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Least-Squares Batch
Identification Algorithm



Batch PEM Identification Algorithms

PEM identification algorithms can be classified in two main
categories:

• Batch Algorithms: observed data are elaborated in single batch
and the determination of the model is carried out once all data
are available

• Recursive Algorithms: observed data are elaborated in a
recursive way as soon as they become available according to
their temporal ordering
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Least-Squares Batch Identification Algorithm

• Recall that the first step is to chose the family of models
M = {M(ϑ) : ϑ ∈ Θ} which also implies to obtain a
corresponding family of predictors M̂ =

{
M̂(ϑ) : ϑ ∈ Θ̂

}
• Consider ARX models:

M(ϑ) : A(z) y(t) = B(z)u(t− 1) + ξ(t)

A(z) = 1− a1z
−1 − a2z

−2 − · · · − anz
−n

B(z) = b1 + b2z
−1 + · · ·+ bnz

−n

ϑ =



a1
...
an
b1
...
bn


M̂(ϑ) : ŷ(t) = [1−A(z)] y(t) +B(z)u(t− 1)

where we used the shorthand ŷ(t) for ŷ(t|t− 1)
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Least-Squares Batch Identification Algorithm (cont.)

• Let us resort to the Least-Squares technique. Then:

ϑ =



a1
...
an
b1
...
bn


φ(t) =



y(t− 1)
...

y(t− n)

u(t− 1)
...

u(t− n)


and hence

M(ϑ) : y(t) = φ(t)⊤ ϑ+ ξ(t)

M̂(ϑ) : ŷ(t) = φ(t)⊤ ϑ

where it is important to recall that the predictor has a linear
structure with respect to the vector ϑ of unknown parameters

DIA@UniTS – 267MI –Fall 2020 TP GF – L12–p4



Least-Squares Batch Identification Algorithm (cont.)

• The prediction error is given by:

ε(t) = y(t)− ŷ(t) = y(t)− φ(t)⊤ ϑ

where y()t) is the output observed variable of the true system
to be identified; this variable is going to be predicted at time
t− 1 by the predictor.

• Consider the quadratic cost function:

J(ϑ) =

N∑
t=1

[ε(t)]2 =
N∑
t=1

[
y(t)− φ(t)⊤ϑ

]2
and the minimizing vector

ϑ◦ = arg min
ϑ

J(ϑ)
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Least-Squares Batch Identification Algorithm (cont.)

• Recalling the Least-Squares methodology and its solution:

N∑
t=1

φ(t) y(t) =

[
N∑
t=1

φ(t)φ(t)⊤

]
ϑ

Least-Squares
Normal Equations

(2n equations, 2n unknowns)

• and if
N∑
t=1

φ(t)φ(t)⊤ is non-singular, one gets:

ϑ̂N =

[
N∑
t=1

φ(t)φ(t)⊤

]−1 N∑
t=1

φ(t) y(t) Least-Squares Formula
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Least-Squares Batch Identification Algorithm (cont.)

• Also recall that:

• If det

[
N∑
t=1

φ(t)φ(t)⊤
]
̸= 0 =⇒ ϑ̂N is the unique

global minimum

• If det

[
N∑
t=1

φ(t)φ(t)⊤
]
= 0 =⇒ ϑ̂N is one among the

infinite global minima

• where the condition

det

[
N∑
t=1

φ(t)φ(t)⊤

]
̸= 0

is called Identifiability Condition
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Least-Squares Batch Identification Algorithm (cont.)

It is worth noting that the LS algorithm is associated with
identification of ARX models for the sake of simplicity but what
matters is the linearity with respect to the unknown parameters.

Example 1

S : y(t) =
1
2 u(t− 1) +

1
1+ dz−1

e(t) , e(·) ∼WN(0, λ2)

where the only unknown is the parameter d . Hence:

(1+ dz−1) y(t) =
1
2 (1+ dz−1)u(t− 1) + e(t)

=⇒ y(t) = −d y(t− 1) + 1
2 u(t− 1) +

1
2d u(t− 2) + e(t)

This XAR model has the structure of a ARX(1,2) model:

ϑ =

 d

b1
b2

 φ(t) =

 y(t− 1)
u(t− 1)
u(t− 2)


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Least-Squares Batch Identification Algorithm (cont.)

However:

• to identify the original model using this ARX structure is not
efficient because we do not take advantage of the information
for which b1 = 0.5

• Moreover, the parameters a1, b2 actually depend on a single
parameter and also this information is not exploited.

