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ABSTRACT The human oral cavity is home to a large and diverse community of viruses that have yet to be characterized in pa-
tients with periodontal disease. We recruited and sampled saliva and oral biofilm from a cohort of humans either periodontally
healthy or with mild or significant periodontal disease to discern whether there are differences in viral communities that reflect
their oral health status. We found communities of viruses inhabiting saliva and the subgingival and supragingival biofilms of
each subject that were composed largely of bacteriophage. While there were homologous viruses common to different subjects
and biogeographic sites, for most of the subjects, virome compositions were significantly associated with the oral sites from
which they were derived. The largest distinctions between virome compositions were found when comparing the subgingival
and supragingival biofilms to those of planktonic saliva. Differences in virome composition were significantly associated with
oral health status for both subgingival and supragingival biofilm viruses but not for salivary viruses. Among the differences
identified in virome compositions was a significant expansion of myoviruses in subgingival biofilm, suggesting that periodontal
disease favors lytic phage. We also characterized the bacterial communities in each subject at each biogeographic site by using
the V3 hypervariable segment of the 16S rRNA and did not identify distinctions between oral health and disease similar to those
found in viral communities. The significantly altered ecology of viruses of oral biofilm in subjects with periodontal disease com-
pared to that of relatively periodontally healthy ones suggests that viruses may serve as useful indicators of oral health status.

IMPORTANCE Little is known about the role or the constituents of viruses as members of the human microbiome. We investigated
the composition of human oral viral communities in a group of relatively periodontally healthy subjects or significant periodon-
titis to determine whether health status may be associated with differences in viruses. We found that most of the viruses present
were predators of bacteria. The viruses inhabiting dental plaque were significantly different on the basis of oral health status,
while those present in saliva were not. Dental plaque viruses in periodontitis were predicted to be significantly more likely to kill
their bacterial hosts than those found in healthy mouths. Because oral diseases such as periodontitis have been shown to have
altered bacterial communities, we believe that viruses and their role as drivers of ecosystem diversity are important contributors
to the human oral microbiome in health and disease states.
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We are in the early stages of understanding the tremendous
diversity harbored within the human microbiome and its

significant role in human health. Viruses inhabiting human body
surfaces may be key factors in shaping human microbial ecology
(1–7), but the potential role of viral communities in human health
and disease remains largely unexplored (2, 8–10). Microbial com-
munities can now be studied in greater detail because of the in-
creased accessibility of sequencing technology and improved an-
alytical capabilities (11). There have been numerous studies of the
bacterial communities inhabiting human body surfaces, such as
the skin (12, 13) and the gastrointestinal (14, 15), respiratory (16,
17), and genitourinary tracts (18–20) but fewer studies of the viral
communities inhabiting these sites. While studies of viral commu-
nities have shown that viruses on human body surfaces are diverse
(5–7, 21), studies have yet to illuminate how viral community
diversity and membership pertain to human health and disease.

Periodontitis is a highly prevalent oral disease among adults
(22) that results from inflammation of the supporting structures
of the teeth. Some have hypothesized that the disease is caused by
the host immune response to the presence of specific pathogens
(23–27). Historically, microbiological aspects of periodontal dis-
ease and dental caries have been studied by culture-based or PCR/
hybridization-based methods to detect pathogens collected from
subgingival plaque. Bacterial species such as Porphyromonas gin-
givalis (28), Tannerella forsythia (29), Aggregatibacter actinomyce-
temcomitans (30), Streptococcus mutans (31), and Treponema den-
ticola (32) have been implicated as etiological agents of
periodontal disease by using these or similar methods (33–35).
Herpesviruses such as herpes simplex virus 1 (HSV-1), cytomeg-
alovirus (CMV), and Epstein-Barr virus (EBV) have also been
looked at in association with periodontitis (36–41). Certain stud-
ies have shown an increased presence of HSV-1, CMV, and/or
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EBV in subgingival plaque at sites of periodontitis (36, 39, 40),
while others studies have shown no association (38, 42–44). Now,
as our paradigms for understanding the interconnection between
microbes and human health change, much of the study of mi-
crobes in periodontal disease has shifted toward studying commu-
nities rather than individual pathogens (45–50). Rather than ver-
ification of the presence of a few viruses present in periodontitis,
we are interested in the broader dynamics of the communities of
organisms present on and interacting with the gingiva and associ-
ated tissues.

The oral cavity contains multiple soft and hard tissue surfaces
creating diverse niches that harbor a wide range of microbiota,
including �1,000 different bacterial taxa (51). While herpesvi-
ruses may be present in the oral cavity, there is a much larger
population of viruses present, the majority of which are bacterio-
phage (6, 21). Many of these phage belong to the Caudovirus fam-
ilies Siphoviridae (generally lysogenic with intermediate host
ranges), Myoviridae (typically lytic with relatively broad host
ranges), and Podoviridae (typically lytic with relatively narrow
host ranges) (52, 53). Communities of oral viruses are highly per-
sonalized and vary according to host sex (6, 54). Unrelated house-
hold contacts share significant proportions of their viromes,
which suggests that substantial environmental influences affect
oral viral ecology (21). Because oral viruses have been shown to
elicit host immune responses, they could potentially play a role in
shaping oral immunity and disease pathogenesis (10, 54). In ad-
dition, we previously demonstrated that human oral viruses carry

substantial gene functions that may be involved in the pathogenic
functions of their host bacteria (6), which suggests a more subtle
role for viruses as members of the human oral microbiome.

