
Laboratory Exercise 12
Basic Digital Signal Processing

This is an exercise in using the audio coder/decoder (CODEC) on the Intel R© DE1-SoC or DE2-115 board. The
exercise involves connecting a microphone to the audio CODEC to provide input sound, altering the received
sound by filtering out noise, and then playing the resulting sound through speakers/headphones. In addition to a
DE-series board, a microphone and speakers or headphones are required.

Background
Sounds, such as speech and music, are signals that change over time. The amplitude of a signal determines the
volume at which we hear it. The way the signal changes over time determines the type of sounds we hear. For
example, an ’ah’ sound is represented by a waveform shown in Figure 1.

Figure 1: A waveform for an ’ah’ sound.

The waveform is an analog signal, which can be stored in a digital form by using a relatively small number of
samples that represent the analog values at certain points in time. The process of producing such digital signals is
called sampling.

Figure 2: A sampled waveform for an ’ah’ sound.

1

The points in Figure 2 provide a sampled waveform. All points are spaced equally in time and they trace the
original waveform.

The Intel DE1-SoC, and DE2-115 board are equipped with an audio CODEC capable of sampling sound from a
microphone and providing it as input to a circuit. By default, the CODEC provides 48000 samples per second,
which is sufficient to accurately represent audible sounds.

This exercise involves the design of several circuits that take input from a microphone through the CODEC, record
and process this sound data, and then play it back through speakers. To simplify the task, a simple system that can
record and playback sounds on your DE-series board is provided as a "starter kit". The system, shown in Figure 3,
comprises a Clock Generator, an Audio CODEC Interface, and an Audio/Video Configuration modules. This
interface is a simplified version of the Intel University Program Audio IP Core that is provided on Intel’s FPGA
University Program website.

Audio
CODEC
Interface

Audio/Video
Configuration

CLOCK2_50

AUD_XCK

CLOCK_50

Your Circuit

I2C_SDAT

I2C_SCLK

AUD_BCLK

AUD_ADCLRCK
AUD_DACLRCK

AUD_ADCDAT
AUD_DACDAT

read_ready
write_ready

read
write

readdata_left
readdata_right
writedata_left

writedata_right

Clock Generator

Figure 3: Audio System for this exercise.

The left-hand side of Figure 3 shows the inputs and outputs of the system. These I/O ports supply the clock inputs,
as well as connect the Audio CODEC and Audio/Video Configuration modules to the corresponding peripheral
devices on the Intel DE1-SoC and DE2-115 board. In the middle of the figure, a set of signals to and from the
Audio CODEC Interface module is shown. These signals allow the circuit depicted on the right-hand side to
record sounds from a microphone and play them back via speakers.

The system works as follows. Upon reset, the Audio/Video Configuration begins an autoinitialization sequence.
The sequence sets up the audio device to sample microphone input at a rate of 48kHz and produce output through
the speakers at the same rate. Once the autoinitialization is complete, the Audio CODEC begins reading the
data from the microphone once every 48000th of a second, and sends it to the Audio CODEC Interface core
in the system. Once received, the sample is stored in a 128-element buffer in the Audio CODEC Interface
core. The first element of the buffer is always visible on the readdata_left and readdata_right outputs when the
read_ready signal is asserted. The next element can be read by asserting the read signal, which ejects the current
sample and a new one appears one or more clock cycles later, if the read_ready signal is asserted.

To output sound through the speakers a similar procedure is followed. Your circuit should observe the write_ready
signal, and if asserted write a sample to the Audio CODEC by providing it at the writedata_left and write-

2

crnlr
Nota
Potete pensare che l'assert dura solo 1 periodo del Clock_50.

crnlr
Evidenziato

data_right inputs and asserting the write signal. This operation stores a sample in a buffer inside of the Audio
CODEC Interface, which will then send the sample to the speakers at the right time.

A starter kit that contains this design is provided as part of this exercise.

Part I
In this part of the exercise, you are to make a simple modification to the provided starter kit circuit to pass the
input from the microphone to the speakers. You should take care to read data from and write data to the Audio
CODEC Interface only when its ready signals are asserted.

Compile your circuit and download it onto an Intel DE1-SoC or DE2-115 board. Connect microphone and speak-
ers to the Mic and Line Out ports of the board and speak to the microphone to hear your voice through the
speakers.

Part II
In this part, you will learn a basic signal processing technique known as filtering. Filtering is a process of adjusting
a signal - for example, removing noise. Noise in a sound waveform is represented by small, but frequent changes
to the amplitude of the signal. A simple logic circuit that achieves the task of noise-filtering is an averaging Finite
Impulse Response (FIR) filter. The schematic diagram of the filter is shown in Figure 4.