• Finally, trying to obtain the estimate of a single parameter by
estimating three parameters is not efficient as well.

But the original model can be rewritten as:

y(t) =
1
2 u(t− 1) + d

[
−y(t− 1) + 1

2 u(t− 2)
]
+ e(t)

and hence
ỹ(t) = φ̃(t) ϑ̃+ e(t) with ϑ̃ = d

where φ̃(t) = −y(t− 1) + 1
2 u(t− 2) , ỹ(t) = y(t)− 1

2 u(t− 1)
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Least-Squares Batch Identification Algorithm (cont.)

Example 2
Assume that the true system to be identified takes on the form of a
nonlinear model:

S : y(t) = a y(t−1)2+b1u(t−3)+b2u(t−5)3+e(t) , e(·) ∼WN(0, λ2)

However, letting

ϑ =

 a

b1
b2

 , φ(t) =

 y(t− 1)2
u(t− 3)
u(t− 5)3


we obtain a linear structure

y(t) = φ(t)⊤ ϑ+ e(t)

and, again, we are able to proceed in the usual way
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Least-Squares Batch
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Asymptotic Analysis of the LS Batch Identification Algorithm

• In general, we have seen that in PEM methods, under suitable
assumptions, the estimate asymptotically converges to the set
∆ of minima of the function J̄(ϑ) = E

{
[ε(t)]2

}
• The function J̄(ϑ) can be evaluated only by using the
knowledge of the true system S

• Suppose that ∃ϑ◦ : S = M(ϑ◦) which, in our case, means to
assume that there exists ϑ◦ (true parametrization) such that:

S : y(t) = φ(t)⊤ ϑ◦ + ξ(t) , ξ(·) ∼WN(0, λ2)

• If S is as. stable (zeroes of A(z) with | · | < 1 ) then, the
stationarity of u(·) and of ξ(·) implies the stationarity of y(·)
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Asymptotic Analysis of the LS Batch Identification Algorithm
(cont.)

• The prediction error is given by:

ε(t) = φ(t)⊤ (ϑ◦ − ϑ) + ξ(t)

But φ(t)⊤ (ϑ◦ − ϑ) is a scalar and hence it is equal to its
transpose:

ε(t)2 = (ϑ◦ − ϑ)
⊤
φ(t)φ(t)⊤ (ϑ◦ − ϑ) + ξ(t)2 + 2 (ϑ◦ − ϑ)

⊤
φ(t) ξ(t)

=⇒ E
[
ε(t)2

]
= (ϑ◦ − ϑ)

⊤
E
[
φ(t)φ(t)⊤

]
(ϑ◦ − ϑ) + E

[
ξ(t)2

]
+2 (ϑ◦ − ϑ)

⊤
E [φ(t) ξ(t)]

=⇒ E
[
ε(t)2

]
= (ϑ◦ − ϑ)

⊤
E
[
φ(t)φ(t)⊤

]
(ϑ◦ − ϑ) + λ2

• If E
[
φ(t)φ(t)⊤

]
> 0 : The LS algorithm converges a.s. to the true

parametrization
• If E

[
φ(t)φ(t)⊤

]
≥ 0 : Identifiability does not hold
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Asymptotic Analysis of the LS Batch Identification Algorithm
(cont.)

• Let us now evaluate the asymptotic variance of the estimate:

ψ(t, ϑ)⊤ = − ∂

∂ϑ
εϑ(t) = − ∂

∂ϑ

[
φ(t)⊤ (ϑ◦ − ϑ) + ξ(t)

]
= φ(t)⊤

and observe that, due to linearity in the parameters, ψ(t, ϑ)⊤
does not depend on ϑ . Hence:

R̄ = E
[
φ(t)φ(t)⊤

]
which implies that for large values of N the variance of the

estimate is λ2

N
E
[
φ(t)φ(t)⊤

]−1
Computing the empirical estimates, one gets:

var [ϑ̂N ] =
λ2

N

[
1
N

N∑
t=1

φ(t)φ(t)⊤

]−1

= λ2 S(N)−1 (⋆)

Remark: (⋆) only holds if ∃ϑ◦ : S = M(ϑ◦)

DIA@UniTS – 267MI –Fall 2020 TP GF – L12–p13



Least-Squares Batch
Identification Algorithm

Operational Procedure



Operational Batch LS Identification Procedure

• Set the order of the ARX model to be identified
and from the observed
data u(·) and y(·) build
the regression vector φ(·)

