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Introduction

The flow through most pipes is turbulent. Treatment

with classical analytic techniques next to impossible.

Available techniques are basic on experimental data

and empirical formulae. The working equations are

often derived from dimensional analysis using

dimensionless forms.

Often desirable to determine the head loss, hL so

that the energy equation can be used. Pipe systems

come with valves, bends, pipe diameter changes,

elbows which also contribute to the energy (head)

loss.

The overall head loss is divided into two parts major

loss hLmajor , and minor loss hLminor . The major

loss comes from viscosity (in straight pipe) while the

minor loss is due to energy loss in the components.

The major loss can actually be smaller than the

minor loss for a pipe system containing short pipes

and many bends and valves.
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Major Losses

The pressure loss in a pipe for turbulent flow

depends on the following

• ρ

• µ

• v , l and D

• Surface roughness ε . These projections of the

wall can and protrude out of the laminar

sub-layer.

so

∆p = F (v, D, l, ε, µ, ρ)
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Dimensional analysis

∆p = F (v, D, l, ε, µ, ρ)

Dimensions

dim(l)=L dim(D)=L dim(ε)=L

dim(v)=LT−1 dim(µ)=MT−1L−1 dim(ρ)=ML−3

There are 3 basic dimensions, number of Π terms is

k − r = 7 − 3 = 4 .

Will choose ρ , v and D as the repeating variables.

Want ∆p to be subject of equation.

Π1 = ∆p Da vb ρc

dim(Π1) = (ML−1T−2)La(LT−1)b(ML−3)c

= M1+cL−1+a+b−3cT−2−b

Solving equations give a = 0, b = −2, c = −1 so

the dimensionless group is

Π1 =
∆p

v2ρ
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Dimensional analysis

The dimensionless group for l is Π2 = l
D .

The dimensionless group for ε is Π3 = ε
D . Now do

viscosity µ

Π4 = µ Da vb ρc

dim(Π4) = (ML−1T−1)La(LT−1)b(ML−3)c

= M1+cL−1+a+b−3cT−1−b

solving gives a = −1, b = −1, c = −1 and the

dimensionless group is

Π4 =
µ

Dρv

The representation for the relation is

∆p
1

2
v2ρ

= φ

(

µ

Dρv
,

l

D
,

ε

D

)

= φ

(

Re,
l

D
,

ε

D

)

(Note, argument can be Re or 1/Re )
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The pressure loss equation

∆p
1

2
v2ρ

= φ

(

Re,
l

D
,

ε

D

)

Impose the condition that ∆p ∝ l (this is very

reasonable and supported by experiments), so

∆p
1

2
v2ρ

=
l

D
φ
(

Re,
ε

D

)

The left hand side of this equation is just the Darcy

friction factor so

∆p = f
1

2
v2ρ

l

D

f = φ
(

Re,
ε

D

)

This is the parametrization applied to analysis of

turbulent pipe flows. The friction factor depends on

the Reynolds number and the surface roughness in a

complicated way and practical usage relies the

synthesis of exhaustive experiments as charts or

empirical formulae (for laminar flow f = 64/Re ).
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The head loss

p1

γ
+ α1

v2
1

2g
+ z1 =

p2

γ
+ α2

v2
2

2g
+ z2 + hL

Suppose the pipe-diameter is constant, then v1 = v2 ,

and the pipe is horizontal so z1 = z2 , and the flow is

fully developed so α1 = α2 , then

p1

γ
=

p2

γ
+ hL ⇒ ∆p = γhL

Then

hL =
∆p

γ
= f

1

2
v2 ρ

γ

l

D
= f

v2l

2gD

This is called the Darcy-Weisbach equation.

Although derived for z1 = z2 , it is valid for pipes

with vertical drops since the working equation is for

a change in head. Consider pressure change

p1 − p2 = γ(z2−z1) + γhL = γ(z2−z1) + f
ρv2l

2D

Part of the pressure change is due to elevation

changes while part is due to the fiction factor.
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The friction factor

hLmajor = f
v2l

2gD

The friction factor was determined by comprehensive

experiments on firstly tubes with sand grain glued

inside and experiments on typical commercial pipes.