In this study, we investigated oral viral community member-
ship in a cohort of periodontally healthy subjects and those with
disease. We examined viruses from planktonic saliva and from
subgingival and supragingival biofilms to determine whether
there are significant differences in viral community membership
by oral biogeographic site and to determine whether the ecology of
human oral viral communities reflects oral health status.

RESULTS
Human subjects and isolation of viruses. We recruited 16 human
subjects and sampled their saliva, subgingival plaque, and suprag-
ingival plaque. Seven of the 16 subjects had periodontal disease,
while the other 9 had good overall periodontal health (Table 1).
Because of the relatively low biomass at each tooth, we pooled the
subgingival or supragingival plaque to have sufficient biomass to
examine each subject individually.

We isolated viruses from the saliva, subgingival plaque, and
supragingival plaque of each subject for a total of 48 separate vi-
romes. DNA viruses were enriched according to our previously
described protocols (6) by CsCl density gradient ultracentrifuga-
tion, followed by extraction of DNA from intact virions. All vi-
romes were sequenced by semiconductor sequencing (55) for a
total of 29,076,203 reads after processing (10,386,122 from saliva,
8,659,122 from subgingival plaque, and 10,030,956 from supra-

TABLE 1 Characteristics of study subjects

Status and subject
Age
(yr) Ethnicity Sex Diagnosis Smoking

Comorbidity, other
information

Significant periodontal disease
D1 73 Caucasian Male Chronic severe generalized

periodontitis
Yes None

D2 66 Caucasian Male Chronic severe generalized
periodontitis

Yes Hypertension

D3 62 Caucasian Female Chronic moderate generalized
periodontitis

No Hypothyroidism, vegetarian

D4 69 Caucasian Female Chronic severe generalized
periodontitis

No None

D5 48 Caucasian Female Chronic moderate generalized
periodontitis

Yes None

D6 73 Caucasian Male Chronic severe generalized
periodontitis

Yes None

D7 27 Asian Male Generalized aggressive mild
periodontitis

No Amoxicillin in prior 3 mo

Healthy or with mild
periodontal disease
H1 25 Asian Male Healthy No None
H2 25 Caucasian Male Healthy No None
H3 51 Hispanic Female Moderate gingivitisa No Diabetes
H4 34 African American Male Healthy No None
H5 32 Asian Female Healthy No Diabetes
H6 24 Asian Female Healthy No None
H7 27 Caucasian Male Healthy No None
H8 44 Caucasian Female Chronic mild generalized

periodontitisb

No None

H9 50 Hispanic Female Chronic mild generalized
periodontitisb

Yes None

a Has signs of gingival inflammation but no periodontal attachment loss or bone loss. Gingivitis affects about half of U.S. adults.
b Has signs of gingival inflammation and, at most, 2-mm attachment loss. Nine percent of U.S. adults have this condition.
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gingival plaque) with a mean length of 146 nucleotides (nt). We
sequenced an average of 1,817,263 reads per subject and 605,754
per individual virome. Each virome was screened for the presence
of contaminating cellular nucleic acids by BLASTN analysis
(E score, �10�5) against a composite database of 16S rRNA
and the Human Reference Genome database (ftp://
ftp.ncbi.nlm.nih.gov/genomes/H_sapiens/). None of the suprag-
ingival or subgingival plaque viromes had any identifiable homo-
logues to 16S rRNA, and only 3 of the 16 salivary viromes had
single identifiable 16S rRNA homologues (see Table S1 in the sup-
plemental material), indicating that each of the viromes was rela-
tively free of contaminating bacterial nucleic acids. While we did
identify homologues to human DNA in almost all viromes, the
mean percentage was low (mean, 0.38%; range, 0.00 to 7.15%). All
homologues to human DNA were removed prior to further anal-
ysis.

Examination of viruses in saliva and oral biofilm. Because
longer contigs are more likely to generate productive BLAST
searches, we assembled the reads for all viromes in each subject.
The mean number of contigs per subject was 3,468 (763 for saliva,
1,201 for subgingival plaque, and 1,504 for supragingival plaque),
with a mean length of 1,041 nt (955 for saliva, 1,105 for subgingi-
val plaque, and 1,061 for supragingival plaque). The median
length of all contigs was 509 nt (491 for saliva, 516 for subgingival
plaque, and 513 for supragingival plaque) (see Fig. S1A in the

supplemental material), and the median GC content was 44%
(44% for saliva, 43% for subgingival plaque, and 44% for suprag-
ingival plaque) (see Fig. S1B). We subjected all contigs to BLASTX
analysis against the NCBI Nonredundant (NR) database to iden-
tify homologous sequences. Similar to prior studies, there was a
limited number of contigs that had identifiable homologues. A
significantly higher percentage of salivary contigs than contigs de-
rived from plaque had identifiable viral homologues (40.09% of
those from saliva, 27.87% of those from subgingival plaque, and
29.09% of those from supragingival plaque; P � 0.0001) (Fig. 1).
The substantial differences in the structural genes identified in
contigs from each biogeographic site (40.7% of the contigs from
saliva, 12.4% of those from subgingival plaque, and 16.3% of those
from supragingival plaque) account for much of the observed dif-
ferences. These differences are likely explained by a lack of viruses
present in the NR database that are homologous to subgingival
and supragingival microbiota. Similar differences were not ob-
served for homologues involved in viral replication and integra-
tion, where 37.0% of the contigs from saliva had these homo-
logues, 43.8% of those from subgingival plaque had them, and
43.3% of those from supragingival plaque had them (Fig. 1).