• Perform a singularity test on matrix S(N)

• If S(N) > 0 compute ϑ̂N = [S(N)]
−1

N∑
t=1

φ(t) y(t)

• Evaluate the estimate uncertainty var [ϑ̂N ] = λ̂2 S(N)−1 where
λ̂2 is an empirical estimate of λ2

• Check the witheness of the prediction error
ε(t) = y(t)− φ(t)⊤ ϑ̂N which is of fundamental importance to
verify the “goodness” of the identified model (order and
structure).
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Persistency of Excitation

• Let us analyze the matrix S(N) =

N∑
t=1

φ(t)φ(t)⊤ and, just to

get more insight, let us focus on the simple ARX(1,1) case:

ϑ =

[
a1
b1

]
φ(t) =

[
y(t− 1)
u(t− 1)

]

=⇒ φ(t)φ(t)⊤ =

[
y(t− 1)2 y(t− 1)u(t− 1)

u(t− 1)y(t− 1) u(t− 1)2

]

=⇒ S(N) =


N∑
t=1

y(t− 1)2
N∑
t=1

y(t− 1)u(t− 1)
N∑
t=1

u(t− 1)y(t− 1)
N∑
t=1

u(t− 1)2


Notice that the elements of the matrix S(N) diverge for
N → ∞
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Persistency of Excitation (cont.)

• Notice that rank
[
φ(t)φ(t)⊤

]
= 1 , ∀φ(t) and hence S(1) is

non-singular only if dim [φ(t)] = 1 (only one parameter to be
estimated).
Hence:
given the model’s complexity, the data cardinality has to be

large enough
• It is convenient to introduce

R(N) =
1
N
S(N)

=⇒ ϑ̂N = [R(N)]
−1 1

N

N∑
t=1

φ(t) y(t)
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Persistency of Excitation (cont.)

• In the ARX(1,1) case under consideration:

R(N) =


1
N

N∑
t=1

y(t− 1)2 1
N

N∑
t=1

y(t− 1)u(t− 1)

1
N

N∑
t=1

u(t− 1)y(t− 1) 1
N

N∑
t=1

u(t− 1)2

 −→ R̄

where R̄ =

[
γyy(0) γuy(0)
γyu(0) γuu(0)

]
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Persistency of Excitation (cont.)

• In the general case ARX(na, nb) :

R̄ =

[
R̄na

yy R̄yu

R̄uy R̄nb
uu

]

where

R̄na
yy = E




y(t− 1)
...

y(t− na)

 [y(t− 1) · · · y(t− na)]


R̄nb

uu = E




u(t− 1)
...

u(t− nb)

 [u(t− 1) · · · u(t− nb)]


and so on.
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Persistency of Excitation (cont.)

• Hence, the positive definiteness of R(N) is the condition to be
satisfied in order to obtain a unique estimate at least for a
sufficiently large number N of observed data

• Consider the Sylvester test: a symmetric square matrix A is
positive definite if and only if all principal minors are positive,
that is, if and only if:

D1 = det (a11) > 0

D2 = det

[
a11 a12
a21 a22

]
> 0

D3 = det

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 > 0

...
Dn = det (A) > 0
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Persistency of Excitation (cont.)

• Hence R̄ > 0 =⇒ R̄nb
uu > 0 that is R̄nb

uu > 0 is a necessary
condition for R̄ to be non-singular

• In general, for a generic n , we have:

R̄n
uu =


γuu(0) γuu(1) · · · γuu(n− 1)
γuu(1) γuu(0) · · · γuu(n− 2)

. . . . . .
γuu(n− 1) · · · γuu(1) γuu(0)


which is a Toeplitz matrix (all elements on the diagonals
coincide) and depends only on u(·) hence on the experimental
conditions.
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Persistency of Excitation (cont.)

Persistency of Excitation
Definition. The input variable u(·) is persistently exciting of order
n if R̄n

uu is non-singular.

A necessary condition to be able to identity a ARX(na, nb) model
is that the input u(·) is persistently exciting of order nb

Remark. From the Sylvester test it turns out that if u(·) is
persistently exciting of order n then it is p.e. of order ñ, ∀ ñ < n
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Least-Squares Identifiability

The Case of ARX Models



LS Identifiability in the Case of ARX Models

Recall that:

• To analyze the identifiability of a given system S through a
given class of models M means to analyze the cardinality of
the set ∆

• In general:

Experimental conditions

Structure of the class of models

 =⇒ Cardinality of ∆

• In our case, we want to analyze the identifiability of a given
system S by a given family of models M = ARX(na, nb)
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LS Identifiability in the Case of ARX Models (cont.)

