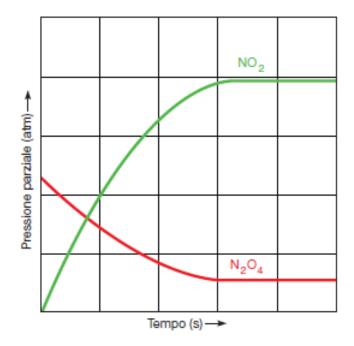

L'EQUILIBRIO FISCO

L'EQUILIBRIO CHIMICO

Lo stato di equilibrio rappresenta una situazione in cui una grandezza ben definita rimane costante.


Equilibrio FISICO Equilibrio CHIMICO

L'EQUILIBRIO CHIMICO

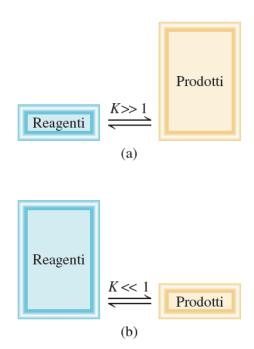
Tabella 12.1	Avvicinamento all'equilibrio nel sistema $N_2O_4(g) \rightleftharpoons 2NO_2(g)$ (a 100 °C)						
Tempo (s)	0	20	40	60	80	100	
$P_{N_2\Omega_4}$ (atm)	1.00	0.60	0.35	0.22*	0.22	0.22	
P _{NO₂} (atm)	0.00	0.80	1.30	1.56	1.56	1.56	

^{*} I numeri in neretto indicano le pressioni all'equilibrio.

Tabella 12.2 Misure all'equilibrio nel sistema N ₂ O ₄ -NO ₂ a 100 °C						
		Pressione iniziale (atm)	Pressione di equilibrio (atm)			
Esp. 1	N ₂ O ₄	1.00	0.22			
	NO_2	0.00	1.56			
Esp. 2	N_2O_4	0.00	0.07			
	NO_2	1.00	0.86			
Esp. 3	N_2O_4	1.00	0.42			
	NO ₂	1.00	2.16			

In condizioni d'equilibrio il rapporto tra il prodotto delle concentrazioni dei prodotti della reazione elevate ai rispettivi coefficienti stechiometrici, ed il prodotto delle concentrazioni dei reagenti, elevate ai rispettivi coefficienti stechiometrici, è costante a temperatura costante.

$$aA + bB \rightleftharpoons cC + dD$$

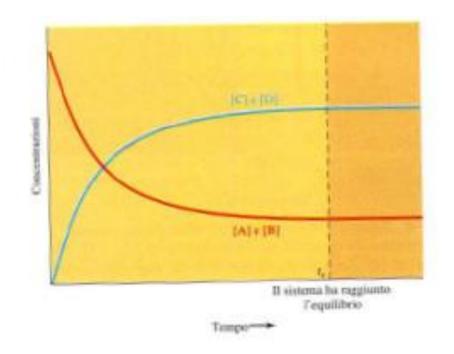

$$K_{C} = \frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}$$

$$costante\ d'equilibrio$$

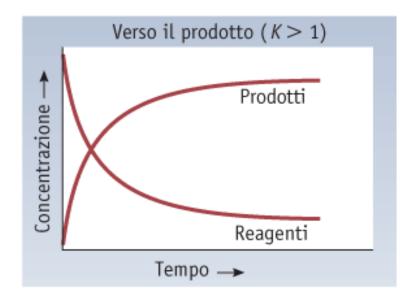
K_c

E' costante ad una data temperatura Varia al variare della temperatura Non dipende dalle concentrazioni iniziali Non ha unità di misura ($K = e^{\Delta G/RT}$) Le concentrazioni all'equilibrio hanno valori tali da dare sempre lo stesso valore di K_C indipendentemente dalle concentrazioni iniziali dei vari prodotti.

