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Identification based on Prediction Error Minimization

• Consider the models class M = {M(ϑ) : ϑ ∈ Θ} of a given
complexity.

• We want to determine the best model in the class M , that is,
the best vector ϑ̄ ∈ Θ such that M(ϑ̄) provides the best
“interpretation” of the observed data.

• However, it is of customary importance to define in a precise
way how to compare the true system (of which we observe the
accessible data) with the model to be identified.

• One option could be to consider the scheme:
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Identification based on Prediction Error Minimization (cont.)
• For given input variables u(t) (if present) we could try to
compare ym(t) with y(t) trying to make ym(t) similar to y(t)

“in a suitable sense”.
• However M(ϑ) is a stochastic model and hence ym(t) is a
random variable whereas y(t) is a known numerical sequence.

A Trivial Approach
Let us compare E[ym(t)] with y(t) (these quantities are both
deterministic and hence comparable):

A(z) ym(t) = B(z)u(t− 1) + C(z) ξ(t)

=⇒ A(z)E[ym(t)] = B(z)u(t− 1) + C(z)E[ξ(t)]

=⇒ E[ym(t)] =
B(z)

A(z)
u(t− 1)

However, doing so, the dependence on polynomial C(z) would
disappear thus making it impossible to identity the stochastic part
of the model.
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Identification based on Prediction Error Minimization (cont.)

Predictive Approach to Systems Identification

• Given a class of models M = {M(ϑ) : ϑ ∈ Θ} we consider the
corresponding class of models in prediction form (predictors
for short) M̂ =

{
M̂(ϑ) : ϑ ∈ Θ̂

}
• Predictors are useful: ŷϑ(t | t− 1) is given by a deterministic
law using past values of y(·) and of u(·) and hence the
comparison is possible and well-posed.

• Then, the (very important) conceptual scheme is:
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Identification based on Prediction Error Minimization (cont.)

Predictive Approach to Systems Identification
• The input to the predictor is made of the measurable variables
y(t− 1) and u(t− 1) ; ŷϑ(t | t− 1) is generated using these
known inputs (the subscript ϑ is enhanced to highlight the
dependence on the vector of unknown parameters)

• From the comparison between y(t) and ŷϑ(t | t− 1) we obtain
the prediction error

εϑ(t) = y(t)− ŷϑ(t | t− 1)

• The prediction error is exploited to determine the vector ϑ̄ for
which the model M(ϑ̄) associated with the predictor M̂(ϑ̄)

“interprets” the observed data in the best way possible.
• The vector ϑ̄ (hence the best model) is determined through the
minimisation of a cost function taking on the form

J(ϑ) =
1
N

N∑
t=τ

[εϑ(t)]
2 for a suitable τ ≥ 1
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Remarks

• Conceptually we identify the model M(ϑ) but, from an
operational viewpoint, we use the predictor M̂(ϑ)

• The minimization of the cost function on the pre-selected
time-window is, of course, important, but it is very important
as well that the prediction error is a stochastic process with
characteristics that are as close as possible to the ones of a
white process

• It is important to emphasize again that the identification
procedure minimizing the prediction error (MPE) makes it
possible to identify stochastic models by means of a
deterministic procedure.
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Asymptotic Theory for PEM Identification Methods

• Consider
ϑ̂N = arg min

ϑ
JN (ϑ)

where N is the size of the time-window and we suppose that
the data y(·) and u(·) are stochastic processes; hence ϑ̂N is a
random variable for any given value of N

• Assume that y(·) and u(·) are stationary (S stable) and
assume also that M̂(ϑ) is stable. Then:

εϑ(t) = y(t)− ŷϑ(t | t− 1) is stationary

Hence:

JN (ϑ) =
1
N

N∑
t=τ

[εϑ(t)]
2 −→ E

{
[εϑ(t)]

2} for N → ∞
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Asymptotic Theory for PEM Identification Methods (cont.)

• Let J̄(ϑ) = E
{
[εϑ(t)]

2} . Clearly J̄(ϑ) does not depend on t

because of the stationarity
• J̄(ϑ) (which coincides with variance of the prediction error) is
a deterministic function of ϑ , that is, it does not depend on
the result of the random experiment).

