Verifica di ipotesi sulla varianza

Singola varianza ignota della popolazione Luccio 9.1.1

Una ipotesi su σ nella popolazione può essere sottoposta a verifica calcolando W sulla base del valore s^2 (priva di errore sistematico) fornita dal campione e dal valore σ_0^2 specificato dall'ipotesi nulla.

$$H_0$$
: $\sigma^2 = \sigma_0^2$

$$W = \frac{(n-1)s^2}{\sigma_0^2}$$

Consideriamo un campione casuale di n osservazioni indipendenti estratto da $N(\mu, \sigma)$:

$$W = \frac{(n-1)s^2}{\sigma^2}$$

Segue la distribuzione Chi-quadrato con n-1 gradi di libertà.

$$H_1: \sigma^2 > \sigma_0^2$$

Tanto maggiore è s^2 , tanto più forte sarà l'evidenza a sostengo di H_1 : $\sigma^2 > \sigma_0^2$.

Se s^2 è grande relativamente a σ^2 ne segue che anche il valore di $W=\frac{(n-1)s^2}{\sigma_0^2}\sim \chi^2$ sarà grande.

$$H_1$$
: $\sigma^2 < \sigma_0^2$

Tanto minore è s^2 , tanto più forte sarà l'evidenza a sostengo di H_1 : $\sigma^2 < \sigma_0^2$.

Se s^2 è piccolo relativamente a σ^2 ne segue che anche il valore di $W=\frac{(n-1)s^2}{\sigma_0^2}\sim \chi^2$ sarà piccolo.

Esempio 9.1.

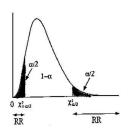
Test per bambini di 8-9 anni

$$N(100, \sqrt{16})$$

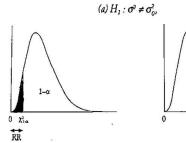
Ipotesi sperimentale.

La varianza diminuirebbe se il test venisse somministrato a bambini tra i 9 e 10 anni

140



Statistica per psicologi



(b) $H_1: \sigma^2 < \sigma_{cl}^2 e(c) H_1: \sigma^2 > \sigma_{cl}^2$

1- La formualzione delle ipotesi

$$H_0: \sigma^2 \ge 16$$

$$H_1: \sigma^2 < 16$$

2- La scelta del livello di signficatività

$$\alpha = 0.05$$

Tavola 4 pag. 294. Valore critico che racchiude nella coda destra $1 - \alpha = .950$

RR

$$\chi^2_{1-\alpha} = 17.7084$$

3- La scelta della statistica appropriata per sottoporre a verifica l'ipotesi nulla

$$W = \frac{(n-1)s^2}{\sigma_0^2} = \frac{(30-1)9.4}{16}$$
$$= 17.037 < 17.7084$$

4- Interpretazione Dato che il valore osservato è minore del valore critico, l'ipotesi nulla può essere rigettata.

Statistica per psicologi

O Ki az

RR

RR

L'adozione di un'ipotesi sostantiva bidirezionale non avrebbe consentito nel caso presente di rifiutare l'ipotesi nulla. Il test bidirezionale è meno potente. Con ipotesi bidirezionale:

$$H_0: \sigma^2 = 16$$

 $H_1: \sigma^2 \neq 16$

Vanno identificati i due valori critici delle **code** (*non simmetriche*, se non per gradi di libertà molto grandi) sinistra, $\chi^2_{1-\alpha/2} = 16.0471$ e destra, $\chi^2_{\alpha/2} = 45.7223$.

Verifica di ipotesi sulla varianza

Singola varianza ignota della popolazione Approssimazione normale alla distribuzione χ^2 Luccio 9.1.3

4

La distribuzione χ^2 si approssima alla distribuzione normale con il crescere dei gradi di libertà.

Per grandi campioni avremo che

$$z = \frac{\chi^2 - \nu}{\sqrt{2\nu}}$$

Da cui

$$\chi^2 = z\sqrt{2\nu} + \nu$$

Esempio 9.3.

 $\chi^2_{0.05}$ con 10 gradi di libertà

Tavola 4 → 18.3070

$$\chi^2 = z_{0.05}\sqrt{2\nu} + \nu =$$

$$1.645\sqrt{20} + 10 = 17,3566$$

Esempio 9.3.

 $\chi^2_{0.05}$ con **5** gradi di libertà

Tavola 4 → 11.0705

$$\chi^2 = z_{0.05}\sqrt{2\nu} + \nu =$$

$$1.645\sqrt{10} + 5 = 10,20195$$

Esempio 9.3.

 $\chi^2_{0.05}$ con 30 gradi di libertà

Tavola 4 \rightarrow 43.7730

$$\chi^2 = z_{0.05}\sqrt{2\nu} + \nu =$$

$$1.645\sqrt{60} + 30 = 42,7421$$

Esempio 9.3.

 $\chi^2_{0.05}$ con 100 gradi di libertà

PC (Excel =CHISQ.INV.RT(0,05;100))

$$\rightarrow$$
 124,3421
 $\chi^2 = z_{0.05}\sqrt{2\nu} + \nu =$

$$1.645\sqrt{200} + 100 = 123,26$$

$$z = \frac{\chi^2 - \nu}{\sqrt{2\nu}}$$

$$z = \frac{17,037 - 29}{\sqrt{2 \times 29}}$$

$$= -1.57$$

19

Tabella 1: per 1.57 la coda di destra è P-valore = 0,058

Esempio 9.1.

$$H_0: \sigma^2 \ge 16$$

$$H_1: \sigma^2 < 16$$

$$\chi^2 = \frac{(n-1)s^2}{\sigma_0^2} = \frac{(30-1)9.4}{16}$$

$$= 17.037$$

Excel: =1-CHISQ.DIST.RT(17,037;29)

P-valore = 0,038396

Esempio 9.2.

$$n = 25$$

Popolazione normale.