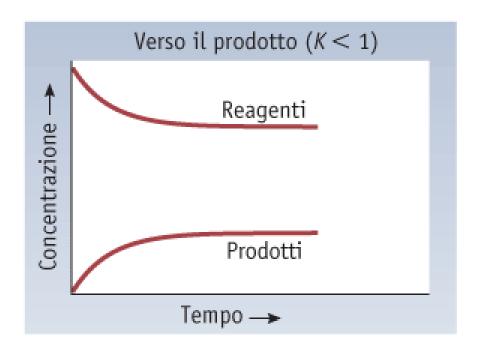
La costante d'equilibrio permette di prevedere in quale direzione evolve il sistema di reazione per raggiungere lo stato di equilibrio (K_C grande \Rightarrow formazione dei prodotti favorita)


Reazioni reversibili = reazioni chimiche che avvengono in entrambe le direzioni

$$aA + bB \implies cC + dD$$


Reazione diretta: $aA + bB \rightarrow cC + dD$

Reazione inversa: $cC + dD \rightarrow aA + bB$

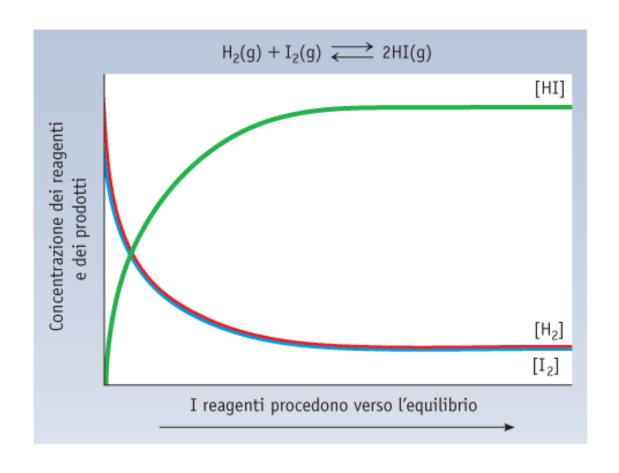

Si ha un **equilibrio chimico** (equilibrio dinamico) quando le due reazioni opposte avvengono <u>contemporaneamente</u> e con la stessa velocità

Le reazioni chimiche raggiungono uno stato di equilibrio nel quale le velocità delle reazioni diretta e inversa si eguagliano e non si verifica alcun cambiamento netto di composizione

$$\mathrm{CH_4} + \mathrm{Cl_2} \implies \mathrm{CH_3C1} + \mathrm{HC1} \quad K_\mathrm{C} = \frac{[\mathrm{CH_3C1}][\mathrm{HC1}]}{[\mathrm{CH_4}][\mathrm{Cl_2}]} = 1.2 \times 10^{18} \quad \begin{array}{l} la \ reazione \ \dot{e} \\ spostata \ verso \\ i \ prodotti \end{array}$$

$$N_2 + O_2 \longrightarrow 2NO$$
 $K_C = \frac{[NO]^2}{[N_2][O_2]} = 4.5 \times 10^{-31}$ la reazione è spostata verso i reagenti

Tabella 12.3 Dipendenza di k dalla forma della reazione chimica


$$R(g) \iff Y(g) \qquad k = \frac{P_y}{P_0}$$

$$k = \frac{P_y}{P_R}$$

Forma dell'equazione	Espressione di K	Relazione con <i>K</i>	Regola
$Y(g) \iff R(g)$	$K' = \frac{P_R}{P_Y}$	$K' = \frac{1}{K}$	Regola del reciproco
$nR(g) \iff nY(g)$	$K^n = \frac{(P_Y)^n}{(P_R)^n}$	$K'' = K^n$	Regola del coefficiente
$R(g) \iff A(g)$	$K_1 = \frac{P_A}{P_R}$		

