Multimessenger Astronomy with
ObsTAP and PyVO

~
ESCAPE

Eurapean Science Cluster af ronamy &
Particle physics ESFRI reszarch Infrastructures

",

Hendrik Heinl, Dave Morris, Markus Demleitner

November 8, 2020



ESCAPE

Multimessenger Astronomy with ObsTAP and PyVO

Abstract

The shear amount of data available for astronomy today, offered by
distributed services not only demands a specific set of skills from
(data) scientists: it’s obvious that automated processes and ma-
chine readable (machine ”learnable”) interfaces and standards are
necessary to combine data from different sources, instruments and
messengers. The IVOA defines such standards and protocols and in-
troduces them to the community. At the same time, the ESCAPE
project links partners from different instruments with the european
VO community to enable a FAIR access to the data.

Here we want to show which data already is available and at the
same time want to introduce to the recent standards that enable you
access data using pyVO, the Python API to the Virtual Observatory.
Eventually we want to give a glance on what’s in the pipeline in
regard of new standards.

This tutorial is not an introduction in any of the used standards,
protocol tools or python. To get more insight into this, you may
want to have a look at the References section of this document.

Software: TorcAT V4.7, Aladin V11.0

1 Starting out

We will use the VO tools TOPCAT, Aladin and pyVO. These client software
can be found here:

Aladin: http://aladin.u-strasbg.fr/

TOPCAT: http://www.star.bris.ac.uk/~mbt/topcat/

We will also use PyVO and astropy. These are best installed from your
distribution packages.

A comprehensive collection of the examples in this tutorial as well as in-
stallation scripts you will find on github. Checkout the hyantis repository and
follow the README instructions.

2 TOPCAT, SCS and TAP

This tutorial will work along the use case of searching for neutrino data from a
VO-service and combine these with data from catalogues using Topcat. In the
second part we will be using PyVO to find and access observational dataproducts
on different VO services. We are well aware that scientifically speaking this does
not make a lot sense (yet), but this tutorial is meant to give an overview which
standards the VO is providing right now, and what is in the pipeline that will
support multimessenger astronomy.


http://www.star.bris.ac.uk/~mbt/topcat/
http://aladin.u-strasbg.fr/
http://aladin.u-strasbg.fr/
http://www.star.bris.ac.uk/~mbt/topcat/
https://github.com/hendhd/hyantis

> 1

> 2

>3

ESCAPE

Multimessenger Astronomy with ObsTAP and PyVO

Finding Neutrino data in the VO-registry —

We start this use case with searching and accessing neutrino data that is
available on VO services. Start Topcat and click on VO — Cone Search. In the
Cone Search window enter neutrino as Keywords and click on Find Services.
After a few moments you see the results coming in as a list of services providing
data related to the keyword. You see that the list provides you with some
information of what the data of the service contains. In the description you also
get information about the different data provides.

VO Registry

The Registry is the central point for searches for services in
the VO. VO services identify themselves to the Registry,
providing metadata about the data they serve and the
service protocols they support. Thus, the Registry is the
entry point for data discovery in the VO.

Mark different rows and watch the URL change in the field below. This meta
data is meant to give you an idea of what you can expect from the services and
if they are of interest for you.

Exercise: Of course you may not be interested in neutrino data. Try
to find the messengers that are of importance for you instead: try
radio, infrared or gamma ray, or whatever is suitable for you. Note:
here the registry is searching for SCS services only.

Retrieve neutrino data through a Cone Search —

For our example, we select the service provided by km3net by marking the
service by the title ANTARES 2007-2017. We will get a bunch of neutrino events
to use in the next steps. In Cone parameters for RA enter 43, for Dec enter
35 and and give a Radius of 20 degrees. Then click on OK. Within seconds
the data will be loaded into Topcat and you see the table appear in the main
window of Topcat.

The protocol we used is the Simple Cone Search (SCS).

With the neutrino data at hand, let’s have a look at it in Topcat. We can
click on Views — Column Info. Here you can get some information about the
columns. You see that the data provides us with a modified Julian Date of when
the neutrino event was ovserved. We can plot some of the data with Graphics,
but so far we wouldn’t have much more than positions to see.

Adding catalogue data to the neutrino candidates with TAP —

In this step we want to combine our neutrino data with catalogue data from
SDSS. Catalogue data typically is table data, so we will use the Table Access
Protocol and the corresponding Query language ADQL to do so. There is a



ESCAPE

Multimessenger Astronomy with ObsTAP and PyVO

SCSs

SCS (Simple Cone Search) https:
//ivoa.net/documents/cover/ConeSearch-20060908.html
defines a standard web service interface for requesting data
based on a cone projected on the sky described by a sky
position and an angular distance. The protocol defines the
query parameters the service understands and the format of
the response. This enables users to query multiple services
using the same criteria. Each service returns a machine
readable VOTable document listing the astronomical sources
or objects which are within the search criteria.

lot more to say about TAP and ADQL than we will do here. A comprehensive
ADQL introduction is linked in the References.