The information is summarized by

a The Moody chart

b Tables of surface roughness for pipes of various

materials (note the tabulated roughness ε is not

exactly equal to roughness determined by

geometric inspection).

Note, tables of surface roughness pertain to new

clean pipes. After usage, corrosion or a buildup of

scale can make the roughness larger (by a factor of

10!). Very old pipes may have their diameter

changed.
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The Moody chart
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Surface roughness table

Material ε mm

Riveted Steel 0.90-9.0

Concrete 0.30-3.0

Wood stave 0.18-0.90

Cast iron 0.26

Galvanized iron 0.15

Commercial steel 0.045

Drawn tubing 0.0015

Plastic, glass 0.0

There are tabulations in the Handbook of fluid

dynamics
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The Moody chart

• Laminar flow f = 64/Re independent of ε .

• The friction factor is non-zero even when ε = 0 .

• For large Re , one finds f independent of Re .

This is called completely turbulent flow. The

Laminar sub-layer is so thin it has no impact.

• No data on diagram 2000 < Re < 4000 . Can

find an unsteady mix of both flows.

• Pipe manufacturers will sometimes give formulae

covering kinematic ranges relevant for their

pipes. They are just segments of Moody chart.

• There are uncertainties in tabulations of ε and

in the Moody chart itself. Accuracy of about

10% is expected.
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Some equations

The information in the Moody diagram also exists as

a number of formulae.

The Colebrook formulae is

1
√

f
= −2.0 log10

(

ε

3.7 × D
+

2.51

Re
√

f

)

is actually a transcendental non-linear equation that

has to be solved! (Note, the Moody chart is just the

graphical representation of this formulae).

The Moody formulae is

f = 0.0055

[

1 +

(

20000ε +
106

Re

)1/3
]

The von Karman formulae for fully turbulent flows is

1
√

f
= −2.0 log10

(

ε

3.7 × D

)

The Blasius equation for smooth pipes (Re < 105 )

is

f =
0.316

Re1/4
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Application of Moody chart

Air (standard conditions) flows through 4.0 mm

diameter drawn tubing with v = 50 m/s . Under

these conditions flow is expected to be turbulent, but

for dust free air, a very smooth entrance to the tube,

and no tube vibration, it may be possible to

maintain laminar flow. Determine the pressure drop

in a 0.100 m length of tube assuming

(a) Laminar flow

(b) Turbulent flow

First determine standard conditions (see Table 2.1

for standard atmosphere). Use ρ = 1.23 kgm−3 ,

µ = 1.79 × 10−5 kg m−1s−1 .
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Application of Moody chart

Determine Re first

Re =
ρDv

µ

Re =
1.23 × 0.0040 × 50

1.79 × 10−5
= 1.37 × 104

(a) Laminar flow, now f = 64/13700 = 0.00467

∆p =
flρv2

2D

=
0.00467 × 0.100 × 1.23 × 50.02

2 × 0.0040
= 179.0 Pa

can also obtain from

∆p =
32µlv

D2

=
32 × 1.79 × 10−5 × 0.100 × 50.0

0.00402

= 179.0 Pa
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Application of Moody chart: continued

(b) Turbulent flow from Table 8.1 ε = 0.00150 mm .

So ε/D = 0.0015/4.0 = 0.000375 . On the Moody

chart, f = 0.028 .

∆p =
flρv2

2D

=
0.028 × 0.100 × 1.23 × 50.02

2 × 0.0040
= 1076 Pa

The pressure drop is 6 times as large for the laminar

flow situation since the friction factor is 6 times

larger.
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Minor losses

There is more to pipe systems than pipes. Valves

(e.g. a tap head) provide a means to regulate the

flow. Bends exist to redirect the flow.

Trying to determine the

pressure drop due to

valve would be compli-

cated.

Also the pressure drop

will on the extent to

which the valve is open.

