1 Fourier transform

Definition 1.1 (Fourier transform). For f € L'(R? C) we call its Fourier transform the

function defined by the following formula
N _d —itx
fie) = @nt [ e fayn

We use also the notation Ff(£) = F(€).
Ezxample 1.2. We have for any € > 0

2
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e = (2775)_g/ e e 5 d.
Rd

We set also
FHI(E) = (2m) 8 / ¢ f (o) dar
Rd
We have what follows.

Theorem 1.3. The following facts hold.

~

(1) We have |f(§)] < (271)7%||f||L1(R47(C). So in particular we have

_d
[ F fll oo ra,cy < (2m) 2| fll 1 (rec)-

~

(2) (Riemann— Lebesgue Lemma) We have 5lim f(&) =o.
—00

(1.1)

(1.2)

(1.3)

(1.4)

(8) The bounded linear operator F : L'(RY,C) — L>(R%,C) has values in the following

space Co(R%, C) c L*(R?,C)

Co(R%,C) := {g € C°(R%,C) : lim g(z) = 0}.

(1.5)

(4) F defines an isomorphism of the space of Schwartz functions S(R?, C) into itself.

(5) F defines an isomorphism of the space of tempered distributions S'(R?, C) into itself.

We have F[O,, f] = —i&;F f.
(6) For f,g € L'(R%,C) we have

Theorem 1.4 (Fourier transform in L?). The following facts hold.



(1) For a function f € LY(R?,C) N L3(R?,C) we have that f € L2(R%,C) and ||f]| 2 =
| f|lz2- An operator

F:L*(R%C) — L*(R%,C) (1.6)
remains defined. For f € L?>(R%,C) for any function p € C.(R%,C) with ¢ = 1 near
0 set

F1(©) = lim 2m) 7 [ O @)oo
A oo Rd
] . (1.7)
= lim (27 2/ e ST f(x)dx.
tment [ s

Then (1.7) defines an isometric isomorphism inside L*(R%,C), so in particular we
have

IFfll2@ae,cy = 1 fll L2 rac)- (1.8)

(2) The inverse map is defined by

*flz) = lim 71'_g ele®
Fe @) = Jim ) [ € p(€ele/ndg »

— i g i€ .
tmenf [ oo

(8) For f € LY(RY,C) N L?(RY,C) the two definitions (1.1) and (1.7) of F coincide (by
dominated convergence). Similarly, for f € L'(R%,C) N L*(R?,C) the two definitions
(1.3) and (1.9) of F* coincide.

The above notions extend naturally to vector fields. So we have a Fourier transform f —
7 from (L1(RY)? — (Co(R))", from (LA(RD))? — (L2(R1))? , from (S(RD)! — (S(RY))?
and more generally from (S'(R%))4 — (S'(R?))?. Notice that all these maps except the 1st
are isomorphisms, and all are one to one maps.

The Fourier transform extends to the spaces LP(R?, C) for p € [1,2].

Theorem 1.5 (Hausdorff-Young). For p € [1,2] and f € LP(R? C) then (1.7) defines a

function Ff € L¥ (R, C) where p' = p%l and an operator remains defined which satisfies

1
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IF £l o rac) < (27) (5= MmeWm. (1.10)

We know already cases p = 2 and p = 1. This implies that Theorem 1.5 is a consequence
of the Marcel Riesz interpolation Theorem, which we discuss now.

Theorem 1.6 (Riesz-Thorin). Let T be a linear map from LPo(RY) N LP*(RY) to L% (RY) N
LT (RY) satisfying
ITfllpe < M|l fliges for j =0,1.



Then fort € (0,1) and for p; and g defined by
11—t ¢ 11—t ¢

)

p po p1 @ Qo QO

we have
IT fllzae < (Mo)' ™ (M) (| fllzoe for f € LP(RY) N LPH(RY).

Proof of the Hausdorﬁ Young ’s Theorem. We have % = % +t fort = % — 1. Hence

1—t=2(1-1/p) = , and & —;; L and

1

1l < @73 = 2m) 46 = my? G2 = am)G31) = (am a3,

Proof of Riesz—Thorin’s Interpolation Theorem. First of all notice that if f € LN LY
with a < b then f € L€ for any ¢ € (a,b). To see this recall Holder

1 1

1
HngLT < HfHLpHgHLq for - = -4+ =
r P q

Then, since 2 = £ + L=t for ¢t € (0,1) from |f| = |f|!|f|*~! we have

a
I lze = MAA e < WA APy = 1N "

For p; = pp = p1 = oo (in fact we can repeat a similar argument for p; = py = p; any fixed
value in [1,00]) we then have

ITfllzse < ITFIZar 1T F 7m0 < (Mo)' ™" (M) f ]| poe.

So let us suppose p; < oco. Then it is enough to prove
| / Tfgde| < (Mo) ™ (M) £l gll oy = (Mo)'~*(M)"

considering only ||f|[r = [|g]|,, = 1 for simple functions f = >7"", a;xp; where we can

L%
take the Ej; to be finite measure sets mutually disjoint. If ¢; < oo we can also reduce to

simple functions g = ijv 1 bexF, where the F} are finite measure sets mutually disjoint.
The case ¢; = oo reduces to the case p; = 0o by duality. In fact, see Remark 16 p. 44 [2],

Il oqzee 2y = 1T e ot

Notice that if both py < oo and p; < oo and since we are treating qo = ¢1 = 1, then

| Tl geri ey = IIT ”L LOOL]) < M; and so one reduces to the case p; = oo. If, say,

po = 0o, then [|T(zpr 1)y = [T < M since p1 < oo, but || T zpro,r1y =

£(L%,LP1)
IT* | (Lo, (Looyy < Mo, so in other words, we don’t get a Lebesgue space. However, the



issue is to bound for f € LPPNL>® a T*f € L' N (L>®) = L' where ||T* f||(zooy = |T* f| 1,
so that one can still apply the above argument used for p; = oo.

Let us turn to the case p; < oo and ¢ < oo. For a; = €l%|a;| and b, = €¥*|b;| the polar
representations, set

U az) . 1—2z z
fz = a;|°® e% v g with a(z) = —
z ];‘ ]| J ( ) Do P
N
1-8(2) . 1—
g, 1= Z ’bk‘ 1-5(t) enkaFk Wlth l@(z) = qOZ i

k=1

Notice that since we are assuming ¢; < oo, then ¢; > 1 and so 3(t) = q—lt < 1, so that g, is

well defined. Similarly, since p; < oo we have «a(t) = plt > 0, so also f, is well defined.
We consider now the function

F(:) = [ Th.g.de

Our goal is to prove |F(t)| < My~ *M;.
F(z) is holomorphic in 0 < Re z < 1, continuous and bounded in 0 < Re z < 1. Boundedness
follows from estimates like

R z
l|a; | Co) | =|aj| @  which is bounded for 0 < Rez < 1.

We have F(t) = [T fgdx since f; = f and g, = g.
By the 3 hnes lemma, see below, which yields |F(z)| < Mj 8¢ MPe? if the two estimates
below are true, our theorem is a consequence of the following two inequalities

|F(2)] < My for Rez =0 ;
|F'(2)] < M for Rez=1.

For z = iy we have for pg < oo

Loiy(L-L) PO

m m Po P1 PO
Po atiy) |P =
| fiyl”* = E |aj| *® XEj = E |aj| Pt XE;
= j=1

ypt pl ) . f o — S | Pt — bt
aj| P70/ g Po XE; = § |aj] XE; = | 17"
Jj=1

I fiyllpo = (/R |f1y|p0d:z> = (/R f|’“dx> o (1.11)

Notice that we have also || fiy|loo = 1 when py = oo.

This implies



Proceeding similarly, using 1 — §(z) = 152 + =, for z = iy and ¢, < oo we have

!
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!
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iyl =5 —
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\bk] 1 ﬁ(t)

N
’giy‘q(l) = Z

k=1

N
xe, = Y [ok|%xs, = lg|%.
j=1

This implies

S

1
/ a; /
gl = (/ !giy\%da:> ° = (/ |g]qtdx> =1. (1.12)
R4 Rd

Notice that we have also ||giy|lcc = 1 when g, = oco.
Then
[F ()| < T fiyllao l9iyll gy < Moll fiyllpo gyl = Mo-

By a similar argument
| fraiy [Pt = [ f

/ ’
9143y = [g[*

Indeed by a1 +iy) = % - ;)%

= a(1+iy) [P1 m m p1
il = Z o= XE; = Z |a;] Pt XE;
Jj=1 =
n m
Z“aﬂ'pl xg; = ) laj[Pxe, = |fIP*
=t j=1
. 1 : .
and by 1 — 8(1 +1iy) = ;r/lly_%
iy(i_i> 1 qi
/ 1-B(1+iy) |91 oe % | |
g1l =D |1oel O | xm =Y el T bkl T xm = Y [bkl%xs, = [g]%.
k=1 P )3

Finally
w
3 q
FQA )] < 1T Freiglo lreigllr < Mill eyl lgrsiglly = Mall £ gl = My

Here we have used the following lemma.



Lemma 1.7 (Three Lines Lemma). Let F(z) be holomorphic in the strip 0 < Rez < 1,
continuous and bounded in 0 < Rez <1 and such that

|F'(2)] < My for Rez =10 ;
|F'(2)] < Mj for Rez=1.

Then we have |F(z)| < My~ RZMEe* for all 0 < Rez < 1.

Proof. Let us start with the special case My = M; = 1 and set B := ||F||ze. Set he(z) :=
(1 + ez)~! with € > 0. Since Re(1 + €z) = 1 + ex > 1 it follows |he(2)| < 1 in the strip.
Furthermore Im(1 + €z) = ey implies also |h(2)| < |ey| . Consider now the two horizontal
lines y = £B/e and let R be the rectangle 0 <z <1 and |y| < B/e. In |y| > B/e we have

B B
|[F(2)he(2)] < Teal < B/

On the other hand by the maximum modulus principle

sup |F(z)he(z)| = sup [F(2)he(2)] < 1,
R R

where on the horizontal sides the last inequality follows from the previous inequality and
on the vertical sides follows from |F(z)| <1 for Rez = 0,1 and from |h.(z)| < 1.
Hence in the whole strip 0 < x < 1 we have |F(2)he(z)| < 1 for any € > 0. This implies

lim [F(2)he(2)] = |F(2)] <1

in the whole strip 0 < z < 1.
In the general case (M, My) # (1,1) set g(z) := My~ *M7. Notice that

g(z) _ e(l—z)logMoezlong - ‘g(z)’ _ MOI—lex -
min(Mo, M) < |g(2)| < max(My, My).

So F(2)g1(z) satisfies the hypotheses of the case My = M; = 1 and so |F(2)| < |g(2)| =
M(:]l.—Re ZMlRez
, O
We consider now for A =3, % and for f € S'(RY, C) the heat equation
i

u—Au=0, u0,z)=f(x). (1.13)

By applying F we transform the above problem into

~

U+ EPa=0, u(0,&) = f(&).

This yields (¢, &) = e~ t€” F(¢). Notice that since f € §'(R%, C) and e~I'* € S(R?,C) for
any t > 0, the last product is well defined. Furthermore, we have u(t, -) € C°([0, +00), S'(R%, C))



and, as a consequence, since F is an isomorphism of S’(R%, C) also u(t, -) € C°([0, +o0), S’ (R", C)).
o~ T 2 o~ o~

We have e t€I* = G(t, ¢) with G(t,z) = (2t)_ge_%. Then, from u(t,&) = G(t,£)f(§) it

follows u(t, x) = (277)_%G(t, % f(z). In particular, for f € LP(R?, C), we have

R
u(t.o) = (amt)E [ S ).
Rd
Notice that by (1.2) we have

d |z
(47rt)_2/ e it dr = 1.

We will write

|2
(@)= am)E [ (1.14)
Notice that for p > 1 we have ||€tAfHLp(Rd) < [|fllr ey and for f € L'(R%) and any z € R?
A _d _lz—yl? _d _d
A @) < and [ iy <t [ 1@y = 6t 1

(1.15)

z 2
We set also Ky¢(z) := (47rt)_ge_%. Then e f = K; * f. Ki(x — y) is the Heath Kernel.
As a corollary to the Riesz—Thorin Theorem we obtain the following result.

Corollary 1.8. For any ¢ > p > 1 and any f € LP(R?) we have

1

_df1_1
€2 Loy < (@78) G787y (1.16)

Proof. Notice that (1.16) is true for ¢ = oo and p = 1 by (1.15). For p = ¢ can be seen

as a consequence of Young’s inequality for convolutions. For ¢ > p = 1 Riesz—Thorin and
11

1 1=5 3

- = L+ 2 vields

q '9) 1

_d(1_1 __d
< (4mt) 2 <1 q) = (4mt) 27 with ¢’ = 4

1-1 1
||etAHL1—>Lq < HetAHLliLooH‘etAHzl_wl qg—1

Next,forl<p<qwehave%:a+1_7a:%+%s.t.azq’(%—l)Then

_d _daf1_1
12 sz < €% ol 0 < (dmt)™ 57 = (amt) 2 (0.,

Another application of M. Riesz’s Theorem is the following useful tool.



Lemma 1.9 (Young’s Inequality). Let

Tf(x) = A K(z,y)f(y)dy
where
sup / |K(x,y)|dy < C, sup / |K (z,y)|dz < C. (1.17)
J?ER” n yeRn n
Then

ITfllLr@ny < CllfllLe@ny for all p € [1,00]

Proof. The case p = 1,00 follow immediately from (1.17). The intermediate cases from
Riesz’s Theorem. O

Theorem 1.10. p € LY(RY) be s.t. fp dr = 1. Set p.(x) := e %p(x/e). Consider
C.(R% C) and for each p € [1,00] let Co(R%,C) C),, be the closure of C.(R%,C) in LP(R?,C),
so that C.(R4,C), = LP(R?,C) for p < oo and C.(R?,C),, = Co(R%,C) & L>®(R?,C).
Then for any f € C.(R%,C), we have

. Yy d
lim pe» f = f in IP(R?,C). (1.18)

In particular we have

. tA p . d
%{%e f=fin LP(R*C). (1.19)

a _|z|?

Proof. Clearly, (1.19) is a special case of (1.18) setting € = v/t and p(z) = (47) 2e~ = .
To prove (1.18) we start with f € C.(R?, C). In this case

pox $(0) ~ @) = [ (= ) = F@)p(w)iy
R4
so that, by Minkowski inequality and for A(y) := ||f(- —y) — f(*)||z», we have

e * £(2) — F(@)lr < / p)IA (e y)d

Now we have lim,_,o A(y) = 0 and A(y) < 2| f||r. So, by dominated convergence we get
sy | ) ~ F(a) e =ty [ 1p(0)|e )y =0,

So this proves (1.18) for f € C.(R%, C). The general case is proved by a density argument.
O



2  Some spaces of functions on L? based Sobolev Spaces

We will introduce the homogeneous Sobolev spaces H¥(R?) and we will generalize the
standard Sobolev spaces H¥(R?). For ¢ € R? let (£) = /1 + |€]2 be the Japanese bracket.
For a tempered distribution u we denote by u its Fourier transform. We consider for s € R
the space formed by the tempered distributions u

H*(R%) with norm [ull s (ray = () Ull 2y < 00 . (2.1)
We consider for s € R the space formed by the tempered distributions u s.t. u € L; oc(]Rd)
H*(R%) with norm lull grs (gay == 1§17l p2(ray < oo - (2.2)

The following lemma is elementary.

Lemma 2.1. The following statements are true.

o L?(RY) — H*(RY) defined by f — F* (%) is an isometric isomorphism and all the
H*(R?) are Hilbert spaces with inner product (f,g)ms = <<§>Sf, &)%) 12 -
o We have S(R?) € H*(R?) if and only if s > —d/2. Furthermore, this embedding is

dense.
o The H*(RY) have an inner product defined by (f, 9 s = <|§\Sf, 1€1°9) 12

We will use also the following.

Lemma 2.2. Let o > —d/2. Then C°(R?) is dense in H(RY).

Proof. Tt is immediate that S(R?) is dense in H*(R?) (because C°(R¥\{0}) is dense in
L?(R4,[€]2%d€)). So it is enough to show that for any ¢ € S(R?) and for xy € C(R?, [0, 1])

a cutoff function with xy = 1 near the origin, then x ( ) Y notoo, ¢ in H(R?) for any
o > —d/2. Indeed recall

— d -~
2

fx9(&) = (2m)2 f(£)g(£) so that

I (5) 0 -l = [ delef
= /d§]§|2" /(27r)‘3>?(77) (15 (6 - %) - @(5)) dn

So

(%) vlae < m [ dniRi) (/W”

[(@(e-1)- 3©)) de|




We split in the right integrating in |n| < C and in |n| > C, where C is arbitrary. In the
integral in |n| < C we get a sequence that, by dominated convergence, converges to 0. Next,
we consider the integral in || > C. We can bound it from above by

2\ 2
-4 - 2| [G(e_T |
ent [ anlgio) (/ | [ (- 2) d&) ol | @3)
Now we claim that for ¢ independent of 1 we have
R 2
1| [dte—n| de < (24)

Indeed, we spit the integral into regions |n| < ||, |n] ~ [¢| and |n| > |¢|. We have

[ ek

In>|¢]

[ e
Inl<[€]

Finally, for |n| ~ ||

/ €
[n|~[€]

So we proved (2.4). Inserting this in (2.3) and taking C sufficiently large we obtain that
(2.3) is arbitrarily small.

A n)fdg S <n>—N/ |€[7dg S 1.

In[>¢]

We have

~ 2 9
g —m| =1l

-l des [ le-ni

de=m| a< [ je—nPr

s desiP [ o] de+ .

O

Remark 2.3. We will also consider the space H”(R‘?) N H't7(RY) for ¢ > —d/2. Then, by
a similar argument, C2°(R?) is dense in H°(RY) N H'*7(RY).

While the H $(R%) have an inner product, in general they are not complete topological
vector spaces and the following will be important to us.

Proposition 2.4. For s < d/2 the space'Hs(]Rd) is complete and the Fourier transform
establishes an isometric isomorphism F : H*(R%) — L2(R?\{0}, [¢|?*d¢).

The above proposition is a consequence of the following lemma.

Lemma 2.5. Let s < %l. Then we have the following facts.
o L*(RN{0},[¢]*d€) C L, (RY, d¢)

loc

o L*(RN\{0}, [¢**d¢) € S'(RY)

10



e The Fourier transform F : S'(RY) — S'(RY) is s.t. F (HS(Rd)) = L?(R?, |€]?5d¢)
and establishes an isometry between these two spaces.

Proof. Let g € L*(RA\{0}, |¢]?*d¢). Obviously g € LL (R?\{0},d¢). Let now B = {¢ €
R : |¢] < 1}. Then

[ lat@ae < ( [ 1100 2d£> ([ 1er 2Sds>

s vol(S4-1)
< y/vol(S9- 1)(/0 =12 dT) H9|\L2(Rd,|§|2sd§) = WHQHB(RWPS@)-

Next, we check that L2(R\{0},[¢|?*d¢) c S'(RY). We split ¢ = xpg + xBeg. Then
xBg € L'(R?, d¢) implies xpg € S’(R?). On the other hand we have xpeg € L*(R%, (€)2%d¢).
This in turn implies xpcg € S'(RY), where the embedding L?(R?, (£)27d¢) ¢ S'(R?) for any
o € R follows from

[ 1O = [ (67 €€ < 1o epean ([ (O 0()d0)}

R4
—40—MmMm 1 m
< e[ (672701 Pl

for m chosen s.t. 20 +m > d. O]
Remark 2.6. For s > ¢ 5 the space H*(R%) is not a complete space for the norm indicated.
In particular, the Fourler trasform defines an embedding H*(R%) Z, L2(RN\{0}, |£]?*d€)
with image which is strictly contained and dense in L?(R%\ {0}, |¢|?*d¢). The fact that the

image is dense can be seen observing that C(RI\{0}) is dense in L?(R\{0}, |¢|?d¢) and
we have FH*(R?) D C*(RN\{0}).

For s = % + &0 with g9 > 0, if we pick f € C®(R%) with f(0) # 0, then f(§)€ is a Borel

[{a=1
2
function not contained in L} (R, d¢). But |¢[* |§J’i§f)820 = :g(f)lo e LY(RY, d¢) implies
f(é) 2 /md 2s

that §d+%0 € L°(R%, [¢|**d¢).

© 2kd
For s = ¢ consider f(¢) = —XI13/4.5/4 2F|€]). Notice that for each &, at most one term

2 L X[3/45/4]
k=1

of the sum is non zero, because [27%3/4,27%5/4) N [2773/4,2775/4] = () for j # k. Indeed,
if j < k then

27k5/4 < 27U=15/4 < 2773 /4 where the latter follows from 5 < 6.
Then |¢]2|£(€)] € L*(R?, d¢) since

= 1 = 1
[ tes)ae - > 2 Lty (2 = > Lt asnehde < oo

11



but f, which is supported in the ball B(0,5/4), is not in L'(RY, d¢) since otherwise we
would have

~ 1 ~ 1 noso0
o> [ @232 [ xousraHebde =30 [ xiasalihas " e

Remark 2.7. For s € (0,1) an equivalent definition of H*(R%) and of its norm is that

u(z +y) — u()]?
|y‘d+2s

u € Lloc(Rd) and dxdy < oo.

R xRd

See [1, Proposition 1.37].

Later on we, when discussing the Navier Stokes Equation, we will deal with vector
fields. Given a vector field u = (uj)?zl € (S8'(R%))? its divergence is

)
divu =V -u:= — .
Z 81’]’
J=1
Notice that dive = —i Z;l:1 &9 so that a u is divergence free, that is divu = 0, if and only

if Y20, & = 0.
We have the following elementary representation in d = 3.

Lemma 2.8. For any u € D'(R3,R3) we have
Au=V(V-u)—V x(Vxu). (2.5)

Proof. Obviously, summing on repeated indexes and for {?j }?:1 the standard basis in R3,
we have

Au = a@u]?z — (éwjuj?z — 8J83u1?1) (2.6)

Recalling the tensor €;;, defined by €123 = 1, €45, = 1 if ijk is an even permutation of 123,
ik = —1 if ijk is an odd permutation of 123, £;;, = 0 if two indexes are equal, we have

V X (V x ) = g0, (V X u)i € = €ijuhiry 050y €
— — —
== (522’5]]’ - 5l]/5ﬂ/) 8j81/u]/ € ;= aj(?luj €, — ajajul €,

where we used the identity €;jierij» = €ijrcirjik = 0470557 — 055205 with Kronecker’s deltas.
The last two displayed formulas prove that (2.5)
O

A similar representation is true for d = 2.

12



Lemma 2.9. For any u € D'(R% R?) we have
Au=V(V-u)— Vl(curl u), (2.7)
where curl u := Oyug — Oguy and V-V 1= (0,V, —0,V).
Proof. From (2.5) we have
i k
Au = V(V . u) — 81 82 83
0 0 (91UQ — 82U1

= V(V . u) — (i82(81UQ — 82U1) — ]81 (81u2 — 82’11,1)) .

This gives (2.7).

O
Definition 2.10. We call Leray’s projector, the operator P defined by
. o1 &
(F(Pu))) =0/ — G > &gt (2.8)
k=1

We denote by H(R?) the subspace of L?(R%, R?%) formed by divergence free vector fields. We
will also consider V(R?) := H(R?) N HY(R?, RY) and C2(RY, R?) := O (R, RY) N H(RY).
A direct and elementary computation yields the following.

Lemma 2.11. We have

Pu=—A"'V x (V xu) ford=3 and (2.9)
Pu = —AVE(curl u) for d = 2. (2.10)

Lemma 2.12. C2(R% R?) is dense in H(R?) for any d.

Proof. Let us consider dimension d = 3. If u € H thenu =V x A, for A= —A"'V xu €
H'(R% RY). Notice that from Lemma 2.2 we have that C°(R?, R?) is dense in H'(R?,R%).
Since H! 3 A — V x A € L? is a bounded operator, the statement follows. For d = 2 the
argument is similar and can be generalized to all d. O

Lemma 2.13. C(R% RY) is dense in V(R?) for any d.

Proof. The argument is similar to the previous one. Let us consider dimension d = 3. For
u € V(R?) we have u = VxA, for A = ~A"Vxu e H'NH?. But from Remark 2.3 we have
that C2°(R?%, R?) is dense in H'(R? R?) N H?(R?,RY). Since H'NH?>> A — V x A€ H!
is a bounded operator, the statement follows. We will use this lemma only for d = 3. O

13



For u € H*(R%) and A > 0 let us set Pyu := F* (X|e|<aFu). Notice that this map sends
L?(R%) into itself since
Pxull gr gy = 1€ X1 Full c2ay < NEFFull 2y = llull g gay -
AU i (R X[g|<aS Ul L2 (rd) = L2(R7) Hk(R4)
Notice that Py is a projection, that is P%\ =P,, by
P?\u =Py oPu= f*(X\ag)\]:PAU) = ]:*(XIQE\SA’FU) = }-*(X|§\§/\]:U) =P u.

If divu = 0 then also divPyu = 0. Indeed

d d d
(divu =0 ) & @ =0) = F(divPyu) = > Ixjgani’ =y » & @ =0,
j=1 j=1 Jj=1

which in turn implies divP\u = 0.

2.1 L? based Sobolev Spaces

The following spaces, for p € (1,00) are formed by tempered distributions u s.t. for s € R:

WHP(R?) requiring @ in Lj(R?) and with [|ull s ga) = [(€°0)" | ogay 5 (2:11)
WHP(R?) defined with [|ullyysaga) = [|((6)*0)" || o (ra) - (2.12)

We will not use the above spaces except for p = 2. The following is true.

Theorem 2.14. We have
WEP(RY) = WFEP(RY) for all p € (1,00) and all k € N. (2.13)

Proof. For this we need the theory of Calderon and Zygmund operators, see later in Sect.
3. O
For p =1 and p = 0o (2.13) is not true, see [15].

2.2 Hardy Littlewood maximal function

Let f € L} (R?) and consider (for B(x,r) the ball of center z and radius r in R%) averages

loc

1
vl(B(z.1) /BW) fo)dy.

Notice that for any r > 0 the function x — A, f(z) is continuous. Indeed, fix 6y > 0 and
consider 0x € B(0,0p). Then by the triangular inequality B(x + dx,r) C B(z,r + dp). So,
for éx € B(0,do)

A f(x) =

1

Arf($)—Arf(l'+5.’L') = W /B(a:,r+50) (XB(x,T)\B(Z’-l—(SJ:,T) (y) — XB(z+dz,r)\B(z,r) (y)) f(y)dy

14



with for any y

[6x]—0
(XB(2)\Bato5,) U) = XBat62.0)\Bar) U)) XBarto0) W) f(y) = 0.
By dominated convergence A, f(x) — A, f(x + dx) — 0. We define
Mf(z) = sup A |](x). (2.14)

r>0

From the definition we conclude that M f is lower semi continuous that is {z : M f(z) > a}
is open for any a. It also obvious that M is sub additive:

M(f +g)(z) < Mf(z)+ Mg(x).
We have the following obvious estimate
IM f ()| < | f]Loorae)- (2.15)

One important fact is that it is not true that M maps L'(R?) into itself. Indeed if say
K C R%is any compact set and if B(0, cy) D K, then since for |z| > ¢y we have B(x,2|z|) D
B(0, |z|) D K, we have computing at r = 2|z|

B vol(B(z,r) N K) vol(K)
M) =300 = lB0, D)t = vol(B(, 1))27a]"

which shows that My ¢ L'(R%).
Notice that each g € L'(R?) satisfies Chebyshev’s inequality:

‘g‘Ll(Rd)

vol({z : |g(x)| > a}) < for any a > 0 (2.16)
a
Indeed (2.16) follows immediately from.
oluscen = [ lotwldy > | sldy > | ady = avol({ s |g(x)] > a})
R {z:lg(2)[>a} {z:lg(2)[>a}

If T : LY(RY) — L' (RY) satisfies ITfll 21 ray < Allfll L1 (rey for all f € LY(R?) and for a fixed

constant A, from (2.16) it is easy to conclude that
A 1(pd
vol({z : |[T'f(x)| > a}) < a|f|L1(Rd) for any @ > 0 and any f € L*(R?).

Unfortunately we have seen that M does not map L!'(R?) into itself. However we will show
that it satisfies the last property. Indeed we will prove now that M is weak (1,1) bounded,
that is there exists a constant A > 0 (in fact we will prove A = 39) s.t.

vol{z : M f(x) > a}) < g’f‘Ll(Rd) for any a > 0 . (2.17)

15



To prove this we consider the set {z : M f(x) > «}. Then, for any x in this set, there is a
ball with center in z, which we denote by By, with [, |f| > avol(By). Pick any compact
subset K of the above set, and cover it with such balls B,. Extract now a finite cover,
corresponding to finitely many points z1, ...xy. We have the following covering result,
which we state without proof.

Theorem 2.15 (Vitali’s lemma). Let By, ,...,Byy be a finite number of balls in RY. There
exists a subset of balls
{Bi1,...; B} C{By,,..., Bay} (2.18)

with the Bi...B,, pairwise disjoint, s.t.
m
v0l(By, U+ U Byy) < 3" " wol(B;). (2.19)
j=1

We consider balls Bj...B,, as in (2.18) and from
K C By, U---UBg, = vol(K) < vol(Bg, U---UBy,),
from (2.19) and from the definition of the B, we get

_ - 1 |flh
3~ %ol(K 1(B; = Aty 2.20
(1) < 3 vl J><j§1:a/3jf|s 4 (2:20)

(2.20) implies vol(K) < 3%~ f|1. By vol({z : |M f(z)| > a}) = SUP K  {a:| M f ()| >a} VOL(K)
for compact sets K, then (2.20) implies (2.17).

(2.15) and (2.17) imply by the Marcinkiewicz Interpolation Theorem 2.16, proved below,
M f]| Lo ray < ApllfllLe(ray for all p € (1,00] . (2.21)

We will use this result in the proof of the Hardy-Littlewood-Sobolev Theorem, and of
Sobolev’s estimates.

Before introducing the Marcinkiewicz interpolation Theorem, we recall that for a mea-
surable function ¢ : R? — R the distribution function is

Ma) :=vol({z € R : |g(z)| > a}).

Notice that A : [0,00) — [0, 00] is decreasing. This implies that it is measurable.
For a function g € LP(R?) with 1 < p < oo we have

l9(x)] o0
/ \g(x)\pdac:/ dac/ pap_lda:/ dapap_l/ dx
R4 R4 0 0 {zeR%:|g(z)|>a}

= / paP I\ (a)do
0

where the 1st equality is elementary, the last follows immediately by the definition of A(«),
and the 2nd follows from Tonelli’s Theorem applied to the positive measurable function

F(z,a) = |af~Ixz, (lg(z)] — @)xr, ().

(2.22)
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Theorem 2.16 (Marcinkiewicz Interpolation). Let T : L' (R?) + L®(R?) — L} (R?) be a
sublinear operator s.t. for two constants A1 and As and for all f
T fl oo may < Aooll | oo (mey (2.23)
Ay
H{x: |Tf(x)] >Oé}’§;|f‘Ll(Rd) for any o> 0 . (2.24)

Then for any p € (1,00) there is a constant A, such that for any f € LP(RY) we have
1T fll e ey < Apllfll Lo rey- (2.25)
Proof. Dividing T by a constant, we can assume Ay, = 1. Fix p € (1,00) and f € LP(R?).

For o > 0 arbitrary set
_ [r@) it [f(@) = 5
filz) = { 0 otherwise.

Notice that f; € L'(R?) by

_ 2p_1 p
/Rd frle)lde = /{mzlf(m)Zg} F@lde < ap—1 /Rd [f (@) dz.

Using (2.23), we get |T'f(z)| < |[T'fi(x)| + 5, since ||f — filloo(re) < §. Then

{o:|Tf(@) > a} € {a: [Th(@)] > 5}

We have, using (2.24),

vol({z : [T @) > §1) gAli/Rd\fl(x)|dx:A12/{ oy @

@ 1>}

Substituting g = T'f in (2.22)
/ |Tf(x)|Pdz = /Oopap_lvol({x: ITf(x)] > a})da
R 0
" par ol ({x - Vo <24, [ par? d
< [ pr ol A > Ghde<oa [T [ s

z)[>5}

2/f()| )
—opA, / dalf ()| / o 2da = 204, / F(@)Pde.
Rd 0 p— 1 R4
N——

2P~ 1| f(2)|P~1
p—1

17



2.3 Back to Sobolev Embedding

We will use the properties of the Hardy Littlewood Maximal function, and specifically the
definition and (2.21), to prove the following important theorem.

Theorem 2.17 (Hardy-Littlewood-Sobolev inequality). For any

1 1 d-
7€(O,d)and1<p<q<oowith5:§+T’Y (2.26)
there exists a constant C s.t.
I ] £ =l oy < sy (2.27)

Proof. For an R > 0 to be chosen momentarily, we split

/ flz—y)ly|'dy = / flxz—y)lyldy + / flx—y)ly|dy.

R lyl<R lyl>R

We claim that
| | fl@=y)ly|dy| < Mf(:c)/ ly| Yy = cRYM f(x). (2.28)

y|<R ly|<R

We assume for a moment this claim and complete the rest of the proof. By Hélder we have
[ = )l < 9 X
ly|>R
We have |y|*7x{y:|y|> R}y € 4 (RY) exactly if yp' > d. The latter inequality is true because

1 d
=<0y —d="L >0
q q

SRS

1
y
In this case

1
7 i_ d
/

1t e = (vol82) [ rwsitar)” —emd = ot
r>
Hence
_d
[ £ =)yl S R + 1 sy R
Now we choose R so that the two terms on the r.h.s. are equal:

Mf(z) _ py-a-t _ p-2
/1 e

18



Then we get

SN
s

_d M
|/Rd f@—=ylyldyl S RTIMF(x) + |1 £l owayR ™o = 2| f |l o(ray ( f(w)>

171l
= 2 (MF() |IflL"-
Then

_ 1-2 P 1—P2 vd
| /Rd f@ =9yl dyllpaway S e N ) alla = 1fll e IO S N f Il

To complete the proof we need the inequality in (2.28). More generally, we prove that if
® € L' (RY) is radial, positive and decreasing, then

[ fe—netdl < [ 1= oy < 25w [ e (229)

Then (2.28) is just (2.29) for ®(y) = |y|™7 X {y:|y|<R}-
Notice that (2.29) is true for radial functions of the form

=) a;xs (2.30)
J
for a; > 0, B; a ball of center 0. Indeed

S, e vl = Zﬁ; [, 196a =l < Sapol@)a15(0) = 1162 [ e

n—oo
In the general case the result follows considering a sequence ®, * & a.e. with the

®,, functions like in (2.30). Then (2.29) follows from Beppo Levi’s (or also Lebergue’s)
monotone convergence theorem.

O
For the above proof see [16] p.354, while for the next one see [15] p.73.

Lemma 2.18. For any v € (0,d) there exists ¢, > 0 s.t.
F(- 17 = eyl (2.31)
Proof. Tt is enough to show that for any ¢ € S(R?) we have

/ |V p(x)dx = ¢, / £ (&)de. (2.32)
Rd Rd

Starting from (1.2) and Plancherel we have

2

/na_ge_ze o(z)dr = /]Rd e_aga(ﬁ)dﬁ.
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Now we apply to both sides fo —5 2" and commuting order of integration we obtain

[ o) [T i EE L g [Tt et

asla] =7 byl

for appropriate constants a, and b,. In fact a, = 22F( + 1) by = 23T (TW) and

420 L rd—y
o 2T

231(3+1)
O]

Theorem 2.19 (Sobolev Embedding Theorem with fractional derivatives). Let p € (1, 00),

0<s <3 d and 1 = 5 - 2. Then there exists a C s.t. we have

11 zaey < CllElona for any f € SEY. (2.33)

Proof. For f € S(R%) we have for some fixed ¢
f() = (2m) "2 /R e (16 () ) d = e /R e = y"g(y)dy where g(€) = [¢°F(€)

where we used ¢ * T’ = (27)2@ T which holds for ¢ € S(RY) and T € S'(R%).
Since g € LP(RY), by the Hardy-Littlewood-Sobolev Theorem we have that f € LI(R%) for

1 1 d—(d—s) 1
q p d P

Ql®

O
Notice that for 0 < s < ¢ we know that H*(R%) contains S(R?) as a dense subspace,
0 (2.33) with p = 2 extends to all f € H*(R%).

2.4 Assorted inequalities

Lemma 2.20 (Interpolation of Sobolev norms). For any s € [0,1] and any k = sky + (1 —
s)ky we have

||f||Hk(Rd) < [IfII% kl(Rd)HfHHkQ Rd) for any f € Hk (Rd) N sz(Rd), (2.34)
In particular, for s € [0,1] and any f € H'(R?)

||f||Hs(]Rd < ||f||L2(Rd HfHH1 (R4) (2-35)
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Proof. (2.35) follows from (2.34) for k1 = 1 and ko = 0. So let us turn to (2.34).

Obviously there is nothing to prove for s = 0,1, so we can assume s € (0,1). Notice that

1 —__p _ 1
for p = ¢ we have p’ : =0T = 1T Now, we have

190y = [ (PR P (P Fle) P de
skl $ 5)k2 s)
< NP IFOP N, 3 o NP FOPCN,

(1-s 2(1—s
= [lIE1* 1 F )17 e lIEI* F € )HLQ(W) 1% ey (il (RY)’

O
Lemma 2.21 (Agmon’s inequality). Given a pair 0 < r < d/2 < s we have
s—d 7—'r
lull ooty < Nlull o, Rd)H HHg Rd)" (2.36)
Ezxample 2.22. For instance,
1 5 1
[l oo msy < NVl 7o ey IV7Ull 2 gay, (2.37)
where notice that here we are assuming u € L}, (R? R?), which excludes additive constants.
—d
Tt is well known that H?(R? L>®(R%). Indeed, for @ = L we have u €

Hg(Rd). On the other hand we have @ ¢ L'(R?) . We show that u ¢ L>°(R?). Suppose
by contradiction that u € L®(R%). Then for x € C®(R%,[0,1]) with [x = 1, radial and
decreasing as |£| grows,

(2m)~2 /R X(E/Rya(§)de = (2m) /R KR (kr)u(e)de < (2m) 3 Jul] oo o)

But then, since X (kx)u(x) is an increasing sequence of functions, we have x(-/k)u LEiaN

in L'(RY) with |lu 1 Ry < (2m)7 %HUHLoo(Rd). This is a contradiction.
Proof of Lemma 2.21. For R > 0 we have

()| < (2m)% / @) (€] ¢ de + (2m) 5 / )] [€)° e de
[E|<R [€|>R

1 1

< )l ( /5 . |5|—2ng> + (2m) 7% Jull o oy ( /K . ra—m)

S Hu||H7"(Rd)R7_T + llull grs ey Ro~,
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We choose R so that the two terms are equal, which yields

h <C (d r) ( r)SlT'
so that [u(z)]| < Callully, 20" = lully 7

O
Later in Sect. 11 we will use the following modification of Lemma 2.21.

