MATHEMATICS CLASS

from November 12 to December 3, 2020
Exercise 1. For each of the following periodic functions, find its minimum period.
a. $g(x)=\frac{1}{2} \sin \left(\frac{x}{3}\right)$
b. $i(x)=\tan (\pi x)$
c. $h(x)=\sin (-2 x)$

Solutions

a. 6π
b. 1
c. π

Exercise 2. Let us consider the following function:

$$
f(x)= \begin{cases}-1 & \text { if } x<0 \\ \cos \left(\frac{x}{2}\right) & \text { if } 0 \leq x<2 \pi \\ 2 x-(4 \pi+1) & \text { if } x \geq 2 \pi\end{cases}
$$

i) Draw the graph of the function f.
ii) Is the function continuous at $x=0$ and $x=2 \pi$? Justify your answers.
iii) Determine a possible modification of the function f in a neighbourhood of $x=0$ or of $x=2 \pi$, so that to obtain a continuous function in the whole \mathbb{R}.

Solutions

i)
ii) f is not continuous at $x=0$, whereas it is continuous at $x=2 \pi$.
iii) A possible modification of f in a neighbourhood of $x=0$ is given by $\bar{f}: \mathbb{R} \rightarrow \mathbb{R}$, with

$$
\bar{f}(x)= \begin{cases}-1 & \text { if } x<-1 \\ 2 x+1 & \text { if }-1 \leq x<0 \\ \cos \left(\frac{x}{2}\right) & \text { if } 0 \leq x<2 \pi \\ 2 x-(4 \pi+1) & \text { if } x \geq 2 \pi\end{cases}
$$

Exercise 3. Let us consider the following functions, defined in $\mathbb{R} \backslash\{0\}$:

$$
f(x)=1, \quad g(x)= \begin{cases}1 & \text { if } x<0 \\ 2 & \text { if } x>0\end{cases}
$$

Is it possible to extend them so that to make them continuous at $x=0$? If so, how? If not, why?

Solutions

f is continuous in $\mathbb{R} \backslash\{0\}$ and the unique way to extend f in order to obtain a continuous function in \mathbb{R} is defining $\bar{f}(0)=1$, and $\bar{f}(x)=f(x)$, for all $x \in \mathbb{R} \backslash\{0\} ;$
g is continuous in $\mathbb{R} \backslash\{0\}$ but it is not extendible to a continuous function in \mathbb{R}.
Exercise 4. Let us consider $f:[0,4] \rightarrow f([0,4])$, which is a continuous, strictly monotone function, such that $f(0)=-2$ and $f(4)=3$.
i) According to the sign of f at the extreme points of the domain, which type of monotonicity in $[0,4]$ does f display?
ii) How many times does the graph of f intersect the x-axis? How many the graph of the inverse f^{-1} ? Justify your answers, by means of some theoretical results studied.

Solutions

i) f is increasing.
ii) By the Bolzano theorem and the strictly monotonicity follows the graph of f intersects once time the x-axis. The inverse f^{-1} is continuous by the Theorem on the continuity of the inverse, therefore the same conclusion as f holds.

Exercise 5. Let us consider the following function:

$$
f: \mathbb{R} \rightarrow \mathbb{R}, \quad f(x)= \begin{cases}\frac{1}{x+2} & \text { if } x<-2 \\ (x+2)(x-4) & \text { if }-2 \leq x<4 \\ \frac{1}{2}(4-x) & \text { if } 4 \leq x\end{cases}
$$

Determine
i) the sign of f;
ii) the image of $f, f(\mathbb{R})$;
iii) $\lim _{x \rightarrow-\infty} f(x), \quad f(-3), \quad \lim _{x \rightarrow(-2)^{-}} f(x), \quad f(-2), \quad \lim _{x \rightarrow 4} f(x), \quad f(6), \lim _{x \rightarrow+\infty} f(x)$.

Moreover say whether the function f is continuous in its domain and draw its graph.