Pressure drops are given in terms of dimensionless

variables with the functional form or correction

factors obtained from experiment.
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The loss coefficient

The loss coefficient, Km is the most commonly used

method to describe pressure loss. It is defined as

KL =
hLminor

v2/(2g)
=

∆p
1

2
ρv2

or

∆p = KL
1

2
ρv2

hLminor = KL
v2

2g

The minor losses increase as v2 . The minor losses

increase by 20% if the flow rate increases by 10% .
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The equivalent length

The pressure loss is sometimes given in terms of an

equivalent length of the same pipe that would give

the same pressure loss.

hLminor = KL
v2

2g
= f

leq
D

v2

2g

giving

leq =
KLD

f

Set D and f to be those for pipe containing

component. Usage of this alternative to the loss

coefficient is uncommon. No usage in this unit.
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The nature of Head losses

One source of head-loss occurs when the pipe

diameters change. These changes can be abrupt or

smooth. One of the reasons for head loss is that it is

not possible to slow down a fluid easily.

(a) (b) (c) (d)

KL = 0.8 KL = 0.5 KL = 0.4 KL = 0.2
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The nature of head losses

One source of head-loss occurs when the pipe

diameters change.

The pressure drop associated with increase in fluid

speed not entirely recovered by kinetic energy. Most

of energy loss is due to shear stress within fluid.
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Tank → Pipe Head losses

About 50% of the energy is lost when the fluid

enters a pipe with a square edged entrance.

Rounding the entrance corner will reduce the loss

coefficient.

If the pipe protrudes into the tank the loss coefficient

will be even larger.



22

Pipe → Tank Head losses

(a)

(c) (d)

(b)

(1)

(2)

The head loss when water from a large pipe enters a

tank is KL = 1 irrespective of the geometry.

The fluid from the pipe mixes with the fluid and its

kinetic energy is dissipated through viscous effects as

the fluid eventually comes to rest.
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Pipe Expansion

A1 A2 hL = KL 

V1
2

___
2g

1.0

0.8

0.6

0.4

0.2

0
0 0.2 0.4 0.6 0.8 1.0

A1/A2

KL

When a pipe undergoes a sudden expansion, we can

use mass, momentum and energy equations to derive

KL =

(

1 −
A1

A2

)2

The loss coefficient goes to zero as A2 → A1 .

The loss coefficient goes to one as A2 → ∞ .
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Pipe Contraction

A1 A2
hL = KL 

V2
2

___
2g

0.6

0.4

0.2

0
0 0.2 0.4 0.6 0.8 1.0

A2/A1

KL

The loss coefficient for a contraction with a

sharp-edge entrance and exist is similar to a tank

when A2/A1 → 0 .

The loss coefficient decreases when the sizes of the

two pipes are close together. Obviously,

lim
A2/A1→1

KL = 0
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Gradual pipe diameter changes

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0
0 30 60 90

  , degreesθ

θ

120 150 180

KL

V1 V2

hL = KL fixed
V2

1___
2g

A2___
A1

Losses can be decreased by having a gradual

contraction or expansion. The angle θ cannot be too

small (e.g. θ = 1o means the diffuser will be

excessively long) or too large.

The loss coefficient for conical contractors can be

quite small KL = 0.02 for θ = 30o .
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Pipe Bends

Separated flow

b b

a

Secondary

flow

90°

Primary

flow

D

a

__
D

= 0.01

0.002

0.001

0

1.0

0.8

0.6

0.4

0.2

0
0 2 4 6 8 10 12

/D

K
L

∋

The loss factor is generally larger for curved pipes

than for straight pipes. The diagram shows loss

factor for large Re . This loss factor is additional to

that of the equivalent straight line length of the pipe.
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Valve Types

(a)

(d)(c)

(b)

(a) Globe Valve (b) Gate valve

(c) Swing Check Valve (d) Stop Check Valve

Tables of loss coefficients exist for common pipe

fittings.
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Non-circular conduits

A = cross-sectional

area

P = perimeter

of pipe

Dh = 4A/P = hydraulic

diameter

(a) (b)

y

z

x

z V = u(y,z)

The laminar friction factor is written f = C
Reh

where

C depends on conduit shape. The definition of Reh

is

Reh =
ρDhv

µ

where the hydraulic diameter Dh is

Dh =
4A

P

A is the cross sectional area of pipe P is the length

of the wetted perimeter
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Non-circular conduits

The Moody chart is

used with D replaced

by Dh , and Re re-

placed by Reh .