Personalized oral viruses by biogeographic site. We com-
pared the oral viruses in each subject by biogeographic site (saliva
versus subgingival plaque versus supragingival plaque) to deter-
mine whether there were identifiable viruses specific to each sub-

FIG 1 Bar graphs of the mean percentages of contigs (� the standard errors) with viral homologues in the NR database from all of the subjects. Panels: A, saliva;
B, subgingival plaque; C, supragingival plaque.
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ject by site. We used BLASTN analysis (E score, �10�10) to quan-
tify the numbers and patterns of shared homologous contigs
among all 16 subjects at each site. There were numerous homol-
ogous viruses among the saliva samples from many subjects, par-
ticularly among healthy subjects H5 to H8 (see Fig. S2A in the
supplemental material), as well as among the subgingival and su-
pragingival plaque samples from all of the subjects (see Fig. S2C
and E, respectively). However, the pattern of homologous viruses
observed in heat maps also suggested that despite some shared
viruses, many oral viruses were specific to both subgingival and
supragingival plaque samples from an individual. This pattern
suggested that many viruses of oral biofilm were unique to each
individual. We also performed global assemblies from the reads
from all of the subjects by biogeographic site and found similar
patterns in saliva (see Fig. S2B) and subgingival (see Fig. S2D) and
supragingival plaque (see Fig. S2F) samples that suggested that
many of the oral viruses were specific to individuals.

We performed permutation tests in which we randomly sam-
pled the virome contigs to measure the proportions of intrasubject
and intersubject homologous viruses to determine whether the
viral ecology at each biogeographic site was significantly individ-
ual specific. For subgingival plaque, we found that viromes dem-
onstrated significant levels of individual-specific contigs for 14 of
the 16 subjects (P � 0.05) and in supragingival plaque for 13 of the
16 subjects (P � 0.05) (Table 2). In subgingival plaque from sub-
jects with periodontal disease, 87.8% � 4.3% of the contigs had
intrasubject homologues and 69.0% � 13.6% had intersubject
homologues. Similar results were found for periodontally healthy
subjects or those with mild disease, with 88.0% � 2.8% of the
contigs with intrasubject homologues and 77.0% � 4.3% with
intersubject homologues. In supragingival plaque from the signif-
icant periodontal disease group, 89.5% � 1.9% of the viral contigs
had intrasubject homologues and 71.2% � 11.9% had intersub-
ject homologues; in that from periodontally healthy subjects,
88.1% � 3.1% of the viral contigs had intrasubject homologues
and 75.0% � 6.9% had intersubject homologues. Similar results
were also found for globally assembled contigs from all of the

subjects by biogeographic site, where significant levels of
individual-specific contigs were identified for all 16 subjects in
subgingival plaque (P � 0.05; see Table S2 in the supplemental
material) and for 14 of the 16 subjects in supragingival plaque (P
� 0.05). These data indicate that there is a significant association
between individual subjects and their biofilm viral community
membership, regardless of oral health status.

Viromes from saliva from all of our periodontally healthy sub-
jects or those with mild disease demonstrated significantly higher
levels of intrasubject shared homologues than intersubject shared
homologues (mean, 94.8% � 2.6% compared to 78.3% � 5.3% [P
� 0.05] for all healthy subjects) (see Table S3 in the supplemental
material). For subjects with significant periodontal disease, the
proportions of intrasubject and intersubject shared homologues
in saliva were not significantly different for four of the seven sub-
jects (mean for all of the subjects, 94.2% � 1.7% compared to
87.4% � 6.8%). For globally constructed assemblies, significant
levels of individual-specific contigs were found in saliva from all
16 subjects (P � 0.05; see Table S4 in the supplemental material).

Biogeographic differences among viral communities. We
compared the virome contigs across all of the subjects by biogeo-
graphic site to determine whether there were significant propor-
tions of virome contigs specific to each site. We did not identify
any significant associations with biogeographic sites among the
viruses within saliva or among the viruses within biofilms (7.8% �
12.0% versus 5.1% � 7.8%; P � 0.258) (Table 3). In contrast, we
found highly significant associations by biogeographic site among
the viruses in subgingival plaque compared to other sites (37.5%
� 9.0% versus 10.6% � 8.7%; P � 0.0122) and supragingival
plaque compared to other sites (34.5% � 7.0% versus 10.5% �
8.6%; P � 0.0087). These data indicate that the biogeographic site
may be an important determinant of oral viral ecology. We found
similar trends in the data when examining globally constructed
assemblies from all reads and biogeographic sites; however, these
differences were not statistically significant (see Table S5 in the
supplemental material).