CALCOLI CON LE REAZIONI dI EQUILIBRIO

LA TABELLA ICE

EQUILIBRI ETEROGENEI

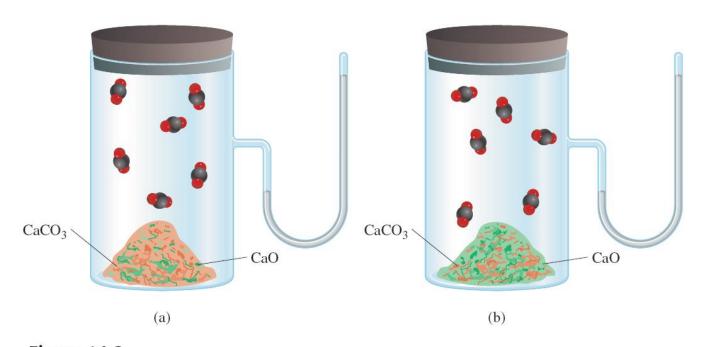
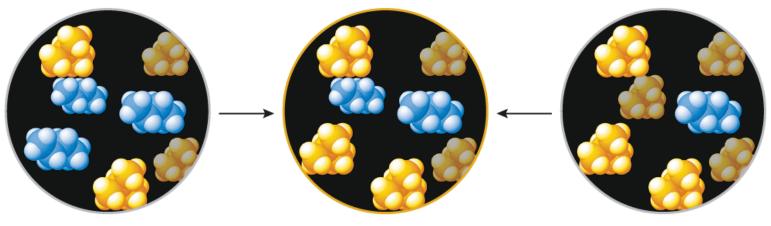

- 1. La posizione dell'equilibrio è indipendente dalla quantità di solido o liquido, finchè è presente almeno una piccola quantità di essi;
- 2. Non è necessario che i termini dei liquidi o dei solidi puri compaiano nell'espressione di K.

Tabella 12.4 Espressioni delle costanti di equilibrio per


Un sistema eterogeneo all'equilibrio: l₂ solido-l₂ gassoso.

EQUILIBRI ETEROGENEI

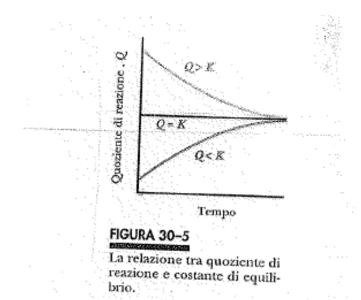
Figura 14.3 In (a) e (b) la pressione all'equilibrio della CO_2 è la stessa alla stessa temperatura, nonostante la presenza di quantità diverse di $CaCO_3$ (rappresentato col colore arancio) e di CaO (rappresentato col colore verde).

IL QUOZIENTE DI REAZIONE

(a) Non all'equilibrio. Q < K.

In questo caso nel contenitore sono presenti 4 molecole di isobutano e 3 molecole di butano. La reazione procederà per convertire butano in isobutano per raggiungere l'equilibrio.

(b) All'equilibrio. Q = K.


In questo caso nel contenitore sono presenti 5 molecole di isobutano e 2 molecole di butano. La reazione è all'equilibrio.

(c) Non all'equilibrio. Q > K.

In questo caso nel contenitore sono presenti 6 molecole di isobutano e 1 molecola di butano. La reazione procederà per convertire isobutano in butano per raggiungere l'equilibrio.

FIGURA 16.5 L'interconversione di isobutano in butano. Solo quando le concentrazioni di isobutano e butano sono in rapporto [isobutano/butano] = 2.5 il sistema è all'equilibrio. (b) Con qualunque altro rapporto di concentrazione, una molecola verrà convertita in un'altra fino a che si raggiunge l'equilibrio.

