \\ 3) \lim_{n \to +\infty} \frac{n - 2 - 3n^2}{4 - 5n^2 + 6n^3}, \\ 3) \lim_{n \to +\infty} \frac{n - 2 - 3n^2}{4 - 5n^2 + 6n^3}, \\ 3) \lim_{n \to +\infty} \frac{n - 2 - 3n^2}{4 - 5n^2 + 6n^3}, \\ 3) \lim_{n \to +\infty} \frac{n - 2 - 3n^2}{n - 1}, \\ 3) \lim_{n \to +\infty} \frac{n - 2 - 3n^2}{1 - 1}, \\ 3) \lim_{n \to +\infty} \frac{n - 2 - 3n^2}{1 - 1}, \\ 3n \lim_{n \to +\infty} \frac{n - 2 - 3n^2}{1 - 1}, \\ 3n \lim_{n \to +\infty} \frac{n - 2 - 3n^2}{1 - 1}, \\ 3n \lim_{n \to +\infty} \frac{n - 2 - 3n^2}{1 - 1}, \\ 3n \lim_{n \to +\infty} \frac{n - 2 - 3n^2}{1 - 1}, \\ 3n \lim_{n \to +\infty} \frac{n - 2 - 3n^2}{1 - 1}, \\ 3n \lim_{n \to +\infty} \frac{n - 2 - 3n^2}{1 - 1}, \\ 3n \lim_{n \to +\infty} \frac{n - 2 - 3n^2}{1 - 1}, \\ 3n \lim_{n \to +\infty} \frac{n - 2 - 3n^2}{1 - 1}, \\ 3n \lim_{n \to +\infty} \frac{n - 2 - 3n^2}{1 - 1}, \\ 3n \lim_{n \to +\infty} \frac{n - 2 - 3n^2}{1 - 1}, \\ 3n \lim_{n \to +\infty} \frac{n - 2 - 3n^2}{1 - 1}, \\ 3n \lim_{n \to +\infty} \frac{n - 2 - 3n^2}{1 - 1}, \\ 3n \lim_{n \to +\infty} \frac{n - 2 - 3n^2}{1 - 1}, \\ 3n \lim_{n \to +\infty} \frac{n - 2 - 3n^2}{1 - 1}, \\ 3n \lim_{n \to +\infty} \frac{n - 2 - 3n^2}{1 - 1}, \\ 3n \lim_{n \to +\infty} \frac{n - 2 - 3n^2}{1 - 1}, \\ 3n \lim_{n \to +\infty} \frac{n - 2 - 3n^2}{1 - 1}, \\ 3n \lim_{$$

Solutions

 $1) -\infty,$ 2) 9,3) 0,4) 0,5) 0,6) it does not exist,7) 0,8) 1,9) 0, $10 -\infty.$

Exercise 8. The following limits are indeterminate forms. Compute them by applying suitable relevant limits, when they are useful.

$$1) \lim_{x \to 0} \frac{\sin(2x^2 + 7x)}{x}, \qquad 2) \lim_{x \to -\infty} \frac{x^2 + \sin x}{x^2 + 2x - 5}, \qquad 3) \lim_{x \to 0^+} \frac{1 - \cos \sqrt{x}}{x(x^4 + 2)}, \\
4) \lim_{x \to 0} \sin\left(\arccos\left(-\frac{\sqrt{2}}{2}\right)\right) \frac{x \sin x}{\cos x - 1}, \qquad 5) \lim_{x \to -\infty} \frac{x^5 + 2x^3 + 1}{x^2 + 7x + 4}, \qquad 6) \lim_{x \to \frac{\pi}{4}} \frac{\cos x - \sin x}{\cos^2 x - \sin^2 x}, \\
7) \lim_{x \to -\infty} \frac{(1 - x^2)(1 + x^2)}{x - x^4}, \qquad 8) \lim_{x \to +\infty} \left(\frac{x^2}{x + 1} - x\right), \qquad 9) \lim_{x \to -1} \frac{x^2 - 2x - 3}{\arcsin(x + 1)}, \\
10) \lim_{x \to 0} \frac{\arctan(5x) - 1 + \cos x}{x(x + \pi)}, \qquad 11) \lim_{x \to \frac{\pi}{4}} \frac{1 - \tan x}{\sin x - \cos x}.$$

Solutions

1) 7,2) 1,3)
$$\frac{1}{4}$$
,4) $-\sqrt{2}$,5) $-\infty$,6) $\frac{\sqrt{2}}{2}$,7) 1,8) -1 ,9) -4 ,10) $\frac{5}{\pi}$,11) $-\sqrt{2}$.

Exercise 9. Compute the following limits.

$$\begin{array}{ll} 1) \lim_{x \to +\infty} \frac{2x}{x + e^{-x}}, & 2) \lim_{x \to +\infty} \frac{e^{\frac{1}{x}} - 1}{\sin \frac{2}{x}}, & 3) \lim_{x \to 0} \frac{e^{x} - e}{x^{2} - 1}, \\ 4) \lim_{x \to 0} \frac{e^{x^{2}} - 1}{1 - \sqrt{x^{2} + 1}}, & 5) \lim_{x \to 0} \frac{1 - \sqrt{e^{x} + 1}}{\log(1 + x)}, & 6) \lim_{x \to 0^{+}} \frac{e^{x^{2} - x} - 1}{x}, \\ 7) \lim_{x \to 0^{+}} \frac{e^{x} - 1}{\sqrt{1 - \cos x}}, & 8) \lim_{x \to +\infty} \frac{\log(x^{2} - x)}{x^{2} - 1}, & 9) \lim_{x \to 0} \frac{\log(x^{2} + 1)}{1 - \cos x}, \\ 10) \lim_{x \to +\infty} \frac{\log(x^{2})}{\log(x)}, & 11) \lim_{x \to +\infty} \frac{x^{2} - \log(x^{3} - 3)}{e^{x} - \sin x + x^{2}}, & 12) \lim_{x \to +\infty} \frac{e^{x} - \log x}{e^{x^{2}} - x^{33}}, \\ 13) \lim_{x \to 0} \frac{e^{x} - 1}{e^{4x} - 1}, & 14) \lim_{x \to +\infty} \left(1 + \frac{2}{x + 1}\right)^{x}, & 15) \lim_{x \to +\infty} \left(\frac{x + 3}{x + 1}\right)^{x}. \end{array}$$

Solutions

1) 2,2)
$$\frac{1}{2}$$
,3) $e-1$,4) -2,5) it does not exist,6) -1,7) $\sqrt{2}$,8) 0,9) 2,10) 2,11) 0,12) 0,13) $\frac{1}{4}$,14) e^2 ,15) e^2 .