Solutions

i) $f(x) \leq 0$ for all $x \in \mathbb{R}$, with $f(x)=0$ if and only if $x \in\{-2,4\}$;
ii) $f(\mathbb{R})=]-\infty, 0]$;
iii) $\lim _{x \rightarrow-\infty} f(x)=0, \quad f(-3)=-1, \quad \lim _{x \rightarrow(-2)^{-}} f(x)=-\infty, \quad f(-2)=0$, $\lim _{x \rightarrow 4} f(x)=0, \quad f(6)=-1, \quad \lim _{x \rightarrow+\infty} f(x)=-\infty$.

The function f is continuous in $]-\infty,-2[\cup]-2,+\infty[$, but not at $x=-2$, since
$\lim _{x \rightarrow(-2)^{-}} f(x)=-\infty$. The graph of f is represented below:

Exercise 6. Compute the following limits, whenever it is possible:

1) $\lim _{x \rightarrow-1}\left(x^{3}-3\right)$,
2) $\lim _{x \rightarrow 3} \frac{x^{2}-5 x+6}{x-3}$,
3) $\lim _{x \rightarrow \pi} \cos (3 x)$,
4) $\lim _{x \rightarrow+\infty} x \cos \left(\frac{1}{x}\right)$,
5) $\lim _{x \rightarrow 0} \frac{7}{x}$,
6) $\lim _{x \rightarrow 0} \frac{7}{x^{2}}$,
7) $\lim _{x \rightarrow+\infty} \frac{\arctan x}{3}$,
8) $\lim _{x \rightarrow 0} \sqrt[3]{1+\frac{1}{x}}$,
9) $\lim _{x \rightarrow+\infty} \frac{\cos ^{2} x}{x}$.

Solutions

1) -4 ,
2) 1 ,
3) -1 ,
4) $+\infty$,
5) it does not exist,
6) $+\infty$,
7) $\frac{\pi}{6}$,
8) it does not exist,
9) 0 .

Exercise 7. Compute the following limits of sequences, whenever it is possible:

1) $\lim _{n \rightarrow+\infty} \frac{4-n^{2}}{n-2}$,
2) $\lim _{n \rightarrow+\infty} \frac{9 n^{2}+2}{6-n+n^{2}}$,
3) $\lim _{n \rightarrow+\infty} \frac{n-2-3 n^{2}}{4-5 n^{2}+6 n^{3}}$,
4) $\lim _{n \rightarrow+\infty}(\sqrt{n-5}-\sqrt{n+3})$,
5) $\lim _{n \rightarrow+\infty}(-1)^{n} \frac{\arctan n}{n}$,
6) $\lim _{n \rightarrow+\infty} \frac{(-1)^{n}(n+\pi)}{3 \pi-n+\sqrt{3 n}}$,
7) $\lim _{n \rightarrow+\infty}(-1)^{n} \frac{7 \sqrt[4]{n}}{n^{2}+5+\tan \left(\frac{1}{n}\right)}$,
8) $\lim _{n \rightarrow+\infty} \frac{n-\sqrt{n+1}}{n+\sqrt{n+1}}$,
9) $\lim _{n \rightarrow+\infty} \frac{n+\arccos \left(\frac{1}{n}\right)}{n^{3}}$,
10) $\lim _{n \rightarrow+\infty} \frac{n}{\sin (2 n \pi)+\cos \left((2 n+1)^{2} \pi\right)}$.

Solutions

1) $-\infty$,
2) 9 ,
3) 0 ,
4) 0 ,
5) 0 ,
6) it does not exist,
7) 0 ,
8) 1 ,
9) 0 ,
$10-\infty$.

Exercise 8. The following limits are indeterminate forms. Compute them by applying suitable relevant limits, when they are useful.

