Monotone functions

Given $A, B \subset \mathbb{R}$, a function $f : A \to B$ is

• nondecreasing if, for all $x_1, x_2 \in A$, with $x_1 < x_2$, it holds

$$f(x_1) \leq f(x_2)$$

• nonincreasing if, for all $x_1, x_2 \in A$, with $x_1 < x_2$, it holds

$$f(x_1) \geq f(x_2)$$

• increasing if, for all $x_1, x_2 \in A$, with $x_1 < x_2$, it holds

$$f(x_1) < f(x_2)$$

• decreasing if, for all $x_1, x_2 \in A$, with $x_1 < x_2$, it holds

$$f(x_1) > f(x_2)$$

Monotonicity vs injectivity

$$f: A \rightarrow B$$
 is strictly monotone $\rightarrow f$ is injective

Monotonicity vs injectivity

$$f: A \rightarrow B$$
 is strictly monotone $\rightarrow f$ is injective

 $f: A \rightarrow B$ is injective $\not\rightarrow f$ is strictly monotone

Definitions about bounded sets

A subset A of \mathbb{R} is said to be

- lower bounded if there exists $m \in \mathbb{R}$ such that, for all $x \in A$, it holds $m \le x$. m is a lower bound of A;
- upper bounded if there exists $M \in \mathbb{R}$ such that, for all $x \in A$, it holds $x \leq M$. M is an upper bound of A;
- bounded if A is both lower bounded and upper bounded.

Definitions about bounded sets

A subset A of \mathbb{R} is said to be

- lower bounded if there exists $m \in \mathbb{R}$ such that, for all $x \in A$, it holds $m \leq x$. m is a lower bound of A;
- upper bounded if there exists $M \in \mathbb{R}$ such that, for all $x \in A$, it holds $x \leq M$. M is an upper bound of A;
- bounded if A is both lower bounded and upper bounded.
- If m is a lower bound of A and $m \in A$, then m is the minimum of A, min(A) $\longrightarrow \min(A) \in \mathbb{R}$.
- If M is an upper bound of A and $M \in A$, then M is the maximum of A, max(A) $\longrightarrow \max(A) \in \mathbb{R}$.

Definitions about bounded sets

A subset A of \mathbb{R} is said to be

- lower bounded if there exists $m \in \mathbb{R}$ such that, for all $x \in A$, it holds $m \le x$. m is a lower bound of A;
- upper bounded if there exists $M \in \mathbb{R}$ such that, for all $x \in A$, it holds $x \leq M$. M is an upper bound of A;
- bounded if A is both lower bounded and upper bounded.
- If m is a lower bound of A and $m \in A$, then m is the minimum of A, min $(A) \longrightarrow \min(A) \in \mathbb{R}$.
- If M is an upper bound of A and $M \in A$, then M is the maximum of A, max $(A) \longrightarrow \max(A) \in \mathbb{R}$.
- If A is upper bounded, the supremum of A, $\sup(A)$, is the smallest upper bound of A $\longrightarrow \sup(A) \in \mathbb{R}$.

Remark

- If A is lower bounded, inf(A) always exists, whereas min(A) may not exist.
- If A is upper bounded, $\sup(A)$ always exists, whereas $\max(A)$ may not exist.

Remark

- If A is lower bounded, inf(A) always exists, whereas min(A) may not exist.
- If A is upper bounded, $\sup(A)$ always exists, whereas $\max(A)$ may not exist.

If A is lower unbounded, then conventionally $\inf(A) = -\infty$. If A is upper unbounded, then conventionally $\sup(A) = +\infty$.