Tables of values exist for different shaped conduits.

The hydraulic diameter, Dh is used in the

definitions for turbulent flow.

hL = f
1

2
v2 ρ

γ

l

Dh
= f

v2l

2gDh

with roughness = ε/D . This procedure for turbulent

flow is accurate to about 15% .
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Pipe flow scenarios

The real world pipe flow design scenarios are divided

into 3 types, I, II and III.

I We know the fluid, pipe size and desired flow rate.

We need to determine the pressure drop or head

loss. In effect we want to know how large a

pump needs to be installed.

II We know the fluid, pipe size and head loss. We

want to determine the flow rate.

III We know the fluid, flow rate and head loss. We

want to determine pipe size.

Type II and III scenarios are more complicated to

solve since they involve a non-linear equation. Need

to adjust v and there is complicated dependence

between f and v .
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Type I example

Water at 15.6 oC flow from the basement to the

second floor through a 19.0 mm -diameter copper

pipe at a rate of Q = 7.57 × 10−4 m3/s and exits

through a faucet of 12.7 mm diameter.

Q =

12.0

gal/min

(1)

(2)

(3)

15 ft

10 ft

5 ft 10 ft

10 ft 10 ft

(8)(7)
(6)

(4)

(5)

g

Threaded

90° elbows

0.75-in. diameter

copper pipe
Wide open

globe valve

0.50-in.

diameter

KL = 2 based on

pipe

velocity

Determine the pressure at (1) if (a) All losses are

neglected (b) Only major losses are included (c) All

losses are included.
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Type I example: continued

Estimate fluid velocity to get flow rate.

v1 =
Q

A1

=
7.57 × 10−4

π(9.5 × 10−3)2
= 2.67 m/s

The Reynolds number is

Re =
ρDv

µ
=

10319.0 × 10−32.67

1.12 × 10−3
= 45300

The flow is turbulent flow. The equation to be

applied is

p1

γ
+ α1

v2
1

2g
+ z1 − hL =

p2

γ
+ α2

v2
2

2g
+ z2

For turbulent flow set α1 = α2 ≈ 1 .

The faucet is a free jet, so p2 = 0 (gauge)

Set z1 = 0.0 m and z2 = 6.10 m

The exit velocity v2 = Q/A2 = 5.98 m/s



33

Type I example: No head loss

Set hL = 0.0 m . So energy equation gives

p1

γ
=

p2

γ
+

v2
2 − v2

1

2g
+ (z2 − z1)

p1

9800
= 0 +

5.982 − 2.672

19.6
+ (6.10)

p1

9800
= 7.56

⇒ p1 = 74.1 kPa

About 80% of the pressure drop (from z1 → z2 ) is

due to the elevation increase while 20% is due to the

velocity increase.
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Type I example: Major head loss

The total length of the copper pipe is 18.3 m (60 ft

).

Copper pipes are drawn tubing so ε = 0.0015 mm .

Therefore ε/D = 7.9 × 10−5 . Friction factor from

Moody is 0.0215 (It is practically smooth).

So head loss is

hLmajor =
flv2

2Dg

=
0.0215 × 18.3 × 2.672

2 × 0.019 × 9.80
= 7.53 m

Simply add this head loss to

p1

γ
= 7.56 + hLmajor = 7.56 + 7.53

⇒ p1 = 15.09 × 9.8 = 148 kPa
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Type I example: Minor head loss

Now include impact of bends and valves. There are 4

90o elbows, each with KL = 1.5 .

The open globe valve has KL = 10 .

The loss coefficient of the faucet is KL = 2 .