Lemma 2.23. Let U C R? be a bounded open subspace with OU a smooth submanifold of
R? and suppose f € H¥(U) with k > 2. Then for any r € [1,2] we have

- r(k—3)
1 fll ooy < Ck:r”f”Lr(U ”fHHk(U with 6 = m (2.38)

Proof. We know that there is an appropriate extension operator H*(U) > f — Ef €
H*(R?) with Ef|yy = f. Then we use

1—7 1_,
IES [ sy < [IEfll L2 Rg)llEfllHk &3y O (Bl 2 @s) < (1Bl 2 ey HEfHHk(Ra

and Agmon’s
1B fllpooms) < IIEfIIHl (®9) HEfHHz Roy < HEfHLz IIEfIIHk £9)
( (
which yields
ey < ell a1 2

Substitute by Holder |[£[2wy < £l (o | fl fyr) and then we get

1y < el FIE G 1A 12

Solving with respect to || f|| (/) Wwe obtain

1—-(1-2)(1—- r
1A P 03 = < o2 71
So we get the following, which is the desired result:

T 3 3r z( ;%3 % (kig) 3
st+or— 3% +5%— 9% 5+ k +37— k +37—
[ Fsotry < qllfllmUk AN g % £ = allfll ey = Il ey
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Theorem 2.24 (Gagliardo—Nirenberg). If p € [2,00) is s.t. % >+ — L then there exists C
s.t. L1

||f||LP (R4) < C||f||L2(]Rd HfHHl(Rd where s = d <2 p) (239)
Proof. By Sobolev, for % = % — 5 we have

£l zeray < CILf s (may:
Here s is like in the statement. Also s = d (% — %) <1l % — % < é. Finally, apply
(2.35). O
1—d/4 d/4

Remark 2.25. For p =4 and d = 2,3 we have s = d/4 and || f| pa(re) < C’HfHL2 Rd) (s (R4)°

Lemma 2.26 (Gronwall’s inequality). Let T > 0, A and ¢ two functions in L'(0,T), both
>0 a.e., and C1, Co two non negative constants. Let A\p € L1(0,T) and let

o(t) < C1+ Cy /Ot)\(s) ©(s)ds for a.e. t € (0,T).

Then we have \
o(t) < C1e®? JorS)ds for ge. t € (0, 7).

Proof. Set
t
P(t) :=Cr + Cg/ A(s) @(s)ds.
0
Then 1)(t) is absolutely continuous and so it is differentiable almost everywhere and we have

P (t) = Col(t) p(t) < Ca(t) ¥(t) for ae. t € (0,T).

Also, the function 1 (t)e =2 Jo A(s)ds i absolutely continuous with

% (1!)(15)6_02 Js ’\(s)ds) <0 for a.e. t € (0,7).

Then we have
P(t) < eC2 o ’\(s)dsllﬁ( 0) = C1e%? JoA®)ds gor all ¢ € 0,7).

Since p(t) < 1(t) a.e., the result follows. O
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3 The Calderon—Zygmund theory

We consider Calderon-Zygmund (CZ) kernels. We will use the following definition.

Definition 3.1. In these notes, we will say that a function K : RY x R\A — C with A
the diagonal {(x,z) : z € R}, is CZ if there exists a fixed constant C s.t. the following
conditions hold:

(C-Z1) we have

|K(x,y)] < [ for any x # y and
e (3.1)
]Vm,yK(x,y)] S W fOI' any x ;é Y.
(C—Z2) there is an operator T, which satisfies
Tf(z)= | K(z,y)f(y)dy for z & supp f (3:2)

R4

and which defines a bounded operator 7' : L?(R?) — L?(R%) with norm bounded by

C.
There are many examples.
Ezxample 3.2. 1. Let us consider the operator R; = \/% which is a well defined bounded

operator in L?(R%) since

RiF(€) = —ifg’f(g)-

Notice that for K = F* <—i%), we have R;f(x) = (27r)_gK * f(z) where for ¢ €
C>®(R4,0,1]) any function with ¢ = 1 in B(0,a) and ¢ = 0 outside B(0,b), for some

0 < a < b, we have

K(z)=—i lim (27)°2 /R d 6289 (e /R)de.

R—+o00 |f|

It is easy to see that for any = # 0 the above limit converges and that K(z — y)
satisfies the inequalities (3.1) for a fixed C'. For example, the 1st inequality follows
splitting

€i£.z§ T ei&-xg _ "
/Rd g Pl !)¢(€/R)d§+/Rd P/ B = plela))de

where we bound the absolute value of the 1st integral by

/ de — bhvol(54D 1
el d |zl

=]
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and the absolute value of the 2nd integral by means of an integration by parts using
Lel® = &% with [ := ,|7’2£, and writing it as
iz

[ e [If! (&/R)(1 - (&\xl))} de.

It is now easy to see that

(LY | ete/ B = etelol)| | < Ox o
€]” ||V [EIN

Hence the absolute of the 2nd integral is bounded by

1/ 1d§ CNmNd—Cli.
Mal¥ jel> e €Y aN=dz[N N |z

The 2nd inequality in (3.1) can be obtained noticing that
d
K(z)=—i lim (2m)"2 [ %@
oK (o) = =i lim_(2m) ¢ [ o (e Ry

When one considers the above inequalities with an additional factor & inside the
integral, one gets the upper bound of the 2nd inequality in (3.1).

The operators R; are called Riesz transforms.

. The above discussion works out similarly with operators 9% _ and —2° _ with

Vi-A (1-A)%

any multi-index with |o| < k. In particular, \/7 has symbol <1§”

. Notice that (Pu); = u; — RjRyuy, and so in particular it is a CZ operator.

. Let us consider in R the Hilbert transform

Hf(z) = 2 lim S 4, - —l(P.Vé) . f (3.3)

T e=0t Jig—y|>e T — Y m

with P.V1 the tempered distribution that acts on a ¢ € S(R) as lim @daz.
=0t Jigj>e X

Notice that using the Residue theorem we have

iep O
lim emice 2T —imsign(§)
=0t Jiz|>e x
so that 1 1
1
—F(PV.—)=—i(2m) 2zsi .
LF(PV.L) = ~i(2m) bsian(c)
Then

F(Hf)(§) = —isign(£) £(£)-
which implies that (C-Z2) is true. Since (C-Z1) is obvious, we conclude that the
Hilbert transform meets the conditions of Definition 3.1.
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Remark 3.3. Consider the operator Tk, f := F* [X]lhﬂ- Then xg, = 27 1i(—isign — i)
implies T, = 27(I +iH). Analogously Tk = 27'(I —iH). Next,

Tia,+00) = 27 4T 4 i€'%® He™%) and T—oop) = 2711 — i He 07,

Finally
T(a,b) = 271(T(a,+oo) — T(b7+oo)) — 4fli(elaa:H€flam o elb:):He—lb:p).

Next, if in R? we consider the half-plane z; > 0, then

F* X0 | = 271 +iH) [ where
(Hlf)(l'l,xg, ceeny a;d) = H(f(-,(]}g, ,l'd))((L'l)

In general, any operator of the form F* [X pﬂ with P a polygon in R? can be expressed in
terms of the Hilbert transform.
Remark 3.4. Let p € (1,00) and let LP(R,C) 5 f = lim F(-+ iy) where

y—0t

F:{z+iy:x €R, y> 0} — C is a holomorphic function with sup/ |F(z+iy)[Pdz < oco.
y>0 JR

Then, if v = Re f and v = Im f, we have v = Hu (and, by H? = —1, u = —Hwv). We give

a brief impressionistic and non—rigorous discussion of how this comes about. Notice that if

f is the boundary value in R of F' by Cauchy integral formula we have

1 1 1 1

F(x+iy):27ri/ﬂ{t—x—iyf(t>dt:27ﬁ (-—iy*f)(x)

where here we assume f € S(R,C). Then for y — 0" by the Sokhotski—Plemelj theorem
we get

. I L. o
yli)r(r)l+ i P.V.; +ind(t) in S'(R,C). (3.4)
This implies, assuming here F € CO(R x [0, 0)), that by f(z) = lil%l+ F(z +1iy) we have
Yy—

1 : f(z) :
1@ =55 (L%L /,m —p detinf @)) :

that is f = iH f, which is the desired result.
As for (3.4), for f € S(R) we have

f@) . t oy
Rt—iydt_/[Rt2+y2f(t)dt+1/Rt2+y2f(t)dt-

By a change of variables, by dominated convergence and by the continuity of f in 0 we have

Yy o 1 y—0
/RWf(t)dt—/RtQHf(ty)dt =07 £(0).

26



Next we write

t t
/t2+y2f() /ﬂgy Wf(t)dt-i-/tlzy mf(t)dt.

We have
y—>0

0.

‘/|t<yt2+y ‘ |/t|<yt2+y £ = FO)at| "3

Next we write

ot _ ot 1 ft)
/|t>y 7yl 0= /|t|>y (t2 + 72 t> Jdt /|t>y e

and observe that, changing variable,

- Y T PO —
/t'zy <t2+y2 : t> o= /t|zy @+ V= /s|21 nEEEA

y=0 1
=0 #(0) /|s|218(82+1)dt

by dominated convergence. But the last integral is null. This proves (3.4).

Theorem 3.5. Consider an operator T as in Definition 3.1. Then for any p € (1,00)
the operator T, initially defined in LP(R?) N L2(RY), extends into a bounded operator T :
LP(RY) — LP(R?) with operator norm that depends only on p and C.

Before proving Theorem 3.5 we need the Calderon—Zygmund decomposition lemma.

Theorem 3.6 (C-Z Decomposition). For any f € Ll(Rd) and any o« > 0 there exist
families of balls Bj, disjoint sets Q; with B; C Q; C 3B; with U;Q; = U;3B; (here 3B;

has same center and trice the radius of Bj) functions g and bj s.t.
1. f =g+ Z bj.
J
2. lg(z)| < 3% for a.a. z, 191l 1 (ray < (1+ 3%) £l 21 (ray-

] L C ) _ 2d
5. supp b; € Qj, /R by (a)da = OandZHb ey < (1+3) 112 oy

4. ZUOZ ) < *||f||L1(1Rd

Remark 3.7. Notice that in the Calderon-Zygmund decomposition g is the good part of f
and b; form the bad part of f.
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Proof. Define Q = {x € R?: M f(x) > a}. Here notice that if = () then just set g = f.
For any = € Q) there exists a maximal r, s.t.

A fl(z) = |F(y)|dy = a.

e
vol(B(2,72)) JB(ar.)

Let us consider the family of balls { B(z, 1) }.cq. It contains, by a generalization of Vitali’s
Lemma, see Theorem 2.15, a maximal family of pairwise disjoint balls {B;} s.t.

Q C UgeaB(x,72) € U;(3B;).
Notice that this implies

3d
d
vol(UpeqB(z,73)) < ZVOI(SB]-) <3 zvol(Bj) < Il ey,
J J
It is possible to choose disjoint sets @Q; s.t. B; C Q; € 3B; and U;Q; = U;(3B;). One way
is to choose

Qr=3B,NC (Uj<ij) nc (Uj>kBj) (3.5)
with C'X the complement of X. Notice indeed that obviously for & > ¢ we have

QrNQeCC(UjcrQj) NQr = (Nj<cCQ;j) N Qe C CQrN Qe = 1.

Obviously Q C 3By.

We have By, N (Uj>;Bj) =0 and so By, C C (Uj>;Bj). We have B, N (Uj<xQ;) = 0 because,
by (3.5), we have By, N Q; = 0 for any j < k. Hence we conclude By, C Q.

Finally we show UpQr = U3 Bg. Obviously we have UpQr C Up3Bj. Suppose there exists
xr € Up3By, with o & UpQg. The latter implies @ ¢ Ui By, and so x € C (U5 B;) for all
k, as well as © € C' (U;j<;xQ;) for all k. But then, since x € 3B, for some ¢, it follows that
x € Q. And so we get a contradiction. Hence UpQr = U3 By.

Now define

bi(@) = (f(w) — averageq, /) xq, (@)
average . f for x € @,
g(x) = { 8e, / ‘ QJ
f(z) for x & U;Q;
Then we claim that the statement of the theorem is satisfied. First of all for any z € R¢
either z ¢ Q; for all j, and so f(z) = g(x) with b;j(z) = 0 for all j, or z € Qj, for exactly
one jo, and so f(x) = g(x) + bj, (x) with bj(x) = 0 for all j # jo. This proves the 1st claim.
For x ¢ U;Q; 2 Q2 we have M f(x) < . Then, since for a.e. « we have

£ = Tim A @) < M (@)
we get |g(x)| = |f(z)| < o a.e. in the complement of U;Q;. For x € Q; we have
1 1 34 d
9(0)| = overaseq 1 < s | WOy < s | 15wl = s [ 1wy < st

J
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Furthermore we have

ol = [, @+ .l < s + 30 Y vol,)

J J

< (14 3%) /1l oy

The fact that supp b; C Qj, / bj(z)dx = 0 follows immediately by the definition of b;.
R4
We have

D sl gray < N Fllprray + D vol(Qg)|averageg  f| < || fll 1 may + 3% Y | vol(Q;)
J J J

< (1 + 32d) £l 2 mey-

O

Proof of Theorem 3.5. By duality it is enough to consider only p € (1,2]. Further-

more, since by hypothesis (C-Z2) we know that the case p = 2 is true, by Marcinkiewicz

Interpolation the statement of Theorem 3.5 results from proving that T is weak—type (1, 1).
We need to prove that there exists an A > 0 s.t.

A
vol({z : |[Tf(z)| > a}) < EHfHLl(Rd) for any a > 0 and any f € L*(RY). (3.6)

For fixed a > 0 and any f € L'(R?) consider the C~Z decomposition f = g+ Z b;. Notice

J
that |g(z)| < 3% a.e. and 9]l L1 (ray < (1+ 3%) [ £l (ray imply g € L?(R?) with

/ lg|*dx < Cda/ | f|dz for Cy = 3¢ (1 + 32d)
R4 R4

and so by Hypothesis (C-Z2) we have || Tg|3, Ry < Callfllp may-
Then by Chebyshev’s inequality (2.16) we have

< TNy oI sy

vol({z : [(Tg)(x)| > a/2}) <

o? Q

We next consider b; and consider for x € 3B; and for y; the center of Bj,

M) = | Kby = | ()~ KG) by

were we used average b; = 0. Then by (3.1) we have
1) < —r [ o= wl Iy(w)ldy
DT e =yl o, Y '
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Then for r = radius(B;)

C
Th@lde< [ e [ eyl bl
/Rd\?)Bj ’ |z—y;|=3r |z — y; |4+ ly—y;|<3r Y
C
< Cd? ly — 5l b (y)|dy < CdCHbj”Ll(Rd)'
" Jly—y;|<3r

Let now E = U;(3B;). Then for b = Z b; we have
J

Tb| < / Thi| < cyC bi < cgC(1+ 32| f .
L 3 o, 71 0 S sy < OO+ E 91 e

Hence
vol({z & E : |(Tb)(x)] > a/2}) < ZHTb‘LLl(ﬂW) s 32d)HfH§@Rd)'
So since
vol{z & E - [Tf(z)| > a}) < vol({z & E : [Tg(x)| > a/2} +vol({x & E - |(Th)(z)| > a/2})
< |40+ ca01 48 ”f”g@Rd)
and

3d
vol(B) < Y- vol(38;) < 3 Y vol(By) < e
J J

we conclude that (3.6) as been proved with A = 39 4 4C + ¢,C(1 + 32%).
O
Now we consider the Proof of Theorem 2.14. We follow [15] from p. 136. Preliminarily,
we state the following lemma.

Lemma 3.8. Suppose 1 < p < oo and s > 1. Then f € WSP(R?) if and only if f €
WLP(RY) and 0,5 f € WLP(RY) for all j = 1,...,d and furthermore the norms || f||ws»
and || fllws-1.0 + Z?:l |02 fllws—1.0 are equivalent.

Proof of Theorem 2.1} assuming Lemma 3.8. Obviously for k = 0 we have WP =
Wor = .
It is obvious that f € W*P(R?) if and only if f € Wk=LP(RY) and 9,; f € WF—1LP(R9) and
that the the norms || f||yyrr, and || fllype-1., + Z;-lzl |05 fllyyx—1,» are equivalent. But then
Lemma 3.8 guarantees that WP = WP with equivalent norms, and so on for all k € N.
O
Proof of Lemma 3.8. Let us start assuming that f € W*P (R%). Then setting g(¢&) :=
(€)° F(€) we have g € LP(R?) by definition of W*P(R%). Then notice that

(& P = (&9 = 2m) 2T 1% g



where J_, = ((6)71)Y is easily seen to be an L'(R?) function: this can be seen by an
integration by parts argument like in the discussion of the Riesz transforms above. Hence
we have

_d _d
[fllws-10 < 2m) 72| Tl prllgllze = (2m) 72 ([Tl o[ fllwsir-

Next we consider

€ B = —i ) 7€) = ifg)@(@ ~ Ryg(6),

where Ej is a variant of the Riesz transform considered considered in the list in Example
3.2. But then, since the Riesz transforms are CZ operators, it follows that

10 fllwi-10 < | Rjllze—rollgllze = IRjl|Lo—sze lglle | fllws».

Summing up, we obtained
d
_d ~
1 lwer + D 100 Fllwero < (@0) 51T lla + dl Rallzoa ) 1 Flbwer,
j=1
where we used the fact, easy to show, that HEJ‘HLP_) r» is constant in j, so that one impli-

cation is proved.

Now we consider the opposite implication, assuming f € WS LP(RY) and 0,;f €
Ws=LP(RY) for all j = 1,...,d. Then §(£) := (£)*7' f(€) is g € LP(R?) and, from 0z,9(§) =
()51 8;7.\]"(5), dx,9 € LP(R?) for any j. Now we have

d .
O F= 7= ~G= =73 2 (-ig))7

This means that

d
(& Y =(2m) 2 T1%g— Y Rjdug

j=1

and so

d
_d =
1 lwsr < @m)"ZNT-1llillglze + D IR Lo 20]10s, 9]l o
j=1
d d ~
= (2m) "2 | T-allpall Fllws-1o + Y I Billo— 10110z, Fllws-1a,

J=1

which obviously proves the opposite implication and completes the proof of Lemma 3.8.
O
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4  Linear heat equation

For Sections 4-5 see [5]. _
Let T € Ry and f : [0,T] — H* }(R% RY), for d = 2,3, be an external force s.t.
f =Pf and consider the following heat equation:

u —vAu = f
V-u=0 (t,z) € [0,T] x RY (4.1)
u(0) = up € PH*(R?, RY)

Definition 4.1. For a fixed s < d/2 let f € L*([0,T], H*~'(R% R%)) with f = Pf. Then u
is a solution of (4.1) if

we L®([0,7], H* (R, RY)) , Vu € L2([0,T], H*(R%, R? x RY)), (4.2)
if '
u is weakly continuous from [0, 7] into H*(R% R%) (4.3)

(that is, if for any ¢ € H%(R% R%) the function t — (u(t),1)), which is a well defined
function in L>°([0,T],R), is in fact in C°([0,T],R) )
and if for any ¥ € C2°([0,T] x R%, RY) we have

t
(u(t), ®(t))r2 = / (v(u(), AU(E) 2 + (u(t'), 0% (¢)) 2 + (f(), U(t) 12) dt’ + (uo, U(0)) 2.
0
(4.4)
The following theorem yields existence, uniqueness and energy estimate for (4.1).

Theorem 4.2. Problem (4.1) admits exactly one solution in the sense of the above defini-
tion. For any t the following energy estimate is satisfied:

t t
()% +2V/ IVt dt" = |luol%. + 2/ (f(t),ult) gadt’ (4.5)
0 0

Furthermore we have ‘

u e C°([0,7], H* (R, RY)) (4.6)
and the formula

t
a(t,€) = e T (€) + / e IR F(Y &)dt. (4.7)

0

Proof. (Uniqueness). It is enough to show that the only solution of the case up = 0 and
f=01isu=0. Let u be such a solution. Then

(u(t), U(t)) 2 :/0 (v(u), AU )) 2 + (u(t'), 0,9 (t)) 12) dt’.
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Let W(t,x) = ¢(z) with ¢» € C® (R4 R?). Then the above equality reduces to

(ult), )2 = v /0 (u(t'), AY) 1. (4.8)

We claim that this identity holds for all ¢ € H —$(R%,RY) N H5TH(RY R?Y). From Lemma
2.2 we know that CX(RY R?) is dense in H~*(R% R?) (here we use s < d/2) and in
H—sT(R? R?) and so the claim follows by density and the fact that

() Ve H(RYERY x H5(RY,RY) — R
L2([0, T, H* (R4, RY)) x H—*H1(RY, RY) 5 —>/ ), AY)2dt’ € R

are both continuous bilinear forms. . '
Hence we can conclude that (4.8) is true for all v € H—*(R% R?) N H—*+(RY, RY). In
particular we can replace ) by P, and get

t t
(Pou(t), P 1o — / VP, (u(l'), AP ) 2 < VAP, / 1Pt -t
0 0

t
< v |ll-. /0 1Pt edt’

where the integral [ [P,u(t')| g.dt’ is well defined by P,u € L([0,T], H*(R?, R%).
From the above formula

t
IPau(t)] 5. < v /0 1Pt . dt

and hence ||[P,u(t)| 7. = 0 by the Gronwall inequality. This implies u(t) = 0 for ¢ € [0, 7.

(Existence). First of all, there exists a sequence (f,,) in C°([0,T], H*~'(R% R%)) s.t
fo 22E% fin L2([0, T, H51(R%,R?)). This follows from the density of C2°(I, X) in
LP(I,X) for p < oo for I an interval and X a Banach space, see Appendix A.

Applying P,, to (4.1) and replacing f by f, we obtain the equation

{(un)t —vP, Au, =Py fn

un(0) = Pprug (4.9)

Notice that P,f, € C°([0,T], H*(R? R%)). Since (4.9) is a standard linear equation it
admits a solution u, € C*([0,T], H*(R% R%)). Notice furthermore that u, = P,u, and so
in particular u, € C°([0,T], H" (R4 R%)) for all 7 > s.
Furthermore, applying (-, un) ;. to (4.9) and using

d

(Pn A, un) 2/ 161720 Tin (£, €)1 dE = =Y *(Cklin, ExTin) 12(B(0,0), ¢[25de)

k=1

d
Z Ekln, Exln ) L2(Rd |¢|25dg) — HVUNHHN
k=1
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we obtain

1d
2dt
s.t., after integration, we obtain

||unH2 s T V||vunH2 s — <Pnfnvun>]_'ls

1 t 1 t
SOl v [ 1900t = 5IP ol + [ (ufu®) e o', (410)
The difference uy, — uy,1¢ solves

{(Un - Un+é)t - VPn—i—ZA(Un - un—‘ré) = Pnfn — Pn—l—(fn—l—ﬁ
Un(0) — tp10(0) = (Pn — Pryr)uo

Then, like for (4.10) we get
1 2 v [ 12 /
g lun(t) = unie (). + 25 ; IV (un = tn o) ()]t =

1 t
= 7||(PTL - Pn+Z)U0||§;s + / <Pnfn(t,) - Pn+£fn+€(t/)’ (un - Un-‘rf)(t,))Hsdt,

< *II( P o)uoll3. + / IPnfu(t) = Pryefure) s IV (un — tnpe) ()| grodt!
t
v
< *II( Po)uoll3. + / 1P fn(t') = Prgefuse@) . adt' + 5 [ |V ) (0[5t
Hence

t
lan(t) — o ()3, + v / 19t — 4 0) (5)]2, s

< (P — Poyouol?, + / 1P () — Prsefure(s)%, 1 ds.

Since f, 222 fin L2([0,T), H~ (R4, RY)) implies also Py, fy, D2H0 f therein, the
last inequality implies that (u,) is Cauchy in C([0,T], H*(R% R%)) and (Vu,) is Cauchy in
L2([0,T), H*(R%, R%)). Let u be the limit. Notice that u satisfies (4.2) and (4.6), and so
obviously also (4.3).

Taking the limit in (4.10) we see that u satisfies the energy equality (4.5).

Next, we check that u is a weak solution of (4.1) in the sense of Def. 4.1. We apply
(., U(t)) 12 to (4.9) with ¥ € C([0,00) x R% R?). Then we have

d
dt

Integrating we have

<Un, lI’>LZ = I/<Aun, ‘I’>L2 + <Pnfn7 \I’>L2 + <Un, 8t‘11>L2

(n (1), U(1)) g2 = (Pottg, B(0)) 2 — v /0 (un(t'), AU(E)) p2dt!
+ /0 (P fo (), U () padt’ + /0 i (), DT (') ot
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Taking the limit for n — oo we get

(u(t), ¥(t))r2 = (uo, ¥(0)) 2 — V/O <u(t’),A\Il(t’))det’+/O <f(t’),\ll(t’)>L2dt/+/0 (u(t'), oW (') padt’.

which yields (4.4). Hence u is a weak solution of (4.1) in the sense of Def. 4.1.
Next, we prove the Duhamel formula (4.7). Applying the Fourier transform to (4.9)

{&sﬁn(uﬁ) + VX <n €17 (£, €) = X1 <nn(t,€) (4.11)

Notice that suppii,(t,-) C {|¢] < n} so that xjej<nl&*Un(t, §) = [£[*TUn(t,€). Then, by the

variation of parameters formula

t
~ —_tv|€l? ~ —(t—t"vl€12? -~
Un(t,€) = e ™K X|£|anO(£)+/O e N e fu (' €) (4.12)

Now we know
U (t,€) =" A( ¢) in C([0,T], L*(RY, |¢[**dg))
Xje|<ntio(€) "= o (€) in L*(RY, |¢[*d€),
Xigj<nn(t,€) "7 F(t,€) in L2(0,T] x RY, |2~ dtde)
Notice that

Ty(t,¢) = /0 = (11 €t

is a bounded operator from L2([0,T] x R%, |€|26~Ddtdg) into L2([0,T], L*(R, [£]>°d€). In-
deed for ¢ € [0, T] and fixed £ € R? and for g € C.([0,T] x (RH\{0}))

t / 2 1 t 1 ]_ t 1
Tt 61 < (| b (o o an’ < o [law oPar?

and so

1 _
[ e opae< [ (i, eParae
Rd vV Jio, T xRd
This implies
ITgll oo 0,7, L2 (e g 20dg) < V /20119l L2 (0,7 x R e 201 dnae)-

Since C.([0, T] x (R¥\{0})) is dense in L2([0, T] x R%, [¢[2~Ddtde) a well defined bounded
operator remains defined. Taking the limit for n — oo in (4.12) all terms converge in
L>=([0,T], L?(R4, |€]%2d€)) to the corresponding terms of

2 ¢ 2
a(t,€) = e T (e) + / e~ =WIER Fy ¢)at

0
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Remark 4.3. Notice that applying the Fourier transform to (4.7) we get

t
u(t) = e"Pug + / WA p (A dt (4.13)
0

The following theorem yields additional estimates.

Theorem 4.4. Let f be like in Theorem 4.2 and consider the corresponding solution
we C(0,T), H%), Vue L*[0,T],H®).

Then, additionally, we have

lu(®)l .,z € LP(0.T]. ) for any p > 2. (4.14)
Moreover we have
1
2 2 1
V(t):= / &% sup |a(t,¢ d¢ | <|luollzs + —IIf Teo1y
0= [ I (OWH ) loolls + g laoaion sy o

_1 _1
el ooz lzoory < v (luoll s + 51N pagomy ey ) -

Proof. From the Duhamel formula (4.7) and the previous computation

~ €12 1~ 1 ~
[a(t, &)| < e F|ag(¢)| + \/5'5‘]!(}”(‘,5)]@2(07,&).
so that )
\§|soilt{2t\ﬁ(t’,€)l < [§]*[uo ()] + \Slsmm 1FC 20,0

Taking the L?(R?, d¢) norm we get

1
V(t) < luo() L2 (ma jg[25ae) T+ EHfHL2((o,t),L2(Rd,|g|2<s—1>d§))~

and this yields the 1st line in (4.15).
To get the 2nd line in (4.15), from the energy estimate (4.5) we obtain

t t
1
lu(t)2,, + 2 /O V()20 < lluol?. +2 /0 S F O eIl e

t t
1
< lually, + v [ Uwete T ad + 2 [ 1@, ar.

This yields
t 1 t
)y + v [ IVt < ol + 5 1At
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and hence )
lwll poo oy, 175y < Nwoll s + v 2l 20 70, 17)

_1 _1
Mll o 20y < 7% (ol e + 221 2o e)) -

So by the interpolation of Sobolev norms Lemma 2.20 for 2 < p < oo

2

P

1—-2 _ 2
Hlull ;s 2 lzpo,r) < HHUIIHS”HVUH Mooy < ull, 0.1,y VUl o llzoo,7)

_2

HUH y HVUH

>([0,7],H*) L2017, ) = = (HU()HHs + VﬁﬁHfHLz([o,T],Hs)) .

5 The Navier Stokes equation
We will only deal with the Incompressible Navier Stokes (NS) equation:

u+u-Vu—vAu=—-Vp
V-u=0 (t,z) € [0,00) x RY (5.1)
(0, z) = up(z)

where u : [0,00) x R? — R? with u = Z?Zl u/ej with e; the standard basis of R?,

P Lo L9
A::Z@,V'u:Z@u],u-Vv:Zujgjv.
J=1 J j=1 J=1

Here v > 0 is a fixed constant. We could normalize v = 1. p is the pressure and its function
is simply to absorb the divergence part of the Lh.s. of (5.1).

We can write

d
u - Vu = div(u @ u) for div(u @ v)’ := Z O (uFv7) since (5.2)
k=1

s9

div(u ® u)! = Z O (uFu?) Z uF o + u? dlvu =u- V!
k=1 k=1 0

So we rewrite (5.1) and

u + diviu @ u) — vAu = —Vp
V-u=0 (t,z) € [0,00) x RY (5.3)
u(0,z) = uo(x)
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Definition 5.1 (Weak solutions). Let ug be in L?(R?). A vector field u € L? ([0,00) x

loc
RY) which is weakly continuous as a function from [0,00) to L?(R% R?) (we will write

u € CY([0,00), L2(R4 R?)), and what we mean is that t — (u(t),¢);2 € C°([0,0),R)
for any ¢ € L?(RY R%)) and s.t. divu(t) = 0 for every ¢, is a weak solution of (5.3) if for
U € C2([0,00) x R4 R?) with divl = 0 we have

(u(t), W(t)) 2 = / (vult'), AT(E)) 12 + (u(t'), BT (L)) 12

—(div(u @ u)(t'), U(t'))2) dt’ + (ug, ¥(0)) 2.

Remark 5.2. Notice that in Definition 5.1 we could replace the half-line [0, co) with a half-
line [tg,00) with tg € R. In this sense, observe that any solution in Definition 5.1 solves
weekly the NS equation in [tg, 00) for tg > 0 and initial value u(tp), that is to say, for any
for U € C([tg, 00) x RY RY) with divl¥ = 0 we have

t
(u(t), ¥(t)) L2 = / (v (u(t), AUE)) 2 + (u(t), U (t)) 12 (5.5)
to .
—(div(u @ u)(¥'), ®(t))12) dt’ + (u(to), U(to)) L2
Indeed, we can extend any such test function into a ¥ € C2°([0, 00) x RY, RY) with div¥ = 0.
Then taking the difference of (5.4) and
to
(u(to), U(t)) L2 =/ (v(u(t), AU(E)) 2 + (u(t'), L () 2
0

—(div(u @ u) ("), U(t")2) dt’ + (uo, ¥(0)) 2,

(5.4)

we obtain exactly (5.5).

Let us now formally take the inner product of the first line of (5.1) with u and integrate
in RY
1d
2dt
We have, summing on repeated indexes,

(u-Vu,u)2 = /dujukﬁjukdx = 2_1/

R R4

lullZe + (u - Vu,u) 2 = v(Au,u) 2 = —(Vp,u)pa

w0 (uFuF)2de = —2_1/ lu|?divu dz = 0 and
R4

(Vp,u)r2 = / ujc?jpda: = —/ pdivu dx = 0.
Rd R4

So, formally (rigorously if u is regular and we can integrate by parts), we get
1d
2dt

This in particular yields the following energy equality

lullZ2 + vl Vullz. =0

t
() e gy + 20 / IVu(t!) 2 gy ' = ol 3 g (5.6)
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Theorem 5.3 (Leray). Let ug € L>(R?) for d = 2,3 be divergence free. Then (5.3) admits
a weak solution with u(t) € L>®(R4,L?) N L (Ry, H') such that the following energy
inequality holds:

t
ww&mﬁ+wlnwwwa®wﬂswwawy (5.7)

The proof of Theorem 5.3 is long and will be considered later. Now we consider the
following.

Theorem 5.4 (Case d = 2). When d = 2 the solution in Theorem 5.3 is unique, it satisfies
(5.6) and u(t) € CY(]0,00), L?).

Theorem 5.4 depends on Sobolev’s Embedding H %(RQ) — L*(R?). Furthermore, we
will use the following lemma.

Lemma 5.5. There exists a constant C = Cr such that for any u € L2((0,T), H'(R%)) N
HY((0,T), H Y (RY)) we have u € C°([0, T], L>(R%)) with

[wll oo (0,7, L2(RaY) < C (HU||L2((0,T),H1(Rd)) + ||ﬂHL2((o,T),H—1(Rd))) . (5.8)

Furthermore we have |[u(t)||3, € AC([0,T]) with

It = 2 (u(t), i) (59)

Proof. Let us assume additionally that « € C1([0, 7], L?(R%)). Then for any fixed to € [0, T’
we have

rMm@=WMMm+;/m@m@mS (5.10)

to

< HU(tO)H%? + ||u||%2((o7T)7H1(Rd)) + |W||%2((07T),H71(Rd))-

We can choose [u(to)|7, =T~! fOT |u(s)||32ds obtaining (5.8) for C' = v/1+T1
The general case is obtained by considering a sequence (u,) in C*((0,T), H'(R%)) converging
to w in L2((0,T), HY(R%) N H'((0,T), H~*(R%)). To get such a sequence, we can extend u
into a function in L2(R, H*(RY))NH (R, H~1(R%)), and then we can consider u,, = pe, *u(t)
with €, =% 0. Then, by the proof of Proposition A.23 in Appendix A, this sequence
satisfies the desired properties.
Then (5.8) implies that (uy,) is a Cauchy sequence in C°([0, T], L?(R?)). The limit is nec-
essarily u, that so satisfies (5.8). Also by a limit, we conclude that u satisfies the equality
in (5.10), for any fixed o € [0,7T]. This implies |[u(t)|[2, € AC([0,T]) and formula (5.9).
O

Proof of uniqueness and of u(t) € CY([0,00), L?) in 2d. We first claim that for any

d = 2 solution we have

O € L*((0,T), H ' (R? R?)) for any T > 0. (5.11)
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Let us assume this for the moment. Since from (5.7) we have u € L?((0,7T), H*(R?,R?)),
then u € L2((0,7), H'(R?,R?)) N H'((0,T), H '(R?,R?)) for any 7" > 0. By Lemma 5.5
we have u € C°([0,T], L?) for any T > 0, and so u(t) € C°([0, ), L?).

We now assume that there are two solutions v and v with u(0) = v(0) and we set w := u—wv.
Both w and v satisfy (5.4). We claim that we can take as test function w, obtaining

(u(t),w(t)) = /0 (—v{(Vu, Vw) + (u, pw) — (div(u @ u),w)2) dt" and

(v(t),w(t)) = /0 (—v(Vv, Vw) + (v, 0w) — (div(v @ v),w) 2) dt’ (5.12)

To prove the claim, notice that there exists a sequence of test functions ¥,, which converges
to w in

L*((0,7),HHY n H*((0,T), H ) nC([0,T), L?).

This implies that (5.4) with the ¥,, converge to the above formulas, where we have taken
in account w(0) = 0 and where we used also estimates like, see Lemma 5.6 below,

t t
/ (div(u @ u)(t'), w(t')) 2dt’ < C/ IVu(t)] g2 ||| 2| Vw(t')|| L2dt’
0 0
< ClVull 20,0, IVl L2 (0,0, 22) 1wl Lo ((0,8), £2)

and an analogous one for the other nonlinear term.
Taking the difference of the two formulas in (5.12), we obtain

lw(®)][72 =/D (~vIVw(t)z2 + (wt'), drw(t)) — (div(u @ u)(¥') + div(v ® v)(t'), w(t)) 2) dt'.

Formula (5.11) for any solution and Lemma 5.5 imply [|w(t)|7, € AC([0,T]) with %Hw(t)H%Q =
2(w(t), Opw(t)). Hence

d

Zlwllze + vIVwlzz = (divie © v) = div(u ® u), w) =

= —(div(w ® v) — div(u ® w), w) = —(p(wrv?) — O (uFw?), w?)

= — (O, wku) < IVl pallwlds <l Vollgawla | Tull

[\

C

< | Vollz:wlZe + vVl Ze,

v
where in the 3rd line we applied Gagliardo Nirenberg in dimension 2. From the last formula
we obtain

%HMH%Q < ¢,||Vol|32]|w||32 which by Gronwall yields

t 2
”U/H%Q S ecu fO ”vv(t/)”Lth,||w(0)‘|%2 — 0
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To complete the proof we need to prove claim (5.11). We apply (5.4) for U(t,z) = ¢(x) €
C22(R?%,R?) and obtain

(u(t), ¢) — (u(0), 9) :/0 (v(Au(t'), ¢)) — (Pdiv(u @ u)(t), ¢)) dt.

The above formula extends to any ¢ € H!(R? R?).
We want to use Lemma A.29, which states that if u,g € L'(I, X) are such that

to
(u(t2), f)xx- — (ults), fxx- :/ (9(8), f) x x+ ds for any f € X*,

t1

with X a Banach space, then Qu = g in D'(I, X) := L(D(I,R), X).
Here we apply Lemma A.29 taking X = H!(R? R?) and its dual X* = H'(R? R?).
Obviously, we have

[Au] 1oy, m-1) < VT ||ull 20,7y, m1)-

Notice that the above inequality does not depend on the dimenslion. The treatment of
the nonlinear terms, depends on the dimension and is based on H2(R?) «— L*(R?), which
depends on the dimension, and is

[Pdiv(u @ w)ll 11 o.),8-1) < VT llu @ ullr2(0.1).22) = VT ullZall 207 S \/TH”UHZ% l2200,1)
< VTNl ooy, | Vull 207,22

where in the last inequality we used the interpolation HuHZ% < |\l 2|V 2.