TABLE 2 Subgingival and supragingival virome homologues within and between subjects

Subject

% Homology in subgingival plaque

P valueb

% Homology in supragingival plaque

P valuebIntrasubjecta Intersubjecta Intrasubjecta Intersubjecta

D1 91.46 � 3.19 79.89 � 4.97 0.0083 90.97 � 3.07 84.39 � 3.61 0.0479
D2 92.06 � 3.21 67.56 � 6.67 0.0005 92.26 � 2.43 43.76 � 9.61 <0.0001
D3 87.58 � 2.90 48.75 � 7.15 <0.0001 81.49 � 3.36 63.97 � 4.29 0.0009
D4 87.11 � 3.13 65.79 � 5.22 0.0004 84.55 � 2.34 62.48 � 3.50 <0.0001
D5 88.53 � 4.25 84.25 � 3.81 0.1913 88.58 � 4.23 73.53 � 5.48 0.0114
D6 90.60 � 3.19 76.35 � 4.80 0.0058 92.37 � 3.35 79.36 � 5.58 0.0260
D7 88.84 � 3.69 76.13 � 4.81 0.0186 84.40 � 3.24 75.19 � 3.42 0.0255
H1 87.23 � 2.64 65.70 � 5.62 0.0001 87.31 � 2.66 68.98 � 3.99 0.0005
H2 84.52 � 2.90 74.00 � 3.66 0.0056 84.51 � 3.42 79.77 � 3.09 0.0024
H3 84.80 � 3.35 66.25 � 4.43 0.0019 86.52 � 3.72 82.41 � 3.02 0.0043
H4 89.29 � 2.39 80.49 � 3.19 0.0006 89.72 � 2.11 77.16 � 3.41 0.0125
H5 86.81 � 2.76 82.42 � 2.98 0.0626 93.90 � 1.91 80.54 � 4.21 0.0001
H6 92.62 � 1.95 80.09 � 4.16 0.0001 85.93 � 2.74 78.82 � 3.04 <0.0001
H7 91.42 � 2.46 78.12 � 4.39 0.0005 89.86 � 2.64 78.52 � 4.22 0.1747
H8 91.04 � 2.23 66.98 � 5.06 <0.0001 86.71 � 3.05 73.74 � 3.51 0.1381
H9 84.94 � 2.84 80.72 � 2.62 0.1008 87.32 � 2.61 72.52 � 4.17 <0.0001
a Based on the mean of 10,000 iterations. One thousand random contigs were sampled per iteration.
b Empirical P value based on the fraction of times the estimated percent homologous contigs for each subject exceeds that for different subjects. Values that indicate statistical
significance are in bold.
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Comparison of viruses in orally healthy persons with those
in persons with periodontal disease. We next compared the oral
viruses of relatively periodontally healthy subjects with those of
subjects with significant disease to determine whether viral com-
munity composition might be associated with oral health status.
We performed principal-coordinate analysis (PCOA) to compare
the patterns of variation in shared homologues across all of the
subjects and biogeographic sites. Many of the salivary viromes
were similarly clustered on the basis of host disease status
(Fig. 2A). A similar trend was also identified in oral biofilm, where
most of the subgingival and supragingival viromes from subjects
with significant periodontal disease were similarly clustered
(Fig. 2B). We next quantified the proportion of homologous con-
tigs across viromes of relatively periodontally healthy subjects or
disease to determine whether the patterns of variation observed in
PCOA were supported statistically. For saliva, the proportion of
homologous virome contigs was greater for comparisons among
subjects with significant periodontal disease (12.4% � 12.4%)
than between subjects with different oral health status (1.1% �

2.6%), but this difference was not statistically significant (Ta-
ble 3). The proportion of shared virome homologues was much
greater among subjects with significant periodontal disease than
in comparisons between subjects with different oral health status
for subgingival plaque (37.2 � 10.9% versus 13.6 � 5.8%; P �
0.022) and supragingival plaque (34.7 � 5.6% versus 12.1 � 4.1%;
P � 0.002) (Table 3). These data indicate that human oral viral
ecology in oral biofilm is significantly associated with oral health
status. While similar trends were found in the data for globally
constructed assemblies, the data were not significant for any bio-
geographic site (see Table S5 in the supplemental material).

We characterized the virus families in all of the subjects to
determine whether significant differences existed in periodontally
healthy subjects and those with disease by biogeographic site. In
samples from each site in orally healthy subjects, members of the
family Siphoviridae were the most abundant virus types (Fig. 3),
and their generally lysogenic lifestyle suggests that lysogeny is the
preferred state of viruses in orally healthy subjects. In addition, the
abundance of podoviruses from each site was similar but the rel-

TABLE 3 Viral homologues and shared 16S rRNA OTUs within and between subject groups

Site and/or status

% Homology in virome

P valueb

% Homology in 16S rRNA

P valuebWithin groupa Between groupsa Within groupa Between groupsa

Sites
Saliva 7.81 � 12.03 5.07 � 7.78 0.2584 47.50 � 34.17 11.58 � 25.04 0.1671
Subgingival plaque 37.53 � 8.98 10.60 � 8.70 0.0122 73.01 � 16.96 40.76 � 35.83 0.2201
Supragingival plaque 34.45 � 6.99 10.50 � 8.62 0.0087 74.29 � 16.43 40.30 � 36.16 0.2143