To get the minor head losses, one simply adds up the

individual losses from each component

hLminor =
∑

i

hLminori

hLminor =
∑

i

KLi

v2

2g

hLminor = (10 + 4 × 1.5 + 2)
v2

2g
= 18.0

v2

2g

hLminor = 18.0
2.672

19.6
= 6.55 m

So the total head loss is 7.56 + 7.53 + 6.55 = 21.64 m

. The corresponds to a pressure difference of

21.64 × 9.8 = 212.1 kPa . The gauge pressure

p1 = 212.1 kPa .
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Type I example: Graphical Representation

30

20

10

0
0 10 20 30 40 50 60

10.7 10.7

6.37

2.07

2.07
4.84

3.09

9.93

12.411.7

30.5 psi

27.1
27.8

20.2
21.0

18.5
19.3

(a) No losses
(c) Including all

losses    

Pressure

loss

Elevation

and

kinetic

energy

p2 = 0

Distance along pipe from point (1), ft

p
, 

p
si

Location:  (1) (3) (4) (5) (6) (7) (8) (2)

6.37

The pressure rise from (2) consists of

• Linear increases in pressure over the length of

the drawn copper tubing.

• Sudden jumps in pressure through the

components.
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Type I example: Energy grade line

80

60

40

20

0
0 10 20 30 40 50 60

Distance along pipe from point (1), ft

H
, 

e
le

va
ti

o
n
 t

o
 e

n
e
rg

y 
li
n
e
, 

ft

Energy line with no losses, case (a)

Energy line including all

losses, case (c)

Sharp drop due to component loss

Slope due to pipe friction

The energy line with no head losses would be

horizontal.

The energy line consists of steady increases,

indicating a constant energy dissipation along the

pipe, and sudden jumps indicating losses through

valves and bends.
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Type III with minor losses. Example

Water at 10 oC with kinematic viscosity

1.31× 10−6 m2/s is to flow from A to B through a

cast-iron pipe ε = 0.26 mm at a rate of 0.0020 m3/s

. The system contains a sharp-edged entrance and

six threaded 90o elbows. Determine the pipe

diameter that is needed.

(2)

(1)

Elevation z2 = 0 m

Elevation z1 = 2 m

Total length =  = 20 m

D

B

A

Will use the energy equation

p1

γ
+

v2
1

2g
+ z1 =

p2

γ
+

v2
2

2g
+ z2 + hL

With reference points at (1) and (2) so that

p1 = p2 = 0 , z2 = 0 and v1 = v2 = 0 .
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Type III with minor losses. Example

(2)

(1)

Elevation z2 = 0 m

Elevation z1 = 2 m

Total length =  = 20 m

D

B

A

The energy equation simplifies

p1

γ
+

v2
1

2g
+ z1 =

p2

γ
+

v2
2

2g
+ z2 + hL

z1 = hL

z1 =
v2

2g

(

fℓ

D
+
∑

i

KLi

)

where v is water velocity in pipe.

v =
Q

A
=

4Q

πD2
=

2.55 × 10−3

D2
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Type III with minor losses. Example

Head-loss terms

• Six 90o elbows. KL = 6 × 1.5 = 9.0

• Tank → Pipe. KL = 0.5

• Pipe → Tank. KL = 1.0

• Total:
∑

KL = 10.5

The energy equation becomes

z1 =
v2

2g

(

fℓ

D
+
∑

i

KLi

)

2.0 =
6.50 × 10−6

2 × 9.80 × D2

(

f × 20

D
+ 10.5

)

The problem with this equation is that the friction

factor depends on D in a complicated manner. The

friction factor depends on the roughness ε/D and

Reynolds number ρvD/µ .

What we want to do is choose D so that the head

loss is 2.0 m . This is a non-linear equation.
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Solving the pipe sizeing problem

Want to solve

2.0 =
6.50 × 10−6

2 × 9.80 × D2

(

f × 20

D
+ 10.5

)

The head-loss (right hand side) will get smaller as D

gets larger. Procedure

• Need to bootstrap the problem (supply initial

guess). Set f = 0.0200 (a reasonable value for

many pipe problems) get an initial value of D ,

namely D0 .

• Plug initial estimate of D0 into RHS . Use

D0 → ε/D → f → hL . Use Moody diagram or

approximate formula for specific flow regime.