So we can apply Lemma A.29 obtaining that
dyu = —vAu + Pdiv(u @ u) in D'((0,T), H 1)

and furthermore that (5.11) is true.
O

Notice that if we apply formally the operator P to equation (5.3) we obtain formally

(t,z) € [0,00) x RY (5.13)

{ut —vAu = Qng(u,u)
u(0, ) = uo(x)

where we set

Ons(u,v) = —%}P’(div(u @ v)) — %P(div(v 2 u). (5.14)
Here notice that
) d ) 1 d
P(div(u®v)) =) 9 <(ul7ﬂ )= = > ajak(ulvk)> : (5.15)
=1 k=1
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5.1 Proof of Theorem 5.3
We will need the following elementary lemma.
Lemma 5.6. Let d = 2,3. Then the trilinear form
(u,v,0) € (CZRY))? x (CZR)) x (CZRY)? — (div(u ® v), p) 2 €R (5.16)
extends into a unique bounded trilinear form (H'(R)? x (HY(R®))® x (HY(R))¢ which
satisfies for a fixed C
. d d 1—4 1—4
(divfu @ v), )2 < Cl[Vull 1 [Voll g2 llull 2 * 0]l 2 * 1 Vel| L2 (5.17)
If furthermore div u = 0 then
(div(u @ v),v)p2 = 0. (5.18)
Proof. Recall that from (5.2) we have div(u ® v)? = Zizl O (uFv7). Then for fields like in
(5.16) we have
d

d d d
(div(u ®v), )2 = Z(div(u ®v)!, M) 2 = Z(Z A (uF?), o = Z Z uFv? )

Jj=1 j=1 k=1 j=1k=1
Now the r.h.s. can be bounded by
[(wFo?, B?) 2] < (| 2| Vel e < [lu® pallo? || ol Vol a-

Finally, we apply Gagliardo-Nirenberg inequality writing

d d
k ks oy, knl—%
[u*][La < CIVU®| f2 w2 *

The same holds for v/. Then we obtain (5.17), obviously with a different C. This implies
that the form in (5.16) is continuous and, by density of C>*(R%) in H'(R?), it extends in a
unique way.

Next, we write for ¢ = v

d d
(div(u ® v),v ZZ (uFv? ol
Jj=1k=1
d d d
:—2_1ZZU O (v7)? —2_12 ((divu)v?, v7) 2 = 0,
Jj=1k=1 Jj=1

Notice that this formal computation (the Leibnitz rule used for the 2nd equality requires
some explaining) is certainly rigorous for v € (C°(R%))9. On the other hand inequality
(5.17) yields (5.18) by a density argument also for v € (H!(R%))%. O

We consider now the following truncation of the NS equation.

{(Un)t + P,Pdiv(Pru, ® Pruy) — vPrAu, =0 (t,2) € [0,00) x RY (5.19)

un (0, ) = Ppug(x).
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Lemma 5.7. For any n the system (5.3) admits exactly one solution
Uy € C°°([0,00), (HN(RY))?) for any N € NU{0}.
Furthermore we have Pu,, = u,, and Ppu, = u,.

Proof. First of all, we consider for any n local existence. Set
E,(v) :=vP,Av — P,Pdiv(P,v @ P,v).
Then we have
[Fn ()l v @aye < [vPrd)vll gy ayya + [[PrPdiv(Prv @ Pro)|| gy may)a

with
[V (Pr)oll (v ayye < v Vol 2 (ray)a
and
P Pdiv(Pro @ Pro) || (v gaye S 0™ TP @ Proll 2 S oV Pl
d d 1—d 1_d
SV VP Ll VPl Lo [Prvll 2 * [ Pavll2 *
< VR )2,

So for some constant C,, y we have

1 (0) | (ayya < G ([0l p2rayya + 10172 gayya)-

Furthermore, as a sum of a bounded linear operator and a bounded quadratic form each Fj,
is a locally Lipchitz function. Then for any n and N we know that (5.3) admits a solution
uy, € CH([0, T, N), (HN (RY))9)) for some maximal T}, y > 0. Furthermore we must have

t}ij{EN Hun(t)H(HN(Rd))d = +oo if T), v < 00. (5.20)

Next we have u,, = Pu,, since applying 1 — P to (5.19)

{((1 —P)up)i — v(PrA)(1 —P)u, =0

and u,, = P,u, since applying 1 — P,, to (5.19)

((1 - Pn)un)t =0

Now we show that the finite time blow up in (5.20) cannot occur for any (n, N) (in fact, the
following argument proves that also infinite time blow up, that is (5.20) but with 7, y = oo,
cannot occur).
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Let us consider (5.20) first in the case N = 0. When we apply (-, u,)r2 to the 1st line in
(5.3) and get

1d )
i%HunH%Q + (P Pdiv(upn, ® up), un)r2 — v{Aup, uy)2 = 0.

Notice that summing on repeated indexes (A, @) 12 = —(0juy, 9¢) 12 for all p € (C§(R?))4
and since this is dense in (H'(R%))¢ and both sides define bounded functionals in (H!(R%))?,
we conclude

V(DA un) 2 = —v|| Vg3

Next, using P* =P, P} = P,, and (5.18), we have
(PpPdiv(uy @ up), un)r2 = (div(u, @ uy), up)r2 = 0.

Hence we conclude

1d
5%\\%“&2(@))4 + VHVUnH?Lz(Rd))ﬂ =0

and we obtain

t
() 2 etyye + 2”/0 Hvun(t,)H?LQ(Rd))d2 dt' = [P ouolltp2maya- (5.21)

In particular this yields the bound ||uy(t)|| 2 < ||Pnuol/z2 for all t € [0,T}, ) and by (5.20)
we conclude that the lifespan is T, 0 = oo for all n € N. This proves the case N = 0 in
Lemma 5.7.

Consider now the case N € N. If u,, € C([0, Ty, ), (HY (R%))?) with T}, y < oo is a maxi-
mal solution, obviously it is the restriction in [0, 7}, n) of a solution u,, € C([0, o0), (L*(R%))4).
On the other hand, the blow up (5.20) is impossible because otherwise we would have

. N N
00 = t/hTIEN [un (O] (5 Rayye < n tthYEN [un ()l (L2(ays < [[Pruollrz < oo

which is absurd. Hence the lifespan is T}, y = oo for all n € N and N € NU {0}.

5.1.1 Compactness properties of {u,}nen

Now we consider the sequence of solutions {uy }nen of solutions of (5.3). We will prove the
following result.

Proposition 5.8. There ezists au € L®(Ry, (L*(RY))NLE (R4, HY(RY))Y) with divu =

0 and a subsequence of {un nen such that for any T > 0 and any compact subset K C R?
we have (after extracting this subsequence)

lim lun (t, 2) — u(t, z)|*dtdz = 0. (5.22)
=00 J10,T|x K
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Moreover, for all vector fields W € L2([0,T], (H*(R%)%) and all ® € L?([0,T] x R% R?) we
have

lim (un(t,x) —u(t,x)) - ©(¢,z)dtde = 0, (5.23)
=00 J[0,T]x R4

d . . .
lim S / O (il (1, ) — (1, )00V (¢, 2)dtd = 0. (5.24)
n—roeo 0,T]xRd

Finally, for any ¢ € C°([0,00), (H*(R%))9) we have (Uns ) (L2mayya — (U, V) (2(rayye in
L ([0,00)), that is

loc

lim |[(un(t) — w(t), ()| L o,r)) = 0 for any T (5.25)

n—oo

Proof. Fix an arbitrary T > 0 and an arbitrary compact subset K of R

Claim 5.9. The set formed by the elements of the sequence {uy, }nen is relatively compact
in L2([0,T] x K,R%).

Proof of Claim 5.9. Notice that (5.21) implies that u,, € L%([0,7] x R% R?) for all n.
We will show the following statement, which is equivalent to Claim 5.9.

Claim 5.10. For any € > 0 there exists a finite family of balls of the space L?([0, T] x K, R%)
which have radius e and whose union covers the set {uy, }nen.

Proof of Claim 5.10. First of all, if we want to approximate {uy }neny With {P un fnen
for a fixed ng, we can use the fact that for any ng and any n we have

T
l|tn — PnounH%2([D7T]XRd7Rd) = /0 l|n — Pnoun”QLz Rd))ddt

T
—92 — —2
<ng /0 Vun — VPnounH (L2(Rd )d2dt <ng / [V |? (L2(R4)) 2 dt < ng HUOH?m(}Rd))d-

Hence we can choose ng large enough s.t.
€
[un = Proun | L2 (jo,11 xR Re) < B for all n € N. (5.26)

Now consider {P,,up tnen. Then Claim 5.10 is a consequence of
Claim 5.11. {P,,u,}nen is relatively compact in L2([0,7] x K,R%).

Indeed Claim 5.11 implies that for any e > 0 there is a finite number of balls B2 (o 71x x,r) (f;, 5)
which cover {Py,un}nen. Hence by (5.26) we conclude that for any ¢ > 0 the balls
Bra(jo,r1x krey (fj: €) cover {uy}nen and so we get Claim 5.10.

Proof of Claim 5.11. It will be a consequence of the following stronger claim.

Claim 5.12. {P,,,u, }nen is relatively compact in C°([0, T7], (L2(K))%) ¢ L*(]0, T}, (L*(K))9).
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Proof of Claim 5.12. To get this result we want to apply the Ascoli-Arzela Theorem
(for which a sufficient condition for a sequence of continuous functions f, : K — X, with K
compact and separable metric space and X a complete metric space, to admit a subsequence
that converges uniformly to a continuous function f : K — X is that it is equicontinuous and
{fn(k)}n is relatively compact for any k € K !). So it is enough to show that {P,,un }nen
is a sequence of equicontinuous functions in C°([0, 7], (L?(K))?) and that for any ¢ € [0, 7]
the sequence {P,,,u,(t) }nen is relatively compact in (L?(K))<.
First of all we want to show that {Py,un}nen is a sequence of equicontinuous functions in
C°([0,T), (L*(K))%). This will follow from Hélder inequality (since § > 1 if d = 2,3) and
from the following claim.

Claim 5.13. There exists a fixed constant C' s.t.

1Proun)ell 4 7 (12gayye < € for all n.

Proof of Claim 5.13. We apply P, to (5.3) and we obtain
(Prytn)t = =P PrPdiv(uy, @ uy) + vPyy Auy,.

We have
[VP o At [| r2ayys < vngllunll(r2maya < vnglluoll 2 ay)a

and, by the Gagliardo-Nirenberg inequality,

||Pn0PnPle(un X un)H(LQ(Rd))d < ”PnodiV(un ® Up) ”(LZ(Rd))d

d d d
k. j k. j
= |Pne > Ok(uid) | 2ray < no D ubtud || 2 ra)
j=1 k=1 4. k=1

2
d 1—4
< CnOHUnH?L‘*(Rd))d < C'ng <”VUn||E2||Un||L2 4> :

Then we have
d
< V?’L(Q)T4 HUOH(LQ(Rd))‘i

~4)

2(1 d
+ C,no||un‘|Loo([07T]7(L2(Rd))d) ||Vun||[2/2([0’T]’L2) < C

1notn)ell 3 oy 22wy

for some constant C' independent of n by the energy equality (5.21) and the fact that
HPnuOH(LQ(Rd))d < HUOH(LQ(Rd))d for all n.

Hence we have concluded the proof that {P,,un nen is a sequence of equicontinuous func-
tions in C°([0, T, (L2(R%))9).

!The proof goes as follows. One first considers a dense countable subset N of K. Then by a diagonal
argument, one considers a subsequence {fn,.} s.t. {fn,,(k)} converges for any k € N to a limit that we
denote by f(k). Using equicontinuity and the completeness of X it is easy to see that {fn,, (k)} converges for
any k € K. We denote again by f(k) the limit. Finally, using equicontinuity we conclude that f : K — X
is continuous
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To complete the proof of Claim 5.12 we need to show that for any ¢ € [0,7] the sequence
{P o un(t)}nen is relatively compact in (L2(K))?. Tt is here that we will exploit the fact
that K is a compact subspace of R,

We know that {P,,,un(t)}nen is a bounded sequence in (H'(R%))? for any ¢ € [0,T]. This
follows immediately from ([P, un(t)|| g1 < nollun(t)||r2 < nolluol|z2, which follows from the
energy inequality (5.21) which guarantees ||uy(t)|| 72 < ||uol|r2. We recall now that

Claim 5.14. The restriction map H'(R%) — L?(K) is compact for any compact K .
Sketch of proof Indeed this is equivalent at showing that

Tf:=xgF* (<£f>> is compact as L*(R?) — L?(R%).
We have Tf = [K(z,£)f(£)d¢ with integral kernel K(z,€) = xx(z){€) te ¢, Tt is
casy to see that 7, "=° T in the operator norm where the 7, has kernel Kn(z,§) =
XK (x)(f)fle*i‘”{xB(oyn) (€). Since IC,, € L?(RY x Rg), it follows that 7, is a Hilbert—Schmidt
operator, with [Tallis = [KCallpzqescrs. 1 is casy to show that [T, < [Tallns.

IC,, is the limit in L?(RY x Rg) of elements in L?(R%) ® LQ(Rg). The latter ones are integral
kernels of finite rank operators and their operators converge in the Hilbert—Schmidt norm,
and so also in the || - |22 norm, to 7,. We conclude that there is a sequence of finite
rank operators which converges in the operator norm to 7, which then is compact. ]
It follows that {P,,,un(t)}nen is relatively compact in (L2(K))¢ for any t € [0, T).

Hence the hypotheses of the Ascoli-Arzela Theorem have been checked and we can conclude
that Claim 5.12, that is the claim that {P,,,uy }nen is relatively compact in C°([0, T, (L?(K))%),
is true.

Hence there exists a subsequence of {uy}nen (and it is not restrictive to assume this is
true for the whole sequence) which converges to an u € L%([0,T] x K,R%). By a diagonal
argument, we can assume that this is true for any compact K C R% and any 7" > 0. This
yields (5.22). Notice that this implies

U, = u in D'((0,T) x R, RY). (5.27)
We claim now that u € L2([0,7] x R?, R?) and that
u, — uin L2([0,T] x R%, RY) (5.28)

(convergence in the weak topology). Indeed, since from (5.21) we have that {u,}nen is
uniformly bounded in L?([0,T] x R% R%), it follows that up to a subsequence we have
tp, — v for some v € L2([0,T] x R? R?). Then (5.27) implies that v = u as distributions in
D'((0,T) x RY RY). This implies that v € L2([0,T] x R% R?) with u = v.

In particular this implies

lim (un(t,z) — u(t,z)) - ®(t,z)dtdz = 0 for all ® € L2([0,T] x R% RY),

n=0 J[0,T|x R4

47



that is (5.23). Notice that, for ®(¢,2) = x(t)V(z) we have from the above limit
/[0 . dtx(t) /]Rd divyu(t, 2)¢(z)dz = 0 for all ¢ € C°(R% R) and any x € C°°([0,T],R),
This implies that
/Rd divyu(t, )y (x)dx = 0 for a.e. t.

In fact, for the argument below, which proves (5.25) and is independent of what we are
discussing right here, the integral on the lL.h.s. is continuous in ¢. This integral equals 0 for
all t, and not just for a.a. t. Since this is true for all ¢t and for all ¢» € C°(R? R) , it follows
that div,u(t,z) = 0 for all .
We now turn to the proof of (5.24).

By (5.21) we know that {Vu,},en is bounded in L2((0,T) x R% R? x R?). This implies
that up to a subsequence there exists V' € L%((0,T) x R R? x RY) s.t. Vu, — V. On
the other hand (5.28) implies u, — u in D’((0,T) x RY). This in turn implies d;u, — dju
in D'((0,T) x R4, RY) for any j = 1,...,d. Hence Vu = V in D'((0,T) x R R? x RY),
Vu € L?((0,T) x R4, R% x R?) and Vu = V in L2((0,T) x R4, RY x RY). This proves (5.24).
Notice also that, up to a subsequence, uy(t,x) notoo, u(t,z) for almost any (t,x), see
p. 94 2], and Vu, — Vu as n — +oo in L?((0,T) x R* R? x RY). We claim that,

: n—-+00
since we assume we have extracted a subsequence, uy,(t,z) ———— u(t,z) for almost any

(t,z) € Ry x RY, implies that for almost any ¢ we have uy, (¢, ) notoo, u(t,x) for a.e. x.

Indeed, if this was not the case, setting w(t,z) := limsup,, |u, (¢, z) — u(t, z)| there would
exist J C Ry with measure |J| > 0 and with [pq w(t, z)dx > 0 for t € J, which would imply
fR+><]Rd w(t, z)dtdr > 0, and so w > 0 on a subset of R, x R? of positive measure. But we

know that w = 0 a.e. in Ry x R? and this proves our claim.
Then the energy inequalities (5.21) imply by Fatou

t
a(t)]22 ) + 20 /0 IVt gyt < [ 22 g, (5.7)

where here for the 1st term in the l.h.s. we apply the classical Fatou theorem for a sequence
of integrable functions converging pointwise to a function, see [2, Lemma 4.1], while for the
2nd term in the Lh.s. we apply claim (iii) Proposition 3.5 [2]

We turn now to the proof of (5.25).
Fix a function ¢ € C°([0, 00), H'(R? R?)). For a given ng consider

gn(t) = (un(t), V(1)) (12(raya and g7 (t) = (Prytn(t), Y (1)) 12 (gaya-

Then for any € > 0 and any fixed T > 0 there exists ng s.t.

[(Pro = DY@ oo 0,17, (L2 (Re))2) < €
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This and H’U,n( )HLoo [0 T] (LQ(Rd) < ||UOH L2 Rd))d 1mply

Hgn - ggnO)HLOO([O,T] < HUOH(L2(Rd))d€.

Furthermore, for any fixed T" > 0 there exists a compact K s.t.
(&) | oo ([o0,77,(L2 R\ K) )4y < €

Then, if we set g,S”O’K) (t) == (Proun(t), ¥(t)) (12(x)))« We have

(no,K) _

g8 (n°)||L°°([0,T] < [luoll(r2ray)ae.

We claim that
Py tn — Poou in CO([0, T, (L3(K))?). (5.29)

Indeed, by Claim 5.12, and by a diagonal argument, we know that there exists a v s.t.
P, u, — v in C°([0,T)], (L?(K))?) for any T and K. It is easy to conclude that v €
L%([0,T] x RY,RY) and that P, u, — v therein. On the other hand, we know that u, — u
in L2([0,T] x K,RY), and that u, — u in L2([0, T] x R R?). In turn. this implies P, u, —
P, u in L2([0,T] x R% R?). But then this implies v = P, u in L2([0,T] x K,R%), and so
we get (5.29).

In turn, (5.29) implies

{g0 Y = (Prgun (), (1) (r2 )yt = Protu(t), (£)) 1250y in C°([0,T7).

But then also

[Cun(t), () (2 mayye — (ult), (1)) (L2 (mayyall Lo (0,17

< [{Proun(t), ¥ (1)) (r2(x))e — (Pro(t), ¥ (1)) (n2(x))ell oo jo,17 + 2ol (£2(ray)ee

+ [[(u(t ) (1= Pro) () (2 (mayyel| Lo ro,zy + 1w(®), (1 = xx )P () 12yl oo (0,17 <

< [{Proun(t), ¥ () (r2(x )yt — (Pro(®), V() (r2(x))ell o jo,17 + 4ol (p2(rayyee
Since € is arbitrarily small, it follows that we obtain that g, converges to (u(t),¥(t)) 12(ra))

in L°([0,T7]), and hence in C°([0, T]). In particular we have shown that v € C°([0, 00), L2 (R%,R%)).
The proof of Proposition 5.8 is completed. O

5.1.2 End of the proof of Leray’s Theorem 5.3

Proposition 5.8 has provided us with a function
u € L=([0, 00), L2(R?, RY)) N L, ([0, 00), H(RY, R)) N C°([0, 00), L7, (RY, RY))

which satisfies the energy inequality

t
||U(t)H%2(Rd) + 2V/0 ||Vu(t/)”%2(u§d)dt/ < ||UOH%2(Rd)- (5.7)
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Our aim in this section is to prove that u is a weak solution in the sense of Definition 5.1.
Let us consider ¥ € C([0,00), H'(R% R%)) and let us apply to (5.3) the inner product
(-,U)r2. Then we get

((un)t, W)(LQ(Rd))d + (PnPdiv(un ® un), \P>(L2(Rd))d - V<Aun, \I/>(L2(Rd))d =0.

Hence

d

0t <un, W)(LQ(Rd))d — <un, \I’t>(L2(Rd))d + (div(un X un), PPn\If>(L2(Rd))d + u(Aun, W)(Lz(Rd))d =0.

So, integrating in t we get
/ un(t,x) - Y(t, z)dx —/ P,ug(x) - ¥(0,z da:—/ ds/ Un(s,2) @ up(s,z) : VPP, W (s, x)dx
R4 R4
/ds/ Un(s,x) - Wy(s,x) a:—VZ/ds/ o, (s, )0,V (s, 2)dx (5.30)
R4

By (5.25) for any t

fim [ un(t2) (L 2)dy = /R ult, @) - W, 7). (5.31)

n—oo Rd

By the definition of P, we have

im [ Poug(z) - U(0,2)ds /R o) - W0, ). (5.32)

n—oo R4

By (5.23) we have

t t
lim ds/ un(s,x) - Wy(s,z)dr = / ds/ u(s,x) - Yi(s,x)dx. (5.33)
R4 Rd

n—oo 0

By (5.24) we have

t . . t . .
lim y/ ds | Opul(s,x)0pV (s, z)dx = 1// ds [ Opu!(s,x)0,V (s, 2)d. (5.34)
0 R4 0

n—00 R4

The above limits (5.31)—(5.34) are straightforward consequences of Proposition 5.8. By
taking the limit in (5.30), Leray’s Theorem will be a consequence of the following claim,
which is the delicate point of this part of the proof.

Claim 5.15. We have

t t
lim ds/ un(8,2) @ up(s,z) : VP,PU(s,x)dx :/ ds/ u(s,z) @u(s,z) : VPU(s, z)dx.
n—oo Jo R4 R4

(5.35)
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Proof of Claim 5.15. The 1st step, algebraic, is to write
t t
/ ds/ Un (s, 2) @ up(s,z): VP,PU(s, x)dx :/ ds/ Un (S, 2) @ up(s,z) : VPY(s,z)dx
Rd 0 Rd

—i—/o ds /Rd Un (8, ) @ up(s,x) : VP(P,¥(s,z) — ¥(s,x))dz.

Claim 5.15 will be a consequence of

¢ t
lim ds/ Un (8, 2) @ up (s, x) : VP¥(s,z)dx = / ds/ u(s,z) @ u(s,x) : VP¥(s, z)dx.
Rd Rd

n—oo 0
(5.36)
and of

lim ds /Rd Un(s,2) @ up(s,z) : VP(P,¥(s,x) — ¥(s,x))dx = 0. (5.37)

n—oo 0

In order to prove (5.36)(5.37) we observe that since P¥ € C1([0,00), H'(R?,RY)) for any
€ > 0 there is a compact set K C R s.t.

sup [[VPU(s, )| 12ma\k) < € (5.38)
$€[0,T]

(5.38) is elementary to prove and it is assumed in the sequel. Now we show (5.36).
By Holder, (5.38), Gagliardo—Nirenberg and the energy equality (5.21) we have

t T
|/ ds/ Un (8, 2) @ up(s,x) : VPU(s, x)dr| S/ ds|lun ® upl| L2 (ray | VPY ()| L2 R\ k)
RA\ K 0

<7 Hun®“nH IV Loo (0,77, 22 (R K))

d d
Tty IV unll Pt |3

L ((0,7],L2(R7))

< T | a3 ®)l 4 E ST T lunll

Ld(0,T) L(0,T)
. (1-4) -
T Hun”Loo 0,7],L2(R4)) Hvun”L2 [0,7],L2(Rd <el™a HUOHL2 R4)"
(10,71, ) ([0,77,L2(R%)) (R)

Hence, to prove (5.36) it is enough to show for any compact set K C R?

t t
lim ds/ Un (8, 7) @ up(s,x) : VPU(s,z)dr = / ds/ u(s,z) ®u(s,z) : VPU(s, z)dz.
K K

n—oo 0

(5.39)
The limit (5.39) is a consequence of
lim u, ® u, = u®u in LY([0,T], L*(K))
n—00
which in turn is a consequence of
lim u, = v in L*([0,T], L*(K)). (5.40)

n—oo
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Let us consider y € C°(R?,[0,1]) s.t. x = 1 in K, Q := suppy and with VXl poo(mey < 1.
Then by Gagliardo Nirenberg we have

d d d
| £llzacae) < CEl oy IV F L2y + 1V 2ga) ™ < ClLF iy | Fll ot ey

1 4-d d
Using this inequality and Holder (using 3= "5 + §)

lw = wnll L2077, 08 (1)) S Illw — unHL2 yllu — unHHl(Rd z2(0,1)
o 1_1 o 4
<[l un||Lz(Q)||L4%d(O7T)H||U “””Hl(Rd)”L%(o,T)

[l —

tnll o111 )

_ 1-7
= llu = unll 2o 19,120

n—-+o00

d
< (2(1+ \F)HUOH L2(Rd))d ) lu— unHLz ([0.7),L2()) » 0

where the limit holds because u, ~——2 v in L2([0,T], (L2(€2))%), by Proposition 5.8. This
yields (5.40) and so also (5.39).
The proof of (5.37) will follow from the fact that for any ¢ > 0 there is N s.t. n > N implies

sup [|[V(Pr, — 1)PU(s)|[2(ray < €
s€[0,T]

In turn this, like (5.38), is a simple consequence of the fact that ¥ € C1(]0, c0), H'(R%, R%)).
To prove (5.37) observe that

]r.h.s. of (537)’ < Hun X u"”Ll([O,T],(LQ(R’i))dQ)HV(P” — 1)]P)\IJHLQ( [0,7],(L2(R4))d)

1-d/4 d/4
< ellunlF 2oy namaysy = Ml aga 13200,y S ellnll o e 1V unllFagga 13201

(1-9) 0
E”UnHLOO [0 T] L2 Rd )HvunHL2 [0 T} LQ(Rd)) < T 45”“0” L2(]Rd))d i> 0

This completes the proof of Leray’s Theorem 5.3.
O

Remark 5.16. The solutions we have found don’t satisfy only the energy inequality (5.7),
but in fact a the more general inequality

¢
Hu(t)H%Q(Rd) + 21// HVu(t’)H%Q(Rd)dt’ < Hu(s)H%Q(W) for any 0 < s < t. (5.41)
S
This can be proved exactly like (5.7), exploiting the fact that the sequence u,, satisfies

t
Hun(t)”%p(ﬂ{d))d + 2”/ Hvun(t/)H?Lz(Rd))dQ dt' = Hun(s)”?p(Rd))d (5.42)

and then using the weak convergence argument utilized to prove (5.7). Leray’s solutions
which satisfy (5.41) will be called Leray—Hopf solutions.
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Notice this interesting continuity from the right.
Lemma 5.17. If u(t) is a Leray—Hopf solution for d = 3 then for any s > 0 we have

u(t) b, u(s) in L?(R3,R3).

Proof. From (5.42) we have limsup [[u(t)| 23y < [|u(s)||2(rs)- On the other hand, since
t—s

+
by weak continuity wu(t) =% u(s), by Fathou’s Lemma we have lim igf lu)ll r2msy >
t—s

[u(s) | r2(r3)- Hence we have the limit tlifi lu()ll 2m3) = llu(s)||p2(sy- This and u(t) g

t—sT

u(s) yield u(t) —— u(s) in L*(R3,R3).

6 Initial datum in V(R?)

Theorem 6.1 (Local existence of regular solutions 3d). There exists a constant ¢, > 0
such that for ug € V(R3)(= HY(R3,R3) N H(R3) there evists a T > c,,||Vu0HZ§1 s.t. one of

the Leray’s solutions satisfies u € L>([0,T],V) and V*u € L*([0,T], L?).
Furthermore, this solution u satisfies the energy equality

t
Hu(t)”%g(Rd) + 2v/ HVu(t')H%Q(Rd)dt' = Hu(s)H%Q(Rd) forany0<s<t<T. (6.1)
S

Proof. We consider the solution u obtained from the limit of the sequence u,, defined by
(5.19), and which we can write as

Up + PpPdiv(u, @ up) —vAu, =0, u,(0,2) = Prug(z). (6.2)
Applying (-, Au,) we obtain
d
2*1$||Vun\|%2 + VHAunH%Q = — (P, Pdiv(u, ® uy), Auy) < ||div(uy, @ uy)||p2]| Aunl| 22

3 3 14
< lunllzoe I Vunl 2| Aunll e < el Vunll7a | Aunl7e < dullVenlz + §\|Aunlliz, (6.3)

1 1
where we used Agmon’s inequality [|uy, || 70 (r3) < HVunHzQ(Rg)HV2unH22(R3), see (2.37), and

al

Young’s inequality ab < ;57 + %)\%b%, where we choose A so that %)\3 = v /2. We obtain

d
@I\Wnllﬂ + )| Aunll7e < dy|[Vun|3s-
From this we derive

d .
IV wnl22 < dy Va8 with [[Vun(0)[32 = [P, Vol (6.4)
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Let us consider the ODE

d
X = d, X3 with X(0) = || Vuo||3..
The equation is separable, so the general solution is obtained writing % = d,dt and

integrating separately, so that

\V4 2
Ll e KO 9wl
V1 —2d,tX?(0) \/1—2thHVUO||Aia

C2X2 7 2X2(0)

We claim that [[Vu,(t)||2, < X(¢) for all n and for all 0 < ¢ < (2d,||Vuol[72)"" If
X(0) — [|[Vun(0)]|3, > 0, then using

d
- (X = IVunll2) = dy (X = [Vunll72) (X7 + X[[Vun|Z2 + [|Vunlz2)
we conclude that X — [|[Vu,||7, > 0 since it is increasing. If X(0) = [[Vun(0)[|3, consider

X for £ > 0 the solution with initial datum X (0) 4+ . Then, by the above argument we
conclude X (t) — | Vun (t)[|3, > 0 for all 0 < ¢ < (2dy, (|[Vuol|32) +€) ~2_If by contradiction

e—0t

X (to) —||[Vun(to) |22 < 0 for some 0 < to < (2d, ||Vuo||7,) " then, using X< (to) —— X (to)
and X, (to)—||Vun(to)[|32 > 0for e > 0 sufficiently small, we arrive to a contradiction. Hence
our claim is true. Notice that the solution at p. 431 [13] of the related Exercise 6.2 [13] is
inconclusive.

So there exists a T' like in the statement s.t.

¢

lan ()22 + V/O Jtn(#) 226t < Cr oy, for ¢ € [0,7). (6.5)
Recall that we had u, convergent to u in various ways. By Banach—Alaoglu there exists
a subsequence which is *weakly convergent in L>([0,T], H') and is weakly convergent in

L?([0,T], H?). This and and various forms of Fathou lemma, see in [2] Proposition 3.5 for
the weak topology and Proposition 3.13 for the *—weak topology, implies that

t
[0l +v [ ) Fadt’ < gy, Tor ¢ € 0.7) (6.6)

We turn to the proof of the energy identity (6.1). We first claim that
div(u ® u), u € L*((0,T), L?). (6.7)

Let us assume this claim. Next, we claim that

T
/ (Opu — vAu + div(u @ u), w) dt = 0 for all w € L*((0,T), H). (6.8)
0

o4



Let us assume also (6.8). Then apply (6.8) for w = X]s,ju- Then we get

t
/ ((Bru, ) + v|[Vull2:) dt’ = 0

where we use (div(u ® u),u) = 0, from (5.18). Next, we can apply Lemma 5.5 and conclude
that [[u(t)||2, € AC([0,T]) with &[lu(t)]|2, = 2 (u(t),%(t)). This yields (6.1).
Let us now prove (6.7). We have

HdiV(U®U)”L2((0,T),L2) S HHVU”L2”UHL°°”L2(0,T) < ||UHL°°((07T),H1)HUHLQ((O,T),LOO)
S lull oo 0,1y, 0y lull L2 0,1y, 52) < 00

using Sobolev’s embedding H2(R3) < L (R?) and (6.6). Next, we apply (5.4) for U(t,z) =
#(z) € C2(R3,R?) and obtain

(u(t), ¢) = (u(0), ¢) :/0 (v(Lu(t)), ¢)) — (Pdiv(u® u)(t'), ¢)) dt.

This extends to any ¢ € L?(R3,R?). Then we can apply Lemma A.29 2 for X = L?(R3,R?),
concluding the following, which completes the proof of (6.7):

du = vAu — Pdiv(u @ u) in D'((0,T), L?). (6.9)

We turn to the proof of (6.8). There exists a sequence of test functions ¥,, — w in
L?((0,T), H), which satisfy

T
(u(T), Un(T)) — (uo, ¥n(0)) = / (v(Au(t), Un(t)) + (u(t), 0¥ (t))
0
—(div(u @ u)(t'), U, (t))) dt’.

Integration by parts, which can be proved like in [2, Corollary 8.10], yields

T T

(u(T), ¥, (T)) — (up, ¥, (0)) —/ (u(t'), 0y W, (') dt' = —/ (Opu, W,,) dt’,
0 0
so that we obtain
T
/ (Opu — vAu+ diviu @ u), ¥,) dt’ =0
0

and for n — oo we obtain (6.8).

?Recall that Lemma A.29 states that if u,g € L'(I, X) are such that

u(t2), ) e — (u(tr), Fxe = / " (0(8), 1) xx- ds for amy f € X",

with X a Banach space, then d;u = g in D'(I, X).
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Theorem 6.2 (Uniqueness of weak solutions). Let ug € V(R3) and let u € L*([0,T],V)
and V?u € L?([0,T), L?) be a solution discussed in the proof of Theorem 6.1. Consider also
a weak solution v with initial datum ug and satisfying the energy inequality (5.7). Then
u=wvin [0,T].

/

Furthermore, we have ||[Vu(t)|| 2 SZENN: if the lifespan T* = sup{T s.t. u €
L>([0,T],V)} is T < 0.
Finally, there exists a constant €, > 0 s.t. if

[Vuollrzlluollrz < ev (6.10)

then the statements in Theorem 6.1 and here are valid for any T > 0.

Proof. From (6.8) we have

/T ((Opu,v) + v (Vu, Vo) + (div(u ® u),v)) dt = 0.
0

We claim now that we can treat u as a test function for v, so that
/Ot ((Vv, Vu) — (v, Opu) + (div(v @ v),u)) dt’ = |lug||32 — (v(t), u(t)), (6.11)
so that adding the two equations we have
/Ot (2v(Vv, Vau) + (div(u ® u), v) + (div(v @ v),u)) dt’ = |lug||22 — (v(t), u(t)).

Let us assume (6.11) and let us continue the proof.
Set w = v — u and substitute in the identities
20{Vo, V) = v[|Vullzz + v Vollge — v Vel .
(wt), u(t)) =27 Ju®) 72 + 27 lv®)[7> — 2w (B2,
which are the same as the expansion (a — b)? = a? + b% — 2ab, and
(div(u ® u),v) + (div(v ® v),u) = (div(w ® w),u),
which follows from
(W1 9;0F uPy + (W 9u", vF) = (W1 9;0F uFY — (W 908 uF) = (w0 )
= (W 9;wP, uP) + (W Bjuf uFy = (W 9wk W) = (div(w @ w),u).

Then rearranging, we obtain the equality
t
2 uw(t)]| 22 + / (WIVwll? — (div(w ® w), u)) df
0
t
= 2 U u(t)|2a + /0 V|Vl — 2 uo 22 (6.12)

t
o o) + /0 V|Vl — 27 o122 < 0, (6.13)
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where the inequality follows from the Energy identity (6.1) and the Energy inequality (5.7).
Then

t t
Jw(t) |72 +2u/0 |Vw]|*dt’ < 2/0 (div(w ® w), u)dt’

t t t
1
<2 [ ulm Vulpsfuoladt < [ fullalulfadt v [ [Fwiar.

Absorbing, as usual, the very last term in the 2nd term of the L.h.s., we obtain

1 t
o) < [ Tulle ol

which, by Gronwall, yields

1t 2 ’
lw(®)][22 < v fo 12 0 (0) )12, = 0.

Next, suppose the T* in the statement of the lemma is T* < oco. If there is no blow up, there
exists C > 0 and a t' < T* with [|[Vu(t')||7, < C and T* — ' < ¢,/C (that because there

are a C, a sequence t, 7% P with [Vu(tn)||72 < C). In particular, for v a solution

as of Theorem 6.1 with initial value v(¥') = u(t’), we have v € L*®((t',t' + ¢,/C),V).
But by the uniqueness v = w in [, T%), so u extends into a solution in u € L*([0,¢ +
c,/C), V), u € L*([0,t + ¢, /C), H?), yielding a contradiction. Therefore, we must have

IVa)| 2 L5 00 if T* < 0.

We now need to address formula (6.11). We have u € H*((0,t), L?) for t € (0,T), see
(6.7), u € L>=((0,t), H') and v € L?((0,t), H?), see (6.6), and we can consider a sequence
of test functions ¥,, —= v in all these spaces. Starting from

/0 (v(Vv,V¥,,) — (v,0,9,,) + (div(v @ v), ¥,)) dt’ = (ug, ¥,,(0)) — (v(t), U, (1)),

for n 7 oo it is easy to see that all the terms linear in v converge to the corresponding ones
in (6.11). Also the nonlinear term converges, as a consequence of

t t
/ (div(u @ ), Uy — ) odt’ < o/ 19 o] 2| @ — ]| oot
0 0
< ClIVaull z2(0,0),22) 1wl oo (0,0),2) [P — wll L2((0,0), 12)

by Sobolev’s embedding H?(R3) < L>(R3).
We finally turn to the proof of the last statement of the theorem, that is the global
regularity for small initial data, that is 7" = co. From (6.8) we obtain for any T € (0,7)

T
/ (Ou —vAu~+diviu ® u), —Au)ydt =0
0
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that is
T
/ (0, Vu, Vu) + v||Au|32 — (div(u @ u), Au)) dt =0
0

Now, notice that Vu € L?([0,T], H') and 8,Vu € L*([0,T], H~'). Then we can apply
Lemma 5.5 obtaining that | Vu||7, € AC([0,T]) with %HVUH%Z = 2(0;Vu, Vu). Proceeding
8

as in (6.3), adjusting Young’s inequality ab < % + 7 and using interpolation to get the

8
last line, we have
d 2 2 : 3 3 3 3
I Vullze + 20 Aule = 2{div(u ® u), dup < cl|Vul L[| Dull 1z = el Vull I Vul 2| Aull £,

1 T
< dlull 2 [Vl g2l Aullf2 < CollullZ2IVull72 + v Aull?

4 4
< Cyllul| 21 Vull g2 | AulFs + vl Al 2,
so that

d
IVullze < [Aulzs (Collulza|Vulz: - v) .