Fundamental Question
Does

lim
N→∞

JN (ϑ) = J̄(ϑ)

imply that
lim

N→∞
ϑ̂N = ϑ∗

where ϑ∗ ∈ ∆ with ∆ being the set of minima of J̄(ϑ) , that is:

∆ =
{
ϑ̄ : J̄(ϑ̄) ≤ J̄(ϑ), ∀ϑ ∈ Θ

}
DIA@UniTS – 267MI –Fall 2020 TP GF – L11–p8



Asymptotic Theory for PEM Identification Methods (cont.)
Asymptotic Theorem 1
Suppose that:

• y(·) and u(·) stationary stochastic processes
• u(·) independent from ξ(·)
• ξ(·) white process
• Θ ⊂ Rq , Θ compact
• M̂(ϑ) stable ∀ϑ ∈ Θ

• M̂(ϑ) ∈ C3 with respect to ϑ

Then:
lim

N→∞
ϑ̂N ∈ ∆ a.s.

Almost-sure asymptotic convergence (probability 1)
to the set of optimal parameters

DIA@UniTS – 267MI –Fall 2020 TP GF – L11–p9



Asymptotic Theory for PEM Identification Methods (cont.)

Asymptotic Theorem 2
Suppose that:

• Same assumptions of Asymptotic Theorem 1 hold
• ∆ contains only one point
• ∃ϑ◦ : S = M(ϑ◦) (the true system belongs to the class in
which we are looking for the best model)

Then:

• lim
N→∞

ϑ̂N = ϑ◦ a.s.

• The innovation e(t) = y(t)− ŷϑ◦(t | t− 1) is a white process

Almost-sure asymptotic convergence (probability 1)
to the true parametrization
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Asymptotic Theory for PEM Identification Methods (cont.)

Sketch of the proof
• Consider εϑ(t) = y(t)− ŷϑ(t | t− 1) for a generic ϑ . Hence:

εϑ(t) = y(t)− ŷϑ◦(t | t− 1) + ŷϑ◦(t | t− 1)− ŷϑ(t | t− 1)
= e(t) + [ŷϑ◦(t | t− 1)− ŷϑ(t | t− 1)]

where e(t) is called innovation and represents the prediction
error in case of use of the optimal predictor.

• From the optimality, it follows that e(t) is uncorrelated from
the past values of y(·) and u(·) , while both ŷϑ◦(t | t− 1) and
ŷϑ(t | t− 1) depend on such past values.

• Then, e(t) and [ŷϑ◦(t | t− 1)− ŷϑ(t | t− 1)] are uncorrelated
and hence

var [εϑ(t)] = var [e(t)] + var [ŷϑ◦(t | t− 1)− ŷϑ(t | t− 1)]
=⇒ J̄(ϑ) ≥ J̄(ϑ◦)

Thus concluding that ϑ◦ is a minimum of J̄(ϑ) and it is unique
by assumption
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Remarks

• The assumption S = M(ϑ◦) is an equality between transfer
functions and ϑ◦ is called true parametrization.

• Let’s keep the assumption ∃ϑ◦ : S = M(ϑ◦) , but consider the
case in which ∆ is made of more than one point.

• In this case lim
N→∞

ϑ̂N ∈ ∆ a.s. and it may happen that
lim

N→∞
ϑ̂N = ϑ∗ ̸= ϑ◦ a.s. , but it may also happen that ϑ̂N does

not converge, “cycling repeatedly” on points belonging to ∆

• It is worth noting that, except in the case where ϑ◦ has a
specific physical meaning, the convergence to ϑ∗ ̸= ϑ◦ is not
necessarily a bad result. In fact, if J̄(ϑ∗) = J̄(ϑ◦) , it follows
that M(ϑ◦) and M(ϑ∗) are equivalent from the predictive
point of view.
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Remarks (cont.)