• If we are allowed to design the identification experimental
conditions, we have to make sure that u(·) is sufficiently rich
so as to guarantee that ∆ contains only one element.

• If the experimental conditions cannot be designed, the
complexity of the models (that is, the number of parameters to
be identified) has to be reduced by limiting ourselves to
identify what is actually identifiable for the given the
experimental context

• In our case M = ARX(na, nb) , u(·) sufficiently rich means
u(·) p.e. of order nb

• Observe that u(·) =WN(0, λ2) is p.e. of arbitrary order
because, in this case, R̄n

uu is a diagonal matrix. This is not
necessarily the best choice. The important point is to make
sure to design input variables u(·) with a suitable spectrum
exciting all the system’s modes of behaviour.
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Least-Squares Identifiability

Structure of the Family of Models



Identifiability: Structureof the Family ofModels tobe Identified

Recall that:

• Assume that S ∈ M but also that the chosen family has a
complexity larger than the one of the true system

Example S = ARMAX(1, 1, 1) , M = ARMAX(2, 2, 2)
Clearly, irrespective of the experimental conditions, ∆ will be
necessarily made of an infinite number of elements because S
can be described by an infinite number of models belonging to
the family in which there are common factors.

It is important to guarantee that the family M is not
over-parametrised

• In our considered case M = ARX(na, nb) , having a structural
non-identifiability means that R̄ is singular despite the fact
that R̄nb

uu > 0
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LS Identifiability: Summing Up

• Suppose that:
• S is ARX(na, nb) with with no common factors between A(z)

and B(z)

• M = ARX(na, nb)

• u(·) p.e. of order nb

Then, the estimates of the parameters of the ARX(na, nb)

model converge a.s. to the true parametrization
• If u(·) is not p.e. of order nb and the estimate does not
converge even for large values of N very likely the complexity
of the model to be identified should be reduced.

• If the estimate does converge but the prediction error ε(·) is
not white this means that the family of models
M = ARX(na, nb) is not adequate; hence either the order or
the family itself has to be changed.
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Least-Squares Identifiability

Example



Important Example

• Consider a system to be identified which can be described by a
ARMAX(1,1,1) model:

S : y(t) = a◦ y(t− 1) + b◦ u(t− 1) + ξ(t) + c◦ ξ(t− 1)
|a◦| < 1 , ξ(·) ∼WN(0, λ2) , u(·) ∼WN(0, µ2)

where the processes u(·) and ξ(·) are supposed to be
uncorrelated.

• Let us consider the ARX(1,1) family of models:

M̂ : ŷ(t) = a y(t− 1) + b u(t− 1)

and let us use the LS algorithm to identify the system S by a
ARX model.
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Important Example (cont.)

The asymptotic theory ensures the almost sure convergence to one
of the minima of the function

J̄(ϑ) = E
{
[ε(t)]2

}
= E

{
[y(t)− ŷ(t)]2

}
= E [y(t)]

2
+ E [ŷ(t)]

2 − 2E [y(t) ŷ(t)]

Hence:

E [ŷ(t)]
2
= a2E [y(t− 1)]2+b2E [u(t− 1)]2+2 a bE [y(t− 1)u(t− 1)]

But y(t− 1) depends on u(t− 2), y(t− 2), ξ(t− 1) and hence, given
our hypotheses, we have [y(t− 1)u(t− 1)] = 0 and then

E [ŷ(t)]
2
= a2 γyy(0) + b2 γuu(0)

Moreover:

E [y(t) ŷ(t)] = aE [y(t) y(t− 1)] + bE [y(t)u(t− 1)]
= a γyy(1) + b γuy(1)
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Important Example (cont.)

Thus:

J̄(ϑ) =
(
1+ a2

)
γyy(0) + b2 γuu(0)− 2 a γyy(1)− 2 b γuy(1)

and hence:

∂J̄

∂ϑ
=

[
∂J̄

∂a

∂J̄

∂b

]
= [2a γyy(0)− 2 γyy(1) | 2b γuu(0)− 2 γuy(1)]

=⇒ ϑ̄ =

[
ā

b̄

]
=


γyy(1)
γyy(0)
γuy(1)
γuu(0)


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Important Example (cont.)