In Topcat go to VO — TAP. The TAP window will open and after a few
moments you will see a list of services in the window. Analogously to the Cone
Search window, you can use the TAP window to search the VO-registry for
data. At Keywords we will enter SDSS to search for services providing us with
those data. Often you will find the most recent catalogue data from dedicated
services related by the publishers of the catalogues. You may also find them
on the TAP Service of Vizier. Many Services providers try to anticipate which
data combination might be of interest for the users. So it’s not uncommon to
find surveys like 2MASS or SDSS on several services.

TAP

TAP (Table Access Protocol) defines a standard web service
interface for querying tabular catalogs. The protocol defines
how to represent the query parameters and the available
response formats. This enables users to query multiple
services using the same client software and query language.

As for SDSS you see a few options to chose from. We will select the GAVO
data center (Note: the reasons here is due to the performance of the tutorial: we
want query results to come in fast. Real science takes time and it is completely
acceptable to run queries for hours). Click on Use Service to get to the TAP
window of the Service.

Give it a few moments to load the metadat of the service into the TAP
window. On the left you see a tree of the catalogues and tables on thes service,
on the right is the metadata browser on these tables. Mark any table and see
what the description of the table and the columns tell you about the data in
the table. This meta data still is part of the TAP standard and is very helpful
for data discovery and of course for the data access using ADQL.


https://ivoa.net/documents/cover/ConeSearch-20060908.html
https://ivoa.net/documents/cover/ConeSearch-20060908.html

ESCAPE

Multimessenger Astronomy with ObsTAP and PyVO

In the upper left of the meta data at Find: enter sdss to find the table
containing this survey. In this example we just want to collect the identifier of
an object, the position in ra and dec and the colours in the u, g, r, i and z band.
We will make use of the TAP feature TAP UPLOAD, to join our local table
with results from the remote service. In the lower window at ADQL Text click
on Examples — Upload — Upload Join. You see an example ADQL query
appearing in the field:

SELECT
TOP 1000
*
FROM sdssdr7.sources AS db
JOIN TAP_UPLOAD.tl1 AS tc
ON 1=CONTAINS(POINT('ICRS', db.ra, db.dec),
CIRCLE('ICRS', tc.ra, tc.decl, 5./3600.))

Now at the first glance that may look confusing, so let’s go through it step by
step. Each ADQL query starts with SELECT followed by specifications of “what”
to select, what to do with the selected records and how to return the results. TOP
1000 means the first 1000 data records will be returned, which match the whole
query. With * we select all columns of matching data records. Here will will
modify the query, because we are not interested in all of the columns of SDSS.
Instead of * we will write: tc.*, db.objid, db.ra, db.dec, db.u, db.g,
db.r, db.i, db.z. This means we want to keep all columns from our local
table (which is called tc) and add the columns from the remote table (which is
called db). FROM sdss.sources specifies the table of the TAP service we want
to query. The next lines are the query conditions. In our example we use the
ADQL built in functions that defines the upload join. This means we define a
circle around every object from our local table, and the database sell check if any
data set of the sdss table lies within any of these circles. A little confusing may
be the 1=CONTAINS. This is due to the boolean result returned by the function
CONTAINS. A result of 1 means true whereas O means false. POINT expresses
a point, the right ascension and the declination in degrees. Our query takes the
coordinates from the table using the columns ra and dec. Analogously CIRCLE
expresses a cone in space, taking ra and decl from our local table. The last
entry defines the radius of the circle in an angle in decimal degrees. The whole
query looks like this:

SELECT
TOP 1000
tc.*, db.objid, db.ra, db.dec, db.u, db.g, db.r, db.i, db.z
FROM sdssdr7.sources AS db



ESCAPE

Multimessenger Astronomy with ObsTAP and PyVO

JOIN TAP_UPLOAD.t1 AS tc
ON 1=CONTAINS(POINT('ICRS', db.ra, db.dec),
CIRCLE('ICRS', tc.ra, tc.decl, 10./3600.))

Click on Run Query and the result should come in rather fast. Again have a
look at the new table. You see that we added a few columns, but it seemed that
we lost some rows. This is due to the query: the database did only return those
data records that matched our conditions. Not matching records are discarded.

ADQL

ADQL (Astronomical Data Query Language) is a query
language based on a subset of SQL used to query tabular
data in TAP services. The ADQL standard defines a
common subset of SQL that can be used to access data in all
the common relational database platforms used in astronomy.
This enables users to query multiple services using the same
query without having to worry about the specific dialect of
the relational database platform hosting the data.

Exercise: You can control the ADQL JOIN behaviour by using
the alternatives LEFT QUTER JOIN, RIGHT OUTER JOIN or FULL
OUTER JOIN. The default command is INNER JOIN. Play around
with these options, they might become usefull in future.

3 PyVO and ObsTAP

PyVO is the Python API to the VO standards. You can use it for data discovery
and data access in the same way as you would use VO clients like Topcat or
Aladin. But you can also use it embedded in your own code, so that you may
access data remotely from an automated script. We will show with three simple
(and one not so simple) scripts how you can use PyVO in the multimessenger
context.