IL QUOZIENTE DI REAZIONE

Tabella 12.5 Avvicinamento all'equilibrio del sistema A \iff B per cui K = 1.00

		Esperime	ento 1*			Esperim	ento 2*	
t	0	20	40	60	0	20	40	60
conc. B	1.00	1.35	1.50	1.50	2.00	1.65	1.50	1.50
conc. A	2.00	1.65	1.50	1.50	1.00	1.35	1.50	1.50
Q = [B]/[A]	0.500	0.818	1.00	1.00	2.00	1.22	1.00	1.00
	<u>a</u> .	< <i>K</i>	a :	= <i>K</i>	a	> K	a =	K

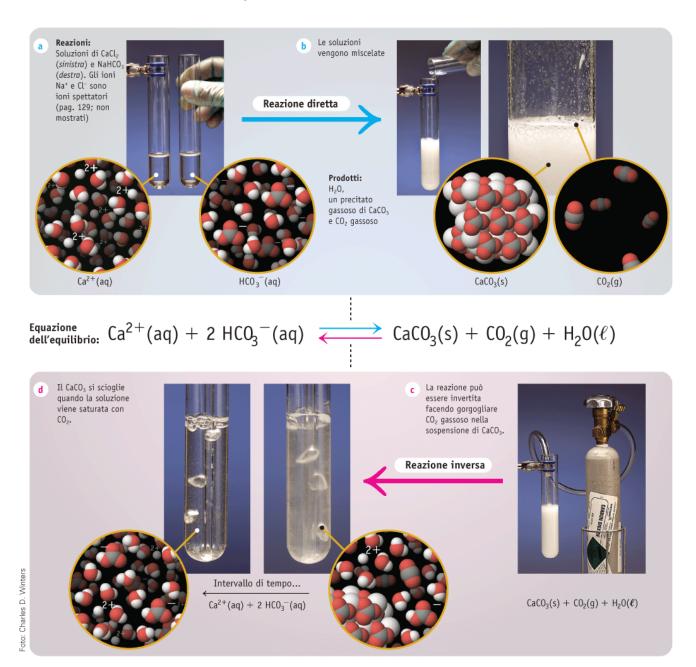
^{*}In entrambi gli esperimenti, i sistemi alla destra della linea tratteggiata hanno raggiunto l'equilibrio.

IL QUOZIENTE DI REAZIONE

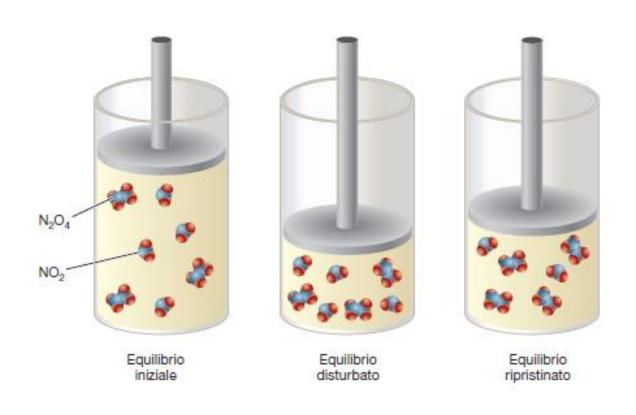
Figura 14.4La direzione di una reazione reversibile per raggiungere l'equilibrio dipende dai valori relativi di Q_c e di K_c .

IL PRINCIPIO DI LE CHATELIER (PRINCIPIO DELL'EQUILIBRIO MOBILE)

Quando si disturba con una sollecitazione esterna un sistema all'equilibrio, il sistema stesso reagisce in modo da annullare, per quanto possibile, gli effetti di tale sollecitazione


$$aA + bB \rightleftharpoons cC + dD$$

L'effetto della concentrazione


Se si aggiunge una certa quantità di reagente A o B (a *T costante*) avverrà la reazione che porta alla sua scomparsa

Se si sottrae una certa quantità di prodotto C o D (a *T costante*) avverrà la reazione che porta alla sua formazione