Now, plugging in the information on the “true” system we obtain:

γuy(1) = E [y(t)u(t− 1)] = E
[
a◦ y(t− 1)u(t− 1) + b◦ u(t− 1)2

+ξ(t)u(t− 1) + c◦ ξ(t− 1)u(t− 1)]
= b◦ γuu(0)

γyy(1) = E [y(t) y(t− 1)] = E
[
a◦ y(t− 1)2 + b◦ u(t− 1) y(t− 1)

+ξ(t) y(t− 1) + c◦ ξ(t− 1) y(t− 1)]
= a◦ γyy(0) + c◦ λ2

Hence:

ā =
γyy(1)
γyy(0)

=
a◦ γyy(0) + c◦ λ2

γyy(0)
= a◦ + c◦

var (ξ)

var (y)

b̄ = b◦
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Important Example (cont.)
• Summing up, we got:

ϑ̂N =

[
âN
b̂N

]
−→

 a◦ + c◦
var (ξ)

var (y)
b◦

 a.s.

and then the estimation error of the true parameter a◦ , for a
given c◦ , is inversely proportional to the signal/noise ratio.
Moreover, the true value can only be obtained for c◦ = 0 or
var (ξ) = 0 and then only in the case in which the ARMAX model
is actually ARX or deterministic.

• Prediction error:
ε(t) = y(t)− ŷ(t) = y(t)− ā y(t− 1)− b̄ u(t− 1)

= a◦ y(t− 1) + b◦ u(t− 1) + ξ(t) + c◦ ξ(t− 1)
−
(
a◦ + c◦

var (ξ)

var (y)

)
y(t− 1)− b◦ u(t− 1)

= ξ(t) + c◦ ξ(t− 1)− c◦
var (ξ)

var (y)
y(t− 1)

which is not white, except in the case c◦ = 0
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Choice of Models Complexity

Whiteness Test



Premise: Anderson Whiteness Test

• The results of the identification procedure have to be checked
a posteriori verifying that the prediction error is as much
similar as possible to a white process.

• Given a zero-mean stationary process ε(·) consider the
empirical estimate of the covariance function:

γ̂(τ) =
1
N

N−τ∑
t=1

ε(t) ε(t+ τ)

where N is the length of the considered time-horizon.
• The Anderson test makes use of the normalized empirical
covariance function:

ρ̂(τ) =
γ̂(τ)

γ̂(0)

• It can be shown that if ε(·) is white, then
√
N ρ̂(τ) ∼ AsG(0, 1)

and that ρ̂(i) is asymptotically uncorrelated with ρ̂(j), i ̸= j

DIA@UniTS – 267MI –Fall 2020 TP GF – L12–p31



Premise: Anderson Whiteness Test (cont.)

• Set a confidence level 0 < α < 1 (for example α = 0.01 )
Moreover, determine
β > 0 such that the tails of
the Gaussian G(0, 1) in the
intervals (−∞,−β) and
(β,+∞) have area α/2 .
• Consider a certain number M of evaluations of ρ̂(τ) :
ρ̂(0), ρ̂(1), ρ̂(2), . . . , ρ̂(M)

• Consider the interval (−β/
√
N, β/

√
N) and evaluate the

number n of samples of ρ̂(τ) such that
ρ̂(τ) ̸∈ (−β/

√
N, β/

√
N)

• If n

M
< α then ε(·) is considered white with confidence α
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Choice of Models Complexity

Model Validation



Model Complexity

• Let us characterize the complexity of the model (for a given
specific family of models) with the total number n of its
parameters

• Consider the quadratic criterion:

J(ϑ) =
1
N

N∑
i=1

[ε(t)]2

where ϑ is the vector of unknown parameters, n = dim(ϑ) and
ε(t) is the prediction error at time instant t :
ε(t) = y(t)− ŷ(t | t− 1)

• Consider:
ϑ̂N = arg min

ϑ
J(ϑ)

• Moreover J(ϑ̂N ) can be interpreted as an index quantifying
the “data interpretation” capabilities of the model

• For a given realization of the observed data, J(ϑ̂N ) decreases
as the model complexity n increases and hence J(ϑ̂N ) is not
per se useful to determine the optimal model complexity
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Important Example

Consider the process (“true” system):

S : y(t) = 1.2 y(t− 1)− 0.32 y(t− 2) + u(t− 1) + 0.5u(t− 2) + e(t)

e(·) ∼WN(0, 1) , u(·) ∼WN(0, 4) , e(·), u(·) uncorrelated

Consider the family of models ARX(n, n):

M(ϑ) : y(t) = a1 y(t− 1) + · · ·+ an y(t− n)

+b1 u(t− 1) + · · ·+ bn u(t− n) + ξ(t)

and let us identify the models in the cases n = 1, 2, 3 over a
window of 2000 data, that is {u(t), y(t)}t=1,...,2000
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Important Example (cont.)
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Important Example (cont.)

