Prof. Sabrina Pricl A.Y. 2020-2021

Lesson 8 Cell division

- Cells make more cells
- Cell division cycle
 - DNA replication → make two sets of genes (DNA)
 - 2. DNA partitioning between daughter cells

- Cells make more cells
- Cell division cycle
 - DNA replication → make two sets of genes (DNA)
 - 2. DNA partitioning between daughter cells
- Genes (DNA) are organized in chromosomes (chrs)

- Cells make more cells
- Cell division cycle
 - DNA replication → make two sets of genes
 (DNA)
 - 2. DNA partitioning between daughter cells
- Genes (DNA) are organized in chromosomes (chrs)
- Body (somatic) cells contain 2 of each chrs
 - somatic cells are diploid (2n)
- Each matching couple of chrs are called homologs or homologous chrs

- Cells make more cells
- Cell division cycle
 - 1. DNA replication \rightarrow make two sets of genes (DNA)
 - 2. DNA partitioning between daughter cells
- Genes (DNA) are organized in chromosomes (chrs)
- Body (somatic) cells contain 2 of each chrs
 - somatic cells are diploid (2n)
- Each matching couple of chrs are called homologs or homologous chrs
- Normal somatic cells have 23 couples of chrs
 - That makes 46 chrs in total
 - One chrs couple is the sex chr (XX or XY)
 - the remaining 22 couples (aka autosomes) look the same in M/F

autosomes

U.S. National Library of Medicine

sex chromosomes

- Cells make more cells
- Cell division cycle
 - DNA replication \rightarrow make two sets of genes (DNA)
 - DNA partitioning between daughter cells
- Genes (DNA) are organized in chromosomes (chrs)
- Body (somatic) cells contain 2 of each chrs
 - somatic cells are diploid (2n)
- Each matching couple of chrs are called homologs or homologous chrs
- Normal somatic cells have 23 couples of chrs
 - That makes 46 chrs in total
 - One chrs couple is the sex chr (XX or XY)
 - the remaining 22 couples (aka autosomes) look the same in M/F
- **Germ** cells --> **gametes** = egg/sperm
 - Gametes contain 1 of each chrs
 - Gametes are **haploid** (n) germ cells

- Two types of cell division
 - Mitosis
 - Meiosis

- Mitosis occurs in somatic cells
- Outcome = 2 daughter cells identical to the parent cell (2n)
- The mitotic process in brief:
 - Chrs (DNA) replicate → sister chromatids
 - Sister chromatids line up on a special structure called mitotic spindle
 - Sister chromatids segregate
 - One copy of each chr is partitioned to each daughter cell (2n)
 - Cell membrane partitions the two daughter cells

- Mitosis occurs in somatic cells
- Outcome = 2 daughter cells identical to the parent cell (2n)
- The mitotic process in brief:
 - Chrs (DNA) replicate → sister chromatids
 - Sister chromatids line up on a special structure called **mitotic spindle**
 - Sister chromatids segregate
 - One copy of each chr is partitioned to each daughter cell (2n)
 - Cell membrane partitions the two daughter cells
- 1 diploid mother cell (2n) → 2 diploid daughter cells (2n)

Diploid (2n) cell with 1 homolog

Sister chromatid

Two diploid (2n) daughter cells identical to the parent cell

Homologs partitioning into

Prophase	Prometaphase	Metaphase	Anaphase	Telophase	Cytokinesis
Chromosomes condense and become visible Spindle fibers emerge from the centrosomes Nuclear envelope breaks down Centrosomes move toward opposite poles	Chromosomes continue to condense Kinetochores appear at the centromeres Mitotic spindle microtubules attach to kinetochores	Chromosomes are lined up at the metaphase plate Each sister chromatid is attached to a spindle fiber originating from opposite poles	Centromeres split in two Sister chromatids (now called chromosomes) are pulled toward opposite poles Certain spindle fibers begin to elongate the cell	Chromosomes arrive at opposite poles and begin to decondense Nuclear envelope material surrounds each set of chromosomes The mitotic spindle breaks down	Animal cells: a cleavage furrow separates the daughter cells Plant cells: a cell plate, the precursor to a new cell wall, separates the daughter cells
<u>5 µт</u>		5 µm	5 µm	• Spindle fibers continue to push poles apart	5 μm

MITOSIS

- Production of gametes (egg/sperm, haploid) from diploid germ cells
- Outcome:
 - 4 cells
 - non-identical to the parent
 - each daughter cell (egg/sperm) is haploid → n = 1 copy of each chr
- The meiotic process in brief:
 - Chrs (DNA) replicate → sister chromatids
 - Sister chromatids come close one another and exchange DNA segments (chiasma, crossing-over)
 - Ensures individual genetic variability
 - Meiosis 1
 - Each replicated homologous chr pair goes to daughter cells
 - Output is two diploid cells
 - Meiosis 2
 - The two daughter cells divide again
 - Single homolog goes to each new daughter cell
 - Output is 4 haploid cells

Cell division – Mitosis vs. Meiosis

Cellular division

• Take assignment 8: Cell division