Monotone functions

Given $A, B \subset \mathbb{R}$, a function $f: A \rightarrow B$ is

- nondecreasing if, for all $x_{1}, x_{2} \in A$, with $x_{1}<x_{2}$, it holds

$$
f\left(x_{1}\right) \leq f\left(x_{2}\right)
$$

- nonincreasing if, for all $x_{1}, x_{2} \in A$, with $x_{1}<x_{2}$, it holds

$$
f\left(x_{1}\right) \geq f\left(x_{2}\right)
$$

- increasing if, for all $x_{1}, x_{2} \in A$, with $x_{1}<x_{2}$, it holds

$$
f\left(x_{1}\right)<f\left(x_{2}\right)
$$

- decreasing if, for all $x_{1}, x_{2} \in A$, with $x_{1}<x_{2}$, it holds

$$
f\left(x_{1}\right)>f\left(x_{2}\right)
$$

Monotonicity vs injectivity

$f: A \rightarrow B$ is strictly monotone $\rightarrow f$ is injective

Monotonicity vs injectivity

$f: A \rightarrow B$ is strictly monotone $\rightarrow f$ is injective
$f: A \rightarrow B$ is injective $\nrightarrow f$ is strictly monotone

Definitions about bounded sets

A subset A of \mathbb{R} is said to be

- lower bounded if there exists $m \in \mathbb{R}$ such that, for all $x \in A$, it holds $m \leq x . m$ is a lower bound of A;
- upper bounded if there exists $M \in \mathbb{R}$ such that, for all $x \in A$, it holds $x \leq M$. M is an upper bound of A;
- bounded if A is both lower bounded and upper bounded.

Definitions about bounded sets

A subset A of \mathbb{R} is said to be

- lower bounded if there exists $m \in \mathbb{R}$ such that, for all $x \in A$, it holds $m \leq x . m$ is a lower bound of A;
- upper bounded if there exists $M \in \mathbb{R}$ such that, for all $x \in A$, it holds $x \leq M$. M is an upper bound of A;
- bounded if A is both lower bounded and upper bounded.
- If m is a lower bound of A and $m \in A$, then m is the minimum of $A, \min (A)$ $\longrightarrow \min (A) \in \mathbb{R}$.
- If M is an upper bound of A and $M \in A$, then M is the maximum of $A, \max (A)$ $\longrightarrow \max (A) \in \mathbb{R}$.

Definitions about bounded sets

A subset A of \mathbb{R} is said to be

- lower bounded if there exists $m \in \mathbb{R}$ such that, for all $x \in A$, it holds $m \leq x . m$ is a lower bound of A;
- upper bounded if there exists $M \in \mathbb{R}$ such that, for all $x \in A$, it holds $x \leq M$. M is an upper bound of A;
- bounded if A is both lower bounded and upper bounded.
- If m is a lower bound of A and $m \in A$, then m is the minimum of $A, \min (A)$ $\longrightarrow \min (A) \in \mathbb{R}$.
- If M is an upper bound of A and $M \in A$, then M is the maximum of $A, \max (A)$ $\longrightarrow \max (A) \in \mathbb{R}$.
- If A is lower bounded, the infimum of $A, \inf (A)$, is the largest lower bound of A $\longrightarrow \inf (A) \in \mathbb{R}$.
- If A is upper bounded, the supremum of $A, \sup (A)$, is the smallest upper bound of A
$\longrightarrow \sup (A) \in \mathbb{R}$.

Remark

- If A is lower bounded, $\inf (A)$ always exists, whereas $\min (A)$ may not exist.
- If A is upper bounded, $\sup (A)$ always exists, whereas $\max (A)$ may not exist.

Remark

- If A is lower bounded, $\inf (A)$ always exists, whereas $\min (A)$ may not exist.
- If A is upper bounded, $\sup (A)$ always exists, whereas $\max (A)$ may not exist.

If A is lower unbounded, then conventionally $\inf (A)=-\infty$.
If A is upper unbounded, then conventionally $\sup (A)=+\infty$.