Observations

• Observe that J(ϑ̂2000) decreases when n increases
• The Anderson test provides results that improve when n

increases
• For n ≥ 3 the estimates of the parameters ân and b̂n are very
small and the uncertainties associated with the parameters
estimates are very large which is a clear sign of
over-parametrization (the model is too complex with respect to
the available data)

• In a situation like the one in this example it is possible to
conclude that ARX(2, 2) is the correct model. However, in
general this is hardly possible
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General Remarks

• In general, the Anderson test may not be satisfied even for very
large values of n and, in such a case, it is not possible to come
up with a clear choice as far as the model order is concerned
(as in the example)

• The fact that, for a given observed data realization, J(ϑ̂N )

decreases when the model complexity n increases – thus
avoiding the possibility to use J(ϑ̂N ) to determine the model
complexity – is a direct consequence of a conceptual mistake:

Use of the same batch of data
to identify and to validate the model

Hence, J(ϑ̂N ) is generally not an indicator of the “goodness” of
the identified model

Model Validation
It is necessary to validate the model on data that are different
from the ones used to identify the model
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Choice of Models Complexity

Cross-Validation



Cross-Validation

• Assume the availability of a sufficiently
large batch of N observed data;

• Reserve a part of the batch of data to
validate the model that has been
identified with the remaining data

• Consider a cross-validation cost function:

JCV (ϑ) =
1

N − t̄

N∑
k=t̄

[ε(k)]2

and evaluate n such that JCV (ϑ) is minimized
• For a given batch of observed data, JCV (ϑ̂t̄) is NOT
monotonically decreasing with respect to the increase of the
complexity n and hence JCV (ϑ̂t̄) can be used to decide the
optimal complexity of the model

• The CV procedure is rather cumbersome and needs a large
batch of data to be applicable in an effective way.
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Choice of Models Complexity

Final Prediction Error



Final Prediction Error (FPE)

• Let us devise a criterion by which to evaluate the goodness of
the model with respect to different realizations of the batch of
observed data:

J̄(ϑ) = E
{
[y(t, s)− ŷ(t, s, ϑ)]

2
}

where s is the outcome of the random experiment concerning
the data observation

• Hence J̄(ϑ) characterizes the average adherence of the model
on all possible data batches.

• As usual we have ϑ̂N = arg min
ϑ

J(ϑ) where the minimization is
carried out on a given specific data batch. Clearly, when
considering all possible data realizations, we have ϑ̂N = ϑ̂N (s)

• Averaging again, we define

FPE = E
{
J̄
[
ϑ̂N (s)

]}
and the optimal model complexity is the one for which FPE is
minimized
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Final Prediction Error (FPE) (cont.)

Let us evaluate the FPE in a simple/specific case:

S : AR(n) and M : AR(n)

Then:

S : y(t, s) = φ(t, s)⊤ ϑ◦ + ξ(t) ξ(·) ∼WN(0, λ2)
M̂(ϑ) : ŷ(t, s) = φ(t, s)⊤ ϑ

But φ(t, s) and ξ(t) are uncorrelated and hence

J̄(ϑ) = E
{
[y(t, s)− ŷ(t, s, ϑ)]

2
}
= E

{[
φ(t, s)⊤ (ϑ◦ − ϑ) + ξ(t)

]2}
= (ϑ◦ − ϑ)

⊤
E

[
φ(t, s)φ(t, s)⊤

]
(ϑ◦ − ϑ) + λ2

Setting R̄ = E
[
φ(t, s)φ(t, s)⊤

]
we get

FPE = E
{
J̄
[
ϑ̂N (s)

]}
= E

{[
ϑ◦ − ϑ̂N (s)

]⊤
R̄

[
ϑ◦ − ϑ̂N (s)

]
+ λ2

}
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Final Prediction Error (FPE) (cont.)