L'EQUILIBRIO CHIMICO

L'effetto della pressione o del volume

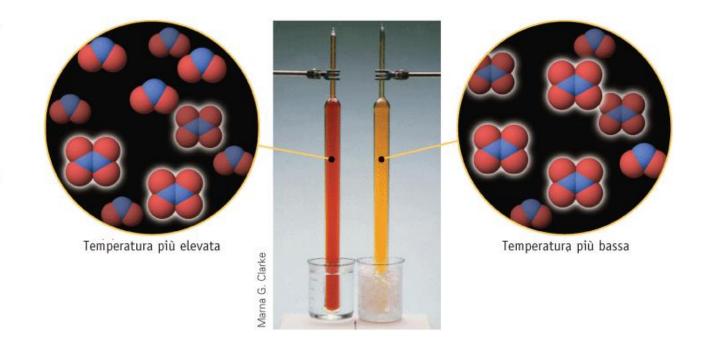

L'effetto della pressione o del volume

Tabella 12.7 Effetto della press	ione sulla p	osizione degli e	quilibri gassosi
Sistema	$\Delta n_{\sf gas}^*$	Aumento di P _{tot}	Diminuzione di P _{tot}
1. N ₂ O ₄ (g)	+1	←	\longrightarrow
2. $SO_2(g) + \frac{1}{2} O_2(g) \iff SO_3(g)$	$-\frac{1}{2}$	\longrightarrow	←
3. $N_2(g) + 3H_2(g) \iff 2NH_3(g)$	-2	\longrightarrow	←
4. $C(s) + H_2O(g) \iff CO(g) + H_2(g)$	+1	←	\longrightarrow
5. $N_2(g) + O_2(g) \iff 2NO(g)$	0	0	0

 $^{^*\}Delta n_{
m gas}$ è la variazione del numero di moli del gas che ha luogo nel corso della reazione diretta.

L'effetto della temperatura

FIGURA 16.8 Effetto della temperatura sull'equilibrio. Entrambi i tubi nella fotografia contengono NO₂ (rosso-bruno) e N₂O₄ (incolore) all'equilibrio. *K* è più grande a temperatura più bassa poiché l'equilibrio favorisce l'incolore N₂O₄. Questo si osserva chiaramente nel tubo di destra, dove il gas nel bagno di ghiaccio è solo leggermente colorato, indicando una bassa concentrazione del gas rosso-bruno NO₂. A 50°C (tubo di sinistra), l'equilibrio è spostato verso NO₂, come indicato dall'intensa colorazione rosso-bruna.

TABELLA 16.2 Effetti delle perturbazioni sulla composizione di equilibrio

Perturbazione	Cambiamento quando la miscela torna all'equilibrio	Effetto dell'equilibrio	Effetto sulla <i>K</i>				
Reazioni coinvolgenti solidi, liquidi o gas							
Aumento della temperatura	Energia termica è consumata dal sistema	Spostamento nella direzione endotermica	Cambiamento				
Diminuzione della temperatura	Energia termica è generata dal sistema	Spostamento nella direzione esotermica	Cambiamento				
Addizione di un reagente*	Il reagente addizionato viene in parte consumato	Aumenta la concentrazione dei prodotti	Nessun cambiamento				
Addizione di un prodotto*	Il prodotto addizionato viene in parte consumato	Aumenta la concentrazione dei reagenti	Nessun cambiamento				
Reazioni coinvolgenti gas							
Diminuzione del volume, aumento della pressione	Diminuzione della pressione	La composizione cambia per ridurre il numero totale di molecole gassose	Nessun cambiamento				
Aumento del volume, diminuzione della pressione	Aumento della pressione	La composizione cambia per aumentare il numero totale di molecole gassose	Nessun cambiamento				

^{*}Non si applica se il reagente o il prodotto addizionato è un solido insolubile o un liquido puro. Si ricordi che la loro "concentrazione" non compare nel quoziente di reazione.

LE PROPRIETA' DELL'EQUILIBRIO CHIMICO

- 1. Le reazioni di equilibrio sono reazioni reversibili;
- 2. L'equilibrio è uno stato dinamico;
- 3. All'equilibrio le concentrazioni dei reagenti e dei prodotti sono costanti nel tempo;
- 4. L'equilibrio che si raggiunge è sempre lo stesso indipendentemente dalla direzione della reazione che lo ha formato.