Health status
Saliva

Healthy 7.06 � 9.67 1.06 � 2.68 0.1090 34.08 � 37.82 36.01 � 32.96 0.3416
Periodontal disease 12.43 � 12.40 1.07 � 2.61 0.1254 70.11 � 12.74 34.02 � 32.82 0.1464

Subgingival plaque
Healthy 38.63 � 6.40 13.56 � 5.64 <0.0001 73.41 � 15.39 71.15 � 15.83 0.4382
Periodontal disease 37.16 � 10.86 13.59 � 5.81 0.0221 77.23 � 11.93 70.67 � 15.02 0.3474

Supragingival plaque
Healthy 31.25 � 5.91 12.18 � 4.11 0.0009 62.27 � 34.50 65.23 � 27.16 0.3862
Periodontal disease 34.66 � 5.64 12.11 � 4.05 0.0018 74.20 � 13.26 64.44 � 27.66 0.4181

a Based on the mean of 10,000 iterations. One thousand random contigs were sampled per iteration.
b Empirical P value based on the fraction of times the estimated percent homologous contigs or shared OTUs for each group exceeded that between groups. Values that indicate
statistical significance are in bold.

FIG 2 PCOA of beta diversity present in the viromes of each subject at each biogeographic site. Relatively periodontally healthy subjects are represented in white,
and subjects with significant periodontal disease are represented in black. Circles represent saliva, squares represent subgingival plaque, and triangles represent
supragingival plaque. Panels: A, saliva; B, subgingival and supragingival plaque.
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ative abundance of myoviruses varied considerably by site and
disease state. Myoviruses were significantly more abundant in sa-
liva from healthy individuals (Fig. 3A), though siphoviruses re-
mained the most abundant viral type in healthy subjects and in
those with disease. In subgingival plaque, however, we found
myoviruses to be significantly more abundant in those with peri-
odontal disease than in healthy subjects (Fig. 3B). Myoviruses are
generally lytic, and their predominance in subjects with periodon-
tal disease suggests a more active role for viruses in driving bacte-
rial diversity in the subgingival crevice. The myoviruses in subgin-
gival plaque from subjects with periodontal disease were even
more abundant than siphoviruses, which was not observed in any
other oral microenvironment studied. No significant differences
were identified in the virus families found in supragingival plaque
(Fig. 3C). Thus, virome membership was significantly altered in
subjects with periodontal disease, predominantly as a result of the
increased abundance of myoviruses in their subgingival plaque.

Characterization of bacterial communities. On the basis of
our findings that there were significant associations between oral
viruses and individual subjects (see Fig. S2 in the supplemental
material; Table 2), biogeographic sites (Table 3), and oral health
status (Table 3), we investigated whether similar trends might also

be identifiable for oral bacterial communities. We examined these
communities on the basis of the V3 hypervariable region of the
16S rRNA. We sequenced 880,410 16S rRNA reads after process-
ing, for a mean of 55,026 reads per subject and 18,342 reads per
biogeographic site. We performed rarefaction analyses, which
demonstrated that most of the diversity present in each subject
had been adequately sampled for saliva (see Fig. S3A in the sup-
plemental material) and subgingival (see Fig. S3B) and supragin-
gival plaque (see Fig. S3C). Diversity of bacterial communities was
estimated by using the Shannon diversity index (H=). In the sub-
gingival and supragingival plaque samples from most of our sub-
jects, the estimated species diversity was greater in relatively orally
healthy subjects (H=, 6.5) than in those with significant periodon-
tal disease (H=, 5.3). When the data for all of the subjects and
biogeographic sites by oral health status were combined, the esti-
mated species diversity in relatively orally healthy subjects ex-
ceeded that in subjects with periodontal disease (see Fig. S3D; H=,
7.0 in healthy subjects versus 6.4 in those with disease). Species
richness in saliva exceeded that in both subgingival and supragin-
gival plaque, regardless of oral health status (see Fig. S3E).

We used PCOA to examine the patterns of variation observed
in oral bacterial communities by biogeographic site. We found

FIG 3 Pie charts of bacteriophage families present in the saliva (A) and subgingival (B) or supragingival plaque (C) samples of relatively periodontally healthy
subjects (left) and those with disease (right). Asterisks indicate significant differences (P � 0.05) between the proportions of virus families identified in
periodontally healthy subjects and those with disease.
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variation differentiating the salivary microbiota from those of oral
biofilm (Fig. 4A); however, there was little distinction between the
subgingival and supragingival biota. We also quantified the pro-
portion of shared bacterial operational taxonomic units (OTUs)
by biogeographic site in all of our subjects to determine whether
there were statistically significant differences in the biota at each
site. The proportion of the biota shared within each biogeographic
site was greater than that shared by different sites (47.5% versus
11.6% for saliva, 73.0% versus 40.8% for subgingival plaque, and
74.3% versus 40.3% for supragingival plaque), but none of these
differences was statistically significant (Table 3). We found a dis-
tinct variation in the viromes of relatively orally healthy subjects
and those with significant periodontal disease (Fig. 2), but similar
significant trends could not be identified for the bacterial biota
(Fig. 4B and Table 3). There was a significant association between
virome constituents and oral biogeographic sites (Table 3), but no
significant associations were identified in the bacterial biota (see
Tables S6 and S7 in the supplemental material).