On the other hand, for a sufficiently large N :

var
[
ϑ◦ − ϑ̂N (s)

]
∼ λ2

N
R̄−1

Now, setting ν = ϑ◦ − ϑ̂N (s) we have:

var (ν) =
λ2

N
R̄−1 =⇒ R̄ = var (ν)−1

λ2

N

and then

FPE = E
(
ν⊤ R̄ ν

)
+ λ2 = E

[
ν⊤ var (ν)−1 ν

] λ2
N

+ λ2

But ν⊤ var (ν)−1 ν is a scalar and hence:

ν⊤ var (ν)−1 ν = tr
[
ν⊤ var (ν)−1 ν

]
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Final Prediction Error (FPE) (cont.)

Therefore (using tr (AB) = tr (BA) ):

E
[
ν⊤ var (ν)−1 ν

]
= E

{
tr

[
ν⊤ var (ν)−1 ν

]}
= E

{
tr

[
var (ν)−1 ν ν⊤

]}
= tr

{
E

[
var (ν)−1 ν ν⊤

]}
= tr

[
var (ν)−1E

(
ν ν⊤

)]
= tr

[
var (ν)−1 var (ν)

]
= tr (I) = n

Thus:
FPE =

n

N
λ2 + λ2
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Final Prediction Error (FPE) (cont.)

For a sufficiently large value of N , an estimate of λ2 is

λ̂2 =
1

N − n

N∑
t=1

[ε(t)]2 =
N

N − n

1
N

N∑
t=1

[ε(t)]2 =
N

N − n
J(ϑ̂N )(n)

where J(ϑ̂N )(n) denotes the specific value of the cost on the given
observed data on the model of complexity n .

The final form of the FPE is thus given by:

FPE =
N + n

N − n
J(ϑ̂N )(n)
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Final Prediction Error (FPE): Remarks

• The function N + n

N − n
behaves like in the

figure, whereas the function J(ϑ̂N )(n) is
monotonically decreasing with n

• Hence, for a given N , the typical FPE
behavior is shown in the figure on the
right.
Thus, the optimal complexity with respect
to the FPE criterion is n̄

• The FPE formula holds for other families of models just
suitably re-defining n . For example, in the ARX case, we set
n = na + nb while in the ARMAX case we set n = na + nb + nc
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Choice of Models Complexity

Akaike Information Criterion



Akaike Information Criterion (AIC)

• This is a statistical criterion. It is obtained by minimizing the
Kullback distance between the probability density function of
the observed data and the one that would be generated by the
model under concern. The Kullback distance is defined as

E

(
ln

ptrue
pmodel

)
• It can be shown that

AIC = 2 n
N

+ ln
[
J(ϑ̂N )(n)

]
• Again, the optimal complexity with
respect to the AIC criterion is n̄

• Notice that the rate of growth of the linear term 2 n
N

decreases
with N . Hence, AIC “suggests” models of smaller order in
presence of fewer observed data.
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Choice of Models Complexity

Minimum Description Length



Minimum Description Length (MDL)

• This is an information-theory based criterion:
for a given set of data, the optimal complexity is the one for
which the model can be “described” by the minimum number
of bits.

• Taking into account that the growth of the dimension of the
vector of parameters is compensated by the (average) decrease
of the number of bits that are needed to describe the
prediction error. It can be shown that

MDL = (ln N)
n

N
+ ln

[
J(ϑ̂N )(n)

]

• Again, the optimal complexity with
respect to the MDL criterion is n̄

DIA@UniTS – 267MI –Fall 2020 TP GF – L12–p46



Choice of Models Complexity

Comparison Between Indexes



Comparison Between FPE, AIC and MDL

• For large N , FPE and AIC typically yield very similar outcomes:

ln FPE = ln

[
N + n

N − n
J(ϑ̂N )(n)

]
= ln

[1+ n/N

1− n/N
J(ϑ̂N )(n)

]
= ln (1+ n/N)− ln (1− n/N) + ln

[
J(ϑ̂N )(n)

]
≃ 2 n

N
+ ln

[
J(ϑ̂N )(n)

]
= AIC

• AIC and MDL have a similar structure and differ for the term
multiplying n : for AIC it is 2/N while for MDL it is lnN/N

• For large N , MDL typically yields
models with lower complexity

• In general there is no guarantee that the criteria have a single
minimum
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