1) $\lim _{x \rightarrow 0} \frac{\sin \left(2 x^{2}+7 x\right)}{x}$,
2) $\lim _{x \rightarrow-\infty} \frac{x^{2}+\sin x}{x^{2}+2 x-5}$,
3) $\lim _{x \rightarrow 0^{+}} \frac{1-\cos \sqrt{x}}{x\left(x^{4}+2\right)}$,
4) $\lim _{x \rightarrow 0} \sin \left(\arccos \left(-\frac{\sqrt{2}}{2}\right)\right) \frac{x \sin x}{\cos x-1}$,
5) $\lim _{x \rightarrow-\infty} \frac{x^{5}+2 x^{3}+1}{x^{2}+7 x+4}$,
6) $\lim _{x \rightarrow \frac{\pi}{4}} \frac{\cos x-\sin x}{\cos ^{2} x-\sin ^{2} x}$,
7) $\lim _{x \rightarrow-\infty} \frac{\left(1-x^{2}\right)\left(1+x^{2}\right)}{x-x^{4}}$,
8) $\lim _{x \rightarrow+\infty}\left(\frac{x^{2}}{x+1}-x\right)$,
9) $\lim _{x \rightarrow-1} \frac{x^{2}-2 x-3}{\arcsin (x+1)}$,
10) $\lim _{x \rightarrow 0} \frac{\arctan (5 x)-1+\cos x}{x(x+\pi)}$,
11) $\lim _{x \rightarrow \frac{\pi}{4}} \frac{1-\tan x}{\sin x-\cos x}$.

Solutions

1) 7 ,
2) 1 ,
3) $\frac{1}{4}$,
4) $-\sqrt{2}$,
5) $-\infty$,
6) $\frac{\sqrt{2}}{2}$,
7) 1 ,
8) -1 ,
9) -4 ,
10) $\frac{5}{\pi}$,
11) $-\sqrt{2}$.

Exercise 9. Compute the following limits.

1) $\lim _{x \rightarrow+\infty} \frac{2 x}{x+e^{-x}}$,
2) $\lim _{x \rightarrow+\infty} \frac{e^{\frac{1}{x}}-1}{\sin \frac{2}{x}}$,
3) $\lim _{x \rightarrow 0} \frac{e^{x}-e}{x^{2}-1}$,
4) $\lim _{x \rightarrow 0} \frac{e^{x^{2}}-1}{1-\sqrt{x^{2}+1}}$,
5) $\lim _{x \rightarrow 0} \frac{1-\sqrt{e^{x}+1}}{\log (1+x)}$,
6) $\lim _{x \rightarrow 0^{+}} \frac{e^{x^{2}-x}-1}{x}$,
7) $\lim _{x \rightarrow 0^{+}} \frac{e^{x}-1}{\sqrt{1-\cos x}}$,
8) $\lim _{x \rightarrow+\infty} \frac{\log \left(x^{2}-x\right)}{x^{2}-1}$,
9) $\lim _{x \rightarrow 0} \frac{\log \left(x^{2}+1\right)}{1-\cos x}$,
10) $\lim _{x \rightarrow+\infty} \frac{\log \left(x^{2}\right)}{\log (x)}$,
11) $\lim _{x \rightarrow+\infty} \frac{x^{2}-\log \left(x^{3}-3\right)}{e^{x}-\sin x+x^{2}}$,
12) $\lim _{x \rightarrow+\infty} \frac{e^{x}-\log x}{e^{x^{2}}-x^{33}}$,
13) $\lim _{x \rightarrow 0} \frac{e^{x}-1}{e^{4 x}-1}$,
14) $\lim _{x \rightarrow+\infty}\left(1+\frac{2}{x+1}\right)^{x}$,
15) $\lim _{x \rightarrow+\infty}\left(\frac{x+3}{x+1}\right)^{x}$.

Solutions

1) 2 ,
2) $\frac{1}{2}$,
3) $e-1$,
4) -2 ,
5) it does not exist,
6) -1 ,
7) $\sqrt{2}$,
8) 0 ,
9) 2 ,
10) 2 ,
11) 0 ,
12) 0 ,
13) $\frac{1}{4}$,
14) e^{2},
15) e^{2}.