Taxonomic compositions of viral and bacterial communi-
ties. We compared the putative taxonomic compositions of viral
communities across each biogeographic site to determine whether
there were identifiable differences at a high taxonomic level. We
found that viruses of Firmicutes and Proteobacteria were highly
prevalent in saliva, followed by those of Bacteroidetes and Actino-
bacteria (Fig. 5A). In contrast, viruses of Proteobacteria and Bacte-
roidetes predominated in oral biofilm, with those of Firmicutes and
Actinobacteria representing only a small minority of the viruses
identified (Fig. 5B and C). The relative proportions of Firmicutes,
Actinobacteria, and Bacteroidetes phage were all significantly dif-
ferent (P � 0.05) when the taxonomic compositions of viral com-
munities in saliva and oral biofilm were compared. Many of these
differences were also reflected in the taxonomies of the bacterial
communities, where Firmicutes predominated in saliva, com-
pared to a relatively even distribution of Firmicutes, Actinobacte-
ria, and Bacteroidetes in oral biofilm (Fig. 5D to F).

We also examined the taxonomic composition of the viral
communities in relatively periodontally healthy subjects with that
of the communities in subjects with significant disease. No signif-
icant differences were identified in subgingival plaque from peri-
odontally healthy subjects and those with disease, despite the pre-
ponderance of myoviruses in subjects with disease. This suggests
that the significant differences in viral communities may be more

closely related to the virus families present than to their putative
bacterial hosts (Fig. 3B). In saliva, there was a trend to lower levels
of Firmicutes and Actinobacteria in orally healthy subjects than in
those with disease, although only the difference in Firmicutes lev-
els was statistically significant (Fig. 5A). In supragingival plaque,
there was a significant decrease in the proportion of Bacteroidetes
and an increase an Actinobacteria phage in subjects with periodon-
tal disease (Fig. 5C), but the biological basis of these findings in
saliva and supragingival plaque is unclear.

DISCUSSION

Human body surfaces are inhabited by endemic viral communi-
ties whose role on human body surfaces has not been thoroughly
investigated. We previously demonstrated that there are robust
communities of viruses that inhabit human saliva (6) and that
many of these viruses are highly persistent over time (54). Because
many of these persistent oral viruses are bacteriophage, they could
play a role in determining oral bacterial community membership.
We investigated the membership of the oral viral community in
relatively periodontally healthy subjects and those with significant
disease to determine whether there might exist ecological distinc-
tions in the viral populations reflected in oral health status. We
examined the viruses present in planktonic saliva and in subgin-
gival and supragingival biofilms to provide a broad overview of
different oral ecological niches. Our finding that membership in
the biofilm virome is significantly associated with periodontal
health and disease is the first statistically supported evidence that
oral viral community membership is associated with a human
disease condition.

Bacteriophage are significant drivers of bacterial diversity in a
variety of ecosystems (1–7), and most of the viruses identified in
saliva and dental plaque were phage (Fig. 3). In this study, many of
the phage encountered at all oral sites were predicted to be sipho-
viruses, which generally have lysogenic lifestyles by integrating
into their host genomes. Lysogenic oral viruses live in dynamic
equilibrium with their cellular hosts and, as a result, are highly
persistent members of the human oral microbiome (54). Myovi-
ruses are often lytic and, because of their increased virulence for
their host bacteria, may have a great impact upon local bacterial
diversity. Myoviruses were highly prevalent in the subgingival
crevice in subjects with periodontal disease (Fig. 3B), suggesting
an expanded role in driving bacterial diversity in oral biofilm. In

FIG 4 PCOA of beta diversity present in the bacterial communities of each subject at each biogeographic site. Panels: A, classified by biogeographic site; B,
classified by oral health status.

Viral Communities Are Associated with Oral Health Status

May/June 2014 Volume 5 Issue 3 e01133-14 ® mbio.asm.org 7

mbio.asm.org


the development of periodontal disease, the surfaces of the gums
and bones pull away from the teeth, forming pockets that are
generally inhabited by different bacteria. While the profound dif-
ferences in the subgingival virobiota may merely reflect changes in
the bacterial biota that colonize these exposed pockets, the differ-
ences in the subgingival plaque virome in subjects with periodon-
tal disease may also have other biological implications. The lytic
phage in the subgingival crevice likely help to shape the local mi-
crobiota and contribute to the local microbial community struc-
ture and alter local biodiversity.

There were significant differences between the putative bacte-
rial hosts of viruses in saliva and those of viruses in oral biofilm
when examined at a high taxonomic level (Fig. 5). Similar taxo-
nomic differences were not observed when periodontally healthy
subjects were compared with those with disease, suggesting that
much of the observed differences in our subjects may have been
due to changes in the relative abundance of virus families rather
than their bacterial hosts. Because of their substantial coevolution
with their bacterial hosts, culture-independent methods based on
patterns of nucleotide usage are relatively accurate in predicting

the hosts of lysogenic viruses at the genus level (56). However,
techniques used to predict bacterial hosts are generally less suc-
cessful at predicting the hosts of lytic viruses; thus, we opted to
characterize lytic viruses only at a high taxonomic level in this
study to reduce the potential for inaccuracy.

