(i), UNTVERSITA Ubsc
" 88 DEGLI STUDI DI TRIESTE

A.A. 2020-2021
Corso di Laurea Magistrale in GEOSCIENZE

Metodi Elettromagnetici in Geofisica (6 CFU)
- MEMAG -

UD-4c: Ground Penetrating Radar
GPR - processing and analysis

Docente: Emanuele Forte
Tel. 040/5582271-2274

e-mail: eforte@units.it

MEMAG A.A. 2020-2021 1



75 UNIVERSITA UD4c
", %2 DEGLI STUDI DI TRIESTE

Ground Penetrating Radar: processing, analysis, inversion

GPR data usually cannot be interpreted on the field because require a
dedicated processing including a few or even many different algorithms
applied in cascade = PROCESSING FLOW.

Some definitions:

-Processing refers to one or more algorithms which modify irreversibly the
data after the application.

- Analysis refers to a reversible procedure applied to better evaluate specific
characteristics of the data. Often analysis is applied before a corresponding
processing step (e.g. frequency analysis before frequency filtering).

- Geophysical data inversion is a mathematical technique for recovering
information on subsurface physical properties from observed geophysical
data.

About processing let always remember that (Jol, 2009):

- Keep it simple (also depending by the original data quality and objectives
of the survey)

- Keep it real = Informative data instead of "“looking good data”!

- Understand what you are doing

- Be systematic and consistent
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Gfbund Penetrating Radar: processing

GPR processing flow is never a standard but it rather depends from the
original data quality and it is strictly site dependent!
GPR data processing is overall VERY SIMILAR to the one applied in reflection

seismic, with some peculiar steps (in orange)
Typical GPR data processing flow for 2D Common-Offset datasets
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. Fully processed .
Interpretation data Modified from Jol, 2009
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Ground Penetrating Radar: editing

Editing refers to all the (simple) algorithms applied to correct/cancel out
specific data distortions or problems (e.qg. spikes, clipped data, repeated
traces, dead traces, ...).
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Even apparent small problems have to be "solved” at this stage in order to
introduce later on possible artifacts and/or distorting the data interpretation
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G'lf‘bund Penetrating Radar: dewow

Wow effect is related to a DC noise component, i.e. a very low frequency
trend typical of GPR measurements .

It is caused by the swamping or saturation of the recorded signal by early arrivals
(i.e., ground/air wave) and/or inductive coupling effects.

De-wowing is a vital step as it reduces the data to a mean zero level and, therefore,
allows positive—negative color filling to be used in the recorded traces (Figure 5.3). If
applied incorrectly, the data will contain a decaying, low-frequency component that

distorts the spectrum of the whole trace. o recordod GPRirace
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Ground Penetrating Radar: dewow

The easier way to remove the DC component is just to remove the mean
samples value within a window usually centered at the end of the trace
where the signal is components are negligible.
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Another possible strategy is to apply an high frequency bandpass filter.
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Ground Penetrating Radar: filtering (background noises)

GPR data are often affected by ringing phenomena occurring especially in
lossy materials. In such environments, strong antenna-ground coupling and
shallow near surface layers can cause significant reverberation in the signal

that can mask signals.
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Butler, 2005

Figure 140. Reverberating GPR
signals can come from many
sources. Some of the more
commaon are depicted here. (a)
Undampened antenna current
travels back and forth. (k) Cur-
rents generated on the antenna
shield bounce back and forth. (o)
Induced current mins back and
forth on a metal object. (d) Par-
tially transparent layer structure
traps signal which can bounce
back and forth. (g} Strong re-
flector generates signals which
bounce back and forth between
the object and the antenna or
ground surface.
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G;&ound Penetrating Radar: filtering (background noises)

Background noises can be canceled out exploiting the constant arrival times
and amplitude = subtraction of the mean value calculated over a long
enough trace windows sample by sample or for a few sample length.

DC noise

Signal and/or
background noise?

Frequency filters don’t work
efficiently since the signal and
background noise components are
superimposed and very similar.

MEMAG A.A. 2020-2021 8



UNIVERSITA UD4c

.~ DEGLISTUDI DI TRIESTE
Ground Penetrating Radar: filtering

Temporal vs Spatial

In general, filters can be classified into two basic types: temporal (down the individual traces in
time) or spatial (across a number of traces in distance). These are often combined to produce
advanced 2D filters that operate on the data in both time and space simultaneously.

Time vs frequency domain

Frequency filters are good only for removing noise at frequencies either higher or lower than the
main GPR signal bandwidth. If a too narrow pass region is selected, then the filter will remove
components of the actual recorded signal and the resultant GPR section will have less informative
content than the original one. On the other hand time domain filters can discriminate only by using
amplitudes, while spectral components are not exploited.
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Ground Penetrating Radar: filtering

Often combine filters are applied, eventually also space-
and time-varying in order to encompass space and time
450 MHz GPR data: Basic processing . . .
GPR section collected over a reinforced VarlatIOf'IS, I’eS,DeCtIVG/y.

concrete roadway with a speculated void
and/or collapse structure between 3 and 10m.