Since from (6.1) we have 4|ul2, = —2v||Vul%,, |lul|.2 is decreasing. We have, using
Leinbitz rule for products of AC' functions, see Corollary 8.10 [2],

d
7 iz Vulzz) < llullZallAulze (Cullullz [ Vulzs - v) = 20 Vulz..

If ||lul| 2| Vul|72 < vCy ! then [Jul|?,]|Vul|2, is strictly decreasing in any interval [0, T] with
T € (0,T*), and so also in [0,7*). Then

d
%HVUH%z +v|| A2 < Cylluoll72l|Vuoll 2 | Aull7. < epllAullfs
so that, if €2 < v/2, we get
L vullz + Llaul2, <0 [o,77)
dt u L2 9 u 2 > m s
and so also

t
V . k
IVu(®)]|Z7: + 2/ 1AulF2dt” < |[Vuo|[72 in [0,T7) .
0

This obviously contradicts the blow up ||Vu(t)|| 2 T o i T < 0o, and hence T* = co.
This completes the proof of the global existence of small solutions.
O

Theorem 6.3 (Global existence of regular solutions 2d). For anyug € V(R?)(= H'(R?,R?)N
H(R?) we have u € L*>([0,T],V) and V?u € L*([0,T], L?) for all T > 0.

o8



Proof. The fact that locally for some T > 0 we have u € L*([0,7],V) and V?u €

L?([0,T],L?) and that we have ||[Vu(t)| 2 2777, o6 whenever the lifespan T* = sup{T
s.t. w e L®([0,7],V)} is T* < oo, can be proved as above and is skipped here. So we need
to prove T = oo by showing there cannot be finite time blow up. Now we consider

d .
ZIVulie + 20 Aulfe = 2(div(u @ w), Au) S [lull o[ Vull ]| Aull 2
1 1
Sllull 3 1Vull 3 1 Aullze < (Jull 2 Vull2)2 (1Vull 2] V2ull2) 2 1Al e
1 3
S lull 72 1Vl el Aul 22 < ellull72 | Vullz + vl AulZe,

4 4
where we used Young’s inequality ab < % + 3)‘3;1’3 adjusting \. By absorbing the last term

in the 2nd term of the 1.h.s. we obtain

d t
S IVulZ: + vllAuls < collullZal Vel Tl < el Vuls (uwnia v /0 |Au<s>||%2ds) .

From Gronwall’s inequality we obtain

VuHQL?d

t 9 .
HVUH%Q—FV/; HAU(S)H%QdSSecvllu|lL00(0,oo),L2)f0 “ SHVUOH%2

which yields the desired result.
O

Theorem 6.4 (Higher spacial regularity). Let u € L*([0,T],V) with V?u € L?([0,T], L?)
be a solution like in Theorem 6.1 or Theorem 6.3. Suppose that ug € V N H™(R?) with
m > 2. Then u € L=([0,T], H™(RY)) and u € L*([0,T], H™T1(R?)).

Proof. We can go back to the framework of Theorem 6.1 with the sequence of regulariza-
tions. We claim that we can generalize (6.5) into

t
llwn (&) |5 + 1//0 lwn ()| rsadt’ < Cr T Jluo | i i [0, T] for all 1 <k < m. (6.14)

We have already case k = 1. Suppose 2 < k < m and we have case k—1. We apply (-, un) yx
to

Up + PpPdiv(u, ® up) —vAu, =0, up(0,2) = Prug(z).
and obtain
d . .
Tl@l!unllm + V[ Vun |3 = = (PuPdiv(un @ ), un) g < [|div(un, @ )| g ||| g

1 4 v
< Nl e [V un | e[ un || e < EHUnHHk + §HV’unH12qk,
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where we used the fact that, since k > d/2 for d = 2,3, H¥ is an algebra. So
d 1
g ez + V[ Vun|[fp < ;Ilunllékﬂunllﬁk-

From this and Gronwall we read

' 2 L unl2 pdsy 12 .
(|t ()| e + V/O [Vug[[grds < ev 0 T mk ™ fug ||z < Crjul 10 [0, T

Recall that we had w, convergent to u in various ways. We can take a subsequence, which
by Banach-Alaoglu is *weakly convergent in L>°([0,T], H¥) and is weakly convergent in
L%([0,T], H**1). This implies that

t
()| + 1//0 [ grrrdt < Ch g, 10 [0,77] for all 1 <k < m. (6.15)

O]

Corollary 6.5. Let u € L>([0,7T],V) with V?u € L%([0,T], L?) be a solution like in Theo-
rem 6.1 or Theorem 6.3. Then, for any m we have u € C>((0,T], H™(R?)).

Proof. We have seen in Theorem 6.1 that u solves distributionally the NS equation, see (6.9)
and that dyu € L%((0,T),L?), see (6.7), and we know u € L%([0,T], H%). Obviously u €
H'Y((0,T),L?) N L([0,T], H?) is equivalent to (v/=A)u € L*([0,T], H') N H' ([0, T], H™ ).
The latter, by Lemma 5.5, implies <m>u € C%0,T], L?). Equivalent conclusion is
u € C°([0,7], H'). Then,

for any t, € (0,T), u is the unique solution in L>(([t,, T],V) N L*([t,, T], H?)
of NS with initial values u(t,). (6.16)

Now, for any € > 0 there exists a to € (0,¢) s.t. u(tz) € H? and applying (6.16) and
Theorem 6.4, we conclude u € L>®([ty, T|, H*(R?)) and u € L?([ts, T], H3(R?)). So there
exists t3 € (to,€) s.t. u(tz) € H3, and proceeding by induction we get that for any n there
exists t, € (0,¢€) s.t. u(t,) € H", so that u € L>®([t,, T], H*(RY)) N L?([t,, T], H" 1 (RY)).
Recalling Ou = vAu — Pdiv(u @ u) in D'((0,T), L?), from u € L>®([tyi2, T], H"T2(RY))
we derive Qyu € L®([tpmio,T), H™) and so u € C%([tpro, T], H™). So we conclude u €
C%([e, T], H™) for any m and, by the arbitrariness of € > 0, u € C°((0,T], H™) for any m.
Notice that this implies dyu = vAu — Pdiv(u ® u) in C°((0,T], H™) for any m. In other
words v € C*((0,T], H™) for any m. It is easy to conclude, proceeding by induction, that
we have u € C*°((0,7], H™) and that for all j

-1 .
, - -1 L
Hu=vAd T — IP’Z <] i )div(@fu@ ot ).
k=0
O
Notice that the proof of Lemma 7.4 [13] is incomplete, because it is based on the last

displayed formula of p. 152 [13], where the uniformity in n is left untreated both in the text
and in the exercises, and seems non trivial.
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6.1 Structure of the singular set
We consider a digression on the singular set of Leray—Hopf solutions in d = 3.

Lemma 6.6 (Compactness of Singular Set). Given a Leray—Hopf solution u there exists a
T, > 0 such that u € C®((Ty, +00) x R3 R3).

Proof. Since u € L*®(Ry,L?) and Vu € L?*(R,,L?), we known that there is a T* > 0
st [[Vu(T*)|| 2 |w(T*)|| 2 < €v, with €, > 0 the constant in (6.10). From Remark 5.2
we know that u is a weak solution of the NS in [T, 00) with initial value u(7T™) € V.
By the smalleness condition (6.10) in Theorem 6.1 we know that there exists a solution
v € L®([T*,00),V) and V*v € L?([T*,00),L?) of the NS with initial value u(T*) € V.
Notice that, as a Leray—Hopf solution, see Remark 5.16, in particular u satisfies the energy
inequality

t
[u(®)122 ga) + 2y/ IVt |72 @aydt’ < [[w(T™)||72gay for any T <.

By the Uniqueness theorem of weak solutions 6.2, we know that « = v in [T*, c0). Finally,
from Corollary 6.5 we know u € C*((T%, +00) x R3 R3).
O

Definition 6.7. Consider a Leray—Hopf solution u. We say that a time tg > 0 is regular
if there exists a neighborhood I of tg in [0,00) with Vu € L*(I, L?). If ¢y is not regular,
it is called singular. We denote by R the set of regular times, and by T the set of singular
times.

It is quite obvious that R is open in [0, 00), and hence that T is closed. From Lemma
6.6 we know that 7 is compact.

In this section we consider two simple results about 7, one about box—counting dimen-
sion and the other about Hausdorff measure.

Let us start with the box—counting dimension.

Definition 6.8. Consider a compact subspace X of R? and for any € > 0 denote by N (X, ¢)
the smallest number of open balls of radius € needed to cover X. Then the (upper) box—
counting dimension of X is

log N(X
dimp(X) = limsup (— log, N(X, ¢)) = lim sup ‘B VX9,

e—0t e—0t —loge

(6.17)

Lemma 6.9. For a compact subspace X of R we have dimp(X) = dim’p(X), where

log M (X
dim’ (X) := limsup - Sl ) (X €)
e—0t - IOg €

with M (X, €) the largest number of disjoint open balls of radius € with centers at points of
X.
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Proof. First of all, we have M (X,¢) < N(X,¢€) (so that dimp(X) > dim/z(X)). Indeed, let

us consider a family of disjoint balls {D(z;, e)}]]\/i(lX ) with xzj € X. If {D(ys, )}N(X “is a
cover of X, it is also a cover of {x1,...,zpr(x,¢)}- It is not possible to have a D(yk, €) which
contains two distinct x; # x;, because this would imply |z; — x| < 2¢ , while we know that
|z; — x;] > 2e. So M(X,e) < N(X,e).

Next, we have M(X,¢e/3) > N(X,¢). This follows by the proof of Vitali’s lemma,
Theorem 2.15. In fact, given a cover {D(xzj,€/3)} of X, we know that we can extract a

family of of disjoint balls, which we will label as {D(z;, 6/3) such that {D(z;,e€)}%

Jj=b J=1
is a cover of X. Then M(X,¢/3) > L > N(X,¢). So
log M(X,¢/3 log M(X,¢/3 —1 3
dim’z(X) < dimp(X) < limsupM = lim sup —2 (X, ¢/3) oge/
0+ —loge 0+ —loge/3 —loge/3 —log3

= dim’z(X).

Ezample 6.10. 1. dimp([0,1]%) = d, dimp([0, 1}/ x {0}¢~7) = j
2. We have dimp Sy, = %4-1 for S, = {n% :n € N}, k > 0, see [13].

log(2)

3. For C the usual Cantor ternary set, we have dimp(C) = Tog(3) -

Lemma 6.11. Let K(¢€) be either M(X,€) or N(X,¢€). Then
1. if d' € (0,dimp(X)) there is a sequence €; — 0 s.t. K(e;) > e;dl while
2. if d’ > dimp(X) there is eg > 0 s.t. K(e) < e ¥ for all e € (0,¢p).

Proof. By the properties of limsup there exists a sequence ¢; — 0 s.t. —log, K(e;) —
dimp(X). So, if d’ < dimp(X),we have log. K(e;) < —d', that is K(e;) > e;d/ for j > 1.
Let now d” > dimp(X). Then we claim K (e) < e forall e € (0 eo) for an appropriate

€0 > 0. If this is false, there exists a sequence ¢; — 0 s.t.K(¢;) > ¢;* . Then log K(cj) g

—loge;
But then dimp(X) = limsup,_,o+ loglﬂ > lim inf %(EJ) > d" > dimp(X).

O
Now we have the following result.
Proposition 6.12. Given a Leray—Hopf solution uw of NS in d = 3, then dimp(T) < 1/2.
Proof. Fix € > 0 and let us consider a family of disjoint 1- dimensional balls { D(t;, 6)}]1\1(17' ’E),
with t; € T, with ¢; < ... <{ps7 ). For ¢, the constant in Theorem 6.1, we claim that

ti —t > c||Vu(t)||;; for t € (t; — €, t;), (6.18)

172

where we set ||Vu(t)| 2 = oo in the 0 measure set of points ¢ where u(t) € H'. Notice that
for u(t) ¢ H', (6.18) is obviously true. To prove (6.18) observe that if there exists a ¢ for
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which (6.18) is false, then we would have t; —t < cVHVu(t)H;l, which automatically implies
that ||Vu(t)||z2 < oo and u(t) € H'. But then, by Theorem 6.1, there exists a solution
v € L®([t,t+T), H') to the NS with v(t) = u(t) and with T' > ¢, ||Vu(t )HL2 > t; —¢. This
means that t; € (t,t + 7). But since u is a Leray-Hopf solution, by Theorem 6.2 we have

u=wvin [t,t+T). But then we get a contradiction tot; €T.
From (6.18) we obtain [|[Vu(t)|3

w is smooth in (7, 00), using the energy inequality

\/7 in (t; — €,t;). For T sufficiently large, such that

M(T e)
22 gy > 20 / V0ot 20 3 / [Vt) |2 gyt

M(Te)

> 2v4\/c, Z

1
tj—e \/7

dt = 4v /e, M (T, €)/e.

H 0” d
L2(R )6—5

So M(T,e) < —, \ﬁ

which, implies

lluoll?4 g
1 L (JR)
log M (X, ¢€) < lim 0g< dvy/ey 2> 1

dimp(7) = limsup

0+ —loge ~ eso0t —loge 2
]
Definition 6.13. Given a subset X C R¢ set for s > 0 and § > 0
o
s,5(X) = inf Z (diam (Uj;))® : {U;}32, is an open cover of X with diam (U;) < § for all j
j=1

Notice that pss(X) is decreasing in §. The we call s—dimensional Hausdorff measure of X
the number

H(X) = lim ps6(X).
The Hausdorff measure of X is
dimg(X) =inf{s > 0: H*(X) = 0}.
Remark 6.14. Notice that ps5(X) = pf 5(X) if we set

pg 5(X) = inf Z (diam (U;))® : {U;}72; is an open cover of X
j=1
with diam (U;) < § for all j and all the U; are convex}.

Indeed, any open set is contained in an open convex set with the same diameter.
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Lemma 6.15. We have dimg(X) < dimp(X).

Proof. Let d = dimp(X) and s > d. Let s > z > d. Then, by Lemma 6.11 there is ¢y > 0
s.t. N(X,e) < e *for all e € (0,€0). Since we can cover X with N(X,¢) balls of radius e,
we have

N(Xe) .
Z (2€)° = 2°N (X, e)e® < 2%¢%77 =00
j=1

= H*(X) = 0. This implies dimy(X) := inf{s > 0: H*(X) = 0} < dimp(X).

Lemma 6.16 (Isodiametric Inequality). The Lebesgue measure of an open convex set in
RY of diameter D is at most the volume cqD? of the ball of radius D/2 .

See [7, Sect. 2.2]. O
Theorem 6.17. In R?, for £¢ the Lebesque measure, L% = cqH?.

Proof. Here we will only prove LI(K) < cgHY(K) for any K cC R% Given € > 0, we can

cover K C U72,U; with U; open convex sets and with Z (diam (Uj))d < HY(K)+e. Then
j=1

K| <205 < ea' (diam (U;))" < ca (HI(K) +€). This implies £4(K) < cqHI(K).
=1 =1

Proposition 6.18. Given a LerayHopf solution u of NS in d = 3, then H'/?(T) = 0.

Proof. Since H'(T) = 0, we can cover T by a finite or a numerable family of disjoint
intervals {[tg, ti + €x] fren With Y ex < d for any preassigned 6 > 0. Possibly picking e = 0,
we can assume that ty + e, € T. Indeed, if [tx, tx + ] N T = 0 we can discard the interval,
while if 3 ¢}, € [tg, tr+€x]NT, then we can replace [tg, t + €] with [tg, ¢}]. By the discussion
in Proposition 6.12 we have ||[Vu(t)[|2, > # in [ty t) + €x). Then

trter dt

IVu(®)|72dt > /ey —— =2V k-
/Jk[tk7tk+€k] L2 ; tr tk‘ + €k — t ; f

But, by absolute integrability, the I.h.s. can be made smaller than any given ¢ > 0. Then
HY2(T) = 0.
O
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6.2 Serrin’s condition
We have the following theorem.

Theorem 6.19. Let u be a solution in d = 3 of the type in Leray’s Theorem 5.3 and suppose
that 5 3
we L7((0,T), L5 (R3)) where = + = =1, withr>2 and s > 3. (6.19)
ros

Then u € C®((0,T] x R3 R3) and u is in [e,T] for any ¢ € (0,T) also a solution in the
sense of Theorem 6.1. Furthermore, if v is another solution of the type in Leray’s Theorem
5.3 satisfying Serrin’s condition, for possibly different exponents (still with s > 3) in (0,T)
and with the same initial value, we have u = v in [0,T].

Remark 6.20. The case L>=((0,T), L3(R?)) is relatively recent [6] and will not be considered
here.

Proof. Let us start by assuming ug € V. Then we know that there exists 7" > 0 s.t.
u € L>([0,T1],V) if Ty € (0,T*) and that u € C*((0,7*) x R3,R3). So for the regularity
part of the lemma, it is enough to show that T < T*. Suppose the opposite, that is
oo > T > T*. Then, recall that there is the blow up ||Vu(t)|| 2 T .

We have in [0, 7*), by (6.8),

d .
aHVU\!% +2v]| Aul|Z. = 2 (div(u @ u), Au) < cllull o [|Vul | 2, 18] e,

where 1+ 8?;752 +3% = 1 and where s > 3 implies 25 € [2,6). Then, by Hélder’s (we use

_9 s=3 3 s=3 3 -3 3
528 = § —1—% and Hf||52fs2 < [Ifll3 Hf||26) and Young’s (using 1 = 528 + s;; )
inequalities and by Sobolev’s immersion H*(R3) — L%(R?), we obtain

s=3 3
cllullps[Vull | 2o, [Aullrz < ellullps[Vull g3 [[Vall ol Aull 2

2s
s—2
2s

/ =3 543 17 5=3 52%3 s+3 s+3
< Nl 1Vl JAulE <o (nuuLsuwuLs) +u(umu ) .
Then we conclude

d d 2
SIvuls < ZITulds +vlaulds < Nl Vul,

which, by Gronwall’s inequality, in [0, 7™) yields

_2s_ 2s

7 N S— s5—3
||Vu(t)H%2 < ||vu(0)||%2ec’ fot [Ju(t )||L53dt’ < HVU(O)H%260NH”HLT([O’T]’LS).

But this contradicts the blow up and shows that 7% > T. Hence the regularity u €
C>((0,T] x R3,R?) is proved when ug € V. More generally, if ug ¢ V, we can consider
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a sequence t, N\, 0 with u(t,) € V, from this and the uniqueness Theorem 6.2 conclude
u € C®((t,, T] x R3,R?) for all n, and hence also u € C°°((0,T] x R3,R3). The statement
that u in [¢, T'], for any € € (0,7, is also a solution in the sense of Theorem 6.1, has been
assumed implicitly in this proof, but is easily proved using Theorem 6.2.

Next, we turn to the discussion of the uniqueness in the present theorem. Se let us
consider a solution v like in the statement. We claim that v can be used as test function
for v and v can be used as a test function of u in the formula (5.4).

Assuming the claim, we have

/0 ((Vv, Vu) — (v, Opu) + (div(v @ v),u)) dt’ = ||lug||22 — (v(t),u(t)) and

t
/ (v(Vv, Vu) — (0w, u) + (div(u @ u),v)) dt’ = |ug|l72 — (v(t), u(t)).
0
We can write the above as

/0 ({(Vv, Vu) — (v, Opu) + (div(v @ v),u)) dt’ = ||lug||72 — (v(t),u(t)) and

/Ot (v{(Vv,Vu) + (v, u) + (div(u @ u),v)) dt’ =0

where in the 2nd equality we have used the fact that u,v € C°((0,T], L?), which follows

+
from the 1st part of the proof, integration by parts with the information that w(t) 207, i

+
and v(t) 1207, g in L2 (R3,R3), which can be proved using the proof of Lemma 5.17 for all
solutions like in Leray’s Theorem 5.3. Now we are exactly in the same situation of Theorem
6.2. Proceeding with the same algebraic manipulations, we arrive to

t
2*wwm&25/(Wwa<mWw®wxw)w'
0
t
=zﬂmw;+¢wvw%aﬁm@2 (6.20)

t
—MﬂMW%+ANW¥—TWﬂ%SQ (6.21)

where the inequality follows from the fact that both u and v satisfy the Energy Inequality
(5.7), and so the last two lines are both < 0.
Therefore we get for w =v —u

t t
Jw(t)||32 +2/0 v||Vw|*dt §2/0 (div(w @ w), u)dt’

Like above in the proof of this theorem, we bound

2div(w @ w), u) < cllul[ps|[wl]] | 2, [[Vw]| L2
=3 s 2 2 2s
< cllullpslfwll 3 Vw3 < Clullzsllwllzz + v[[Vw||7. where r = — 3
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Then
2 ¢ 2
/! / / /
leo(®)]2 < ¢ /O lal®) 5 leo(#) |22t

implies by Gronwall w(t) =0 in [0, 7], proving uniqueness.

Now we have to prove the claim that v (and u) can be used as test functions in (5.4).
Suppose that v is a weak solution like in Leray’s Theorem satisfying the Serrin condition
and let u be a weak solution like in Leray’s Theorem. We know that v € C*°([¢, T) for any

€ (0,T). So, for t € (¢,T) we get

/ (u, Opv)dt’ = (u(e),v(e)) — (u(t),v(t)) + V/ (Vu(t"), Vo(t'))dt' +/ (div(u ® u),v)dt'.

Let us consider now the limit ¢ — 0. We know by the right continuity Lemma 5.17 that
€ + € + .
u(e) =25 ug and v(€) = vy in L2(R3,R3) so that

((ule), v()) — (ult), v(1)) s (o, v0) — (ult), v(1))).
Next, u,v € L?((0,t), H') implies
/6 (), Vo)t =% /0 ), Vo)t
Finally, we show that
lim [ (div(u® ), o)’ exists and is finite. (6.22)

e—0t J¢

The above limits are sufficient to prove

/ (u, Op)dt’ = (ug,vo) — (u(t),v(t)) + 1// (Vu(t'), Vo(t'))dt' +/ (div(u ® u), v)dt’,
0 0 0

and hence the claim. To prove (6.22) it is sufficient to show that

t
1;:/ (div(u @ ), v)|dt! < oo.
0

2s

. !
We bound, using r" = 73,

t (s—3)r' (s+3)r"

t s-3 s43 t
< / lollzellull 3 IVl 3 de’ < / follde + [ ull 2 19wl a

25—

< Il nzm + Il oy | IVladt < oo
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7 Well posedness in Sobolev spaces

In Sections 7-9 we follow [1]. The theory is mostly due to T.Kato. The approach will be
different and the results will partially overlap with the ones in previous sections. To explain
the approach we go back to equation (5.13) and observe that if Ong(u,u) is a force like
the f in (4.1), we can interpret the solutions of (5.13) as solutions of a linear heat equation
(4.1). More specifically, if we denote by B(u,v) the weak solution of
{@B(u, v) — vAB(u,v) = Qng(u,v) (7.1)

B(u,v)|t=0 = 0. '

then, when we are within the scope of the theory of Sect. 4, the solutions of (5.13) can be

rewritten as
u = e""“ug 4+ B(u,u). (7.2)

In fact in Sections 7-9, for us the Navier Stokes equation will be equation (7.2). In Sect.
9 we will give an explicit formula to the operator B(u,v). It is an integral operator whose
integral kernel is the so called Oseen kernel. We will try to solve the problem by means
of a fixed point argument. Specifically, we will look for an appropriate Banach space Xr

of functions defined in [0, 7] x R?, for a subspace £ C S'(R%,R?) such that ug € £ implies

¢ VA T—0t

e""®uy € Xp and furthermore ||e’*“ug||x, —— 0, and we will use the following general

and abstract lemma.

Lemma 7.1. Let X be a Banach space and B : X?> — X a continuous bilinear map. Let
a < m where || Bl| = sup|g|=|y|=1 | B(z,y)||. Then for any xo € X in Dx(0,a) (the open

ball of center 0 and radius o in X ) there exists a unique x € Dx(0,2a) s.t. © = xo+B(x, ).

Proof. We consider the map
r — x0+ B(x,x). (7.3)

We will frame this as a fixed point problem in Dx (0, 2q).
First of all, we claim that the map (7.3) leaves Dx (0, 2a) invariant. Indeed

<2
—PN—
lzo + B(x, 2)|| < [|lzoll + || Bz, 2)|| < llzol + [ Bll[l]* < o (1 + 4] Blla) < 2a.
1
<

Next, we check that the map (7.3) is a contraction. Indeed
1B(z,z) = By, y)ll < [[B(x —y,2)|| + By, = — y)|| < 4e|| B[]z -yl

where 4a||B|| < 1. So the map (7.3) has a unique fixed point in D x (0, 2a).
O
In this section we will discuss the case X = Xp = L*([0, 77, H%(Rd, R%)) and space
of initial data F72~" (R4, R?) and use the above lemma to prove the following well posedness
result.
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Theorem 7.2. For any uy € Hgfl(Rd,Rd) there exists a T and a solution of (7.2) with
u € LA([0, 77, H%(Rd,Rd)). This solution is unique. Furthermore we have

we C([0,T], H: YR, RY), Vu € L2([0, T], 21 (R, RY x RY)). (7.4)
Let T, be the lifespan of the solution. Then:

(1) there exists a c s.t.

HUOHH%*(Rd,Rd) < cv = Ty, = o0
(2) if Ty, < oo then .
/0 N Hu(t)”;%(Rd,Rd)dt = . (7.5)
(8) if Ty, < oo then .
/0 ’ IVaOI% 41 g ey & = % (7.6)

Moreover, if u and v are solutions, then

t
OREIOI I /0 1€ =), g+ e

(7.7)
Cu—3f3<||u<t’>||% s Hlo@)lI* ., )dt'
H

< ”UO _ UOHZ T2 (R4,RY) H 2 (RIRD)

e
§-1(Re,RY)
where C' is a fixed constant.

Remark 7.3. Notice that the following transformation preserves the solutions of the Navier
Stokes equation:

u(t,z) — uy (t,z) = u ()\Qt, Az), (7.8)
Furthermore, notice that the norms of u in the spaces in (7.4) coincide with the analogous
norms of uy in the interval [0,7/)2]. Notice also that the norm of ug(z) in Hgfl(Rd, R9)
coincides with the norm of ug(z/\) in the same space. So the space H 5~ lis an example
of space critical for the Navier Stokes equation. One obvious consequence of this is the
following: there exists no function 7'(-) : [0, +00) — (0, +00] s.t. Ty, > T(||u0HH%_1) for all
Uy € H %_1.
Remark 7.4. While for d = 2 the solutions provided by Theorem 7.2 are exactly Leray’s

solutions, for d = 3 we could have ug € (H 3 (R3))3 with ug ¢ (L*(R?))3. The corresponding
solutions of the Navier Stokes equations provided by Theorem 7.2 are not Leray’s solutions.

Remark 7.5. We will prove in Sect. 9 that the solutions provided by Theorem 7.2 are in
C>®((0,T) x R RY).
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Remark 7.6. Notice that the finite lifespan (7.5) is relevant only for d = 3. Furthermore, if
Ty, < 00, it has been shown that

HUHLOO([O,Tuo],(Hl(RS))S) = 00,

but the proof is a much harder.

We will assume for the moment Theorem 7.2 and prove the following.

8 Proof of Theorem 7.2

This section is devoted to the proof of this theorem. First we have the following lemma.

Lemma 8.1. Let d = 2,3. There exists a constant C > 0 s.t.

(8.1)

1Qns(u, v) < Cllull 4

[o]]  az1

. d
H2Z72(R4,RD) — (Rd R%) 2 (R,RY)

Proof. If d = 2 we have
2
1Qus (w0l < D7 (105 o) s+ 11060 ) 1)
j,k=1

< 22 lu*v? || g2 < Cllullpallvllpe < Cllull 3 101l
ok

. 1
by the Sobolev embedding H%(]RQ) C L*(R?) , since + = 1 — 2. This yields (8.1) for d = 2.
For d=3

2
Qs (1,0l - ) < zkj (10 ey ) + 19y )
j7

S0l oy + 10500 gy S N0l + 0T
. 1
where we are using the Sobolev embedding H %(R?’) C L3(R3) (since 3 = £ — 2) which in

turn by duality implies L%(R:S) CH _%(R3).
Hence, by 2 =3 Ly 3 L and Holder,

Qs (s )l - oy S IVl @yllvlzoeo) + el ey IVl 2wy < 21l oy 10 s o

This yields (8.1) for d = 3. O
A straightforward consequence of Lemma 8.1 is the following for C the constant in
Lemma 8.1.
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Lemma 8.2. Let d =2,3. Then for u,v € L*([0,T], (H%(Rd,Rd)) we have

1@y -y < Ol 21 15 s 9 o 5 gy (B2
O
Proof of Theorem 7.2. By Theorem 4.4 we have for s = % —landp=4
1Bt = B Dl o) S repl@nstes Mooy
_3 _3 :
= v 1Qus 0 gy ey < OVl [OT]HTII .

So in the Banach space X = L*([0,T], H%) we have ||B|| < Cv~1. Obviously this is the

3
va
same as 77 < 4”B” Our strategy is to prove

3

vt/\ v < 1 8.4
le™ ol oo,y 15ty < 36 < T[E] (84)

where e”t2qy plays the role of xg in the abstract Lemma 7.1.

If (8.4) happens, that is if the Lh.s.of (8.4) is less than an a < 4” 7> then by Lemma 7.1

we can conclude that problem (7.2) admits a unique solution in L*([0, T, H %) with norm
3

less than 2a < %.

We consider two distinct proofs of (8.4). The 1st, simpler, is valid only if |lug]| . a P is
sufficiently small and shows that (8.4) holds for all T'. In the second proof, which is general
we drop the assumption that Hu0||H ¢, is small, and we prove (8.4) for T sufficiently small.

Step 1: small initial data. By Theorem 4.4 we have for s = %l —landp=4

vt/ vt/

1 1
uoll = " uoll orz ey < v lluollgs = v lluoll yg -0 (8.5)

e
L4011

So, if HUOHH%” < 3¢ then (8.4) is true for any 7' > 0. In particular T, = oo and we have
just proved (1) in Theorem 7.2.

Step 2: possibly large initial data. Now we consider the case when ug € H g_l(]Rd)
is possibly large. We consider a low—high energy decomposition: ug = Pyuo + X /=x>,u0
where we pick p = p,, large enough so that

14
IXy=zspuoll ;g1 < 3

Then by (8.5) we get

vt vt vt
< _
120l st < 1 EX ol g it + B Pl o
g (8.6)
VtA
80+”e Py O||L4(0T]H )
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where we made the high energy contribution small by the choice of p large.
We now exploit the fact that we have the freedom to choose T small, in order to make the
contribution to (8.6) small too. Indeed we have

o atsh = 16X (V= Buol

vt/ / - (-A)
= 1" X0 (V=20 VP UOHL“([O,T],H%*I)

< VPl X0, (V=L uoll 4 (0.7, E 51 WHQWAP’JUOHL‘*([O,TLH%—l

le” 2P puol|

=1
LA(0,T],H Z)

N

)

1 1 1
< (0°T)3 [P yuo < (PDPuoll g, < (T uo] g

Le([0,T], i1y =
if we choose T small enough so that the last inequality holds, that is if we choose T' such

that
4

N

T< | —— , (8.7)
$p5C ol

then all terms in the r.h.s. of (8.6) have been made small enough s.t.

3
vtA vi 1
le UDHL‘*([O,T],H%) <ic < M
that is we obtained (8.4).
We have proved the 1st sentence in the statement of Theorem 7.2.
Now we turn to the proof that a solution u € L*([0,T7, H%) satisfies (7.4).
By (8.1) we have Qng(u,u) € L?([0,T], H’_2). Then it must be remarked that by its
definition B(u,u) is a solution in the sense of Definition 4.1 of the Heat Equation written
above (7.2). Similarly, by Theorem 4.2 also e”*“uy is a solution of the homogeneous Heat
Equation with initial value ug. Hence, since u satisfies (7.2), then w is the solution of the
Heat Equation (5.13), where the latter can be framed in terms of the theory in Sect. 4 for
s =2 — 1. Then by Theorem 4.2 we have u € CO([O,T],H%_l) and Vu € L2([O,T],H%).
This yields (7.4).
We turn now to the proof of (7.7). We consider two solutions u and v, and set w = u — v.
Then
wy — vAw = Qng(w,u + v)
{ w(0) = ug — vg

where we used the symmetry Ong(u,v) = Qns(v,u) and

Ons(u—v,u+v)=Qns(u,u) — Ans(v,v) + Ons(u,v) — Qng(v,u) .

By the energy estimate (4.5) for s = % — 1 we have
¢ ¢
- 2 2 _ 2
w = Hw(t)HH%71 + 21//0 va(t/)”H%Adt/ = HwOHH%il + 2/0 (QNS(w,u—l—v),w)H%ﬂ(t/)dt/.
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Claim 8.3. We have
(Qns(@b).c) g, < Cllall o [bll asllel, g
Proof. Indeed, trading derivatives we have

(Qus(a,b),¢) gy < [|Qns(a,b)| cll 4

gl
and by (8.1) we have
19ns(a,b)ll ;4 < Cllaf| jasi[|b]]  az1.

This proves Claim 8.3.
Now for N(t) := ||u(t)HH% + Hv(t)HH% by Claim 8.3 we have

t
Aw < fuwoll g, + 2/0 lw (@)l o NE) V()] g dt.
By the interpolation estimate in Lemma 2.20 we have

lw(E)],azr < llw( )Il?d Ve )]

1
2

d
2!

This implies

3
N(t’)||Vw(t’)H;%71dt’.

d
g

aaBNIE

¢
2 /
B < ol +2 [ fut?)]
Using the inequality ab < %a‘l + %b%, which follows by

1 3 1 3
log(ab) = 1 log(a*) + 1 log(b%) < log (4a4 + 4b§> ,

we get
3 3
the integrand = ( w2, Nt (2)) (Evve)2, )’
e integrand = | |lw i v 1 FVIVwE)I 4
< B w2, N + Ve
< gl T
Then
2 2 4 ¢ 2
/ ! /
Bu ol + g5 [ g N+ [0l
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In other words, by the definition of A,

t
(@), +2 / V@), de

t
<ol g+ g [ oIy N+ v [ v ar

so that, if we set
t
o 2 2
X(t) = w4, +V/O IV, ¢,

we have

33 t
X(0) < ol g, + g5 | Bo@)I? g N

S‘MMHZ 443L/<X Aﬂ

So by Gronwall’s inequality

t 33 t
2 N2 I < 2 4041 /
lw@®)I2 4, +v /0 Vw2 g dt’ < wol? 4, exp <44y3 /0 N (t>dt>.

This proves the stability inequality (7.7)
We now consider the blow up criterion (7.5). Suppose that u(t) is a solution in [0,7")
with

Notice that then u € L*([0,T7, H%) and

1Qns (u, u)

2
L2([07T]7H%72 B H H 4(Jo, ]Hi (89)

We claim that we can extend u(t) beyond T

Claim 8.4. There exists a 7 > 0 s.t. u extends in a solution in L*([0, T'+7), o (]Rd R9)).
First of all we set
g9(§) = sup [a(t',¢)l-

0<t'<T

Claim 8.5. We have ]f\g_lg € L2(RY).
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Proof of Claim 8.5. By (4.15) for s = 2 — 1 and by (8.1) we have

2 2
€12 g2 = / |§|“<sup |a<t’,£>> dé
R4 0<t'<t
1
(2v)2

C
< HUOH nd g T 1 HUHQ cd—1 < 00,
a2 (2v)2  LYOTLH )

19Nl

< . .
< ol g+ L2017, 14 2)

This proves Claim 8.5.
Proof of Claim 8.4. Claim 8.5 implies

_ +
IR
1€1=p
Thus there exists p > 0 s.t for any preassigned ¢ > 0
/ €42k, €)[2dE < (cv)? for all ¢ € [0, T).
l€1>p

Now, recalling the splitting in high and low energies in the proof of the 1st sentence in the
statement of Theorem 7.2, there exists a fixed 7 > 0 s.t. the lifespan of the solution with
initial datum w(t) is bounded below by 7 independently of ¢ € [0,T"). Indeed there exists a
c1 > 0 independent from t € [0,7T) s.t.

4

W

14
1
802 Cllut)] 4,

>c1 > 0.

This follows from the fact that
d_
[l ;g1 < Nl g2 < o0

So we can take 7 = ¢;. Then T}, > T+ 7 and this yields Claim 8.4.
Let us now discuss the blow up criterion (7.6). Suppose that T, < co and that

Ty
Cra ::/ "IV, dt < . (8.10)
0 H?

Since we have (7.5) and
d—1 d
2 2

Y0, 7], HZ (R%, RY) € L°([0, 7], B2~ Y(RY, RY)) 0 L2([0, T), H 2 (RY, RY))

it follows that since we must have (7.5), then (8.10) implies that

lim fu(#)]]

T—}Tuo LOO([OvT]ngil) - (811)
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For 0 <t <T <T,, we have, by (8.8) and interpolation,

t
HU()Ilzd 1+2V/ [Vau(t )II2 LAt = lu(ty)]3,, + /0<Q(U(t/),U(t’)),U(t’DHg_ldt’
< HU(O)HZ%_1 +C&/O HU(t')HE%IIVU(t')IIHg_Idt'

2 ¢ 2
! / /
<O, g, +Co [ )l g IV, 4
(8.12)
and so
2 2
I sy < NV g, + CaCralil g

But this means that

2,2 2
Leo(0,7), 81 = QCdCL2 + 2\/0 Cro + 4[u(0 )H , <00,

contradicting (8.11). This contradiction proves the blow up criterion (7.6).
The proof of Theorem 7.2 is completed. O
Theorem 7.2 yields also an alternative proof of Leray’s Theorem 5.4 for d = 2.