Our data show a strong link between oral viruses and peri-
odontal health (Table 3), biogeographic sites (Table 3), and indi-
vidual subjects (Table 2) but likely only partially describe the ro-
bust communities of viruses that inhabit the human oral cavity.
Our methods and sequencing depth were designed to characterize
the most abundant oral viruses (6) and likely offer limited insight
into the less-abundant members of the human oral virome. This
analysis included only DNA viruses, and it remains unclear
whether the mouth is also inhabited by RNA viral communities.
Because of the limited starting volume of saliva and the relatively
scarce quantities of DNA recovered, we used multiple-
displacement amplification (MDA) before sequencing each vi-
rome. MDA may introduce biases into sequence data, particularly
when relatively small quantities of starting nucleic acids are used
(57). There are no available collections of non-MDA-treated oral

FIG 5 Bar plots (means � standard errors of the means) of putative viral host taxonomy (A and C) and bacterial taxonomy based on 16S rRNA (D to F) at the
phylum level. Each phylum is shown on the x axis, and the percentage of contigs or OTUs identified belonging to the observed phyla is shown on the y axis. Panels
A and D represent saliva, panels B and E represent subgingival plaque, and panels C and F represent supragingival plaque. White bars represent relatively
periodontally healthy subjects, and black bars represents subjects with significant periodontal disease. Asterisks indicate significant differences (P � 0.05)
between phyla in periodontally healthy subjects and those with disease.
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viromes for comparison; however, substantial systematic and di-
rectional amplification biases would be necessary to reproduce the
statistically significant trends found in these viromes. We used two
separate techniques to assemble the sequence data, and they
showed similar trends in individual-specific, biogeographic site-
specific, and oral health status-specific viruses in each subject or
subject group. We preferred to create the initial assemblies from
each subject rather than use global assemblies from all of the sub-
jects to reduce the potential for chimerism. Although the two
methods showed similar trends, only the method that uses assem-
blies from individual subjects produced statistically significant re-
sults (Tables 2 and 3).

While this study demonstrated a significantly altered oral viral
ecology in subjects with periodontal disease, other studies have
investigated viral community constituents in other disease condi-
tions. There are conserved viral genotypes in the respiratory tracts
of human subjects with cystic fibrosis (2), which could potentially
be attributable to shared bacterial ecology. Our data, however,
indicate a high level of commonality among bacterial species rep-
resentation between relatively periodontally healthy subjects and
those with more advanced disease but still showed that viruses
were significantly associated with oral health status. A study of gut
microbial communities in persons with Crohn’s disease showed
lower viral and bacterial diversity than in controls (58); however,
both could potentially have been explained by antibiotic admin-
istration. Only one healthy subject in this study received any an-
tibiotics (Table 1), and thus, antibiotics cannot explain the signif-
icant differences between the viral communities found in
periodontally healthy subjects and those found in subjects with
disease (Table 3). A recent study demonstrated a strong associa-
tion between (i) host immune status and the use of antiviral ther-
apies and (ii) viral community constituents in human plasma (8),
indicating that viral communities respond to drug-mediated per-
turbations. The effects of such perturbations on human oral viral
communities have yet to be reported on.

Biogeographic differences in human microbial ecology have
been noted for cellular microbiota inhabiting different body sur-
faces. Our approach is the first to assess oral biogeographic differ-
ences in the viral microbiota of the human microbiome. Because
of the substantial biomass necessary to evaluate DNA viruses by
our techniques, we had to pool plaque samples from individual
teeth in order to have sufficient biomass to examine subgingival
and supragingival viral communities. As expected, the viral
(Fig. 3B) and bacterial (Fig. 5A) biota of subgingival and supra-
gingival plaque samples had similarities; however, each was quite
distinct from that of saliva. The difference in viral ecology between
planktonic saliva and biofilm communities is likely attributable to
differences in the ecology of the bacteria and archaea that inhabit
each individual niche and the various lifestyles observed (Fig. 3).
Biogeographic differences in the cellular microbiota may also ex-
plain our relative inability to identify sequences homologous to
many biofilm-derived viral structural genes (Fig. 1), as the biofilm
had abundant bacteria belonging to Bacteroidetes and Actinobac-
teria (Fig. 5D to F) relative to Firmicutes (highly represented in
saliva) and the representation of viruses for these bacteria may be
heterogeneous in the NR database. There are several factors that
likely contribute to our finding significant associations between
viruses, individual subjects, and oral health status, while not iden-
tifying similar trends in the bacterial biota. First, the difference in
the techniques used (metagenomics versus 16S rRNA amplicon

sequencing) probably accounted for some of the differences ob-
served, likely resulting in lower resolution for the detection of
differences among the members of the bacterial biota. Second, our
analysis of viral and bacterial community constituents was based
on the relative abundance of community members rather than
just their presence or absence. When taking into account only the
presence or absence of taxa, both the virobiota and the bacterial
biota showed significant subject specificity and associations with
oral health status (data not shown). Lastly, many human subjects
have bacterial species in common; however, the prophage in these
genomes vary considerably (59, 60). The relative host specificity of
these prophage, particularly when they are expressed as virions,
may account for much of the subject specificity detailed in this
report. Therefore, the relatively large proportion of lysogenic si-
phoviruses identified in each subject and at each biogeographic
site would contribute substantially to the subject specificity ob-
served.