= Frequency filters are designed with two main
analyses referred as:

Void/collapse structure , Reinforcing bars (re-bars)
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Gllf‘b"und Penetrating Radar: filtering

Spectral analysis and fx analysis
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Gro"und Penetrating Radar: filtering

Filtering scan
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Ground Penetrating Radar: amplitude recovery

Amplitude recovery is essential in GPR data processing due to the high overall

attenuation of EM waves, especially in high loss environments.

Different strategies can adopted to recover the amplitude attenuation.

Most efficient and physically compliant are:

- Inverse of the decay curve

- “"True amplitude” recovery trying to analytically remove all the attenuation effects
but the intrinsic attenuation which is highly informative on the subsurface media.
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Ground Penetrating Radar: amplitude recovery
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Before amplitude recovery the earlier arrivals are stronger than all the others, while
after the recovery all the amplitude are balanced = the reflectivity along the same

horizons is almost constant, except where the geology actually changes.
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Ground Penetrating Radar: topographic correction
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When the elevation changes along a GPR profile a "“Topographic correction” is
mandatory. This is a “static” correction, i.e. constant for each single trace and
consists in a time or depth shift proportional to the altitude variations from a
predefined DATUM.

This approach is accurate enough only when the topographic changes are
gradual and the dip of the surface is less than about 10° (Lehmann and Green,
2000).

Otherwise additional corrections have to be considered and applied.
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Ground Penetrating Radar: topographic correction

An accurate approach encompasses dedicated imaging and additional terms to the migration
algorithm, but this is difficult to apply. Approximated solutions have been proposed (e.g. Forte and

Pi , 2009).
pan, 2099) ORIGINAL DATA
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_ dz is the elevation
Angle a can be estimated for each e dZ  change between two
= ‘Jv  acquisition points and dx

trace by the equation: dx
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Ground Penetrating Radal‘;?pégraphic correctio
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Gi;'“;)und Penetrating Radar: velocity analysis
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UD4c

velocity analysis

The velocity analysis is essential to

obtain correct:

Topographic/static correction
Depth conversion

True amplitude recovery (spherical
divergence parameterization)
Time/depth imaging
Characterization of the materials
and evaluation of anisotropy and
inhomogeneity

For multifold data, integrated velocity

analyses are applied:,
Semblance,

Constant Velocity Stack - CVS,
Constant Velocity Gather - CVG,
Direct reflection hyperbolas fitting

including:
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G;c;und Penetrating Radar: velocity analysis

It is therefore possible to reconstruct an accurate and realistic EM velocity field, which gives
additional quantitative information and allows a precise depth conversion and imaging.
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Grd_und Penetrating Radar: velocity analysis

When just common offset data are available (as in most of the cases!) therefore the only possible
strategy to estimate the EM velocity from the data itself exploits the diffraction (i.e. scattering)
hyperbolas.

Different approaches are used. The simplest are:

1) Hyperbola fitting

2) Migration velocity scan

Distanza in metri o
-20 -1.0 0.0 1.0 2.0

’f#;;;?g;;? Q‘\\‘\\bcﬁﬁrhﬁocmlm? 1ns
LT
o \ NN SRyzoemins
/::5§/;/ f/ \\\\Q::'::: \\\}gcmlfnsla_ o o
< ] M14emins
4 s
a4 // A1/ N N pzemins Eas s
T 7 1 2ns - -
/ / // { \ \ 10cmins
v / NEN |
/ // / \ \ \chfns
/ i \ N 3ns
/ ./ \ \\ Gemins| | o @
// ‘\ 4ns = y
/ \ W w— i .
/ | femins 0l 04 0n UK 10 12 U2 04 046 0% 10 13

Distiescekin Ditanocirs

Several other algorithms have been proposed (and example is provided by Dossi et al., 2020)
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G'lf‘bﬂund Penetrating Radar: migration

Migration algorithms are one of the most crucial steps in GPR (and reflection
seismics) processing because they are essential to recover the actual
positions and shapes of the structures
= Subsurface imaging =2 from P(x,y,z=0,t) to P(Xx,y,zt=0)

T1, R1 T2, R2

Here, for simplicity we consider reflections of rays

A B
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G.II‘OUI1C| Penetrating Radar: migration

There are a plethora of possible migration algorithms (2D, 3D, in time, in

depth, pre- and post-stack,...) but for all of them the most crucial parameter
is the accuracy of the estimated EM velocity field.
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(b)
(a) the preprocessed data prior to migration, and (b) the data after RTM from topography
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