Corollary 8.6. In the case d = 2, Theorem 7.2 implies Leray’s Theorem 5.4 for d = 2

Proof. By the Leray’s Theorem 5.3 we know that given a divergence free uy € L?(R?,R?)
there are weak solutions in the sense of Leray with u € L>([0,00), L?(R? R?)) and Vu €
L?(]0,00), L?(R2,R*)). Interpolating, for each such a solution we have

1 1 1 1
lull g < el Z2 Vel 22llzs < el oo ol Vel £ e

and so we obtain also u € L*(0, oo),H%(RQ,]RQ)).
By Lemma 8.2 we know that this implies

Ons(u,u) € LQ([O, 0), H_l(R2,R2)).

Notice that the right hand side of (5.13) satisfies the hypothesis of the force term in the
linear heat equation (4.1). As a weak solution of the Navier Stokes equation in the sense
of Definition 5.1, u is then also a solution of the linear heat equation (4.1) in the sense of
Definition 4.1. This means that it is also a solution of (7.2). Since by Theorem 7.2 such
solution is a unique, we conclude that the solution of Leray’s Theorem 5.3 in the case d = 2
is unique. Furthermore by Theorem 7.2 we know also that u € C°([0, 00), L?(R?,R?)).

We now turn to the energy identity. By Leray’s Theorem 5.3 we know that

t
)2 g + 20 /0 IVt |22 ey @t < o2 g
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We want now to prove that < can be replaced by = in this formula. As we have mentioned
above, u solves in the sense of Definition 4.1 the problem

ou —vAu = Qns(u,u) with Qng(u,u) € L*(Ry, H 1 (R?, R?)),

Then, by Theorem 4.2 for s = 0 the identity (4.5) yields

t t
()17 +2'//0 IVu()I72dt" = [luol 72 +2/0 (Qns(u(t), u(t)), u(t)) r2dt"

By Lemma 5.6 we have the cancelation
<QNS(U7 U), u> = <]P’(d1v(u ® ’LL), ’lL> = <d1V(U ® ’LL), ’lL> = 0.

This completes the proof, by giving the energy identity. O

9 The case of initial data in L?(R?)

It is possible to prove the following theorem.
Theorem 9.1. For any divergence free ug € L3>(R3,R3) there is a T > 0 and a unique
solution u € C°([0,T), L3(R3,R3)) of

u = e""®ug + B(u,u). (7.2)
Furthermore there exists a €3, > 0 s.t. for |[ugl|ps < €3, we have T' = oco. Furthermore, if
ug € H1/2(]R3,]R3), the life span is the same of Theorem 7.2.
Exercise 9.2. Prove that the mapping H'/2(R3,R3) — L3(R3,R?) is not surjective.

Exercise 9.3. Prove that the subspace of divergence free vector fields in HY2(R3, R3) is
closed in H'/2(R3,R?). Prove the same for with H'/2(R3, R?) replaced by L3(R?,R?).

Exercise 9.4. Prove that the Sobolev embedding from the subspace of divergence free
vector fields in H'/2(R3,R3) to the subspace of divergence free vector fields in L3(R3, R?)
is not surjective.

Exercise 9.5. Pick a divergence free ug belonging to L*(R?, R3) but not to H/2(R3, R3).
Show that there exists a sequence of divergence free vector fields {ugn)} in H'/2(R3 R3)
with uén) — up in L3(R3,R3). Show also that |]uén)\|H1/2 — 00.

Exercise 9.6. Show that it is possible to define divergence free sequences {v(()n)} in H'/2(R3,R3)
with [[o{™ | 1,2 = 00 and [0S || 1s — 0.

Remark 9.7. For a sequence such as in Exercise 9.6, for n > 1 the corresponding solutions
of the NS equation are globally defined in time by Theorem 9.13, while Theorem 7.2 is able
to guarantee only on short intervals of time.
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To prove Theorem 9.13 we will apply the abstract Lemma 7.1 in an appropriate Ba-
nach space X. The striking fact though, is that the space X will not be of the form
CY([0,T), L3(R3,R3)). This because if X where this space, then the bilinear form B defined
by (7.1) is known not to be continuous. It turns out that to get the right Banach space X,
has required a certain degree of imagination and insight.

Definition 9.8 (Kato’s Spaces). For p € [d,00] and T € (0, 00) we set
0 d mpd $(3-1)
Kp(T) := {u € C°((0, 7], L (R, RY) : [|ull g,y = SE(JJPT](VW * P/ lu(®) e < oo}
te(0,
(9.1)
and for p € [1,d)

NI

(3 Ju(@)] 1 < o0}

(9.2)

Kp(T) := {u € C°([0, 7], LP (R, RY) : [lull k(1) == up ](Vt)
t b
We denote by K,(oco) the spaces defined as above, with (0, 7] replaced by (0, c0).
We recall that the solution of the heat equation w; — vAu = 0 is e2f = K, x f
. 2
where Ky(z) := (47wt)7gef%. Notice that K;(z) = (Vt)ng((yt)féx), where K(z) :=

2
=]

(47r)_%e_T and where K (&) = eI,
Notice that for ug € L4(RY) and p > d we have from (1.16),

d(1_1
||€tVAUOHLp(Rd) < (4mvt)? (P d> [[wol| pa(ray for all p > d, (9:3)
it can be proved that e“uy € C(Ry, LP), and so e”?uqg € K, (00).

Lemma 9.9. Let ug € L4(RYR?) and p > d. Then

: tvA
Jim {|e™ ol () = 0. (9.4)

Proof. For any € > 0 there exists ¢ € L*R%,RY) N LP(R?, R?) s.t. ||u — ¢||;¢ < €. Then by
(9.3) we have

i(l_l)
v — Bk, (1) < (dmvT)2\r D€

Since [|e”2¢||» < ||B]|Lr, it follows

dfLi_1 dfi_1
I gl ry = sup (1332l < DEED)glz 200

te(0,T7]
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Lemma 9.10. Let p, q and r satisfy

(9.5)

[a—

1 1 1
-<-+-<5+-
r p q d T
Then the bilinear map B defined in (7.1) maps Kp(T) x Ky (T) — K,(T) and there is a
constant C independent from T s.t.
1B(w, )| k(1) < Cllullr,(m)llvll k(1) (9.6)
To prove Lemma 9.10 we consider for any m = 1, ..., d the problem

{(me)t — VAL, f =PO,f

L f(0,2) =0 (0.7)

(L f is by definition the solution of the above heat equation). Then by (4.7) and (5.15)

for ¢;ji, the constants s.t. Pu’ = Z;{k:l cijkfjgklf\ﬂilk, we have
Lnfi(t,€) = Y cij / e IR g6l 2 PR ()t (9.8)
Gk=1 0

This means, for I'j;, (¢, ) the inverse Fourier transform of e_t”|§|2£j£k£m|£\_2,

d t
Lufit) = e /0 Lyt — #) 5 FE() . (9.9)

Gok=1
We claim the following.

Claim 9.11. We have for a fixed C' > 0

T e (£, 22)| < OVt + |z]) =41 (9.10)
Proof. 1t is elementary that I'j,, (t, z) = (Vt)_%l“jkm((yt)_l/%) with fjkm(x) = e_|5|2§j£k§m|£\_2.
Then (9.10) is a consequence of

D ()] < C(L+ |a]) =41 (9.11)

It is straightforward that T'jg,, € C(RIT1) N L>®(R¥H1), because of the rapid decay to 0
at infinity of e_|5‘2§j§k§m|§|_2. Hence, to prove (9.11) it suffices to consider |z| > 1. For
xo a smooth cutoff of compact support equal to 1 near 0 and with x1 := 1 — xo, we set

Ljim() = (2m)7% /R e x0 (Jol6) e x gl e
+(2m)7% /R e (frl6) €T rml P

79



The 1st term in the r.h.s. is

5/ €] d ~ |24,
|€]<|z|~1

We next consider the other term, which we split as
_d _it-x —1£12 _
er 4 [ e (o1 x0 (O e g6l e (912)
d .
+(2m) % /R e (©) e g gtnle| . (913)

Notice that the last line is O(|z|~") for any N. Indeed, x1 (£) e_|5|2§j§k§m\§|_2 € S(RY),
and so also its Fourier transform (9.13) is rapidly decreasing.

Let us consider the term in (9.12). Set L := iﬁ - V¢ and notice that Le 6% = 716,
Then, the term in (9.12) is

d .
2n) 7t [ oL (v () P Egnlel ) de
Rd
The absolute value of the integrand is for fixed C
L2 ()| < a2~

Here we used that in the support of V¢ (x1 (|z]€)) we have |z| ~ |£|71. So the last integral
is bounded

Shal™2 [ e o a2 =
1>[€]> x|t

This completes the proof of Claim 9.11.
O
Completion of proof of Lemma 9.10. By (9.10) we have by Young’s inequality for
convolutions and Hélder’s inequality for the tensor product of u and v the bound (here

1 _ 1_ 1 1_1,1
=14+ ﬁandﬁ—p—l-q)

t
1B(u,v)ll - <CL Y /O Tt = )| o [[u(t) @ v(t)]| L at’

Jym,k

t
<O Z/O T (£ — )]

j7m7k

Lo “(t/)HLp H”(t/)HLq dt’

1

¢ _1_df1,1_1 _df2_1_1
S/O(t_t’) 2 2(p+q r)(t’) 2(d P q)dt,HuHKp(t) ”UHKq(t) (914)
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where in the 3rd line we used

—d—1
‘ _ < f— ¢ —d—1 (4 - |z|
[T m ke (t t)‘L“(Rd)NH( t—t'+|z|) HLa(Rd) (t—t) =2 1+ —
La(Rd)
_dt1 d g _dilydfq1 11
— t—t, t—t/ - 1 d 1‘ ~ (T t, 2 2( > q>
(=) = 0E @ )|~
=(t— t’)*%*%(#ﬁ’%)_
We then conclude
_d(1_1
1B, )l < 3G ull e g ol o (9.15)

where we used the fact that V a, 8 € (—00,1) we have

t 1
/ (t—t") ") Pdt' = C(a, B)t1 =7 for all t > 0 and for C(a, B) := / (1—t" )~ Pat'.
0 0

(9.16)
and
Lod(r 1 1\ df2 1 1\ 1 d/2 1\ _1 . d
2 2\p q r 2\d p q) 2 2\d r) 2 2r
1 d d d/1 1
S Y R [ T I
2 2r * 2r + 2 <d 7")
Notice that in the inequalities in (9.5) we need:
1 1 1
° 3 =~ 4 = < 1 in order for u ® v to belong to the Lebesgue space L?(R?);
p g
1 1. . .y . .
e 0 < — + — is needed because otherwise in (9.14) we get (')~ and the integral is
p q
undefined;
1 1 1
e — < — + — is needed for a > 1;
r p g
1 1 1 1 1 d/1 1 1
e —+— < —+—isneeded toget —— — - ( —+ — — — | > —1 in the exponent of (¢ —t)
p q d r 2 2\p q 7
in (9.14).
O
We have the following fact.
Proposition 9.12. For any p € (d, o] there exists a constant €, > 0 s.t. if
||€tAU0HKp(T) < éEp (9.17)

then there exists and is unique w in the ball of center 0 and radius 2ep, in K,(T') which
satisfies (7.2).
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Proof. Setting r = ¢ = p, we see that for p > d we have B : K,(T) x Ky(T) — K,(T) is
bounded and with norm that admits a finite upper bound independent from 7. The proof
follows then from the abstract Lemma 7.1. O

Theorem 9.13. For anyug € LY R R?) thereis a T > 0 and solution u € C°([0,T), L%(R?, R%))
of (7.2) which is unique. Furthermore there exists a €4 > 0 s.t. for ||uo||pe < €qp we have
T = 0. In the case d = 2, in particular, all solutions are defined for all T > 0.

Proof. We have e'®ug € K,(T) for any p > d, see (9.3). Furthermore, |e"“ug|| (1) =99

for p > d by Lemma 9.9. Then we can apply Proposition 9.12 concluding that there exists a
solution u of (7.2) in Ko4(T") for T' > 0 small enough. Applying Lemma 9.10 for p = ¢ = 2d
and r = d we get B(u,u) € C°([0,T], L), and so u € C°([0, T], L%).
We assume now that there are two solutions u; and ug in C°([0,T], L%). We already know
the uniqueness for d = 2, so we will focus uniquely on the case d = 3.

Setting ug1 = ug — u; and w; = B(uj,u;) we have

{3tu21 —vAug = fa
UQl(O) = O

fo1 = 2Q(e"Pug, u21) + Q(wa, uz) + Qwr, ug).

with

By L2(R3) — H~2(R3), which is the dual of Sobolev’s Embedding H2(R3) < L3(R?), we

have
1Q(u, v)]| .

it S 080l ) S @l g ) < lulls ol

. 1
H™ 2 (R3 L2(R3) —

Then, by (4.5) and entering the definition of fo;

t t
Hum(t)HiI_% +2u/0 ||Vu21(t’)”2_%dt’ < 2/0 (for(t), ua1 (') at’

L1
H™2

t
<4 [ Qe B up,um)l -y [Fum (O]
0

H™ 2
t
+ 2/ |Q (w2, uz1) + Q(wlauﬂ)HH_% HVUm(t’)HH_%dt’. (9.18)
0
We bound the last line with, for j =1, 2,
t t
2/0 1Q(wj, uan)ll g IVuar () -y dt’ < ||wj\K3(t)/0 luzr ()| s | Vazr ()] -y dt!
t
S sl | 19w @)IE,y . (9.19)
0

where in the last line we used Sobolev’s Embedding H %(R?’) — L3(R3).
So, the last line of (9.18) is

t
S (lwrllzese) + szHm(t))/O [Vuar (I, dt" (9-20)
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We split now

ug = u(()l) + u(()Q) with Hu(()l)HLs < € and u(()Q) eLl’nr?

and we bound similarly to (9.19)

t t
J A Y | O PR s P A G

Finally, we bound
¢ A, (2)

/

e )l I (1,

/ e 2u® & un |,y Vs (), _ydt' / e 2u® © unll, 4| Vun (¢ _ydt’

3
2

l
2

l\.’)

1
A 1
/ e 2 ug? | o lua 2 [ Vuzll -y dt’ < g’ HLf’/ luza[? 4 Va2l

So we get
t W t
e (01, +20 [ 190 )1yt < (lonla + el + 106”s) [ 19 ()12

t
112 ! (2)))4 2 /
Oyt + 1 [ ol

Taking C large, and ¢ small, so that [Jw1]| g, ) + l|w2 |l & 1) + ||u(()1) |3 < 3€ with e sufficiently

small, we obtain
2 c! (2) 4 ! 2
/
v [ 1Oy S Sl [l i

Gronwall’s Inequality implies that ug;(t') = 0 for all ¢’ € [0,¢] with ¢ > 0 sufficiently small.
The above argument shows that the set

[|uz1 (%) H2

(te[0,T): up =0in [0, (9.21)

is open (and, obviously, non empty) in [0, T'). On the other hand, since ug; € CY([0,T), L3(R3,R3)),
the set in (9.21) is also closed in [0,7"). Hence, since it is non empty because if contains 0,
it coincides with [0,7).

Next we turn to the global existence for small data. This follows ||e
Calluol| La(ray and Proposition 9.12 when Cyl|uol| para) < €2ap-

tVAUOHKQd(OO) <
O

Remark 9.14. Let ug € H%(R3,R3). Then it can be proved that if 75 > 0 is the lifespan
of the corresponding solution u € C°([0, T3), L*(R3,R?)) provided by Theorem 9.13 and if
T, > 0 is the lifespan of the solution provided by Theorem 7.2, we have T3 = T,,,. We will
prove the simpler result in Proposition 9.15.
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Proposition 9.15. Let uy € H%(R3,R3). There there exists €3, > 0 s.t. for |luol|13ms) <
€3, and if Ty, > 0 is the lifespan of the solution provided by Theorem 7.2, we have T, = co.

Proof. Taking ez, > 0 sufficiently small we can assume by Theorem 9.13 that u € C°([0, 00), L?).
In fact, if it is sufficiently small we can prove |[ul| Lo (j0,00),23) < Cvlluol|s for a fixed C,, > 0.
Suppose that T3, < co. Then by Theorem 7.2 we have the blow up
T
lim V()| 1 dt = co. (9.22)
T /Tuy Jo H2

By Theorem 7.2 and by (4.5), for 0 < t < T < T, we have

dt'. (9.23)

(S

t t
2 N\ [12 !/ 2 AW ! /
Ity +20 [ IV, e =l +2 [ (e - Fule)ue),

By Sobolev’s Embedding H%(R?’, R3) — L3(R3,R3) we obtain
[(u Vs u) | = [ Vi, Va) pa] < Jlull ol Vul|7s < Cllullga]| Vull? 4

Then
2 ¢ 2 2 ! 2
! ! / /
I 5 + 20 [ 191y < ool + Ol i [ 19N
t
2 |12 /
< Jluol? +cycuu0HL3/0 [Vu()|?,, dr"

So, for C,Cluo||zs < v, we get

t
2 |12 I < 2
Iy + v [ I9uE)I2 at < ol

which contradicts (9.22).
O
We will prove now the following.

Lemma 9.16. The solutions u € C°([0,T), LR R%)) in Theorem 9.13 are in C*((0,T) x
R¢,RY).

Proof. A proof of this lemma is in [11, Proposition 15.1], but it uses Besov spaces so here
we modify the argument. We know the result already for d = 2, so we consider only d = 3.
We notice that e/“ug € K,.(c0) for all r > d and e'®ug € C*®((0,T) x R%, R?). We already
know that, for S > 0 sufficiently small, we have u € Ko4(S), see the proof of Theorem
9.13. Then, using Lemma 9.10 we conclude that B(u,u) € K, (S) for any r € [d,c0) (notice
% + % < 241 in (9.5), where p = ¢ = 2d in our case). So u € K,(S) for all r € [d, c0).
But then, applying again Lemma 9.10, we conclude that v € K,(S) for all r € [d, o], and
in particular u € L*([to, S], L" (R?)) for any ty € (0,5) and any r € [d,00). Let us fix an
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r € (2d,00) and let us prove by induction that u € L ([to, S], W%’T(Rd)) for all k € NU{0}.
We have shown this for £ = 0, and let us suppose by induction that it is true for some k.

Then we will show u € L>®([t1, 5], W%“(Rd)) for any to < t; < S. We can write

¢
u(t) = et108y (1) — / UTIEPY - (1 ® u)ds. (9.24)
to

k+1

We know that e(t=t0)%q(to) € C=([ty, S], W 2 " (R%)) for all k, so we focus on the integral.
We write

t t

-2)% [ BT o udsl g, S [ I(-8) 3V IS A w e,y ds
to to
t

< Cur [ (t= ) Hl B (e = )2 ) g, d

to
t

t _3 _3
< Clpsi [ (t=9) Huwal s < Clsy [ (0= s) Hal?,  ds

to to

— 40" o (t—to) 1 ||ul)? ,

a5,k ( 0) Hu”L”([tO,S],W%’T(Rd))

where we exploited the Calderon Zygmund theory (for example, Theorem 3 at p. 96 in [15],

and the relation between the constants B and A, in that statement where, from the proof,
A, = Ap(B)). Next, for k =0 we use Holder’s inequality to bound

¢ _3 ¢ =3, 02 L2

Cinso [ (=9 Huw ulirds < Clys [ (=9 Hullards < O solt = )l g 500
0 to

while for k& > 1 we use the fact that W3 (R%) is an algebra to bound

t t
3 3
C’ t—s) 1 ds < C" /t— “Iull? . d
d,r,S,ks/tO( s) Hluul x,ds < Cypop to( s) Hung,,« s

= A0 ¢ (t — 1) |Jul)? .
d,T‘,S,k)( 0) H ”LOO([t(],S],Wg’T(Rd))

Now we use a general result of the theory of semigroups which guarantees that for f €

LY((0,T), X), where X is a Banach space where e'* is a contraction semigroup, then

t

v(t) == —/ =98 f(s)ds
to

satisfies v = Av + f(t) in D'((to, T), X), see [3, Proposition 4.1.6 (ii)]. In our case, since

u € L>([to, S], WFr(R%)) for all k& and appropriate 7 < 0o, and f = —PV - (u ®u), we have

v = Av+ f(t) in D'((tg, T), WFT), since ! is a contraction semigroup in any space W

for r < oo.

Furthermore, the Hille-Yosida—Phillips Theorem, see [3, Theorem 3.1.1], guarantees that
oretPu(to) = Net®u(to) in D'((to, T), WH") for all k and our r < oco.
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Summing up, we obtain that
du = Au—PV - (u®u) in D'((0,5), WF"(R?) for all k. (9.25)

Since the r.h.s. isin L% ((tg, S), W*" (R9)) for all k, it follows that u € W1>((tg, S), W (R%))
for all k, which fed again in (9.25) yields u € W2>((tg, S), Wk"(R%)), by applying Leib-
nitz rule like in Brezis [2, Corollary 8.10]. By induction, proceeding iteratively we get
u € Wh*((tg, S), Wkr(R?)) for all I and k, and so the statement.

O

10 Vorticity

We recall the following.
Lemma 10.1. Suppose that f € S(R?). Then u € S'(R3) satisfies —Au = f if and only if
1

4|z

u=Kx f+h with K(z) := (10.1)

and h(x) a harmonic polynomial.

Proof. Notice that —Ah = 0 requires |§|2ﬁ = 0, that is, 5uppﬁ = {0}. But suppﬁ = {0}
implies h = Z o<k aq0¢0, with k the order of @ and a,, arbitrary constants, see [9, Theorem
2.3.4]. Then h is a degree k harmonic polynomial.

Next, let us consider the tempered distribution given by v = %f Now, recall from

Lemma 2.18, that
swr)
Y [ S ¥ o (0 A
PO = Jre o8

So, for example, for v =2 and d = 3, umng ['(2) = 1and ['(1/2) = /7, we get F~1(|¢]72) =
f FE Recalling also the formula f *xg = (271) fg, we get

1 \/?1*f_1 1*f
CemE V2 fz T Am a7

By linearity, u € S'(R3) satisfies —Au = f exactly if it is like in (10.1).

If we consider a field u € S'(R3,R3), then its vorticity is w := V x . N
Lemma 10.2. Let u € WHP(R3 R3) with p € (1,3) and with divu = 0. Then
u="Tw, (10.2)
where
Tw:=— ! T w(y)dy. (10.3)

A re |z —yf?
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Proof. First of all, for divergent free vector—fields we have the identity —Au =V x w.
Let us now assume w € C2°(R3,R3). Then we claim

1 1
m * 8jwk = (ajm> * WE - (10.4)
Indeed, by applying the divergence theorem, we have
L .o I ()9 ——dy + lim / — I3 e(y)dS
— % Qjwp, = — lim w im
o= L w0y T | e

1 1
/RB bW)0; ey (Jm) "

Still for w € C°(R3,R3), from —Au = V x w, from Lemma 10.1 and (10.4) we have

1 1 1 1
— —

1
LI i+ h=Tw+h,

€ i€ijh EE

where the components of h are harmonic polynomials. From the Hardy-Littlewood-Sobolev
inequality, we have ||[Tw||ramrs)y < cf|w||pr(rsy for % = % — 1, if 1 < p < 3. Since also
u € LI(R3,R3) it follows that also h € L(R3,R3) which, given that the coordinates of h
are polynomials, implies u = K * (V x w) = Tw in the case w € C2°(R3,R3). For the general
case, let C°(R3 R?) 3 &, —% w in LP(R3,R3). Then u, = T@, — u € LI(R3,R3),

with © = Tw. Notice that
Ve, =V -Tw, =V [(=0)"HV x@y)] = (—2) [V (VxTy)] = (-L2)"'0=0.

This implies, in particular, that V - o = 0.
Next notice that P, which is a Calderon—Zygmund operator, is a bounded operator inside
LP(R3,R?). Thus, for

Gn =M + 3P with &M = Pw, and 3@ := (1 — P)w,,

we have @57 2% w and T2 2% 0 in LP(R3,R3). We have

—Aun—wa() V X wy , where w, :=V X u,.
From the formula Po = —A~1V x (V x 0), see (2.9), we obtain oV =Pl = Puw, = w,.
Hence we have proved that V x u,, = wﬁb ) Taking the limit in this last equation, we obtain
n—00 ~(1) n—

V Xu = w, since V X u, —— V X u in a distributional sense, and wy, 27 win
LP(R3, R3). Hence we conclude that V x u = V x w.

We can finish the proof in two ways. The first is to observe that A(u — u) = 0, so that by
Lemma 10.1 we have u —u = h, where the components of h are harmonic polynomials. But
since both u,u € LI(R3,R3), we get h € LY(R3,R3) and, as above, h = 0.
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The second way to finish is to use again formula (2.9) and to conclude u = Pu = Pu = 4.

Notice that for any u € S'(R3,R3) we have V - w = 0. Indeed N
V- (V xu) = (€;,0;0;)u, = Oug, = 0
by 0;0; = 0;0; and by €;r = —€jix-
As we know, a solution of NS formally satisfies
ur —vAu+u-Vu=—-Vp.
Notice that if u is regular,
(u-Vu=2"1Vu> —u x w, (10.5)
since indeed (u - V)u = e;ujdju; , 271V |ul? = e;u;0;u; and
u X (V xu) = eeijpui(V X u)g = eigijreyjruujOyuy = €;(0ir0;5 — 855105 )ujOpuj
= e;u;0iuj — e;u;0;u;.
Summing up, we obtain (10.5).
From (10.5) we obtain
VXx((u-Vu)=-VXx(uxw)=(uVw—(w-V)u, (10.6)

from div 4 = div w = 0 and
V X (u X w) = egijrdj(u X W) = eigijneirji(wjOjuy + uyOjw;ir) = €i(0410550 — 03510530 ) (wjr Djuyr + uy Ojwjr)
= ej(w;0ju; + ui0jwj) — €;(w;0ju; + ujojw;) = e;w;0ju; — eju;0jw;.
Then, applying Vx to the NS, we formally obtain
wr —vAw+ (u-V)w = (w-V)u. (10.7)
If we apply (-, ¢>L?z to (10.7) with ¢(t, x) a function in C°((0, 00) x R?, R3), then, exploiting
Vai-u=Vg-w=0,(10.7) implies
/OO ((w, 0rp) + v (w, Ag) + (w,u - Vo) — (u,w - Vo)) dt' for all ¢ € C°((0,00) x R? R?),
’ (10.8)

which is the weak form of the vorticity equation. The above discussion is purely heuristic,
but we have the following.

Lemma 10.3. Let u be Leray Hopf solution of the NS, in the sense of Definition 5.1, with
u € L®(R,, L?) and Vu € L*(R, L?) and consider the vorticity w. Then, the pair (u,w)
satisfies (10.8).
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Proof. For ¢ € C°((0,00) x R?,R?) we have V x ¢ € C%((0,00) x R3,R?). So, by (5.4),
we have

/]R (—v(u, AV x @) — (u, V x 94¢) + ((u- V)u,V x ¢)))dt’ = 0.

Integrating by parts, we have (u, AV x ¢) = —(w, A¢) and (u, V x 91¢) = —(w, 9y¢). Notice
that for u(t) € H', formula (10.5) is true, and if u(t) € H?, then formula (10.6) is true.
This means that if u(t) € H?, for that value of ¢ we have

((u-V)u, Vx ) = (w, (u-V)g) = (u, (w-V)).

By the discussion in Sect. 6.1 and the discussion of regular solution in (6), u(t) € H? for
for a.e. t € R;. This yields (10.8).
O

Lemma 10.4. Let B be a bounded open subset of R, consider a divergence free vector—field
u € L"(B,R3) with Vu € LP(B), where r € [1,00] and 1 < p < 0co. Let Q be an open subset
of B with Q CC B and with boundary . Then

u(z) = T(xaw) + h(x) for all z € Q, (10.9)
where h is a harmonic vector—field in Q.

Proof. We can start by defining h by formula (10.9). Let us consider an open ball B; in
2, and another ball B; CC By C By CC Q. Then let ¢ € C°(Q,[0,1]), with ¢|p, = xB,-
Then we write

u:=TV x (pu) =T(pw) +T(Ve X u)
= T(xow) + h where h = T((¢ — xo)w) + T(V x ).

Notice that h is harmonic inside B1. Indeed,

~ 1 T —y 1 vy
Ah:—A/ —— = x w(@)(e(y) — xa(y))dy — —A Y (Vely) % uly))dy = 0
A7 B\]B2 |ﬂf—y\3 ()(SD() Q( )) A7 B\IB2 |x—y|3 ( 90() ())

by Axﬁ = 0 (this follows from Ar=2 = (92 4+ 2)r=2 = 0 for r # 0, and then applying
V to this equation), for x # y and by differentiation with respect to a parameter in an
integral. In B we have

Vx(u—u)=VXx(pu—TV x (pu)) =0, (10.10)

where the 1st equality follows from v = pu in By and from the definition of u, and where
the 2nd equality follows from

P(ou) =TV x P(pu) =TV X (pu) (10.11)
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where for the 1st equality we apply Lemma 10.2 to P(¢u). This we can do because by
u € L"(B,R3) with Vu € LP(B), if the boundary 0B is smooth, by Poincaré-Wirtinger
inequality we have

Hu—wrﬂéuhmﬂscmvwmwy

If the boundary 9B is not smooth, we can simply replace B by another open domain B’
s.t. @ CC B’ € B’ CC B with B’ is smooth.

Then u € W1P(B,R3). Obviously also pu € WHP(R3,R3) and so also pu € WHP(B,R3). If
p € (1,3) Lemma 10.2 applies to P(¢u). If p > 3, then P(pu) € W¢(B,R?) for any a < p.
This proves (10.11) and completes the proof of (10.10).

From (10.10) and from the usual identity

Au—u)=V(V:-(u—1) =V x (VX (u-—1u))

we obtain A(u —u) in Bz, So u — w = hy with h; harmonic in Bs. So u = @ + hy Thus we
conclude that w = uw+ h; = T(xqw) + h with h := h+ hy harmonic vector—field in B;. This
implies the statement of the lemma.
O
Recall that, for Q an open subset of R?, the space C*(Q) with o € (0, 1) is the subspace
of CF(Q) N WH°(Q) defined by the functions f satisfying the additional conditions
0" f(x) — 0" f(y)]

sup sup - < 00
|u|=k x#y in Q ’.CL‘ - y|

Let Bg a ball of radius R and a fixed center(which we can take to be 0) in R3.
Lemma 10.5. Let u € L>((0,T), L*(Bg)). Then, for any R' < R we have:

1. forB € [2,00] and k € {0,1,...}, w € LA((0,T), Wk>*(Bg)) = u € LP((0,T), W+ (Br/));

2. fora € (0,1) andk € {0,1,2,...}, w € L5((0,T), C**(Bg)) = u € L?((0,T), C*1(Bg))
for any o € (0, ).

Proof. The proof of the first statement is elementary. We consider only case k = 0. We fix
R" € (R',R). Then, by Lemma 10.4 we have

1 —
u(z) = _/ % X w(y)dy + h(x) for all x € Bgn,
Am Jp.. 12—yl

Since h is harmonic in Bgw, it follows that h € L?((0,T), W™ (Bgw)). Next, for x € Bg
we have

r—y
/ 5 X w(y)dy
Bgn |z —y|

1 1
<[ el s/ L gyl sy = s
/BR,, |z —y[? (Br) yl? (Br)

B2Rl/ (I) ":U -
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The 2nd claim in the statement of Lemma 10.5 is more delicate. It is not restrictive to
consider only £ = 0. Using the above discussion, we don’t need to worry about h. We
consider ¢ € CZ°(Bpgr, [0,1]), with ¢|p,, = xB,,. Then is

u(z) = /B ;__5‘3 x w(y)dy = /B I < w(y)e(y)dy +/ T < wl(y) (1 - p(y))dy

_ 3 _ |3
R” R// ‘x y’ BR// ’x y|
and it is elementary to see, that the 2nd integral on the r.h.s. is smooth in Br. We look

then at the 1st integral on the r.h.s. and we absorb ¢ in w, simply assuming w € Cg’a(BR)
and let us consider

v(z) = /R TTY w(y)dy.

s |z —y[?

We have the following lemma.

Lemma 10.6. Let K be smooth in R¥N\{0}, homogeneous of degree —(d —1). Then

0,0 = PV. [ 0K (bu)dy = c0(0) for all b€ CEX(RY) (10.12)
where ¢j = flml=1 K(x)z;dS.
Proof. We have
— (K 0p) =~ lm [ K@owdy = lim | 9K@w@)dy+ lim [ K(y)py)Lds
=0 Jy|ze =0 Jiy > =0% Jyy|=c vl
=PV [ oK@y +00) [ Kgupds
R4 lyl=1

O]

Exercise 10.7. For K like in Lemma 10.6, that is smooth in R\ {0} and homogeneous of
degree —(d — 1), we have f|a:\=1 0;K(x)dS = 0 for any j. Show this in two ways. First way,

by using the information that P.V.9;K € S'(R%). Second way, by a direct computation of
the integral [ _; 0;K(z)dS.

ANSWER. Let us look only at the 2nd approach. It is enough to consider j = d. Let
us consider cylindrical coordinates

Tq= T4
(21, ..y Zg—1) = rw with r > 0 and w € §972

Then, for x4 = pcos ¢ and r = psin ¢,

/ 04K (x)dS = dS(w) / ., RO KAl = / dS(w) / sin?%(¢)(cos ¢p8,K — sin pdyK)d¢
lz|=1 gd—2 xgtro=1 gd—2 0

>

= — / dS(w) / W((d — 1) sin?%(¢) cos 9K + sin® ! (¢) 0y K )do
Sd—2 0

=— /sd—2 dS(w) sindﬂ(qg)[(]iig =0 by sin(0) = sin(7r) = 0.
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Here we used 9,,K = cos 99, K — Sir;¢8¢K. O
Returning to the proof of Lemma 10.5, we can assume initially that w € C°(Bg).
Then from Lemma 10.6 it is easy to conclude that

Vu(z) =PV. [ V, 7‘13 X w(y)dy + Lw(z) = P.V. Vyﬁ x

RS |T—
with L some fixed linear operator in R3. Obviously [Lwl|coa(B,y < (LI lwllcoasy), so
the key term we need to bound is the P.V.
Let us define Hy,(y — z) by

w(y)dy + Lw(x),

Yj —
& iHi(y — x)wi(y) = ?ﬁz‘jkﬁwk(y)'

Then
dav(x) = €;P.V. /3 Oyo Hir(y — x)wi(y)dy.
R
An elementary computation shows that
(a) 1
Kik (a;) = 8a:aHik($) = Emkw — 351‘jk7
These functions are homogeneous degree —3 and satisfy

K (2)dS = 5wk/

lz|=1 |LU\3

—_dS — 3eij /| 53T 1S = dresan — 3Eian /| | 23dS
z|=1

=1 =1 |z[°
cos®(¢)

= Arg;qr — 6TE ik / COSQ(¢) sin(¢)d¢ = 4meiqr — 6TE qk
0

2
]g = _4775iak — 6775z’ak <—> =0.

We claim now that for any o/ € (0, «) there is a constant C, s.t. for all z,2’ € Bg/

!

PWQégéﬂww@—ywy—RvA;kawa—ywﬁscwmwﬁﬂwmm—fw-
(10.13)

This will prove the second claim in the statement of Lemma 10.5 for w € C°(Bg), but in
fact by density this will extend to all w € CO*(Bg).
The Lh.s. of (10.13) can be written as

‘P.V. Kz(;j)(y) (w(a' —y) —w(@’) —w(z —y) + w(z)) dy’

R3

by the cancelation f|$|:1 Kl(;j) (2)dS = 0. Tt is elementary that

(@ —y) —w(a) —wlz —y) +w(@)] < 2Alsllgoegs,, minglyl ¢ — 2]},

92



Then
‘P.V. /R3 Kl(,?) (y)w(x’ — y)dy — P.V. /R3 Kl(,:) (y)w(x — y)dy’

1 .
S 1llcpqay [ o mindlui®,la’ =i}y

2R

|z’ —z| 2R
< Il s, (/0 oIyl + 1o’ —af* [ \yrld\m)xuwucg,a(BR)w—w\1og|x’—x|\.

' —z|

O
We end this section with a result not particularly related to the rest of the section, but
which will be useful in the sequel.

Lemma 10.8. Given a field u € L"(R3 R3) for r € (2,00) there is a unique solution
p € Lz(R3) of the equation

- Ap == 81@ (uluj) (1014)
which is given by
0; 0;
p= \/I \/_]T(uzu]) = Rsz(uzuj) (10.15)
It satisfies
Ipll, 5 < Cr > Nl 5 < CrllullZ (10.16)

i?j

Proof. The discussion is similar to that in Lemma 10.2. The estimates follow by the esti-
mates on Rietz transformations. O

Proposition 10.9. Consider a weak solution u of NS in d = 3 with u € L®(R,, L) N
L3Ry, HY) and define the pressure p € L'(Ry, L3) by the equation (10.14). Then u is a
distributional solution in Ry x R? of the equation

ug +u-Vu—vAu=—-Vp (10.17)

Proof. Recall that u satisfies equation (5.4), and thus, in particular,
/R (v(u, AW + (u, ;W) — (div(u @ u), ¥)) dt’ = 0 for all ¥ € C2(R,; x R?, R3).
n

Exploiting Remark 2.3, which states that CS°(R3, R3) is dense in V, we claim that

for any T > 0 the space C2((0,T) x R?,R3) is dense in CL((0,T),V). (10.18)
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To prove (10.18), consider ® € CL((0,7),V) and its derivative ® e 09(0,7),V). For
any given € > 0, let 0 < tp < t1 < .. <ty < T, with & = 0 outside [to, tar], and
|®(t) — ®(s)||gr < € for t,s € [tj_1,t;], for any j = 1,...,M. For a § > 0 to be fixed
later, let W(tj) € C5(R%R?) s.t. [W(t;) — &) g < 6 for all j = 1,..., M and define
U(t) = tj'zt_jt_l\i/(t] 1) + t] bt \I/( ;) for t € [tj_1,t;] and ¥ = 0 outside [to,tM} Then

H\I/(t) — &(t)|| g1 < 6 for all t € [0,T]. We also have
T v

|| <7
0 H!

