Prof. Sabrina Pricl

Lesson 5 Free Energy, Reaction Kinetics and Enzymes

 Reactions are governed by free energy (usable energy) G

Reagents \rightleftharpoons Products

- What really matters is the **free energy** difference $\Delta G = \Sigma G_P - \Sigma G_R$
- $\Delta {\rm G}$ stems from a fundamental law of thermodynamics

 $\Delta \mathbf{G} = \Delta \mathbf{H} - \mathbf{T} \Delta \mathbf{S}$

- H = Enthalpy = total energy
- T = Temperature
- **S** = **Entropy** = useless energy

 ▲G < 0 (G_P < G_R) → Energy released, reaction proceeds (thermodynamically spontaneous, exergonic)

- $\Delta G < 0$ ($G_P < G_R$) \rightarrow Energy released, reaction proceeds (thermodynamically spontaneous, exergonic)
- ▲G > 0 (G_P > G_R) → Reactions requires energy to proceed (thermodynamically nonspontaneous, endergonic)

- ∆G < 0 (G_P < G_R) → Energy released, reaction proceeds (thermodynamically spontaneous, exergonic)
- ∆G > 0 (G_P > G_R) → Reactions requires energy to proceed (thermodynamically nonspontaneous, endergonic)
- $\Delta G = 0$ ($G_P = G_R$) \rightarrow Chemical equilibrium ($R \rightarrow P = P \rightarrow R$)

- Even if a reaction is thermodynamically spontaneous (ΔG < 0), it may not occur
 - It needs an "energetical push"
- Activation energy $E_a = energy barrier$

Enzymes

- Even if a reaction is thermodynamically spontaneous (∆G < 0), it may not occur
 - It needs an "energetical push"
- Activation energy E_a = energy barrier
- Catalysts = particular class of chemical substances that lower E_a and promote reactions
- Enzymes = biological catalysts (mostly proteins)

Enzymes

- There are approximately 1300 different enzymes found in the human cell
- Each enzyme catalyzes a specific chemical reaction
- ENZYMES DO NOT CHANGE THE ΔG OF A REACTION BUT JUST SPEED UP THE REACTION RATE

ENZYME CYCLE (reversible)

Enzyme specificity

Cellulose and starch are both glucose polymers

Cellulase breaks β -1,4 bonds in cellulose People do not have this enzyme so we cannot digest grass!

Amylase breaks α -1,4 bonds in starch People have this enzyme!

ENZYME SPECIFICITY

Free energy, Reaction Kinetics and Enzymes

• Take assignment 5: Free energy reaction kinetics and enzymes