> 4 Ezample 1: PyVO and TAP —

Have a brief look at the few lines in examplel.py. Note, that two lines are
necessary to supress warnings — services and clients often are a bit off, especially
in regard of recent standards. They still work, but warnings will be raised. We
don’t want to pretend that everything in the VO is perfect, but within a tuto-
rial, warnings might be confusing. If you are curious what’s going on, simply
comment the according lines and run the script. The script performs a very



>5

> 6

ESCAPE

Multimessenger Astronomy with ObsTAP and PyVO

simple query on the GAVO obscore service. Have a look how the service ob-
ject is built by pyvo.dal.TAPService (). This is the convention within PyVO:
pyvo.dal.SERVICETYPE (parameters). The actual search is performed with the
service object method search. This will send the query to the server, and the
last line saves the resulting VOTABLE into the same folder as the script.

Example 2: PyVO and SCS —

This example shows analogously the Simple Cone Search from PyVO. The
service object is built following the convention introduced in the last tutorial
step, and as you see, we again use the service provided by km3net to obtain a
list of neutrino events. Here we chose a much smaller radius though. We want
to keep the following steps fast. Note the last lines of the script: we save the
result to a local file, but we also use SAMP to broadcast the result to topcat.
To make this work, you need to make sure that topcat is running before you
run the script. You will find the result as a table in topcat now.

SAMP

SAMP (Simple Application Messaging Protocol)
https://ivoa.net/documents/SAMP/ enables astronomy
applications on the same desktop or laptop machine to share
data with each other. It also enables applications to notify
each other about what data points a user has selected,
enabling the two applications to coordinate their display and
selection views.

Ezxample 3: PyVO and Obscore —

Example now is a bit closer to the real world. The script will make use of
the neutrino data we get from example 2, which we saved locally to the hard
drive. So we take different steps from here: we load the data from the folder
exampl2. Note that we have a fallback exception in the code, in case something
went wrong during the last tutorial step. We also introduce a longer TAP
query. From the first part of the tutorial you are familiar with the TAP-upload
already. But here we are comparing our local data with a special table on the
TAP service: ivoa.obscore. A service providing this table follows a the special
standard Obscore, which is dedicated to observational data. Each obscore-
service provides this table with exactly defined columns which enables the users
to use the same query repeatedly on each obscore-service. Of course there is no
garantuee that one will receive any results, but it’s making Searches all across
the VO possible, and comparable easy. Here we query the gavo dc. only, and
sent the results to Topcat.

> 7 Topcat, SAMP and Aladin —

Look at the results in Topcat. We will have a list of 50 images. Note: it’s a
table that does not contain the actual images, but urls to the images. Topcat


https://ivoa.net/documents/SAMP/

ESCAPE

Multimessenger Astronomy with ObsTAP and PyVO

ObsCore

ObsCore https://ivoa.net/documents/0bsCore/ Is a
common data model for describing astronomical
observations. It defines the core components of metadata
needed to discover what observational data is available from
a service. If a service advertises itself as an ObsTAP service,
it means that it provides this standard view of metadata
about the observational data. This means that a user can
build an ADQL query based on the ObsCore data table and
apply the same query to all the ObsTAP services.

can not deal with these links. Therefore, start Aladin, then go back to Topcat
and use SAMP to sent the data to Aladin. In Aladin you now find this table
and can download the fits files to your local machine. Hover over the rows to
see the coverage of the images in relation to the position on the sky you were
searching. Scroll a bit left and click on the buttons in the column ”Preview” to
download smaller Versions of the images in Aladin.

4 Acknowledgements

The Authors thank ESCAPE WP4 "CEVO” for making this contribution to
ADASS 2020 possible.

Dave Morris works as a Research Software Engineer at the Royal Observa-
tory, Edinburgh (ROE)

Hendrik Heinl works as Ingénieur d’études at the Centre de Données as-
tronomiques de Strasbourg (CDS)

Markus Demleitner works as postdoc at the Astronomisches Rechen-Institut,
Universitit Heidelberg (ARI)

5 Standards
ADQL
Obscore
ObsLocTAP
SCS
SAMP

VOTable


https://ivoa.net/documents/ObsCore/
http://www.ivoa.net/documents/REC/ADQL/ADQL-20081030.pdf
https://www.ivoa.net/documents/ObsCore/
https://www.ivoa.net/documents/ObsLocTAP/index.html
https://www.ivoa.net/documents/latest/ConeSearch.html
https://www.ivoa.net/documents/SAMP/
http://www.ivoa.net/documents/VOTable/20130920/REC-VOTable-1.3-20130920.html

ESCAZPE

Multimessenger Astronomy with ObsTAP and PyVO

6 References
Demleitner, M. ADQI-Course
Demleitner, M., Becker, S. PyVO Documentation

Fernique, P. Aladin Documentation

Taylor, M. TOPCAT Documentation


http://docs.g-vo.org/adql/html/
https://pyvo.readthedocs.io/en/latest/
http://aladin.u-strasbg.fr/java/AladinManual6.pdf
http://www.star.bris.ac.uk/~mbt/topcat/#docs

	Starting out
	TOPCAT, SCS and TAP
	PyVO and ObsTAP
	Acknowledgements
	Standards
	References