For 0 € C2((0,T),[0,1]) a cutoff with fo t)dt =1, let

B(t) = b(t) - o) /OT ¥ (t)dt
Then
[(8) = &(t) 11 < (T + 1)
and for \Tl(t) = fot E/(t')dt’ € CL1((0,T),V) we have \f/(t) € C2(R3,R?3) for any t and
() — ()] g1 < 6(T + 1)T.
1:Text, taking a cutoff p € C°(R, [0, 1]) with [ p(t)dt = 1, we can assume that U(t) := py, *
U(t) is in C°((0,7),V) and that
1) = ¥®)leroriv) <0

Then [|®(t) — Y (t)|lcaory,v) < 6(T + 1) 46 < ¢, if we pick § > 0 small enough. This
completes the proof of (10.18), since clearly ¥ € C2((0,T) x R3,R3).
By (10.18), we claim that

/ (—v(Vu, VO) + (u, ;@) — (Pdiv(u @ u), ®))dt' = 0 for all ® € C}(Ry,V), (10.19)
Ry

which, in particular, implies

/ (v(u, A®) + (u, 9®) — (Pdiv(u @ u), ®)) dt’ = 0 for all & € C°((0,T) x R R?).
R4

(10.20)
= @ in CL([0,T), V), for

n—o0

To get (10.19) consider a sequence C2((0,7) x R3,R3) 5 &,
T appropriately large s.t. supp® C (0,T) x R3. Then, obviously

T
/ (—(Vu, VO,) + (u, 8®,)) dt’ =% / v(Vu, VO + (u, 8;®)) dt’
0
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and
r 2
/O |(Pdiv(u @ u), ® — @n)| < [lu @ ullp10,1),02) |Pn — Rllcoory,vy < llullzzor), 01 Pn — llcoo.r),v)

3 1 n—00
< Hvu‘|[2,2((o,T)7L2)‘|UHE2((07T),L2)H(I)n - (I)HCS([O,T],V) 7% 0.

So, by taking the limit with n * 0o, we obtain (10.19).
Now, looking at (10.20), we can write Pdiv(u ® u) = div(u ® u) — (1 — P)div(u ® uw). So, by
a direct computation which uses Pv = v + 71-R¢ijj, we have

(Pdiv(u @ u), ®) = (div(u ® u), ®) + (R; RO (uPu?), ®;) = (div(u @ u), ®) + (0; R; R (u™u?), ®;)
=div(u ® u), ®) + (Vp, D).

So, plugging in the previous equation, we get the desired result:
/ (v, AD) + (1, D) — (div(u @ ), ®) — (Vp, &) df’ = 0 for all & € CX(R, x R®,RY),
Ry

Remark 10.10. Notice that the related remarks at the bottom of p. 116 [13] are based on an
incorrect Helmholz-Weyl decomposition of vector fields in S(R? R?). Notice in particular
that the solution of exercise 5.2 in p. 429 is wrong.

11 Local Serrin regularity

In this section we will prove the following result.
Theorem 11.1. Consider u, a weak solution of NS in d = 3 with u € L>®R,, L% N
L*(Ry, HY) and suppose that, for an open subspace U C R3, we have
2 3
we L"((0,T),L°(U)) where - + = 1, with r > 2 and s > 3, (11.1)
excluding case (r,s) = (0,3). Then for any open Q C Q CC U and any ty € (0,T]
u e L ((to, T), H*(Q)) for any k = 0,1, ... and u € C([to, T], CO(Q)) for any ~ € (0,1/2).
Remark 11.2. More generally, for any k there exists ay € (0, 1) with u € C*([to, T], C¥(0)).

The case (r,s) = (0,3) is also true, but is not discussed here.
Theorem 11.1 will be obtained as a consequence of Theorem 11.6, see below, which
requires a definition.

Definition 11.3. We say that u is a local weak solution of NS in (a,b) x U if
1. u € L*®((a,b), L*(U)) and Vu € L?((a,b), L*>(U)) and

2. wu satisfies

/b ((u, AW + (u, 03 0) — (div(u @ u), ¥)) dt’ = 0 for all ¥ € C°((a,b) x U, R?).
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Notice that weak solutions in [0, 00) x R? are local weak solutions in (a,b) x U for any
a > 0. The viceversa is not true.

Ezample 11.4 (Serrin’s example). Notice that u(t,z) = a(t)Vy(z), with ¢ : U — R har-
monic and o € LY(R;) N L>®(Ry) is a local weak solution of NS. Obviously (o), AU) =
(al\p, ¥) = 0. Also

(div(u @ u), U) = a*(0;10;0k1), Uy =27 '0® > (0p(0;9)%, Up) = —a® (|VY[*, V- T) = 0.
J

Finally, by V- ¥ = 0,
(u, W) = (V1h, ;W) = 0.
Definition 11.5 (Parabolic cylinders). Given (tp,79) € R x R? for any R > 0 we will
denote by Q% (to,zo) the set
2 R2

. R
Qr(to,x0) = <7fo - 7,150 + 2) X Br(zo)

and with Qg(to, xo) the set
Qr(to, z0) = (to — R t0) x Br(xo).

Notice the relation

R2
Q*R(to,l'o) = QR (to + 2,1‘0) . (11.2)

In this section we will use pairs (¢, ¢) of indexes, where ¢’ is not the dual index of g.
The main technical result of this section is the following.

Theorem 11.6. Consider a local weak solution u in a parabolic cylinder Qg(to,xo). Then,

if
, 2 3 ,
u € LT LYQg(to, o)) where — + — <1, forq¢ >2 and q > 3, (11.3)
q q

u is smooth in the x variable in Qg (to, zo) for any R' € (0, R).

We will not prove the case (¢’,q) = (00, 3), which is more complicated and was proved
some time after the other cases in [6]. Notice that, in view of Example 11.4, we cannot
get any regularity in t. On the other hand, we will see later how to recover the Holder
regularity for the weak solutions of the NS in Theorem 11.1.

Theorem 11.6 is, in the case (¢, q) # (00, 3), a consequence of the following theorem.
Indeed given any point (a,s) € Qr(to, zo) we have for Q,(s,a) C Qr(to, zo)

p—0

ull Lo Loy (s.a)) < Nl L Laqs—p2 5)x Br(to)) — O

by ¢ < oc.
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Theorem 11.7. There exists an gy > 0 such that if u is a local weak solution in a parabolic
cylinder Qgr(to, xo) s.t. u satisfies (11.3), with

HUHLq’Lq(QR(tm%» < €¢q; (11.4)

then wu is in L HF (Qri (to, 20)) for any R’ € (0,R) and k € N.

Considering that the condition of v being smooth in Theorem 11.6 is a local condition,
it is natural that, in the case (¢, q) # (00, 3), around each point of the cylinder in Theorem
11.6, we can consider a sufficiently small cylinder where (11.4) is satisfied, etc.

We will prove Theorem 11.7 also in the case (¢, q) = (00, 3). The proof will exploit the
vorticity and the following result on the linear heat equation.

Proposition 11.8. Assume that
1<Ii<r<
- =, =, > 11.5
RS e

or, if ' =00,

1<i<r<oo, 1<I<r=0c0
{ d+2<d+2+2 (116)
l 4 T r!
Then there exists a fized constant ¢(d, 1, ', r,r") s.t.
N
—t / / /
||/ At || o e (pyerey < LU Fl ()i (11.7)
a
We will use an analogous version involving the gradient of f.
Proposition 11.9. Assume that
1<i<r<oo, 1<lI'<r' <
- T Ty > . 11.8
{55 e
or, if ' =00,
1<I<r<oo, 1<I'<r=c
{ d42<d4 24 (11.9)
l 4 r r!
then there exists a fized constant c(d,l,l',r,7") s.t
YAt
¢! / ! /
,/ AT | 11wy < LU )F Lo Loy ceay- (11.10)
a

Next, we will use the following regularity result, see Appendix B for the proof.

Proposition 11.10. Assume that Wy — AW = 9f in Qgr(to, o) and W(to — R?) = 0.
Assume f vanishes outside Q, g(to,xo) for an ps € (0,1). Then, for any p; € (0, ps):

1. f € L¥L™(Qg(to,w0)) = W € LF*C2™(Q,,n(to, x0)) for any a € (0,1);
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2. f € L®Wh(Qr(to, 20)) = W € LCY*(Q,, g(to, 0)) for any a € (0,1);
3. f € L®CY(Qr(to,x0)) for an a € (0,1) = VW € L?OLgo(@piR(to,aﬁg));
4. f € LOOCk’a(QR(tO,xO)) for an a € (0,1) = VAW e L?oLgo(@piR(tg,:cg)).

Finally, we will use the following regularity result.

Proposition 11.11. Assume that Wy — AW = f in Qgr(to,z0) and W(tg — R?) = 0.
Assume f vanishes outside Q, g(to, o) for an ps € (0,1). Then, for any p; € (0, ps):

1. f € L®L®(Qg(to, x0)) = W € LFCy™(Q,, g(to, 0)) for any a € (0,1);

2. f € L®WkE>(Qg(ty,z0)) = W € L§°C§+1’a(@pi3(to,wo)) for any a € (0,1);
3. f e L*C%*(Qr(to, z0)) for an o € (0,1) = V2W € L L¥(Q,. r(to, z0));

4. f € L*C**(Qr(to,z0)) for an a € (0,1) = VF2W e L L (Q,, p(to, z0)).

For the proofs of Propositions 11.8-11.11 we refer to [13].

The proof of Theorem 11.7 is divided in two parts. The first is the following.
Proposition 11.12. Consider a local weak solution u in a parabolic cylinder Qr(to,xo)
Then, if

/ 2 3
u € LT LYQRg(to, v0)) where — + — < 1, (11.11)
q q

u is smooth in the x variable in Qg (to,zo) for any R’ € (0, R)..

Proof. Tt is enough to prove that u is smooth in the x variable in Qp /2(to, z0). To proceed
we observe that an analogue of Lemma 10.3 shows that the pair (u,w) satisfies the following
analogue of (10.8):

/00 ((w, 0 ®) + (w, A®) + (w,u - VO) — (u,w - V®))dt’ for all ® € C(Qr(to, x0), R?).
0
(11.12)

We define W = ¢w with a cutoff ¢ € C2°(R%, [0, 1]) with suppg N (Qr(to, z0) € Qpr(to, o),
with ¢ = 1 in @piR(tUa$O), where p; and p; will be chosen later, they depend on the pair
(¢, q) and satisfy 1/2 < p; < p; < 1. Then, in a weak sense, the weak formulation of (11.12)
implies a weak form of

Wy =AW = (W -V)u—¢(u-V)w+ (¢ — Ap)w — 2V ¢ - Vw.
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Writing —2V¢-Vw; = —20;(w;0;¢)+2w; A¢, the above equation can be conveniently written
as
6tWZ' — AWZ' = Gj(Wjui — Wiuj) — 28j(wi8jqﬁ) (11.13)
+ (¢t + Ap)wi — 0jp(wjui — winy)). (11.14)
The proof of Proposition 11.12 is divided in two parts. In the first, we will prove that
w € L®L>®(Q3p/4(to, z0)). Let us assume this and see the conclusion of Proposition 11.12.
The rather standard second part of the proof of Proposition 11.12, starts by noticing
that Lemma 10.5 implies, for &k = 0, u € L%’OI/V;’OO(QR;C (to, o)) for any R; € (R/2,3R/4).
Having u,w € L?Wf’w(QR; (to, o)) we can fix an arbitrary R} € (R/2, R}). Then let us
consider a cutoff ¢ € C2°(R%, [0, 1]) with suppPNQsp/a(to, o) C @Rk (to, o) and with ¢ =1
inQ RY (to, ). For W = ¢w we have the above equation. Applying Propositions 11.10-11.11
in Qr; (to, z0) we obtain W € L?Cﬁ’o‘(@R% (to, o)), that is w € L?OC’!E’O‘(QRZ (to, o)) from
¢ = 1in Qry(to, 7o), for any a € (0,1). Then Lemma 10.5 implies u € L?C;{f’a(QRzl(to, x0))
for any R}’ € (R/2, R}) and for any a € (0,1). Now we fix R\ € (R/2, R}) and a cutoff
¢ € C°(R%, [0, 1]) with supp@NQspy4(to, 20) C Qpry(to, x0) with ¢ = 1 in Qg (fo, zo). For
W = ¢w we have the above equation. Applying Propositions 11.10-11.11 in @ R (to, xo) we
obtain VA1V ¢ L?L?(@Rg;) (to, z0)) combined with W € LCF*(Q pu (to, x0)). Thus

Vktly e LtOOL;O(@RI(f) (to, o)) and w € L,?OC’LC’&(QRI(C@ (to,xo)). For R;H = R,(f), we can
repeat the argument with k£ replaced by k£ + 1. By induction there is a decreasing sequence
{R,} with R, > R/2 with u € L{°C"(Qg, (to,z0)) for any n € N.

We now start the proof of w € L*L*(Q3pr/4(to,70)). We start by assuming w €
L™ L"™(Qg(to, x0)) for some (m’,m). This is certainly true for (m/,m) = (2,2). Obviously,
we assume (m’,m) # (00, 0), since otherwise there is nothing to prove. As we did above,
we consider W = ¢w with a cutoff ¢ € C2°(R%, [0, 1]) with supppNQr(to, z0) C Q,r(to, o)
and with ¢ = 1 in Q,,r(to, x0). Notice that W € L™ L™ ((ty — R2, to) x R?).
Using Propositions 11.8-11.9, we have

||W||Lr/Lr = ||WU||La’La + HWV¢||Lm/Lm + [[ (¢ + AQS)WHLVU + ||Wuv¢”Ll’Ll (11.15)

where
{1§a<r§oo, 1<ad <7 < {1<m§r§oo, 1<m' <r' <o
3, 2 3, 2 ) 3 2 3, 2
E+?<F+F+l E+W<;+W+l
1<i<r<oo, 1<I'<r <o
{ 3,2 3,2 49 (11.16)
l U r r!

Now we have to choose the indexes. Recall that v € LY LY(QRg(to, o)), see (11.3). We
consider

11 1 1 1
=l ="4+—and ==+ —. 11.1
l q_Fman I d q’+m (11.17)

S
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Here notice that from 2 . + 3 7 < 1 obviously we have ¢ > 2 and ¢’ > 3, to that from m > 2
and m’ > 2, we have [ > 1 and I’ > 1.
Inequalities (11.16) become

3 3 2 2 3 2

7+7+7/+7/<7+7/+17

m q m ¢ r r

3 2 3 2
St < o+ S+

m m r!

3 3 2 2 3 2
*+*+7,+j<*+7+2,
m q m q roor

where obviously the 1st implies the other two. Then we have
Wl o e S AW o [l por o + N0ll ot pallwll s o+ (0[] o o (11.18)

3 3 2 2 3 2

224y 222 2 11.19

m T + m' < q ( )
Since by hypothesis the r.h.s. in (11.19) is strictly positive and (m’,m) are given, we can
find m < r and m’ </, not both equal so that (11.25) is true. In fact this can be written

in a systematic way, setting x := <1 -2 — ?> and defining
mo -
= 1-xm ifmx <1 and r’ = ¢ 1- X"?/ i mix <1 (11.20)
oo if my >1 oo if m'xy > 1.
With these choices we have 3 < 3y and ml — % < 2y, so that % — % + % — % <oHx <

3

; q— Then we have obtalned

’

w € L™ L™(Qr(to, 19)) = w € LT [T (Qp;r(to, z0)).

We repeat this argument until both exponents are (0o, 00). Notice that if we repeat the

’

procedure k times, we reach w € L1—kxm’ [[1-kxm (kaR(to,aco)), since, for km < 1,

[ | S—
1—(k—1)xm _ m . m

L= X2 S l—(k—=Dxm—xm 1—kxm’

It is clear that, after a finite number k of iterations, with k dependent on the initial
pairs (m/,m) and (¢, ¢), the procedure has to stop because, for example, either we get to
XThn = L or 1 —kxm <O0. But1—kxm<00annotoccurif0<xw < 1lin
the previous iterate. Hence at some point we get to XW > 1, so that from that iterate
on, we have r = co. For 7’ the same argument is true. So, after a finite number of iterate,
we obtain the pair (00, 00). We also choose 3/4 < p; < p; < 1 so that pF > 3/4 for all the
finitely many iterates.

O

Now we consider the 2nd part of the proof of Theorem 11.7.
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Proposition 11.13. There erists an ey > 0 such that if u is a local weak solution in a
parabolic cylinder Qr(to, zo) which satisfies (11.3) with % + % =1 and if

HuHLq’Lq(QR(tO,IO)) < €g/qs (11.21)

then u is smooth in the x variable in Qg (to,xo) for any R’ € (0, R).

The proof consists in finding 3’ > 2 s.t. u € L L®(Qg (to, z0)) for any R’ € (0, R).
Then we can apply Proposition 11.12.
Notice that we can normalize and consider R = 1, thanks to scaling. It would be reasonable
to proceed as in the proof of Proposition 11.12, stating with w € L™ L™(Qg(to, zo)) and
then reaching w € Lﬁ/L‘X’(QR/ (to,x0)), and then to apply Lemma 10.5.

So we could consider (11.15)

1<a<r<oo, 1<d<7r <o 1<m<r<oo, 1<m' <r <o
S42-=34241 ’ S+ 2 <iy 2
a a T T m m — r T
1<i<r<oo, 1<lI'<r <o
T T3 2. 3,2« (11.22)
{ Ttrsityt2
Next, in analogy to (11.17) we could consider
1 1 1 1 1 1
—-=—-—+4+—and - = — (11.23)

while we need to take, here % + % <1 (because r > 2 and ¢ > 3) and % + % <1,

1 1 1 1 1 1
a q r a/ q/ r/

Here the point is that if we chose exactly (11.17), we would be forced, from

3 3 2 2 3 2
n<———+—--=-=<1---==0
m r m qg ¢

and from m < r and m’ <1/, to have exactly (m,m’) = (r,7"). So (11.23), gives us a little
more of flexibility. Indeed (11.22) reduce to

r < 00

— A

< <r< <m/
{l_m_r__oo, 1<m (11'25)

3 3, 2 2

m T T T S
and we can certainly pick m < r and m’ < 7’ appropriate and not both equalities if (m’, m)
is not of the form (', 00) with 8’ > 0.

Then we obtain, in Qgr(to, xo),

HWHLT’LT S HWHLr’LTHUHLq’Lq + HUHLq'LquHLm'Lm + HwHLm’Lm S HWHLT’LrHuHLq’Lq + HWHLm’Lm-
(11.26)
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Then, from |[ul|, 44 < €gq, for ey4 small enough we would absorb the [|[W{| ./ ;. ||ull ;¢ 4
into the L.h.s., obtaining

HWHLTILT(QR(tme)) S HwHLm/Lm(QR(tOJO))' (1127)

Then we could improve until we get to the desired (8’,00). In fact, for x = 1/6, we can
proceed like in (11.20) obtaining % — % < 3x and % — % < 2y, so that % — % + % — % <
5x < 1. After a finite number of iterates, we would get to (8, 00) and stop.

The above argument is however just formal, because it assumes implicitly that ||W|[,,/,, <
oo. To perform rigorously the argument, we consider a mollification, both in space and time.
We still can consider the equation (11.13)—(11.14) for W.

Now consider

IW — AW = 0;(Wiug — Wus) — 20;(wi0;9)
+ (¢ + AP)wi — 0jp(wius — wius)), (11.28)

L)

(2
extend (w,u) = 0 in RN\Qr(to, 7).
Now the previous argument works, and we obtain for a fixed ¢ (notice that in the equation,
w® appears with factors involving ¢ which live in Qr(to, z¢))

where W is an unknown and the (uf,w®) := pe * (u,w) and W¢ (to — R?) = 0, where we

||W€HL”"ILT((t()*Rz,tO)XRS) S CHWE||Lm/Lm((t07R2,t0)><R3)'

There exists a sequence €, —— 0, such that We — W in L™ L"((to — R?, o) x R?)), and
we have

HWHLT,LTWO_R%)XRS) < llwll ' Lm (@ pt0.20)) - (11.29)

Now we have to establish that W = W in L L"((to — R?,to) x R3) to obtain

Wz 2 (@attoaon = lllim Lm(@rtowo))

and so, restricting the domain in the left

HWHL’"/U(QpiR(to,IO)) < CHwHLm/Lm(QR(to,xo))'

Once we do this, we conclude that the formal argument leading to (11.27) is correct.
The first step to prove W = W, is to show that W is a weak solution of (11.13)—(11.14).
Taking a test function 1 € C° ([to — R?,t9) x R, R3), from (11.28) we have

to to
0= / (W, ) + (W, Ags) dit — / (Wi — Wi, oj0s) di
to—R2 to—R?2
to to to
+ 2/ <OJZ~E" jqb, 8]1,[)1> dt’ + /
to—R2

to—R2

(0 + DY), Oyipe) dt’ + /

to—R2

(D0 — i), o) dt'
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Taking the limit n — co we get

t t
0= / (W) + (W At — tim [ (W W g0 ) i
t

0—R2 n—+00 to—R?

+2 / ! (widj¢, 0jeb;) dt’ + / ’ (P + Ap)wi, Ojbs) dt’ + / ’ (0j(wju; — wiug), ;) dt’.
to—R? to—R? to—R?2
Now we show that
to to
nll)r_{loo e <W;”uf" — VV;”uj-”, 8j¢i> dt’ = /to—R2 (Wju; — Wi, 0;4;) dt’.
We have

to to

/t:iR (Wi, 00 ) dt! = /tg_m (Wi, 001 ) it + /tO_R2 (W (i — ), Opus )

But now

/t :iRz <W;”ui, aj¢i> TN /t :iRQ (W jus, Dy ) dt’
while
to
/tO_R2 <I/V;” (us™ — ui),aj¢i> ' < CHVVjEnHLT’LT((t07R2,tO)><R3)Hugn — Ui||Lq’L‘1((tO—R2,to)xR3)

< C’||of"||LT/LT((tO,RzytO)XR3)||u§n _ UiHLQ’LQ((tofRQ,tO)XR?’)
/ n n—oo
<C ”wHLT'LT((to—R2,t0)><R3)Hqu' - uiHLq/Lq((to—R2,t0)><R3) —0.
Notice that here % + % <1 (because r > 2 and ¢ > 3) and % + % <1 (because 7’ > 2 and

q' > 2) justify the above use of Holder inequality.
So we conclude that for any i € C2° ([to - R?, to) x R3, R?’)

t t,
0= [ (Wadus) + (W) dt' = [ (Wi = Wiy, 050 df
to—R?2 to—R2

to to to
+ 2/ <wi8jd>, a]¢,> dt’ + / <(¢t + Agb)wi, ajlﬁZ) dt’ + / <8j¢(wj'ui — wiuj), 1p2> dt'.
to—R2 to—R2 to—R?
This implies that W e L™ L"( [to — R?,tp) x R3,R?) is a distributional solution of (11.13)—
(11.14) with initial datum W (tp — R?) = 0, see Takahashi [17]. Then, taking the difference
between the equations of W and W, we have

8t(WZ' — Wz) — A(WZ — Wz) = 8j((Wj — Wj)uz — (WZ — Wz)uj) with (W — W)(to — RQ) =0
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in a weak sense, that is for any ¢ € C2° ([to - R?, to) X R3,R3)

to L . to . _
0= / i (W = W, 00bi) + (W — Wy, Ay )) dt' — / . (Wj = Wj)u; — (Wi — Wi)uy, 050 dt’.
to—R to— R

We can apply Propositions 11.8-11.9 to W — W, see Takahashi [17]. For

3 2 3 2 3 2 3 2
St Hl="+ 4545,
UV —r roor q ¢

we have

W =Wl £ (@ntoseo) S MW = W)l 1i@pto mo)
SIW =Wl 1 @ntowon 1l o La@ntowon < €aallW = Wl e (@n(to.z0)):

where we are free to choose a L" L"(Qg(to, o)) s.t. both W and W belong to it. We
exploited the fact that |[ull e ra(ro—R210)xr3) = 1l 10 La(Qp(to.wo)) 20ds In the left hand
side, that [|W =Wl 1o @u(to.aon < IW = Willp Lr((to -2 10) )
Now we exploit that €y, is small, to conclude that W = W in Qr(to,xo). This completes
the proof of Proposition 11.13.
O

End of the proof of Theorem 11.1. By Theorem 11.6, in particular by its proof, we
know that Au € L*®[ty, T],L>®(Q)) for @ € Q cC U and for any t; € (0,T). Next, we
claim that

w-Vu+Vpe L3 ((0,T), L"(R3)) for all 1 < r < 3/2. (11.30)

2r

Assuming (11.30), it follows from (10.17) that u € W53 (t,,T), L"(Q)). We know that
elements of W -3 ((to,T), L"(2)) are classes of functions and that, by Sobolev’s inequality,
one of the elements of this class is in C%([to, T], L"(Q)) for o = 1 — =3 = 3221 T fact,
by u € C°([0,T], L2 (R?)), it is easy to conclude that u € C%([to, T], L"(f2)), so that

lu(t) — u(s)lzr) <cft —s|* fortg <s <t <T. (11.31)

Next, by the variation of Agmon’s inequality in (2.38), for almost any pair (¢, s) in (¢o,7T)
we have
3
r(k—3)
kr + %(2 —r)

lu(t) = u(s) | ooy < Caeallult) = uls)| 7o llult) = uls)7g, with 6 =

3—2r (kig)

< Cplt—s| =Cp lt—s| 7 Frrden (11.32)

Then, for any v < 1/2 we can find r € (1,3/2) and k € N s.t. v = af so that

[u(t) — u(s)|| o) < Cylt — 8|7 for almost any pair (¢,s) in (to, 7). (11.33)
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Notice that (11.31) and (11.33), together imply that (11.33) must be true for all pairs (¢, s)
n (to,T) and on Q. Hence we have proved that u € C7([to,T),C%(Q)). In fact, this
extends to an element of C27([to, T], C%(Q)), and by the continuity u € C°([0,T], L2, (R?))
we conclude that the extension in C;([to, T], C2(Q)) is exactly u. With this the proof of
Theorem 11.1 is completed except for (11.30).

To prove (11.30) notice first of all that a weak solution satisfies

2
we L¥(0,7), I'(RY) for all > + > = 3/2. (11.34)
S T

Indeed the case (s,7) = (00,2) follows from u € L®(Ry, L?(R3)) and case (s,7) = (2,6)
from Vu € L?(R;, L*(R3)) and Sobolev’s embedding. The intermediate cases are obtained
by Holder inequality. Next, by Holder inequality we get

[u- Vull, < [[Vull2|ul] 2,

where % <6 < r < 3/2. Now, since the pair ( 2’"3, 22 T) satisfies the condition in (11.34),

we obtain

lu-Vaul| 2 < IVull 2y oy llull

3((0,7),L7 T (0.1),L7T)

The same is true for P’ (u - Vu) and for Vp = (1 —P) (u - Vu), proving (11.30). This proves
u e CP([to, T], CO(€2)) for any ~ € (0,1/2) and any to € (0,T) and any open 2 C  cC U.

0
Remark 11.14. Notice that it is easy to prove

IV £ll oo () < CULAIG 1 F I
for appropriate # and in fact more generally
0
IV fll s 0y < CIAN o) 1 ey

for appropriate 6; with [ < L and k— L sufficiently large. Then, one can repeat the argument
and prove u € C"7([to, T, CE=2(2)) for L arbitrary and appropriate v € (0,1) and for any
to € (0,T) and any open Q C Q CC U. This yields the result stated in Remark 11.2.

12 Local energy inequality

We will later need suitable weak solutions.

Proposition 12.1 (Global suitable weak solutions). Consider ug € L?*(R3,R3) and a
Leray—Hopf solution u proved to exists in Sect. 5. Then u satisfies the following Local
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Energy Inequality:

T T
2/ / |Vu|*pdrds < / / lul?(p¢ + Ap)dxds (12.1)
0 R3 0 R3
T
+/ / (Jul®* 4 2p) (u - V)pdzds for all ¢ € C°((0,T) x R3, [0, 4+00)),
0 R3

where p is defined by (10.15).
Proof. Consider the sequence

(0y — DNuy, + Prdiv(u, @ u,) =P, Vp, )

where p, = R;R; (uﬁluﬁl) We apply to the above equation (-, pu,). Then
1
57 <‘un‘2790> ) <‘un’278t90> — (Aup, pun) + ((un - V)un, oup)
= (Vpn, ptn) + (Pn — 1)Vpn, pun) — (Pn — 1)(un - V)un, pun) .
We have

—{ Ay, puy) = <\Vun\2, @) + (0jtn, undjp) = <|Vun|2, ©)+ 21 <8j]un]2, djp)
- <\Vun\2,cp> . <]un|2, A<p> )

We have
(VDn, pun) = (ipn, puufy) = (Pn, (un - V)p) .
Finally,
((un - V), pun) = ((un - V)t pun) = =271 (Jun|*, (un - V)ep)

So, integrating we obtain
T T T
2/ <]Vun]27go>dt:2/ <|un|2,8tcp—i—Acp>dt+/ <]un|2+2pn,(un.V)gp> dt
0 0 0
T

4 [ @ = Do) = (P = D+ Vi, ) e
0
which, up to error terms in the last line, is formula (12.1) for the solutions of the truncated
problems. So now we will take the limit for n 7 co in this equality.

We have

T
/ {Jun|?, Brp + D) dt "= {Jul?, Opp + D) dt
0 Ry
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because u, —— u in L((0,T) x K,R?) for any compact set K cC R? and any T > 0.
We have

T T
/ {IVul?, ¢) dtgliminf/ {|Vun|?, ) dt
0 n—oo 0
by Vu, "—=° Vu in L2(Ry x R?). Next, we claim
T
ngrfw ; ((unl?, (un - V)) dt — (Jul?, (u- V)p)) dt = 0. (12.2)

Indeed, the difference of the two terms is a sum of various terms. We bound a typical one:

T
/0 (Un — u, un(un - V)p) dt‘ S llun — U||L§Lg(9)||UnHLt°°Lg(Q)||Un\|L§Lg(Q) < Collun — uHL?Lg(Q)

for Q =suppy and where [Jun | zer2(0) llunl|201(0) < Ca by the energy equality (5.21). By

(5.40) we have [|u, —ul| L2I4(Q) 2%, 0 and so, treating analogously the other similar terms,
we get the desired limit (12.2) Similarly, for the pressure we have

T
i [ @ V) dt = (o - V) dt = 0 (12.3)
Next we show
T
ngrfm ; (P, — 1)Vpp, oun) — (P, — 1) (up, - V)up, puy,)) dt = 0. (12.4)

It is enough to consider one of the two terms inside the integral. We can write

T T
/ (P = 1)V, oun) dt = / (V. (P — D) dt + / (P — 1)V, oty — ) dt.
0 0 R

+

Both terms in the r.h.s. will converge to 0. The 2nd because of [Jun — ul[z2p1(q) 27200

and the first because (P, — 1) 70 strongly in a reasonable chosen space®. So in the
limit we obtain (12.1).
O]

3This is an insidious point and here the proof breaks down. It can be easily fixed though, redefining
the P,, which here are P,, = X[-1,1] (—V_A) and using instead, here as well as earlier in these notes, the

n

operators 1 (—V;A) with ¢ € C°(R,[0,1], with ¢» = 1 near the origin. Here the problem is that the

operators P, = x_1,1) ( v ;A), by C.Feffermann [8] (see also [16]), for d > 2 is bounded from L?(R?) into
itself only if p = 2. No such problem exists in the case of i (—V;A), which is always bounded with a bound

independent on n
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Proposition 12.2 (Alternative local energy inequality). Suppose thatu s.t. u € L°((a,b), L*(U))
and Vu € L*((a,b), L2(U)) also the Local Energy Inequality:

b b
2/ / \Vul|*pdrds < / / [ul?(ps + Ap)dads (12.5)
a JR3 a JR3
b
+/ / (Jul* 4 2p)(u - V)dads for all ¢ € C=°((a,b) x U, [0, +00)),
a JR3

where p is defined by (10.15). Then u satisfies for all t € (a,b) also

/R3 lu(t)|>p(t)dx + 2/: /RS |Vul?¢dzds < /at /Rs lul?(ps + A¢)dxds (12.6)

+ /t/ (Ju|* + 2p)(u - V)@dzds for all ¢ € C°((a,b) x U, [0, +00)).
a JR3

Proof. We start from (12.5) and we consider ¢ (s, z) = ¢(s, z)x (:=2) where x € C*(R, [0,1])
satisfies x =0 in R_ and x = 1 in [1,00). Notice that

t— t t— t—
X’( €3> =0for s<t—eands>tand / 6—1X/< 3> ds:—X< 8>]’;_t_e:X(1)_X(0) -1
t—e

€ €

We have

Oupets.) = duotsan (10 —olsre v ()

So when we enter this information in (12.5) with ¢ = ¢,, we obtain

/ab/RgM%(s)e_lx'( - )ds+2// vuor (2 )dxds<// (U
+/ab/RS(\Vu|2 + 2p)x (j) (u- V)odzds.

Taking limit € \ 0 we get

21\1}(1] g lul?¢(s)e? ’< — >dsd:1:+2// |V <Z>dxds<// [u? (s + A¢) dads
2 .
—i—/o /R3(|Vu] +2p)(u - V)pdrds

> (¢ps + L) dzds

where we have applied dominated convergence, leaving aside the most crucial limit. We

have
/ / lul?¢(s)e? '( — >dsdx—/t;dse_1x' (t_8> /R3 lu(s, z)|>p(s, x)dx
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Now, we have

/t dse 1y (t - 8) / lu(s, z)|?¢(s, z)da N0, / lu(t, z)|?¢(t, z)dx in LP(R)
t R3 R3

e €

for any 1 < p < oo, by u € L®((a,b), L2(U)), ¢ € C>((a,b) x U,[0,+0c0)) and, finally, by
Theorem 1.10. Then, there is a sequence €, \, 0, s.t. for a.e. t we have

t
t—s
/ dse; 1y <
t—e €n

see in the proof of Theorem A.19.

> / lu(s, z)|?¢ (s, x)dx M—OO>/ lu(t, z)|?¢(t, z)dx for a.e. t € R,
R3 R3

13 A first result of Caffarelli, Kohn and Nirenberg

Definition 13.1 (Suitable pairs). A pair (u,p) is suitable in (a,b) x U if:

1. u € L*((a,b), L*(U,R?)) and Vu € L%*((a,b) x U) and is divergence free, and p €
L3/%((a,b) x U,R);

2. —Ap = 818](ulu]),
3. u satisfies for all t € (a,b) the local energy inequality
t t
/ () o(t)dz + 2/ / IVl pdrds < / / W(é + Ag)dzds  (13.1)
R3 a JR3 a JR3

+ /t/ (u)? + 2p)(u - V)pdxds for all ¢ € C°((a,b) x U, [0, +00)).
a JR3

In this section we will prove the following theorem.

Theorem 13.2. There exists absolute constants €, > 0 and cpr > 0 s.t. if (u,p) is a
suitable weak solution of the NS with

R (\u|3 + yp\%) dtdz < € (13.2)
QRr(to,x0)

Sl

for an R> 0 and for a eg € (0, €g], then [[ullLoc(qp (t0,m0)) < CME -

Notice that, in view of Theorem 11.1, u would be smooth in x and Hoélder continuous
in ¢ inside Qp/2(t0, T0). The proof of Theorem 13.2 is rather articulated. Before proving it
we will discuss a consequence. Notice that Theorem 13.2 says that for an R > 0 and for a
€ € (Oa 68]

-2 3 3 %
R /QR<tO+R2 ) (Iul + Iplz) dtdz < eo = |[ull (g, , (1042 ) S MG (13.3)
8 >
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Notice that Q /s (to + %2, a:o) = (to + %2 — R;, to + %) X BR/a(wo) is a neighborhood of
(to, o)

Definition 13.3. A point (¢,z) € R, x R3 is called a regular point of a weak solution wu if
there exists a neighborhood of (¢, z) in Ry x R3 such that v € L>°(U,R3). If not regular, a
point (t,x) € Ry x R3 is called singular.

A simple consequence of Theorem 13.2 is the following result.

Proposition 13.4. Given a suitable Leray—Hopf weak solution u, then the set of singular
points S of u is bounded in in [0,00 x R3.

Proof. We already know that there exists T s.t. u € C®((T,00) x R3 R3). Now we will
show that there is an Ry > 0 s.t. S C [0,7] x B(0,Ryg). Theorem 13.2 implies that if
(t,x) € S, then

T_Q/ 5 (|“’3 + \Mg) > ¢ for all R > 0.
QR(H—%&)

< ; R? 1 47\ 30 9t pt
_— 30 = —_— 6 6

||u|\L3(QR<t+%27I)) < ||u||L%’9(QR<t+RT27x))|QR t35e | HUHL%Q(QR(HR;J)) 3

and

ol < Iyl Qn (t+E.0) 1% = ) 94 Ri
Plog@n(i+2 o)) = W8 (Qu(+ 22 2R \" " 8" ) 17 = ML 0n(1h2.2)) 73 ’

we get

10 5 0 s
/ ( 2 ) (|u] 3+ |p|3) > Cey R3 for all R > 0. (13.4)
Qr(t+5 2

But we also know that u € L%((O,T) x R3,R3) and p € L%((O,T) x R3,R3). If S is
unbounded, then for any R there is a sequence (t,,, z,) in [0, 27] x R? where (tn + %2, xn) N

(tm + %Q,ZUm) = (), we have Qp (tn + %2,;1%) C [0,27] x R3 for any n and

10
/] , (¥ 1plF) = e R
QR (tn‘i‘%’rn)

But then we get a contradiction

10 5 10 5
oo>/ <|uya —|—‘p|3)22/ . (yu\g —|—|p‘3>:—|—OO.
[072T}XR3 n QR(tn+%ymn>

Another corollary is the following.
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Proposition 13.5. Given a suitable Leray—Hopf weak solution u and any compact subspace
K cC Ry x R3, then the set of singular points S satisfies dimp(S N K) < 5/3.

Proof. Suppose this is false, so that we have that dimp(S N K) > 5/3 in a case, and
let dimp(S N K) > d > 5/3. Then, by Lemma 6.11 there is a sequence ¢; — 0 s.t.
M(SNK,e) > ej_d, where M (SN K, ¢;) the largest number of disjoint open balls of radius
€;j with centers at points of SN K. Now for € € (0,1) we have

2 2
Bu(t.0) 3 QUplt ) = Qualt-+ /5,0) = (1= Lot T ) x Bupalo)
indeed, for any (s,y) € Q:/Q(t,x) we have for
4 2 4 2
— 5)2 — )2 E L8 E L8 93
V(Et—s)?2+(y—x)2< et TSVt <2

For any j, fix M; := M(S N K, ¢;) open balls of radius €; with centers at points of S N K.
Then, we get a contradiction:

M

5 5 3
o> [ (¥ 4plf) 2> (1% + pI?) = e} 22 o,
[0,2T]xR3 1=1 Y Qe; 2(Li+€2/8,1)

O

We now turn to the proof of Theorem 13.2. Following [13] we proceed by outlining

twice the argument, with increasing precision, before giving a full proof in the third try.