La varianza del campione è $s^2 = 5$.

Calcolare i limiti di un intervallo di fiducia per σ^2 , con $\alpha=0.05$.

Esempio 9.2.

 $\chi^2_{0.025}$ con 24 gradi di libertà

Tavola 4 \rightarrow 39.3641

$$\chi^2 = z_{0.025}\sqrt{2\nu} + \nu =$$

$$1.96\sqrt{48} + 24 = 37.57903$$

Esempio 9.2.

$$P\left(\frac{vs^2}{\chi_{0.025}^2} \le \sigma^2 \le \frac{vs^2}{\chi_{0.975}^2}\right) = .95$$

$$P\left(\frac{\nu s^2}{z_{0.025}\sqrt{2\nu} + \nu} \le \sigma^2 \le \frac{\nu s^2}{z_{0.975}\sqrt{2\nu} + \nu}\right) = .95$$

Utilizzando l'approssimazione normale

Esempio 9.2.

 $\chi^2_{0.975}$ con 24 gradi di libertà

Tavola 4 \rightarrow 12.4011

$$\chi^2 = z_{0.975}\sqrt{2\nu} + \nu =$$

$$-1.96\sqrt{48} + 24 = 10,421$$

Esempio 9.2.

$$P\left(\frac{24\cdot 5}{39.3641} \le \sigma^2 \le \frac{24\cdot 5}{12.4011}\right) = .95$$

$$P\left(\frac{24\cdot 5}{37.5790} \le \sigma^2 \le \frac{24\cdot 5}{10,421}\right) = .95$$

Utilizzando l'approssimazione normale

Esempio 9.2.

$$P(3,048 \le \sigma^2 \le 9,677) = .95$$

$$P(3,193 \le \sigma^2 \le 11,515) = .95$$

Utilizzando l'approssimazione normale

La distribuzione χ^2 fornisce la base per lo sviluppo di procedure inferenziali riguardanti il confronto tra le varianze di due campioni estratti da due popolazioni normali.

Esempio. Confrontare la precisione di due strumenti di misura

Verifica di ipotesi sulla varianza

Il confronto tra le varianze di due campioni estratti da due popolazioni normali

Consideriamo due campioni *indipendenti* costituiti da n_1 e n_2 osservazioni casuali, con varianze campionarie (corrette) s_1^2 e s_2^2 , e tratti da due popolazioni normali con varianze σ_1^2 e σ_2^2 .

$$W_1 = \frac{(n_1 - 1)s_1^2}{\sigma_1^2} \sim \chi_1^2$$

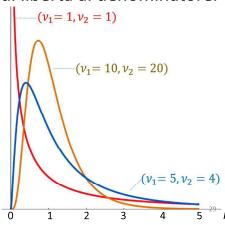
$$W_2 = \frac{(n_2 - 1)s_2^2}{\sigma_2^2} \sim \chi_2^2$$

con
$$v_1 = (n_1 - 1) e v_2 = (n_2 - 1) g.d.$$
libertà.

$$F = \frac{\frac{\chi_1^2}{\nu_1}}{\frac{\chi_2^2}{\nu_2}}$$

Segue una distribuzione F con v_1 gradi di libertà al numeratore e v_2 gradi di libertà al denominatore.





31

$$H_0: \sigma_1^2 = \sigma_2^2 = \sigma^2$$

$$F = \frac{s_1^2/\sigma^2}{s_2^2/\sigma^2} = \frac{s_1^2}{s_2^2}$$

Segue una distribuzione F con $v_1 = (n_1 - 1)$ gradi di libertà al numeratore e $v_2 = (n_2 - 1)$ gradi di libertà al denominatore.

$$F = \frac{W_1/\nu_1}{W_2/\nu_2} = \frac{[(n_1 - 1)s_1^2/\sigma_1^2]/(n_1 - 1)}{[(n_2 - 1)s_2^2/\sigma_2^2]/(n_2 - 1)} = \frac{s_1^2/\sigma_1^2}{s_2^2/\sigma_2^2}$$

Segue una distribuzione F con $v_1 = (n_1 - 1)$ gradi di libertà al numeratore e $v_2 = (n_2 - 1)$ gradi di libertà al denominatore.

$$H_1: \sigma_1^2 > \sigma_2^2$$

$$F = \frac{s_1^2}{s_2^2}, \cos s_1^2 > s_2^2$$

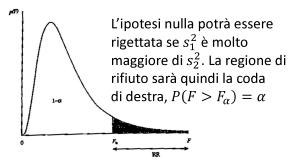


Figura 9.4. Regione di rifiuto per $H_0: \sigma_1^2 = \sigma_2^2 e H_1: \sigma_1^2 > \sigma_2^2$

H_1 : $\sigma_1^2 \neq \sigma_2^2$

$$F = \frac{s_1^2}{s_2^2}, \cos s_1^2 > s_2^2$$

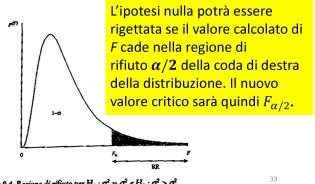


Figura 9.4. Regione di rifiuto per $H_0: \sigma_1^2 = \sigma_2^2 e H_1: \sigma_1^2 > \sigma_2^2$