• Let us now remove the assumption ∃ϑ◦ : S = M(ϑ◦) , that is,
consider the case ̸ ∃ϑ◦ : S = M(ϑ◦) ; however, let’s keep the
assumption for which ∆ is made of a single point: ∆ =

{
ϑ̄
}

• The fact S ̸= M(ϑ), ∀ϑ ∈ Θ means that S cannot be fully
characterized in terms of models in the class M :

• Θ is not large enough
• The order of model M(ϑ) is not large enough
• The class of models M is not rich enough
• . . . . . .
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Remarks (cont.)

• Thanks to asymptotic Theorem 1: lim
N→∞

ϑ̂N = ϑ̄ a.s.
Clearly J̄(ϑ̄) > var [e(t)] but M(ϑ̄) is anyway the model in the
class M providing the best approximation of S in the sense
of minimum prediction error

• Therefore, we have four possible cases:
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Important Example

Consider the process (true system):

S : y(t) = e(t) +
1
2 e(t− 1) , e(·) ∼WN(0, λ2)

and consider the class of models AR(1):

M(ϑ) : y(t) = a y(t− 1) + ξ(t)

The corresponding class of models in prediction form is:

M̂(ϑ) : ŷ(t | t− 1) = a y(t− 1)

Hence:
S ̸= M(ϑ)

and we want to determine the set ∆ of minima of J̄(ϑ)
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Important Example (cont.)

We have:

J̄(ϑ) = E
{
[εϑ(t)]

2} = E
{
[y(t)− ŷ(t | t− 1)]2

}
= E

{[
e(t) +

1
2 e(t− 1)− a y(t− 1)

]2}

= E

{[
e(t) +

1
2 e(t− 1)− a e(t− 1)− 1

2ae(t− 2)
]2}

= E

{[
e(t) +

(1
2 − a

)
e(t− 1)− 1

2ae(t− 2)
]2}

But e(t), e(t− 1), e(t− 2) are uncorrelated. Hence:

J̄(ϑ) = var [e(t)] +

(1
2 − a

)2
var [e(t− 1)] + 1

4a
2 var [e(t− 2)]

=

(5
4 +

5
4a

2 − a

)
var [e(t)]
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Important Example (cont.)

Thus:
dJ̄

dϑ
=
dJ̄

da
=

(5
2a− 1

)
var [e(t)] =⇒ ā =

2
5

Then:
M̂(ϑ̄) : ŷ(t | t− 1) = 2

5 y(t− 1)

=⇒ M(ϑ̄) : y(t) =
2
5 y(t− 1) + ξ(t)

M(ϑ̄) is the best model in
the class M = AR(1)
approximating the true system
(recall that S ̸= AR(1) )
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Important Example (cont.)

• The predictor is stable and this is consistent with the
stationarity of S

• The prediction error is given by:

εϑ̄(t) = y(t)− ŷϑ̄(t | t− 1) = y(t)− ŷā(t | t− 1)
= e(t) +

1
2 e(t− 1)−

2
5 y(t− 1)

= e(t) +
1
2 e(t− 1)−

2
5

[
e(t− 1) + 1

2e(t− 2)
]

= e(t) +
1
10 e(t− 1)−

1
5 e(t− 2)

Clearly, the process εϑ̄(t) is not white and this is not surprising
because S ̸= AR(1) .
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Identifiability



Identifiability

• To analyze the identifiability of a given system S through a
given class of models M means to analyze the cardinality of
the set ∆

• In general:

Experimental conditions

Structure of the class of models

 =⇒ Cardinality of ∆
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Identifiability: Experimental Conditions

Even if S ∈ M , this does not imply that ∆ =
{
ϑ̄
}

Trivial Example

M(ϑ) : y(t) = G(z)u(t− 1) +W (z) ξ(t)

• Suppose that the experimental conditions under which the
identification procedure is conducted are such that
u(t) = 0 , ∀t

• Then, any choice of G(z) would be admissible and hence the
cardinality of the set ∆ would be infinite
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Identifiability

Remarks



Remarks

• If the experimental conditions could be constructed in such a
way that u(t) is sufficiently rich, then it is possible to
guarantee that ∆ contains a single element.