First of notice that, by scaling invariance of the NS and of the estimate (13.6), it is enough
to take R = 1. Furthermore, we can take tg = 0 and xg = 0.

13.1 First outline

We oversimplify and we assume that there is no pressure in the local energy inequality
(12.6), so that the latter is for s € (a,b) of the form

[ uorsas+2 [ [ 1vaos [* [ k@ + 20 (15,5
-+ /: /H@ uf2(u - V)¢ for all ¢ € C((a,b) x U, [0, +00)).

Then using (13.5) it is possible to prove rigorously the following.

Proposition 13.6. There exists absolute constants € > 0 s.t. if u satisfies (13.5) and

R™? lu3dtdz < e (13.6)
Qr(to,xo)

1
for an R >0 and for a ey € (0,€p], then [[ullLoo(Qp s (t0,00)) < €5 -
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First we give a heuristic argument picking R = 1 and (¢g,z¢) = (0,0). We will prove
that for any (s,a) € Q1/2(0,0) we have

25”/ luPdtde < €} for all n € N (13.7)
Q, n(s,a)

=

Then by Lebesgue’s Differentiation Theorem, this will imply ||ul|zec( (Qrya(tonmo)) < e;. We
will consider an appropriate sequence of cutoffs ¢,,. They are chosen so that (0;+A)e, ~ 0.
Here let us assume (9; + A)p, = 0. In fact the ¢,,’s will almost be fundamental solutions of
the backwards heath equation, but not quite. This, unfortunately, imposes some constraints
on them. In fact, they will satisfy estimates of the form

$n ~ 2" in Qy-n(s,a) and
C2%" in Qy-n(s,a)
<
V| < {02—2n24k in Qy—«(s,a)\Qy-rr1) (s, a).

We assume by induction that

(13.8)

2
22k/ |u\3dtdac <€} 273 for all k < n.
Q,—k(s,a)

Using (13.5) we have for t € (s — 272" )

/ lu(t)] 2"dx—|—2// Vul22" dadt < // uf3|V | dzdt!
By—n(a) Qy—n (s, @)N{t'<t} Qy—1(s,a)

= Z// |ul3|V | ddt’ + // ul3|V | dxdt’
Qy—k (5,0)\Q,— (k+1)(s,2) Qy—n(s,a)

where we decomposed the domain of integration on the r.h.s.
Q2*1 (Sa CL) = (Q2*1 (37 a)\Q2*2 (87 a)) U (Q2*2 (37 a)\Q2*3 (87 a)) u..u (QQ—(”—U (37 a)\QZ*”(Sa a) U QQ*”(Sa a)'
Now, using (13.8) we obtain for ¢t € (s — 272", s)

2%/ lu(t)2da + 22 // \Vul?dzdt <
(a) Qqen (s:)N{¥'<t}

< 022—2"2‘% / / lu*dxdt’ + C22" / / |u|3d;rdt’
Q,y—k(s,a) Qy—
2 2
< 02*2"22*’%3 +C2ned = G2 Zz b <027,
= k=1

From this for t € (s — 27272 s5) we get

2n+1 /
B

Now we need the following lemma.

me

lu(t) 2z + 2712 / / Vuldzdt < 23022
( ) QQ n 1(5 a)

o—n—1(Q
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Lemma 13.7. There exists a constant Cy > 0 such that for any s € R, r > 0 and a € R?
and any u s.t.

u € L™ ((5 —r2, 8) ,L2(Br(a))) and Vu € L* (Qr(s, a)),

then
3
2

T_2/ lul3dz < Cy |r~1  sup / |u(t)|2dx—|—r_1/ |Vul|?dtdz| . (13.9)
Qr(s,a) s—r2<t<sJ Br(a) Qr(s,a)

Proof. By scaling, it is sufficient to consider » = 1, and by translation invariance we can con-

1 1
sider (s,a) = (0,0). By Hélder inequality ||u|3(p,) < HquG(Bl)HquQ(BI) and by Sobolev’s

1 1 1
inequality [|ul[zs(p,) < collull 2B,y +collVullL2(p,)- Then |lul[1s(p,) < ¢; <HU||L2(Bl) + ||VU||22(31)||U||22(31))

and so, by (a4 )7 <2971 (a4 + B9) for ¢ > 1 and for a, 3 € R, (this by the convexity of
t— t9)

3
3 1 1
[ s < 6 (lullaay + 1960 ol
1
3 3 3 3
< 46§ (o) + IVl ol ooy ) -

Then, by Hoélder,

3 [0 3 3 3 [0
[ s < aci [ 190l o Wl + 468 [ Tl
1

3 3 3 3 [0
= AP N[ AP YRR i R e

3 3 3 3 0
= 46§ 11wl s o Mool v+ 468 [ Tl

3

3 3
3 3 2 3
= 1cf 19l (s lullizgoy)” + 46 (supfullizgo

w

3 3 1 2
2 2 2
— 46§Vl (s ol )+ 1k (s fuldegs, )

[SI[oY

[S][9Y

3 3 3
< 26§ IVl + e (_sup Nl ) <00

%
\V4 3 S 2 >
H U||L2(Q1) <_1<thF<0|’u|L2(Bl)

N

3
2

<6 |10l +_sop ol |
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where in the last step we use a? + 44 < (a4 3)? for ¢ > 1 and for o, 8 € Ry 4. Then we
3

are done, for Cy = 603 .
9 3 D
Then, applying the lemma, for ¢y < (22CoC2)73,

3
2 / / Jul® < Co [23022(”“)663 } "= 28CoC e Vg < 2 3 g
Q27n71(s,a)

where C' is a fixed constant, dependent on the ¢,.

13.2 Proof of Proposition 13.6

It is worth, first of all, so see the definition of the cutoffs ¢,,, in order to make sense of the
bounds like in (13.9).

Lemma 13.8. There exists a constant C1 > 1 and for any fized (s,a) € R* a sequence
on € CF ((S —-1/9,s+ 2_("+1)) X BI/3(a)) such that for all n > 2 we have the following
facts:

(i) C712" < ¢, < C127 and |Vn| < C12%" in Qyn (s, a);
(i) ¢n < C12722%% and |V, | < C127272% in Qy— -1y (s, a)\Qq—r (s, a);
(iii) supppn N ((—o0, 5] x R?) C Q1/3(s,a);
(iv) (8¢ + N) | < 01272 in (—o0, s] x R3.
Proof. Tt is enough to consider (s,a) = (0,0). Then
bn(t,z) = 2720, (t, ) = 272" xn(t, ) (t, x). (13.10)
Here we choose 1, such that
(O + A)apy(t, ) = 0 for t < 272" and with initial value ¥, (272", ) = 6(x).  (13.11)
Recalling Ki(x) = (47rt)7%ef% satisfies (0y — A)Ki(x) = 0 for t > 0 and K¢(z)|i=0 = 0(x).

Then K _4(x) solves the analogue of problem 13.11 but with the condition K_(z)i—¢ = ().
Finally, by translation invariance we find

2
3 _ |z ]

Yn(t, 1) = Ko-2n_y(x) = (4m(272" — 1)) "2 47270, (13.12)

q q
4This follows from @ + B < @ + B =1forqg>1.
a+p
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Notice that the constant factor (47r)_% is not important in the discussion. We have

2
=]

Un(t, z) = (4m(2720 — £))"3e 1@ 0 < (4n(2720 —1))73
< (4727273 = (4m) 7225 in Qgn = (—272",0) X By (13.13)
__le?
PYu(t,w) = (4m(272" + [t])) "2 1@ 2D
_ 272n

> (4m (2720 4 272)) "2 @ 22T = (87) 267823 in Qyon. (13.14)

Next,
1 __3 9 5 l=?
V@Z)n(t,fl,‘) = —-2- 7'['_5(4(2_ n_ t))—§€ 122y

so that

Vb (£, 2)] < 276722527 = 2767=304 i Q,_,. (13.15)

Keeping in mind the factor 272" in (13.10), (13.13)-(13.15) explain (i). We will see of course
the full estimate of ¢,, shortly.
Next, still focusing on V), (¢, z) only, observe that

Qo-tv-)\Qyr = (—272"D 272y 5 B 1y U[-27%,0) x (By—sy)\By+) -

Now, in (—2_2(’“_1), —272k) x B, (x-1) we have

||

Un(t, @) = (4m(272" + [t]))"2e 32D < (4m(2720 4 27F)) 73
< (4727 %)"2 = (4r) 223k, (13.16)

while in [-27%% 0) x (By-(v-1)\By-k) we have

_ |1‘2 - 272]{3
n(t, ) = (4m(27" 4 [t])) 26 TETHD < (47(272 4 [t]))"2e @D
3
3 2_2k; 2 —i 3 3 a
=(4n) 223k [ ——— ) e 1T < (4m) 72 2% supaze i, 13.17
am 4 () < tam)H P (1.7

Turning to Vb, (t,z), in (=221 272k} x B, 1) we have
) |z|2 )
[V (t,2)] = 272 (427" o [1])) 2T D ] < 73 (827) TR0
— 1 2(8) 324k, (13.18)

and in [-272%,0) x (By—(k—1)\By-+) we have
. \1\2 . 2—2k
Vapn (b, )] = 270073 (427" + [¢]) "3e 1 [z < 270 (4272 + J¢)) "Ee i@ T2~k

2 ok 5 _3_a 5 _a
e @) <472 22 supaze 4. (13.19)
a>0

272]6

27+t
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Keeping in mind the factor 272" in (13.10), (13.17)—(13.19) explain (ii).
If we chose x,,(t,z) = 1 in (13.10), that is if we chose ¢y, (t, ) = 272", (¢, z), we would
then have (i),(ii) and (vi), but obviously we would not have (iii). We define

Xn(t,z) = X ()T, (t) where

B Lin By B 1 for t € (—1/16,0)
X(@) = {O outside B 3 and Tn(t) = {0 for t < —1/9 and t > 272771, (13.20)
with T},[(_s0,0) = T independent of n, and they are X € C°(R?,[0,1]) and T}, € C*(R, [0,1]).
Now suppx, € Q1/3UI0, 2721 x By /3, and so clearly the ¢, in (13.10) satisfies (iii). Notice
now that

V9n<t, x) = wn(ta x)VXn(t r) + Xn(ta ﬂc)an(ta .%')

Then |x, V| < |Vi,| and the previous estimates apply, while |¢, V.| < [ VX]| < by,
is smaller. Hence our ¢, in (13.10) satisfies (i) and (ii).
Finally, we have

(O + DN (t, ) = 272, (t, ) (05 + D) xn(t, ) + 2272"Vxn(t, ) - Vb (t,z).  (13.21)

Here is important to observe that x,, = 1 in @14 and x;,, = 0 in (—o0, 0] x R? outside Q13-
This means that the terms in (13.21) need to be bounded only in Q1/3\Q1/4 C Q1/2\Q1/4,

where ¥, < (47)7225, by (13.16), and where |Vib,| < 028, by (13.17)-(13.18). From
IVxn| < |VX]| <eg, it follows that the 2nd term in the r.h.s. of (13.21) satisfies the desired
estimate. The same is true for the 1st, since

[0 + D) xn(t, x)| < T |+ [AX| < |T'| + |AX]| < e

and so

_3

W}n(at + A)Xn’ < Cl‘wn|Q1/2\Q1/4’ < 01(87T) 226'

O
Proof of Proposition 13.6. We proceed by induction proving by induction
A,
2
251 / ludtdz < €} for all n > 4 (13.22)
ngn(sya)
By,
2
2" sup / |u(t)|*dz + 2" // |Vu|? < Cp272"¢d. (13.23)
s—272n<t<s J By _pn(a) Qy—n(s,a)
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We already saw how B,, = A/, by Lemma 13.7. Now we prove A} and how A4),..., A, —

Bpi1.
We start with A/, for n < 4. We have the following, which uses the hypothesis (13.6) for
R =1 and (to, 7o) = (0,0) and which proves A7, for n < 4: for any (s,a) € Q1/2(0,0)

25'"/ lu|?dtdx < 220/ lu3dtdr < 2% < 63 for 220 < 1, that is for ¢y < 2715,
Qy—n(s,a) @1(0,0)

Now we show that A, ..., A), = By4+1. We consider, for t <0,

/| ) Pontt) + 2 / tl /| 1Vl < / 1/9 /| ICGCERST
* /t1/9 /31/3 |ul?(u- V),

where we exploited that supp¢,, () CsuppX C §1/3 and suppoy, (t) CsuppT;, C (—1/9,272"71).
Let us focus now on one term of the L.h.s. at a time.
For s — 272" < t < s and restricting to a = 0, we have

012“/ () < / () 2 (2) / / (8 + D) + / / ul?(u- V)
1/9 Bl/g 1/9 B1/3
< Ci12” 2”/ / |ul|? —I—/ / [ul3|V ).
1/9 B1/3

and similarly

20~ 12n/ / v <2/ / vl ¢n<012—2n/ / uf? + / / |V,
s—2-2n /9By 1/9JBy 3 By s
so that
crt2m sup / lu(t)]* + O~ 12”/ / |Vul|?
§—272n<t<s s—272n
3
< -0y 2—2”/ / |u|? + / / ul3|V ). (13.24)
2 1/9 By 3 1/9JBy 3

Now we examine the 1st term in the r.h.s. of (13.24), for which by s < 0 we have

012—2”/ / luf? < 012—2“// 2
1/9 /B3 2 Q1/3 (s,0)

< SO IQus P s, 0 < 5C27 1Ry s 0, 00 (13.25)

| W

—on3 [ 4—54m e 2/3 —2n__ 2 3 1/3 2/3 n 2/5 20 2/3
< 012 5 3 ? 60 = 012 (477') < C 2- < C 2”



where we used [|ul|z3(0,(0,0) < 6[1)/3 from hypothesis (13.6) for R = 1 and (¢g,z9) = (0,0)

and V47 /6 < 1.
We consider now the 2nd term in the r.h.s. of (13.24). We have, by s <0

[ ] weved < [[ 0 wlveds [ julive
—1/9 B3 Q1/3(5,0) Q1/2(5,0)
- Z / / 176l + [ / | a1l
Q,y—(k—1) (5,0)\Qy—k (s,0)

SZCIQ 2n24k // ’u‘3+C122n// ‘u|3

k=2 2 (k— 1)( 0\Q2 k(SO 80

|u|3 _|_0122n // ‘u|3 ZC 2—2n24k // |u|3
n (8,0) Qqy— k (s,0)
1

n

< 2012—271241{; //
k=2 @150

2 " = 2

<027 Y 27h =127 i1 > 2 F <2 2—12 = (12725

k=1 k=0

So, returning to (13.24), we have proved

s 2
2" sup / lu(t)]* + 2"/ / |Vul? < 307272"¢;.
s—272<t<s /By -1JB,

Then

2
gntl sup / lu(t)|? + 2"+ // |Vul|? < 2330122_2(7‘“)65’
- BQ_n—l Qg—n—l(svo)

s—2—2(n+l) <t<s

and this proves the induction argument for Cz = 24C%.

13.3 Proof of Theorem 13.2

In the proof of Theorem 13.2, the presence of the pressure complicates the discussion. As
before, we normalize to the case Q1(0,0). We proceed by induction proving the following:

An
2
22"/ |ul® + 23"/ lp — (p)BQ_n(a)ﬁ <2738 for allm € N; (13.26)

Qy—n(s,a) Qy—n(s,a)

B,
2
2" sup / |u(t)|*dz + 2" // |Vu|? < Cp272"¢d. (13.27)
s—2—2n<t<sJ B,_p(a Qy—n(s,a)
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We prove Aj, then Ay, ..., A, = Bp+1 and, finally, By, ..., B, = A,.
Step 1: proof of An for n < 4. We use, for (p)pg,(,) =average of p in B,(a) =

‘Br(a)rl fBr(a) b,

S dm
[(P) B, (a)? §/ (IpD% (o —/ (|p|)%
\/QT(S,a) ( ) QT(S,G) Br( ) 2 3 Br

q
Sodm o 1 / S 4mrd 1
= =7 | S/ — / Ip!q—/ [pl,
/9—7"2 3 (4;73 By (a) > s—12 3 4§TT3 By (a) r(s,a)

where in the 1st inequality we used the obvious fact that |(p)g, )| < (|pl) B, () and the 2nd
inequality follows by ¢ > 1 and the Jensen inequality. Using (a + 3)? < 2971 (a? + B9) for
g > 1 and for a, B € Ry (this by the convexity of ¢ — t7), we obtain

3 3 34+l 3 3
22n/ |u|3+22n/ |p_ (p)Bzfl(a)P < 2271/ ‘u|3_|_22n+2 / (|p|2 + |(p)3271(a)‘2>
QQ*TL(S7a‘) QQ*TL(S7a‘) Q2,1(s,a) QQ*’n(Sva)

, , - 5 p 2
< 22n/ ’u3+2§n+§/ ‘p|% < 22n+§/ <‘u’3+ ’p‘%> < 22n+%€0 < 2_3n65’
Q (5 a) QQ ni$ a) Ql(oro)

2—n b
for 25"+%60 <271 for n < 4.
Step 2: proof of A, ..., A, = Bp1. We consider, for t < 0,

/Bl \u(t)yzqsn(t)m/_tl /B IVul2p, < /_tl /B (D + A)bn
w2 9o

and we conclude

2" sup / I ()|2+2012"/ [ur
s—272n<t<s
< 70 2—2"/ / |qu / / | \v¢n\+3/ / -V,
1/9 J By 3(a) 1/9 J By 3(a) 1/9 J By 3(a)
=0+ 1+ Is.

We have already seen, in (13.25), that I; < 012_2”6(2)/3 and, in the inequality after (13.25),

that I < 3012*2"60%.

We now focus on I3. We consider a sequence xj € C°((—o00,s] x R3,[0,1]) for k= 1,....,n
with x; = 1 in QgQ,k(s,a) and suppxx N Q1(s,a) C Qo—r(s,a) and |Vyi| < 2F16. It is
enough to pick y(t, ) = T(22*(t — ))X(Qk(az—a)) with X (y) =1 for |y| < % and X (y) =0
for |y| > 1 and with T'() =1 for [I| < 7 >and T(1) =0 |I| > 1.
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Now we write

13:3/ / pu'ngn—?)Z/ pu - v¢n(Xk_Xk+1)]+3/ puv[gbn)(n}
—1/9 J By3(a Q1/3(sa) Q1/3(s,a)

_32/

(p - (p)BQ_n(a)) u -V [¢nXn]
Q1/3(5.0)

015, -2t00) 0 ¥ (60 (0t = i) +3 [
Q1/3(s,a)

(p B (p)BQ—k(a)> u-V[dn (Xk — Xe+1)] + 3/

P—®B, @)U VdnXa],
Qyn () ( a—n( ))

where we used suppxx N Q1(s,a) C Qg (s,a). Then we have

13| <3Z/

ng

P = (P)B,_n(a)| [l [V [Pnxn]l-

)Bg—k(a) lu| [V [n (XE — Xk+1)]] + 3/

ng’n (Sva)

Now we use the bounds
Otk = Xk+1) V)| < (XQ, 4 (5.00\Qy k-1 (5,0) T XQy 1 (5:0\@pr—2(5,0)) | VPn]
< 01272n24(k+1) + 6112727124(k+2)7

Xn |Vén| < XQ, 0 (s.a) V| < C1277,

k k+1
(& (VXE = VXk41))] < ¢n (162 XQ, 1 (sa)\1Q, k(sa)) T 162 XQT,H<s,a>\gc227k71<s,a>)>

k k+1
< ¢n (162 XQQ—k(S,a)\QQ—k—l(Sva)) +162"F XQQ—k—1(Sva)\QQ—k—2(Saa)))
S 162k012—2n23(k+1) + 162k+1012—2n23(k+2)

and, finally

‘anvXn‘ < ¢"16XQ2,TL(s,a)\%QQ,n(s,a)) < ¢n16XQ2,n(s,a) < 16C:2".
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Then, for an appropriate ¢, we have

n—1
Bl < gy 2t P B, | Jul + G2 [ = )n, | lul
k=1 szk (s’a) ngn (s»a)
—qez Y2 [ o s, |l
k=1 Qg—k(s7a’)

n
_ T 2
<pCi2m Y 25525l L3 (@, (s, 2" P = (D) B, 1 (a) HLg(QTk(s,a))

k=1
n 7 3 3
<aoiz Y2 (26 [ et [ el
k=1 Qg—k (S7a) Qg—k(sva)
" 9, 2 2 1
< pCh27 ) 27l < 2" Chef ———.
k=1 25 =1
So we have shown that Ay, ..., A, imply
2 C/
L4+ 13 <C (1424 )22 for g = —52—.
23 —1
Then
2
2" sup / lu(t))? + 22”/ (Vaul? < (1424 c) C7272"€}
s—272"<i<s J By pn(a Qy—n(s,a)
and so also

2 qup / u(t)]? + 27+ / V2
s—272n"2<t<s J By (a) Qy—n—1(s,a)

2
<2(1+24 ) CF27 2+

So, if we set Cg =2 (1 + 2+ ¢9) C? we have Ay, ..., A, => Bpi1.
Proof of Bs, ..., B, — A,.
Recall that we need the bound

2
22"/ ul? + 23"/ lp—(p)B _n(a)|% <2738 .
Qyn(s5,0) Qyn(s5,0) 2

The first term in this formula can be bounded using (13.9), that is, using B,

22”/ lul> < Cp |2 sup / lu(t))? + 2”/ |Vul|?
Qy—n(s,a) s—272n<t<s JBy_p(a) Qy—n(s,a)

3
2 9
2

272 1 3 1 2 —
< [0322%8] = Z4000]_5,2*3"60 < 127?)”68 for €g < 4*300_303 .

ol
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To finish, we will prove

3 2
2§n/ P )p, . (@lf < 2. (13.28)
ngn(sza) : 4
To this effect we will use the formula,valid for 0 < r < p/2,
_3 3 _3
R e N I
QT(S7CL) QQT(S:G)
3
2 |?
+Cyr® | sup / [u(t)] . (13.29)
s—r2<t<s J2r<|y—al<p |y - CL’
r3 3
vay [ (il
p2 Qp(sza)
We apply this formula for » = 27" and p = 1/2, to get
3 3 3
20 [ e sl < C2 uf
QQ*" (s,a) QQ—(n—l)(s’a)
3
2 |?
+027 | sup / [u(®)l . (13.30)
s—272n<t<s J2- (=D <y —a|<1/2 |y - CL|
veaizon [ (jup ).
Q1/2(s,a)
Then we estimate the three terms on the r.h.s.
For the first, we have, using inequality (13.9),
0223"/ Jul® = 40225”22<"1>/ Juf? (13.31)
QQ—(n—l) (S,CL) QQ—(n—l) (S,CL)
3
2
< 4C,Cp2 2 2 sup / lu(t)|*dx + 2"1/ |Vu|?
s—2720-D<t<s /B, (n-1)(a) Qy—(n—1)(s,a)
1 212%1 8 4. 3N a2 1 g2
< 4CyCH27 3" [032— (n— %g} = J16C2CoCp2 2" (D¢, < <3202cocgeg> 127 < 27

The last term in (13.30) is bounded using le(O 0) (]u\?’ + \p]%> < €p, which yields

1o 3,2 1 .52
—oTIned < Z97eE . (13.32)

1
(122323"/ (\u|3 + |p\%> < (4022323”603>
Q1/2(s,a) 4 4
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We consider now the middle term in (13.30). We have

)2 — )2
sup / |u(®)] = suwp Z/ |u(®)] :
s—272n<t<s J2-(nm D <|y—a|<1/2 ly — a 5—27n<t<s o J2 R <|y—al<2~ (k=1 ‘y - a"
n—1 n—2
<2t Z 94(k=1) sup / lu(t)* =24 Z 2% sup / lu(t)|?
=2 s—2720k-D<t<s I B, (-1)(a) =1 s—272k<t<s J B, i (a)
22 2
< 2'Cpeg Y 2" <2'Cpef2”.
k=1
Then
12 |*
c2n | sup / Ju®)| (13.33)
s—272n<t<s J2- (=D <y —a|<1/2 |y - (I|
i 2 3 301 2 1 2
< Cy27m {2 Cpel 2“] <7 <26020§eg> 27 el < Z2*2"63.
So, summing up (13.31)—(13.33), we get (13.28), and this ends the proof of Ba, ..., B, = A,.
O

We will prove now formula (13.29).
Lemma 13.9. There exists Cy such that forp € L%(Qp) andu € L3(Q,)NL>®((—p?,0), L*(B,))
and for —Ap = 0;0;(uiuj) in Q,, then for any 0 <r < p/2 we have

_3 3 _3
r2/|pwm&z<@r2/ fuf?
Qr 2r

3
+Cyr® | sup / M 2 (13.34)
—r2<t<0 J2r<|y|<p ’y|
3
r 3
+Cly [l +1pl?).
Pz JQ,

Proof. We will start by assuming u € L®((—p?,0),C™(B,)) with N > 1. This in turn
implies that p(t) € L%((—pQ,O)),Ck(Bp/)) for a large & < N and for p/ < p: this is
analogous to Lemma 10.5 valid for the pair (u,w).

Let now ¢ € C°(R3, [0, 1]) with

. 1in ng/4
¢(z) = {0 outside B,

123



with V| < cp™! and [8;0j¢| < cp~2. Then, like in Lemma 10.2, we have

00 = (=) (=)0 = T+ (CA)) = o+ (~68p = pLg =250 Vi)

1
4r|z|

1
Mmﬂ*w@@wWﬁ—pA¢—2V¢W@)
1
= e * (0i0i(Guiny) = O (wij0;9) = 0j(wit;0:6) + w0306 — pASY = 2V - (V) + 2pA9)
1 1
1@ * (0j(Puiuy) — 2uu;0;¢ — 2p0id) + 747?‘1" * (u;uj0;0;¢ + pAP)
xT; 1
= =T * (0j(pusug) — 2uiui0ip — 2pd;d) + e * (uju;0;0;¢0 + pAg)

Now we can apply Lemma 10.6 and conclude that

P =PV T P >*<¢“iuﬂ) Tl * (20iui0i0 + 2p0;0) +

1
47T|{E| * (uluﬁ]@lqﬁ + pAgf)) .

We have p = ¢p in Q3,/4. We write

1 0ii  3xix
- ——PV. ([ - i,
=g <<|x|3 [2f? )) b i)

1 Ois 3
=——PV. Y 2y 1_ ).
pe=—gop¥: (- ) )« (0 xm ous)

Then

2
||p11||L%( <C E ||¢7U1Uj||L2(B <C E ' ||ui“j||L%(BQT) < C”Hu||L3(Bzr)'
Z?]

7]

and so also

lp11 — (p11)B. |, 3 2C"||U||%3(er)

L2@Qn) ~

which is equivalent to

/ 11 — (p1)B, |2 < (20’)3/ |ul?.
2r

T

Next, we observe that by mean value there exists xo(t) € B, so that (pi2)p, = p21(xo(t))

1
pr2(t, ) — (p12)B, (t) = /0 Vp(t,s(x — x0(t)) + x0(t)) - (2 — wo(t))ds
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and so

P12 = (P12)B. I 3 ) =

1
<or / ds|[Vp(s(z — 20(t)) + 2o (D). 3

2
L <210 IVpilien)

2 101 3x;x;
=2 (a3t LIV (2 - ) 4 (= ) o

13
< (Crs

< 2407”?
L2 (Qr)

1 2
— u(t,y)?d
/p o P

where we used |z — y| = |y| <1 - ||:13||> > |yl2~t
)

So we conclude

r

Now we set

P2 = P21 + pa2 = * Ui 0; 0 +

T
27|z

Then, also from |V@| < cp™, supp|Ve| C B, \ Bs, /4 and

o= sl =bl (1= 1) =l |<1—4p>>\y|(

we obtain

lp21 = (p21), M 3

3 3 3
/ P12 — (p12) B, |2 < 20C2r2r® [ sup / 4\U(t y)|*dy
Q —r2<t<0J p>|y|>2r |yl

4!|3

2
< 27’|BT|§HV}721HL00(BT) < 07“3/)_1/

9

Lo (Qr)

/ Lt ) Pdy
p>|y|>2r ‘y’

3
2

* p0j .

2p<|yl<p |z —y[?

2
<yoryt [ MR cwosyt [ Py

3 p<lyl<p |y Sp<lyl<p

43 1 : -
<80 e < Iyl < o} (/ Iu(y)|3dy> <c'erip? (/ IU(y)I?’dy>
So<lyl<p ipslyl<p

Then
3 39 _9
/ Ip21 — (p21)B,|2 < (C')2r2p™2

By the exact same argument,

w

/ Ip22 — (p22)B,.|2 < (Cl)% %,0 2

T
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Finally we set

1
P3 = P31 + P32 iz * (uiuj0;0;0) + pr=p * (pAg)

They can be treated like pa; and pao, due to |0;0;¢| < cp~2. Indeed, for example

I = o) 3, < 2018 iy < O 72 [ i
Lz(Br) 2p<lyl<p 1T =Yl
2,3 —2 u(y)? 2.3, —4 2
<wery [ dy <oyt [ july) Py
3 p<|yl<p lyl 3r<lyl<p

2
3

<C'Crip™? (L \u(y)\?’dy) etc.
7Pr<lyl<p

4

All the above estimates have been obtained by assuming u € L¥CY (67,,) In general, we
consider a sequence L=((—p2,0),CN(B,)) > u, =% u, with the convergence occurring

in L3(Qp) N L=((=p?,0), L*(B,)).

14 A second result of Caffarelli, Kohn and Nirenberg

In this section we will the following theorem.

O]

Theorem 14.1. There exists absolute constants e; > 0 s.t. if (u,p) is a suitable weak

solution of the NS in Qgr(to,xo) for some R > 0 and we have either

1
limsup/ IVul? < e or
Qr(t07x0)

r—0 T

. 1 2
limsup —  sup lul® < e,
r—=0 T ¢g—r2<t<ty J Br(zo)

then uw € L>(Q,(to, x0))) for some p € (0, R).
Specifically, we will show that

(2p)2/Q ( )(\u|3+|p\3)dtdx <e
2p(t0,Z0

(14.1)

(14.2)

(14.3)

with € the small positive constant in Theorem 13.2. Then, the conclusion follows from

Theorem 13.2.

Like in the previous section, we will at first prove a simplified version of this theorem,

where there is no pressure.
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14.1 A simplified result, without pressure

We oversimplify and we assume that there is no pressure in the local energy inequality
(12.6), so that, as before in (13.5) we have

/ fu(s)|26(s)dz + 2 / / Vulé < / / W0+ A)g (14.4)
BR({EQ) t07R2 BR(:EQ) tofR2 BR(Io)

s [ P V)6 for all 6 € CX(@nltns o), 0,06)
to—R? BR(:B())

Then using (14.4) it is possible to prove rigorously the following.

Proposition 14.2. There ezists and absolute constant €1 > 0 such that if for some R > 0

u € L®((to — R?, ), L*(Bgr(20),R?)) and Vu € L*(Qg(to, z0)) (14.5)
and u satisfies (14.4) then, if u satisfies either (14.1) or (14.2), there exists p € (0, R) s.t.
p_2/ lul® < €. (14.6)

Qp(to,z0)

Before proving Proposition 14.2 we give a sketch. First of all, we can assume (to, o) =
(0,0). Next, suppose that (14.1) is true and define

- 1
E(r)=—- sup / |u|2
T _r2<t<0JB,

Then it will be shown that there exists a fixed 6 € (0,1) s.t. E(fr) < 27'e; +27LE(r) for
all r € (0, rg] for ry > 0 small enough. Then

n
E(0"r) <2'a + 27 E(0" ) < (27 +27) e + 272E(0" ) <> 2706 + 27 E(r)
j=1

so that, assuming that F (r) is uniformly bounded in (0, 7], then picking n sufficiently large,
we find that there exists an 7 > 0 s.t. E(r) < 2¢; for all r € (0,71]. Then, by (13.9)

3
2

< Cy [3e1]

Njw

r2/ lul*de < Co |r~' sup /|u(t)|2da:—|-7“1/ |Vu|?
T ka QT

—r2<t<0

3 _2
= C’o?)%el2 < € for €1 € <O, C, 3371 (qﬁ)i)

The proof of Proposition 14.2 exploits the following lemma.

Lemma 14.3. There exists a constant C3 > 1 such that, for any fizedr > 0 and 0 € (0,1/2],
there exists ¢ € C°(R*,[0,00)) such that suppd N Q1 C Q,,

o> 051(97”)_1 n Qo and (14.7)
0< ¢ <C3(0r)7", Vol < Cs3(0r)2 and | (0 + AN)d| < C360%r™2 in Q. (14.8)
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Proof. We write
o(t, ) = (0r)29(t, 2)Y(t, x). (14.9)
Here we choose 1 such that
(9 + A)(t,z) = 0 for t < (0r)% and with initial value 1 ((r)%, z) = §(z). (14.10)

Then we know that

2
||

D(t,x) = K grp_o(x) = (4n((6r) — 1))~ 2¢ 7@ 0. (14.11)
Then we have
$(t,) = (617 — 1))~ 3¢ TOID < (dn((6r)? — 1))
< (4 (0r)2) "2 = (47) "2 (0r) "> in Q, = (—r%,0) x B, (14.12)
||

W(t, ) = (4m((0r)? + [t])) "2 WD

0212

> (4n2(0r)2) "2 1077 = (87) 2 1(0r) "2 in Qg (14.13)
Next,
3 5 lel2
Vo(t,z) = 271072 (4((0r) —t))"2¢ @0 g
= T
= 2 lrma (4((0r)2 — t)) 2 W@ =
) T
so in Q.
IVi(t,z)| < 2_67r_%(97")_4ef4((9|:)@*t) S < 2_677'_%(97“)_4 sup ae™ . (14.14)
T 4((6r)2 —t) ~ >0

We define, for X € C°(R3,[0,1]) and T,n € C°(R, [0, 1]),

I(t,x) = X (z/r)T(t/r*)n(t) where
X(z) = {o i&lﬁé@l and T(t) = {1 foi)tﬂi (,;,12/41”1/ 4 (14.15)

and

1 for t <r?/4
n(t) = {0 for t > r2/2

Now we check if (14.9) satisfies the desired results. First of all, in @1 we have ¢(t,z) # 0
only if X(x/r) # 0, that is only if |z| > 1, and T'(t/r?) # 0, that is only if —r?/4 < t < 0.
Hence it is true that suppp N Q1 C Q..
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Now, let us look at the estimates. In Qg, we have

$(t,x) = (0r)2X (a/r)T (¢ [r2)n(t)(t, ) = (6r)2(t,2) > (8m) 25 (6r) 7",
yielding (14.7) and in @, we have

b(t,w) = ()X (a/r)T(t/r )t x) < (0r)*h(t, 2) < (47) 72 (0r) 7,

so yielding the first estimate in (14.8).
Turning to the gradient, we have

Vo(t,x) = (0r)*)(t, 2)T(t/r*)n()r VX (x/r) + (0r)>T(t/r*)n(t)r— X (a/r)Vi(t, ).
In @, we have
(020 (1, )Tt/ r2)n()r VX (2/r)] < [VX oo (0r) 20t 2) < [ VX || oo (47) 72 (0r) 7,
and
(Or)>T(t/r)n(t)r~ X (x/r) |V (¢, 2)| < (0r)*|V(t,z)| < CO2r2,
Finally, we have
(O + D)ot x) = (0r)*(t,x) (B + L) (X (2/r)T(t/r*)n(1))
+2(0r)2r ATt /r2 () VX (z/7) - VU (t, ).
In @, using (VX)(z/r)| # 0= 1/2 < |z/r| < 1, we have

20 Or) 2T (t/r*)n(t) |(VX) (/7)) - V(t, )| < 0% (VX)) (x/7)] 27671'7%9_57”_467@m

r
1
< 2_6027r_%r_3HVXHLoo supf e 22 < CH*r 3.
0>0

Finally, in Q,, using also T'(t/r?) #0 = 1/4 < |t/r?| < 1
(Or)*9(t, 2)|(0 + A) (X (2/r)T(t/r*)n(t)) | = (0r)*(t,2)|(9 + &) (X (2/r)T(t/77)) |

2

< (Or)2(4m((0r)? + [t) "3 T 172 (X (/) [T (t/2%)| + T(t/r2) [(AX) (/)
< 62(4m) 3 (1/4) 3| T ooy + 67 () 3 (6r) P 7 | AX | e < OO

O
Proof of Proposition 14.2. In the proof it is enough to consider (g, z¢) = (0,0). Then,
applying (14.4) for the ¢ of Lemma 14.3, we get

t t
2 2 2
[ wrec +2 / RCE / (0 + Ao

1 /B,
i /—t1 /B1 (|u|2 B (|“|2)B7~) (u- V).
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Using the estimates in Lemma 14.3, we obtain

1

1 t
— ut2+/ / Vu2§0292r_3/ ul?
o I B ML Tt T T
430 [l = ()| 1o
Qr ’
_ 1 _9 _
< B @ Il + €02 [ [l (), | o

1
5 (4m\3 -2,.—
= 6%+ <3> lulzsq,) +C50™°r 2/Q ol = (1) | 1

2
3
< 20262 ( /Q |u|3) 272 /Q [10f2 = (jul?) 5, | 1ol

Now we have

R (P I e o PR PR P e A TP e e
< 2C4||ull L2 IVull L2, lull L3 B,y
where we used the Poincaré inequality
Ihal? = (), 1, 3., < Call P15,

see [10] Theorem 8.11, where, by scale invariance, the constant C4 does not depend on r.
Then, from Hélder with % + % + % =1

= ),

1
< 2r3Cu||Vullp2gllullsg,) sup
—r2<t<

— 20,12 (r_Q/T\u|3>é <r_1 /QT yvu|2>é (rl sup /T]u(t)|2>é.

ul < 2C4||Vullz2,)llulls @ lllull 2z s (—r2 0)

HUHL2(BT)
0

—r2<t<0
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Then we conclude

1 1 [t 3
— yu(t)|2+/ / |Vul|? < 20362 (7«2/ |u|3>
97" BQT 97‘ 7(97")2 BQT Qr
1 1 1
3 2 2
+ 20,0202 <7‘_2/ |u|3> <7“_1/ |Vu\2> r~!1 sup / lu(t)|?
Qr Q'r *T’2<t<0 T
2
3
< 2C26? (7’2/ |u]3>
+C§92 <7“_2/ \u|3) +4CZC§9_6 <r_1/ Vu|2) <r_1 sup / \u(t)]2>
r Qr —r2<t<0J B,

Then, using the inequality

3
2
'r_2/ lul> < Co |71 sup /]u(t)|2—|—7“_1/ |Vaul?| (14.16)
Qr —r2<t<0J By Qr
we obtain
1 I
max sup  — |u(t)2,/ / |Vu)?
—(or)2<t<0 07 )y, Or J_(or)2 J By,
2
< 3C3C36% |r~t sup /|u(t)|2+r1/ |Vu)? (14.17)
—r2<t<0J By Qr

+4C3C307° (7‘1 sup /|u(t)2> <T‘1/ \Vu|2>.
—r2<t<0J By Qr

Now we assume either (14.1) or (14.2). For definiteness we assume (14.1) , that is

1
limsup/ Vul|? < e
r

r—0

but, assuming instead (14.2), that is
. 1 2
limsup -  sup lul” < €1,
r—=0 T g—r2<i<ty r

the argument is the same, due to the symmetry with respect to the above quantities. Then
for r sufficiently small, we have
1
/ |V’U,‘2 < 2€;.
Qr

T
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Then we have

1
sup —
—(6r)2<t<0 Or By,

+ 8C3C207%¢, (r_l sup /|u(t)\2)

2
lu(t)|? <3C2C360% [r~1 sup /\u(t)l2+261

—r2<t<0J By

—r2<t<0

Setting now

~ 1
E(r):=— sup /]u|2

T _r2<t<0

we have

~ 2 2 ~
E(0r) < 6C3C§ 6%, + <30§003 0% + 802039—6q> E(r).