• If hL < 2.0 , then D needs to be decreased. If

hL > 2.0 , then D needs to be increased. Use

hL ∝ 1/D2 scaling to get next estimate

• Keep record of hL vs D . When have enough

points, plot hL vs D and determine where

hL = 2.0 m is true. Note, no point in getting D

to better than 1% accuracy.
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Solving the pipe sizeing problem

(2)

(1)

Elevation z2 = 0 m

Elevation z1 = 2 m

Total length =  = 20 m

D

B

A

The actual solution occurs when self-consistency

occurs

Note, pipes come with certain standard diameters.

Choose a pipe diameter that is larger than exact

diameter extracted from equation.
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Pipe systems in Series

The flow-rate along the pipe is constant for

steady-state flow.

Q = Q1 = Q2

The total head loss is obtained by adding up the

head loss along the individual segments

hL1−3
= hL1

+ hL2
+ hL3
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Pipe systems in Parallel

The flow-rate along the pipe is constant for

steady-state flow.

QT = Q1 + Q2 + Q3

Consider the points A and B . The head loss

between these points must be the same irrespective

of the pipe chosen

hLAB
= hL1

= hL2
= hL3

More complicated pipe networks will require more

sophisticated method of analysis.
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Flow measurements

Q
D1

V1
V2

D2

(1)
(2)

According to Bernoulli, the flow-rate between (1)

and (2) can be written

Qideal = A2v2 = A2

√

2(p1 − p2)

1 − β4

where β = D2/D1 is ratio of pipe diameters

However, the energy equation is

p1

γ
+

v2
1

2g
+ z1 =

p2

γ
+

v2
2

2g
+ z2 + hL

There is no compact expression for hL . Making a

universal identity for the flow rate incorporating the

head loss in the constriction is not possible.

Empirical coefficients, valid for specific flow meters

are used to correct the ideal expression for the flow

rate.
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Orifice meter

Q

A1

A0(1) (2)A2

Pressure taps

d
D1 = D

D2

Non-ideal effect occur due to

• Vena contracta effect. The diameter for the flow

stream is slightly less than the diameter of the

orifice.

• Turbulent motion and viscosity effects act to

produce a head loss through the orifice.

Q = CoQideal = CoAo

√

2(p1 − p2)

1 − β4

where Ao is the area of the orifice
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Orifice meter

Q = C0Ao

√

2(p1 − p2)

1 − β4

d__
D

=      = 0.7β

0.5

0.6

0.4

0.2

D V

d

D D__
2

0.66

0.64

0.62

0.60

0.58
10

4
10

5
10

6
10

7
10

8

Re =  VD/ρ µ

C
o

The contraction coefficient is a function of Re and

β . Meters constructed under precise conditions and

would come with discharge coefficient data.
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Nozzle meter

The nozzle meter has a tapered orifice

dD

(a) (b) (c)

Pressure taps

Q = CnAn

√

2(p1 − p2)

1 − β4

Cn > Co

The head loss asso-

ciated with nozzle is

smaller than orifice.

Vena Contracta effect

is smaller.

V
D d

1.00

0.98

0.96

0.94
10

4
10

5
10

6
10

7
10

8

Re =   VD/ρ µ

C
n

0.6

0.4

0.2

=     = 0.8
d__
D

β
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Venturi meter

The Venturi meter measures the pressure in a

tapered pipe.

Q

D
d

The head loss associ-

ated with constriction

are small and the Vena

Contracta is minimal.

1.00

0.98

0.96
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C
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depending on specific

geometry

Q = CvAn

√

2(p1 − p2)

1 − β4

The Venturi meters are the most precise and the

most expensive.
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The Rotameter

The rotameter is common and inexpensive.

• Float contained within a ta-

pered transparent tube.

• As flow rate is increased, the

float moves up the tube to find a

new equilibrium position, (when

buoyancy, float weight and fluid

drag are in balance).

• The flow rate is then read from

a calibrated scale.
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The Volume flow meters

Volume flow meters
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Other flow measuring devices

• Turbine flowmeters

• Ultrasonic flow meters

• Doppler-effect Ultrasonic flow meters

• Electromagnetic Flow meters

• Laser Doppler Velocimetry