D Q
24

Data in D Q D Q D Q D QD Q D Q

÷8 ÷8÷8 ÷8 ÷8 ÷8 ÷8

+ + + + + + +

÷8

24 Data out

Figure 4: A simple averaging FIR filter.

An averaging filter, like the one shown in Figure 4, removes noise from a sound by averaging the values of adjacent
samples. In this particular case, it removes small deviations in sound by looking at changes in the adjacent 8
samples. When using low-quality microphones, this filter should remove the noise produced when you speak to
the microphone, making your voice sound clearer.

You are to implement the circuit shown in Figure 4 to process the sound from the microphone, and output the
filtered sound through the speakers. Do you notice any difference between the quality of sound in this part as
compared to Part I?

NOTE:
It is possible to obtain high-quality microphones with noise-canceling capabilities. In such circumstances, you are
unlikely to hear any effect from using this filter. If this is the case, we suggest introducing some noise into the
sound by adding the output of the circuit in Figure 5 to the sample produced by the Audio CODEC.
The circuit is a simple counter, whose value should be interpreted as a signed value. The circuit should be clocked
by a 50MHz clock, and the enable signal should be driven high when the Audio CODEC module can both produce
and accept a new sample.

3

crnlr
Nota
Write when read_ready and write_ready

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_signed.all;

ENTITY noise_generator IS
PORT (CLOCK_50, read_s : IN STD_LOGIC;

noise : OUT STD_LOGIC_VECTOR(23 DOWNTO 0));
END noise_generator;

ARCHITECTURE Behavior OF upcount IS
SIGNAL counter : STD_LOGIC_VECTOR(2 DOWNTO 0);
SIGNAL Q : STD_LOGIC_VECTOR(9 DOWNTO 0);

BEGIN
PROCESS (Clock_50)
BEGIN

IF (Clock’EVENT AND Clock = ’1’) THEN
IF (read_s = ’1’) THEN

counter <= counter + 1;
END IF;

END IF;
END PROCESS;
Q <= (OTHERS => counter(2));
noise <= Q&counter&"00000000000";

END Behavior;

Figure 5: Circuit to generate some noise.

To hear the effect of the noise generator, add the values produced by the circuit to each sample of sound from the
Audio CODEC in the circuit in Part I.

Part III
The implementation of the averaging filter in Part II may have been effective in removing some of the noise, and
all of the noise produced by the noise generator. However, if your microphone is of low-quality or you increase
the width of the counter in the noise generator, the filter in Part II would be insufficient to remove the noise. The
reason for this is because the filter in Part II only looked at a very small time frame over which the sound waveform
was changing. This can be remedied by making the filter larger, taking an average of more samples.

In this part, you are to experiment with the size of the filter to determine the number of samples over which
you have to average sound input to remove background noise. To do this more effectively, use the design of an
averaging FIR filter shown in Figure 6.

4

crnlr
Evidenziato

crnlr
Nota
Produce una frequenza troppo elevata: fare 5 downto 0.

24
Data in

Q D

Datain Dataout

*(-1)

+ +

÷N

24 Data out

 FIFO of size N

Accumulator

Figure 6: N-sample averaging FIR filter.

To compute the average of the last N samples, this circuit first divides the input sample by N . Then, the resulting
value is stored it in a First-In First-out (FIFO) buffer of length N and added to the accumulator. To make sure the
value in the accumulator is the average of the last N samples, the circuit subtracts the value that comes out of the
FIFO, which represents the (n+ 1)th sample.

Implement, compile and download the circuit onto an Intel DE1-SoC, or DE2-115 board. Connect microphone
and speakers to the Mic and Line Out ports of the board and speak to the microphone to hear your voice through
the speakers. Experiment with different values of N to see what happens to your voice and any background noise,
remembering to divide the samples by appropriate value. We recommend experimenting with values of N that are
a power of 2, to make the division easier.

If you have a portable music player, with a connector such that you can supply input to your circuit through the
Mic port, try experimenting with different sizes of the filter and its effect on the song you play.

5

crnlr
Nota
y(n) = 1/N [x(n)+ x(n-1) + ... + x(n-N+1)]y(n)-y(n-1) = 1/N [x(n) - x(n-N)]

Copyright c© Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Avalon, Cyclone, En-
pirion, MAX, Nios, Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in
the U.S. and/or other countries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel’s standard warranty, but reserves the right to make changes to any products
and services at any time without notice. Intel assumes no responsibility or liability arising out of the application
or use of any information, product, or service described herein except as expressly agreed to in writing by Intel.
Intel customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.

*Other names and brands may be claimed as the property of others.

6

	Background
	Part I
	Part II
	Part III