2
Now if we use § < 1/2 so small that 6C3C3 6% < 1/2 and €1 > 0 so small that 8C3C30%¢; <
1/4, we obtain

- 1 1~
E(0r) < € + §E(T) for all » € (0,7¢] for 79 > 0 small enough. (14.18)

This implies

E(0"r) < e + 2 "E(r). (14.19)
We assume now
limsup E(r) < oc. (14.20)
r—0

Then (14.20) implies E(r) < Cs < oo for r € (0,71]. Then (14.19) implies E(@"T) <e+
27"C5 < 2¢; for n > log, (Cg,efl) and 0 < r < min{rg,r1}. This implies E(r) < 2¢; for
0 < r < rg, with ro = 0™ min{rg, 1}, for a fixed ng > log, (0561_1). Inserting E(r) < 2¢;
and (14.1) in (14.16) we obtain

wlo

3
r2/ lul> < Cu33/%e2 < € for e < 3 (Cytes)®, (14.21)

yielding (14.6). To complete the proof of Proposition 14.2, we need to prove (14.20). If
(14.20) is false, there exists R, \, 0 with E(R,) /" co. Using (14.18),

~ 1 1~ ~
E(R,) < ge1+ §E(9_an) <e +27™EO7 ™ R,)
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log(Rn/T0)
log 0

0~ R, < rg. This implies

for m,, := [ } which is the largest m,, s.t. 67" R,, < rg, so that we have 0ry <

~ 1 1~ ~
E(R,) < -e1+-E@'R,) <e+27' sup E(r)
2 2 Org<r<rg

which, from E(R,) “=>% oo, implies SUPgro<r<ro SUP_r2<1<0 [ 3. |u|?> = co. But then, this
would imply u & L>((—R2,0), L?(Bg,R?)), contradicting the hypothesis (14.5).
0

14.2 Proof of Theorem 14.1

We can focus on the case (to, xo) = . Then using (13.1) like in Sect. 14.1, we have

/y 2ot +2/ /Bl|vu|¢</ /BIIUI 0+ L)¢
+/1/Bl [ul® = (Jul?) . (u-V)¢+/1/Blp(wV)¢

with the test function from Lemma 14.3. Then, by Lemma 14.3 we get

1 1 [t

L / () + / / Vul? < C26%3 / u?
97" B, er _(GT)2 Bor. Qr

e G M T (TS PRNVRRe Doty

Now, by the discussion in Sect. 14.1, see (14.17), we have

1 o, 1 [ 2 2302 | —1 2 -1 2
— lu(t)|* + — |Vul® <3C5C;67 |r sup lu(t)|* +r |Vul
er By, GT —(91”)2 By, —r2<t<0 - Qr

—1—4056’3?«9_6 (7’_1 sup / |u(t)\2> (7“_1/ \Vu]Q) +C§9_2r_1/ Ip| |ul.
—T’2<t<0 r Qr Q’l‘

We focus now on the additional term

1

1 2
3 3 3
029—2 —2/ < 029—2 —2 2020 —2/ 3 9—3 —2/ =
0 Il ful < G307 lullzanlipll g ) = Cs0 7 T!U| "o |p|2
4
3
< 262 (ﬂ/ |u|3> + 020 6( / @y%) |
Qr Qr

So if we apply (14.16), we obtain

1 1/t 2
max / |u(t)|2,/ / Va2 ) < 4020562 [ sup /|u(t)|2+r_1/ Vul?
Or Or J_or)2 J By, —r2<t<0J B, Qr

+4C’fC§0—6 1 sup /|u(t)|2 <T_1/ |Vu\2)+C§9_6 <r_2/ ]p|3)
7T‘2<t<0 r id Qr
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Now introduce the estimate

5 4
(01")_2/ |p\% ’ <203072 [ r~! sup / |u(t)[? <'r_1/ |Vu\2>
Qor —r2<t<0J B, r
4
+2C39§< / |p|3)3. (14.22)

We need now to exploit one of (14.1)—(14.2). We choose

1
limsup/ |Vul? < €. (14.23)
r—0 T ,
Then, for r¢g > 0 small enough, we have
1
'r/ |Vu|? < 2¢ for r € (0,7]. (14.24)
Then we have
1 2 23 p2 2
9/ lu(t)|* <4C5C 0 sup / lu(t)|” + 2¢;
T J By, —r2<t<0J B,

4
3
+SCEC§G_661 r~t sup /|u(7§)\2 +C’§c9_6 (T‘_2/ |p]g>
—r2<t<0J B, Qr
and

3 4 4 3
<(97")_2/ \pﬁ) ’ < 40;61(9_2 (r_l sup / |u(t)\2) +2C539% (7“_2/ \p|g> .
Q@T‘ _7’2<t<0 r Qr

Then we obtain

4
1 _ _ 3\ 3
5 [ o (o072 [ wit)
" J By, Qo

T

sup /\u(t)]2+261

—r2<t<0

+8C2C20 %, | 1 sup / lu(t)|? +C§997< 2/ \p|>
—r2<t<0J B, Qr
4 4
+4C3e107 [ r71 sup /|u(t)\2 +2C§9§9—7( 2/ Ip!>
—r2<t<0J B, @r

By = [ o (72 [ |p|3)g ,
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we obtain

2 2 4 4
E(0r) < 8C3C§6%€; + <4C§003 0% +8C1C30 % + O30 + 4C3 61079 + 20;9‘§> E(r).

2 4
Choosing 6 small enough, we can assume 8C2C§6? < 1/2 and C30 + 2C§’0% < 1/5, so that

4
E(fr) <5 'e + (130 +8CiC30 % + 4053619_9> E(r).

4
We choose €1 so that 8CZC’§9_661 +4C2 €107 < 1/5. Then we obtain
E(0r) <27le; +271E(r).

Then, proceeding as in Sect. 14.1, if we know that limsup,_,, E(r) < oo, we conclude
E(r) < 2¢ for 0 < r < ry for some appropriately small ro. Then we get

3 2
r_z/ luf> < Cp3%/2e2 < 27L¢f for ¢ < 3 (27'cyte)®, (14.25)
Qr

Similarly

w

7"_2/ p|2 <OTEI(r) <072ici <271 for ey < 277275 ()5,

Then we get (14.3). To complete the proof, up to (14.22), we need to show lim sup,_,o E(r) <
0o. By the argument in (14.1), having lim sup,_,, E(r) = oo would imply

3
sup sup / |u]2+/ Ip|2 | = oo.
Oro<r<rg | —r2<t<0J B, Qr

But this would imply either u ¢ L>®((—R2,0), L*(Bg,R?)) or p & L*?(Qr,R), contradict-
ing the hypotheses.

O
Finally, we state the lemma needed for (14.22).

Lemma 14.4. There exists Cs such that forp € L%(Qr) andu € L3(Q,)NL>®((—r2,0), L*(B,))
and for —Ap = 0;0;(uu;) in Qr, then for any 0 < 0 < 1/2 we have

3
(97“)2/ p|2 < Cs6732 (1 sup / |u(t)]? <7’1/ !VltIQ)4
QGr —r2<t<0 T Qr

+C’507‘_2/Q 2. (14.26)
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Proof. By scaling, it suffices to con81der case r = 1. We will start by assuming u € C*°(Q1).
This in turn implies that p(t) € L2 ((—1,0)),C*(By)) for all k. Let now ¢ € C(R3,[0,1])
with

1lin B3/4
@) = {0 outside By/s.

Let Uy = wui(uj — (u;)1) where (u;), = (uj)B, = v|Byv|™" [ u;. Notice that —Ap =
0;0;U;;. Then, by Lemma 10.1, we have

1
47|z

*((=L)¢p) = ¥ (—pAp — pAp —2V¢ - Vp)

4|z

op=(=D)"H(=D)gp =
1

| ((baiajUij — pA(Z) — QV(b . Vp)

* (0,0;(9Ui5) — 0; (Ui0;¢) — 0;(Us0i¢) + Uij0;0i¢ — pAg — 2V - (Vop) + 2pAd)

1 1

= aim * (0j(@Uij) — 2U;50;¢ — 2p0; ) + e * (U;0;0i0 + pAg)
ZT; 1

= o * (0j(9Uij) — 2U;;0;¢ — 2p0;) + Irla| * (Uj0;0;¢ + pAo)

Like in Lemma 13.9 we conclude

o i 5”' _ 3$¢(Ej B ZT; 1
¢p - 4ﬂ_PV <|3§‘|3 |$|5 > * (quZJ) 4 | |3 (2Uljal¢+ 2paj¢) 7_‘,| | (Ul]a a’t¢+pA¢)

We have p = ¢p in QQg. We write

1 0;i 3T,
=-——PV. o d Usj).
S <<\x|3 e >> * (¢Uy)
Then

1l ) < OZ 16U, oy < € 2 sty = (w0l < 'l g = (o

7.7

< C||“||L2(B1)HVUHLZ(Bl)-

Next, we write

1 i — Yi
T 0 = / Y ,0,(0)8().

p2 =
4rfaf? 21 J3ja<iyi<ays Amle — yf3
Then, using Yang’s inequality,

1
szHLg(Bg) S ||WHL1(1/4g|m\g2)HUi(uj - (Uj)l)!\Lg(B4/5) < Cllullp2 sy IVull 2 (y)-
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Similarly, for

1
p3 = M * Uij8j8i¢
we have
1
HPBHLg(Be) S ”mHL1(1/4§|z\§2)Hui(uj - (Uj)l)”Lg(B4/5) < Cllullp2ay IVull L2 (3y)-
For
= yAN
P4 prp * pAd
we have
Il 3 ) < OPlpallicm) S P olm < CPlol g

and, similarly, for

T

= % 2po;
PS5 = ol * 2p0j¢
we have
2
Ipsll 3 5, < COlPl 3 5,

Thus, we have

HPHLQ By) = < Cllull 2 IVullz2z,) + CHQHPH
and so
2 0 % % 3 2
<
9135 0, < C | Tilisga I Vulaga, dt+ Il
3
30 3
< CHIIUIIL2 By ll4(—02,0) IHIVUIILz Byl 243 (—g2,0) T €0 lelz %o
3 3 3 3
< Ol s oy IVl gy + CE ISy
< 92l-§ % % 93 %
< OO 2 [|ull Lo (g2 0, Lo () VUl 2y + € ||PHL% @)
that is

N[

3
/ |p|3§cel/2< o [ |u<t>|2)4</ |Vu|2>
0 ~1<t<0.JB, N
+C93/ |2,
Qr

which is (14.26) for r = 1.
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A Appendix. On the Bochner integral

For this part see [3]. Let X be a Banach space.

Definition A.1 (Strong measurability). Let I be an interval. A function f : I — X is
strongly measurable if there exists a set E of measure 0 and a sequence (f,(¢)) in C.(I, X)
s.t. fu(t) — f(t) for any t € I\ E.

Remark A.2. Notice that when dim X < oo a function is measurable (in the sense that
f~1(B) is measurable for any Borel set B) if an only if it is strongly measurable in the
above sense. Indeed if f is strongly measurable in the above sense then as a point wise limit
of measurable functions f is measurable, see Theorem 1.14 p. 14 Rudin [14]. Viceversa
if f is measurable, then f is strongly measurable in the above sense, see the Corollary to
Lusin’s Theorem in Rudin [14] p. 54.

Ezample A.3. Consider {z;}7_; in X and {A4;}_; measurable sets in I with |4;| < co and
with A; N A, =0 for j # k. Then we claim that the simple function

ZxJXA = X (A.1)

is measurable. Indeed, see Rudin [14] p. 54, there are sequences {¢; x txen in C2(I,R) with
k—o00
©;k(t) "= xa,(t) a.e. and hence

COI,R) > fi(t) ij%kz ) F28° f(t) ae. in I.

Proposition A.4. If (f,) is a sequence of strongly measurable functions from I to X
convergent a.e. to a f: 1 — X, then f is strongly measurable.

n~>oo

Proof. There is an E with |E| = 0 s.t. f,(t) = f(t) for any ¢t € I\E. Consider for any
n a sequence C.(I,X) 2 fok ope fn a.e. We will suppose first that |I| < oco. By applying

Egorov Theorem to {|| fy.x — fnll }ren there is £, C I with |E,| < 27" s.t. || for—fol = "2
uniformly in I\E,, Let k(n) be s.t. || fnxmn) — foll < 1/n in I\E, and set g, = f, k(n) Set
F = EUJ(N,, Upsm £n). Then [F| = 0. Indeed for any m

(o] [o¢]
IFI<|E|+ ) |E <|El+ ) 27" "3 0.

n=m n=m

Let t € I\F. Since t ¢ E we have f,,(t) "= f(t). Furthermore, for n large enough we have
t € I\E,. Indeed

tZ(\|J En=3mst. tg |JEn= t¢E,Vn>m.

m n>m n>m
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Then ||g,(t) — fu(t)|| < 1/n and g,(t) "= f(t). So f(t) is measurable in the case |I| < co.
Now we consider the case |I| = oco. We express I = U,I, for an increasing sequence of
intervals with |I,,| < co. Consider for any n a sequence Ce(I,, X) 3 fuk Fope fae in I,.

k—o00

Then by Egorov Theorem to || f, 1 — fnll there is E, C I,, with |E,| <27 st. for — fao

uniformly in I,,\ B, Let k(n) be s.t. [|f,, x(n) = full < 1/nin I\ E, and set g, = fy, k(). Then

defining F' like above, the remainder of the proof works exactly like for the case |I| < oo.
O

Example A.5. Consider a sequence {z;} ey in X and a sequence {4;}jen of measurable
sets in I with |A;| < co and with A; N Ay =0 for j # k. Then we claim

F(t) = wixa, () (A.2)
j=1

is measurable. Indeed if we set fy,(t) = Zl’jXAj (t), then we have le fa(t) = f(t)
7j=1

for any ¢, since if t ¢ U2, A; both sides are 0, and if t € Ay, then for n > ny we have
fu(t) = xn, = f(t). Hence by Proposition A.4 the function f is measurable.
When the sum in (A.2) is finite then the function f is called simple.

Example A.6. Consider a sequence {z;} ey in X and a sequence {4;}jen of measurable
sets in I where again A; N Ay = () for j # k but we allow |A;| = co. Then

F(t) = wixa, (1) (A.3)
j=1
is measurable. To see this consider f,,(t) = X[—pnn)(t)f(t). Then

fn(t) = ijXAjﬁ[—n,n] (t)
j=1

and by Example A.5 we know that each f,(t) is strongly measurable. Since f,(t) — f(t)
for any t € I we conclude by Proposition A.4 that f is strongly measurable.

Another natural definition of measurability is the following one.

Definition A.7 (Weak measurability). Let I be an interval. A function f : I — X is weakly
measurable if for any 2’ € X’ the function t — (z/, f(¢)) x’x is a measurable function I — R.

Obviously, strongly measurable implies weakly measurable. Let us explore the vicev-
ersa.

Definition A.8. Let I be an interval. A function f : I — X is almost separably valuable
if there exists a 0 measure set N C I s.t. f(I\IV) is separable.
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The following lemma shows that strongly measurable functions are almost separably
valuable.

Lemma A.9. If f: I — X is strongly measurable with (f,(t)) a sequence in C.(I,X) s.t.
fa(t) = f(t) for any t € I\E for a 0 measure set E C I then f(I\FE) is separable and there
exists a separable Banach subspace Y C X with f(I\E) C Y.

Proof. First of all f,,(I N Q) is a countable dense set in f,,(I). So f,(I) is separable. In a
separable metric space any subspace is separable. So f,,(I'\ E) is separable. The closed vector
space Y generated by U, f,,(I\E) is separable. Indeed let C' C U, f,(I\E) be a countable
set dense in Uy, f,(I\E). Let Spang(C) be the vector space on Q generated by C. Then
Spang(C) is dense in Y. For C' = {z1, ¥, ...} we have Spang(C) = UpZ;Spang ({71, ..., T }).
This proves that SpanQ(C) is countable and that Y is separable. ]
Ezample A.10. Let X be a Hilbert space with an orthonormal basis {e;};cr. Then the map
f R — X given by f(t) = e; is not strongly measurable. This follows from the fact that it
is not almost separably valuable.

On the other hand if z € X then t — (f(t), z) is different from 0 only on a countable subset
of R, and as such it is measurable. Hence f is weakly measurable.

Notice however that if C' C [0, 1] is the standard Cantor set (which has 0 measure and has
same cardinality of R) and if {€;};cc is another basis of X, then the map

() = ¢ for t € C' and
g\ = 0 otherwise

is weakly measurable (like f and for the same reasons) and is almost separably valuable.
Pettis Theorem, which we prove below, implies that g : R — X is strongly measurable.

The following lemma will be used for Pettis Theorem.

Lemma A.11. Let X be a separable Banach space and let S’ be the unit ball of the dual
X'. Then X' is separable for the weak topology (X', X), see Brezis [2] p.62, that is there
exists a sequence {x;,} in S" s.t. for any x' € S there evists a subsequence {x), } s.t. for
any x € X we have kl;n;()(:v;k, r)xx = (2, 7)) xx.

Proof. Let {z,} be dense in X. For any n consider
F, : §" — R"™ defined by F,(2') := ((',21) x/x, -, (', 20) x7x)-

Since R™ is separable, and so is [, (S’), there exists a sequence {z;, ; bx s.t. {F5 (2, )}k i
dense in F;,(S"). Obviously {z] ,}nr can be put into a sequence. For any 2’ € S’ for any n

there is a ky, s.t. [(2/ — 2/ . ;) x/x| < 1/n for all ¢ < n. This implies that for any fixed i

/

n,kn

we have ILm (2! 1) xrx = (2, 2;) x x. By density this holds for any = € X. O
n o0 shvn

Proposition A.12 (Pettis’s Theorem). Consider f : I — X. Then f is strongly measurable
if and only if it is weakly measurable and almost separable valuable.
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Proof. The necessity has been already proved, so we focus on the sufficiency only. By
modifying f we can assume that f(I) is separable. By replacing X by a smaller space, we
can assume that X is separable.

Fix now x € X. Then we claim that ¢ — || f(¢) — z|| is measurable. Indeed for any a > 0

ftel:|f(t)—al <a} = Nwes{t € I: @', F() - 2)xrx] < a}.}

Using the fact that S’ is separable in the weak topology o(X’, X) and the notation in
Lemma A.11, we have

{te | f(t)—all <a} = Npendt € 1+ [(&), F(2) — @hxrx] < a}.

Since the set in the r.h.s. is measurable, we conclude that ¢ — || f(¢) — || is measurable and
so our claim is correct.

Consider now n > 1. Since f(I) is separable there is a sequence of balls {B(z;, 2)};>0
whose union contains f(I). Set now

{ Wi = {t: £(t) € Bao, 1)},
wy = {2 f(0) € Blay, )N\ Unej 0y

and

Falt) =) ajx o (1)-
=0 7

Notice that szowj(.n) = [ and they are pairwise disjoint and measurable. By Example A.6
we know that f, : I — X is strongly measurable. Furthermore, for any ¢t € I there is a j

st. te wjn) and this implies

% > Hf(t) —.%'j” = ||f(t) - fn(t)”

In other words, || f(t) — fu(t)|]] < 1/n for any ¢t € I. Then f,(t) — f(t) for any ¢, and so by
Proposition A.4 the function f : I — X is strongly measurable. O

Ezample A.13. Consider the map f : (0,1) — L°°(0, 1) defined by ¢ EN X(0,t)- This map is
not almost separable valued. Indeed t # s implies ||f(¢t) — f($)|loo = 1. If f was almost
separable valued then there would exist a 0 measure subset E in (0,1) and a countable set
N = {tp}n in (0,1)\E such that for any ¢t € (0,1)\(EFUN) there would exist a subsequence
ng with f(t,,) oo f(t) in L*°(0,1). But this is impossible since || f(t) — f(tn,)]|ooc = 1.

On the other hand f : (0,1) — L?(0,1) defined in the same way, is strongly measurable.

First of, since L?(0,1) is separable, it is almost separable valued. Next for any given any
w € L?(0,1) we have

(f()sw)r2(0,1) :/0 w(zr)dx

which is a continuous, and hence measurable, function. So f is also weakly measurable and
hence it is strongly measurable by Pettis Theorem.
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Recall that in Remark A.2 we mentioned another possible notion of measurability, that
is that f : I — X could be defined as measurable if f~1(A) is a measurable set for any open
subset A C X. We have the following fact.

Proposition A.14. Consider f : I — X. Then f is strongly measurable < it almost
separably valuable and f~1(A) is a measurable set for any open subset A C X.

Proof. The ”<" follows from the fact that for any a open subset of R and for any 2/ € X
the set A = {x € X : (z,2')x x» € a} is open and for ¢(t) := (f(t),2')x x we have
fYA) = g~'(a). So the latter being measurable it follows that g is measurable and
hence f is weakly measurable. Hence by Pettis Theorem we conclude that f is strongly
measurable.

We now assume that f is strongly measurable. We know from Lemma A.9 that f is almost
separably valuable. Let U be an open subset of X. Let (f,), be a sequence in C2(I, X) with
fa(t) "= f(t) ae. outside a 0 measure set E C I. Let U, = {x € X : dist(z,U°) > r}.
Then

FTHUNE = (U1 Unz1 ﬁkznfgl(U%))\E- (A4)
To check this, notice that if ¢ belongs to the left hand side , then f(¢t) € U1 for some
mq

n—o0

mo and, since fp(t) — f(t), for n large we have fi(t) € U1 if K > n for m; > myp
my
preassigned. Viceversa if ¢ belongs to the right hand side, then there exist n and m s.t.
k—o0

fr(t) € U for all k > n. Then by fi(t) "= f(t) it follows that f(t) € U1 with the latter

a subset of U. This proves (A.4). Since the r.h.s. is a measurable set, this completes the
proof. O

Definition A.15 (Bochner integrability). A strongly measurable function f : I — X is
Bochner-integrable if there exists a sequence (fy(t)) in Co(1, X) s.t.

fim [ 14,00 = £O)Lxdt =0 (A.5)

n—oo

Notice that || f,(¢) — f(t)||x is measurable.

Ezxample A.16. Consider the situation of Example A.13 of a Hilbert space X with an or-
thonormal basis {e; }1er and the map f : R — X, which we saw is not strongly measurable
and hence is not Bochner—integrable. Notice that f is Riemann integrable in any compact
interval [a, b] with fff(t)dt =0.

To see this recall that the Riemann integral is, if it exists, the limit

b
t)dt = lim t:)|I;| with t; € I; arbitrar
IR Jimy 2 I with 1y € 1 anbinay

where A varies among all possible decompositions of [a,b] and |A| = maxjea [I|. We have

1D e 1LIP = fersead Il < 2 11114 = 2|A|(b - a)

LeA .k j

A|—0
2150,
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Proposition A.17. Let f : I — X be Bochner—integrable. Then there exists an x € X s.t.
if (fu(t)) is a sequence in C.(I,X) satisfying (A.5) then we have

lim z, = x where x,, := /fn(t)dt. (A.6)
I

n—oo

Proof. First of all we check that x,, is Cauchy. This follows immediately from (A.5) and
from

mn—%wx—H/uuw—ﬁawmwxs/Wmuwamumxm

gﬂwuw— uﬁ+/w (1)) xdt.

Let us set © = limx,. Let (gn(t)) be another sequence in C.(I, X) satisfying (A.5). Then
lim f] gn = T by

I [ auterit=sllx =1 [ (au(0) = fuenar+ [ it = alx

/Hgn fn ||th+||/fn t—l‘Hth
sﬂmmw— |ha+/ﬂn - )hﬁ+H/h dt — x| ydt.

O]

Definition A.18. Let f : I — X be Bochner—integrable and let x € X be the corresponding
element obtained from Proposition A.17. The we set [; f ; f(t)dt = .

Theorem A.19 (Bochner’s Theorem). Let f : I — X be strongly measurable. Then f is
Bochner—integrable if and only if || f|| is Lebesque integrable. Furthermore, we have

II/If(t)dtll S/Ilf(t)lldt- (A7)

Proof. Let f be Bochner—integrable. Then there is a sequence (f,,(t)) in C.(I, X) satisfying
(A.5). We have ||f|| < ||full + IIf = full. Since both functions in the r.h.s. are Lebesgue
integrable and || f|| is measurable it follows that|| f|| is Lebesgue integrable.

Conversely let ||f|| be Lebesgue integrable. Then there exist a sequence (g,(t)) in
Ce(I,R) and g € LY(I) s.t. [, gn(t) = || f(¢)]||dt — 0 and |gn(t)| < g(t). In fact it is possible
to choose such a sequence so that ||gn — gml[z1() < 27" for any n and any m > n (just by
extracting an appropriate subsequence from a starting g, 5). Then if we set

Z |9n () = gnt1(t)| (A-8)

"Suppose we start with a given {g,}. Then for any 2™ there exists N,, s.t. ni,na > N, implies
lgn, — gnallLrny < 27" Let now {p(n)} be a strictly increasing sequence in N s.t. ¢(n) > N, for any n.
Then ||gyo(n) — Gom)llp1(ry < 27" for any pair m > n. Rename g, () as gn.
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we have [[Sn|[z1) < 1. Since {Sn(t)}nen is increasing, the limit S(t) := limy, o0 Sn(t)
remains defined, is finite a.e. and |[S]|p1;) < 1. Then |g,(t)| < [g1(t)] + S(t) =: g(¢)
everywhere, where g € L!(I). Notice that nh_{rgo gn(t) is convergent almost everywhere (it
convergent in all points where lim,,_,  ~ Sy, (t) is convergent). By dominated convergence it
follows that this limit holds also in L'(I) and hence it is equal to || f||.

Let (fn(t)) in C.(I,X) s.t. fn(t) — f(t) a.e. (this sequence exists by the strong measura-
bility of f(t)). Set

e
=g+ 20

Notice that (un(t)) is in C.(I, X). We have

92 (O] 1 £2 @]
1£a O] + 5

We have (where the 2nd equality holds because because lim g, (t) = || f(¢)|| and lim ||f,(¢)| =
7)) ae) o o

lun ()] < < |gn(B)] < g(t).

an(t) = lim fn(t) = f(t) ace..

n

lim w,(t) = lim
A T

Then we have

i [lun(t) — F(2)]| = 0 ae. with [lun () — F()] < g(t) + [ F2)]| € L' (D).

By dominated convergence we conclude

lim /1 lun(t) — F(8)||dt = 0.

n—oo

This implies that f is Bochner—integrable. Finally, we have

I [ st = tim | [ wnt)arl < im [ o = [ s

O]

Corollary A.20 (Dominated Convergence). Consider a sequence (f,(t)) of Bochner—integrable
functions I — X, g : I — R Lebesgue integrable and let f : I — X. Suppose that

[ fn(E)I] < g(t) for alln
nh_{gO fu(t) = f(t) for almost all t.

Then f is Bochner—integrable with [; f(t) = limy, [; fn ().
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Proof. By Dominated Convergence in L'(I,R) we have [;|f(t)| = lim, [;[|f»(¢)]. By
Proposition A.4, as a pointwise limit a.e. of a sequence of strongly measurable functions, f
is strongly measurable. By Bochner’s Theorem f is Bochner—integrable. By the triangular

inequality
i s | / ~ fu®)] < lim / 1F(t) = ful®)] =0
)] <

where the last inequality follows from ||f(t) — < |If@®)] + g(t) and the standard
Dominated Convergence. 0

Definition A.21. Let p € [1,00]. We denote by LP(I, X) the set of equivalence classes
of strongly measurable functions f : I — X s.t. [[f(t)|| € LP(I,R). We set ||f|lrr(7,x) :=

A 2r Ry
Proposition A.22. (LP(I,X),|| ||z») is a Banach space.

Proof. The proof is similar to the case X = R, see [2].
(Case p = 00). Let (f,) be Cauchy sequence in L>°(I, X). For any k > 1 there is a N, s.t.

1
||fn — f’ITLHLw(I,X) S % for all n,m Z Nk
So there exists an Ej, C I with |Ek] =0 s.t.
| fn(t) — fr(®)||x < z for all n,m > Nj and for all for ¢t € I\ E.

Set E := UpE). Then for any t € I'\E the sequence (f,(t)) is convergent. So a function
f(t) remains defined with

1
Ifn(t) — fO)]x < % for all n > Ny and for all for t € I\ E. (A.9)

By Proposition A.4 the function f is strongly measurable. By (A.9) we have f € L>°(I, X)
and

1
[fn = Fllze,x) < T for all n > Ny,
and so f, — f in L>(1, X).

(Case p < c0). Let (f) be Cauchy sequence in LP(I,X) and let (fy,) be a subsequence
with
ank - fnk+1||LP(I,X) < 2_k

Set now I
= () = frpr (D)l x
k=1

Then
lgillze(rry < 1.
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By monotone convergence we have that (g;(t)); converges a.e. to a g € LP(I,R). Further-
more, for 2 < k <1

-1
1o () = fo @)l xx = D 1Fny (8) = Fryaa (B)llx < g(8) = g (0).
=k

Then a.e. the sequence (fy, (t)) is Cauchy in X for a.e. ¢t and so it converges for a.e. t to
some f(t). By Proposition A.4 the function f is strongly measurable. Furthermore,

1F(E) = frr (Dl x < g(b).
It follows that f — f,, € LP(I,X), and so also f € LP(I,X). Finally we claim |f —
Juillze(r,x) = 0. First of all we have [|f(t) — fu, (t)||x — 0 for a.e. ¢t and

1F(#) = fr DI < 9"()
by dominated convergence we obtain that || f — f,,||x — 0 in LP(I,R). Hence f,, — f in
LP(I, X). 0
Proposition A.23. C°(1,X) is a dense subspace of LP(I, X)) for p < cc.
Proof. We split the proof in two parts. We first show that CO(I, X) is a dense subspace of
LP(I,X) for p < co. For p = 1 this follows from the definition of integrable functions in
Definition A.15. For 1 < p < oo going through the proof of Bochner’s Theorem A.19, the
functions u, considered in that proof can be taken to belong to C?(I, X) and converge to
fin LP(1, X).

The second part of the proof consists in showing that C2°(I, X) is a dense subspace of
CY(I, X) inside LP(I,X) for p < co. Let f € C(I, X). We consider p € C°(R, [0,1]) s.t
[ p(x)dz = 1. Set pe(x) := e 'p(x/e). Then for e > 0 small enough p. * f € C(I, X). We
extend both f and pe * f on R setting them 0 in R\/. In this way p. x f € C°(R, X) and

f € CYR, X) and it is enough to show that p. * f 'y fin LP(R, X)..
We have

pos F(0)= 1) = [ (£ =es) = 1(sol)dy
so that, by Minkowski inequality and for A(s) := || f(- —s) — f(:)||zr, we have

loe® () — F@)llor < /rp ) A(e 5)ds

Now we have lims_,0 A(s) = 0 and A(s) < 2||f||zr. So, by dominated convergence we get

iy | = fl1r = sy [ |p(s)| (e 5)ds = .

So
limpe» f = f in LP(R, X). (A.10)

Proceeding as in the previous proof, we can prove the following.
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Proposition A.24. Let p € [1,00) and f € LP(R, X). Set
t+h

Tnf(t) =h1 f(s)ds fort € R and h # 0.
t

Then Tf € LP(R, X) N L®(R, X) N CYR, X) and T),f 30 fin LP(R, X) and for almost
every t.

O
Definition A.25. We denote by D'(I, X) the space L(D(I,R), X).

Corollary A.26. Let f € L} (I,X) be such that f =0 in D'(I,X). Then f =0 a.e.

loc

Proof. First of all we have [, fdt = 0 for any J C I compact. Indeed, let (¢,) € D(I) with
0 <y, <1and ¢, — xs a.e. Then

/ fdt = hm pnfdt =0
J

where we applied Dominated Convergence for the last equality. _
Set now f(t) = f(t) in J and f(¢) = 0 outside J. Then T}, f = 0 for all h > 0. Then f(t) =
for a.e. t. So f(t) =0 for a.e. t € J. This implies f(t) = 0 for a.e. t € R. O

Corollary A.27. Let g€ L} (I,X),to €1, and f € C(I,X) given by f(t) fto
Then:

(1) f' =g inD'(I,X);

loc

(2) f is differentiable a.e. with f' =g a.e.
Proof. It is not restrictive to consider the case I = R and g € L*(R, X). We have

t+h _
Trhy(t) = h_l/t g(s)ds = W

By Proposition A.24 Tjg h=0 g for almost every ¢. This yields (2).
For ¢ € D(R) we have

- /R S (D)t
Furthermore b h .
%0 ®) f(t—h) — £(t)
(" —}g%/f —ar =t [ o)

- _illig%)/Rgo(t)T_hg(t)dt =(g,9)-
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Definition A.28. Let p € [1,00]. We denote by W'P(I, X) the space formed by the
ferLP(I,X)st. ffeDI,X)isalso f' € LP(I,X) and we set || fllw1.o = || fllze + [|f'|| Le-

Lemma A.29. Let u,g € L*(I, X) be such that

(w(ta), flxx- — (W(t1), fxx- = / i (9(s), f)xx«ds for any f € X*.

t1
Then Owu = g in D'(I, X).

Proof. We immediately obtain (u(t), f)yx« € AC(I) with derivative 0y (u(t), f) xx+ =
(g(t), ) xx+. For any ¢ € D(I) and any f € X*

(= [uoeins) == [ o= [ ) ax st = [owets)

which yields

- /u(t)go’(t)dt = /g(t)ap(t) for all ¢ € D(I)

I 1

and so dyu = g in D'(1, X).

B Appendix. A little more on the heat equation

We will will Proposition 11.10. v

Proposition B.1. Assume that Wy — AW = 0;f in Q1. Assume f vanishes outside @ps
for an ps € (0,1) and that W(—1,2) = 0. Then, for any p; € (0, ps):

1. f € LPLTE(Q1) = W € LFCY™(Q,,) for any a € (0,1);

2. f € LEWES(Q1) = W € LPCE*(Q,,) for any a € (0,1);
3. f € LECY(Q1) for an a € (0,1) = VW € L™(Q,,);

4. f € LECy(Q)) for ana € (0,1) = VMW € L2(Q,)).

Proof. 1t is enough to prove the 1st and 3rd claim. Let us start with the 1st claim. First
of all

W (t,x 2/ ds/RBt—s “Se” 4L<ty§(9f(s y)dy
/ds/RSe 'fuyf mE 3f( y)dy
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Then

_lz—y|? — Cle=l? oas — s
W(t,l’) — W( 2/ ds/ e 4@ ys) yjs e 4(tjs) 237%5 f(s,y)dy.
R3 t—5)2 2(t —s)2
Introducing
T Y z
6 = , N= y P =
(t—s)2 (t—s)2 (t—s)2
we have
_3 1/2 ‘5 T7|2 _‘ﬁ_m2 1/2
W(t,z) —Wi(t,z) = 2 dS RS (t—s) (& —mj) —e 1 (pj—my)| f(s,(t =)/ n)dn.
Then
|z — z|*
l&—n|? _lp—nl?
g/ ds/ “1p—ape t (G —m)—e T (p —nj)f(& (t — )/2n)dn.
R3 1§ — pl™

Now split the domain of integration in two parts. In the first part |{ — p| > 1. When this
holds we bound the integral by

c/t ds /Rg(t—s)—l/2—a/2<

. _bnp?
<20 [ ase— o) /R " Inlanl| .z

ey, _ n|) a5

In the region where |£ — p| < 1 we bound from above the integral by

le=nl* lp—nl?

e T (G mm) e T (p —my)
£ — pl

£ (s, (¢ = 5)"/2n)|dn

(t _ S)—l/2—a/2 sup
3 T€[0,1]

_1/9_ _|r(¢=p)—nl? _|r(¢=p)—n|?
(t = 5)-1/2-02 sup}(e polt | - ltsy |T<sp>n|2)dn|f|m

3 T€[0,1

t
< / ds / (t— )72/ (14 9) dn]| |3

+
—
T
—

In? ||
)12 <e— P |,7|2> anll fliz < ClFli.
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We now consider the 3rd statement. For € > 0 we consider

te = y| —
(t,2) / /< T f(s,y)dy
R3 t—s)1+2

Then
t—e _a— 12 . .y _
O We(t, z) / ds/ S IS Rk )G S 0N TS
1 RS (t —s)tt2 2(t — 5)*t2
/t EdS/ Izlg:(;_yg 5]k _ (x]_yj)(xk_yk) |x_y|af(say)_f(s7$)dy
1 RS (t—s)it3 2(t — 5)2+3 |z -yl
So, using
T Y
{=—"7, N=—""T7,
(t—s)2 (t—s)2
t—e _le=n? 1 ’f — 77’&
O We(t, )| < (| f Il oo 1,0y, 000 . ds s T |Gk =27 (& — 1) (& — mw) mdﬁ
,'7 (0%
< Cl oo ((—1.0y.00) forC— sup / ds/R3 1+\n\)(|)1a/2d77
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