• On the other hand, if the experimental conditions cannot be
constructed as above, it is then necessary to reduce the
models’ complexity (that it, the number of unknown
parameters) thus limiting the identification procedure only to
the actually identifiable parts.
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Structure of the family of models to be identified

Assume that S ∈ M but also that the chosen family has a
complexity larger than the one of the true system

Example S = ARMAX(1, 1, 1) , M = ARMAX(2, 2, 2)

Clearly, irrespective of the experimental conditions, ∆ will be
necessarily made of an infinite number of elements because S can
be described by an infinite number of models belonging to the
family in which there are common factors.

It is important to guarantee that the family M is not
over-parametrised
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Concluding Remarks on Identifiability

• Structural identifiability:
Uniqueness of the approximating model belonging to the
pre-selected family of models (choice of model complexity)

• Experimental identifiability: Uniqueness of the vector of
parameters with respect to the information conveyed by the
observed data

To guarantee the uniqueness of the minimum it is necessary that
both conditions above are satisfied.
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Asymptotic Evaluation of Estimates’ Uncertainty

• Beyond point-wise convergence, it is important to analyze the
uncertainty of the estimates as well.

• Let ψ(t, ϑ) = −
[
∂

∂ϑ
εϑ(t)

]⊤
, R̄(ϑ) = E

[
ψ(t, ϑ)ψ(t, ϑ)⊤

]
Theorem
• Same assumptions of Asymptotic Theorem 1 hold
• ∆ contains only one point
• ∃ϑ◦ : S = M(ϑ◦)

Then:

• lim
N→∞

√
N

(
ϑ̂N − ϑ◦

)
∼ G(0, P̄ )

• P̄ = var [εϑ◦(t)] R̄(ϑ◦)−1

Hence, for N sufficiently large, the variance of the estimator is
1
N

var [εϑ◦(t)] R̄(ϑ◦)−1
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Important Example

Consider the process (true system):

S : y(t) = a◦ y(t− 1) + e(t) , |a◦| < 1, e(·) ∼WN(0, λ2)

and consider the family of models AR(1):

M(ϑ) : y(t) = a y(t− 1) + ξ(t)

The corresponding family of models in prediction form is:

M̂(ϑ) : ŷ(t | t− 1) = a y(t− 1)

Then, one has: JN (ϑ) =
1
N

N∑
t=1

ε(t)2 .

But ε(t) = y(t)− ŷ(t | t− 1) = y(t)− ay(t− 1) and hence:

JN (ϑ) =
1
N

N∑
t=1

[y(t)− ay(t− 1)]2
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Important Example (cont.)

Thus:
d

da
JN (ϑ) = − 2

N

N∑
t=1

[y(t)− ay(t− 1)] y(t− 1)

and hence

d

da
JN (ϑ) = 0 =⇒ âN =

1
N

N∑
t=1

[y(t) y(t− 1)]

1
N

N∑
t=1

[y(t− 1)]2
=⇒ lim

N→∞
âN =

γ(1)
γ(0)

On the other hand:

y(t) y(t− 1) = a◦ y(t− 1)2 + e(t) y(t− 1)
=⇒ E [y(t) y(t− 1)] = a◦E

[
y(t− 1)2

]
+ E [e(t) y(t− 1)]

=⇒ γ(1) = a◦ γ(0)
=⇒ lim

N→∞
âN = a◦
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Important Example (cont.)

Concerning the uncertainty of the estimate:

ψ(t, a◦) = − d

da
εϑ(t)

∣∣∣∣
ϑ=a◦

= − d

da
[y(t)− ay(t− 1)]

∣∣∣∣
a=a◦

= y(t− 1)

from which we have

R̄(a◦) = E
[
ψ(t, a◦)ψ(t, a◦)⊤

]
= E

[
ψ(t, a◦)2

]
= E

[
y(t− 1)2

]
= γ(0)

and then, for N sufficiently large, the variance of the estimator is

var [âN ] =
1
N

var [εa◦(t)] R̄(a◦)−1 =
1
N

var [e(t)]

γ(0) =
1
N

λ2

γ(0)

Therefore, the estimate’s uncertainty is inversely proportional to
the “signal-to-noise ratio” and asymptotically vanishes for N → ∞
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