The data produced in this study and those of other studies
characterizing human viral community ecology together suggest
that viral communities respond to perturbation (8) and environ-
mental factors similar to their counterpart bacterial communities.
We recently demonstrated that unrelated household contacts are
significantly more likely to have oral viruses in common (61),
suggesting that they may be exposed to viruses from the same
environmental reservoir. Furthermore, oral viruses are signifi-
cantly associated with the sex of their human host (54), suggesting
that host factors such as hormones may play a formative role in
human viral ecology. The reservoir of antibiotic resistance is ex-
panded in the mouse gut virome in response to antibiotic pertur-
bation (62). In gut viromes, diet plays an important formative role
in the ecology of viral communities (3). While the nature of the
perturbations that result in periodontal disease in humans may be
variable, our data demonstrate that altered oral viral ecology is an
associated feature of significant periodontitis. Viruses of bacteria
have the potential to eradicate their hosts or to provide them with
beneficial gene functions (6); thus, the predominantly lytic viruses
in the subgingival crevice may have the capacity to shape the nat-
ural history of the oral microbiome in persons with periodontal
disease. While the oral microbiome has been hypothesized to play
a role in the development of periodontal disease (63–65), the role
of viruses in these microbial communities has not been elucidated.
Because of their potential to shape human microbial communi-
ties, as well as host immune responses, viruses likely also play an
important role in human oral health status.

MATERIALS AND METHODS
Human subjects. Subject recruitment and enrollment were approved by
the University of California, San Diego, and the Western University Ad-
ministrative Panels on Human Subjects in Medical Research. All of the
subjects signed informed-consent forms indicating their willingness to
participate in this study. Each subject underwent a baseline periodontal
examination, including measurements of probing depths, clinical attach-
ment loss, gingival index, plaque index, and gingival irritation (66), and
their oral health status was recorded (Table 1). Dental plaque was col-
lected from subgingival and supragingival biofilm samples from teeth 3, 9,
12, 19, 25, and 28 and placed into 200 �l of 0.02-�m-filtered phosphate-
buffered saline (PBS; Fisher Scientific, Chico, CA). Approximately 3 ml of
saliva was also collected from each subject without stimulation. All spec-
imens were immediately frozen on dry ice and stored at �20°C until use in
this study. All of the subjects completed a questionnaire detailing their
dietary habits and comorbidities. Exclusion criteria included preexisting
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medical conditions that could result in substantial immunosuppression.
All of the participating subjects were unrelated, and only one had received
any antibiotics in the 3 months prior to the beginning of the study (Ta-
ble 1).

Isolation and sequencing of oral viruses Subgingival and supragingi-
val plaque samples from each subject were pooled separately, washed
twice in 0.02 micron filtered PBS, and spun at 6,000 � g for 10 min to
pellet the biofilm. The biofilm was then incubated at 37°C for 30 min and
vortexed vigorously for 10 min to separate out viruses. The biofilm was
then spun at 6,000 � g for 10 min, and the supernatants were treated in the
same manner as the saliva samples, by using previously described methods
for enrichment and extraction of nucleic acids from viruses (6). Briefly,
samples were filtered sequentially with 0.45- and 0.2-�m filters (VWR,
Radnor, PA) to remove cellular and other debris and purified on a cesium
chloride gradient. Only the fraction with a density corresponding to most
known bacteriophage (67) was retained, further purified on Amicon YM-
100 protein purification columns (Millipore, Inc., Billerica, MA), treated
with DNase I, and subjected to lysis and DNA purification with the Qiagen
UltraSens virus kit (Qiagen, Valencia, CA). The resulting DNA was am-
plified with the GenomiPhi V2 DNA amplification kit (GE Healthcare,
Pittsburgh, PA), fragmented to roughly 200 to 400 bp with a Bioruptor
(Diagenode, Denville, NJ), made into libraries with the Ion Plus Fragment
Library kit (Life Technologies, Grand Island, NY) according to the man-
ufacturer’s instructions, and sequenced with 314 chips on an Ion Torrent
Personal Genome Machine (PGM; Life Technologies, Grand Island, NY)
(55).

Processing and analysis of virome sequences. Sequencing reads were
trimmed according to modified Phred scores of 0.5 with CLC Genomics
Workbench 4.65 (CLC bio USA, Cambridge, MA), and low-complexity
reads (where �25% of the length was due to homopolymer tracts) were
removed prior to further analysis. After trimming and removal of low-
complexity reads, any remaining reads with substantial length variation
(�50 or �300 nt) or reads with ambiguous characters were removed
prior to further analysis. Reads were screened for homology to a compos-
ite 16S rRNA database including the Ribosomal Database Project database
(68), the Green Genes database (69) and the Silva database (70) by
BLASTN analysis with an E score cutoff value of 10�5. Reads were also
screened for homology to the Human Reference Database at ftp://
ftp.ncbi.nlm.nih.gov/genomes/H_sapiens/ by BLASTN analysis with an
E score cutoff value of 10�5. Any reads homologous to sequences in the
human database were removed prior to further analysis. Reads then were
assembled with CLC Genomics Workbench 4.65 (CLC bio, Cambridge,
MA) to construct contigs based on 98% identity with a minimum of 50%
read overlap, consistent with criteria developed to discriminate between
highly related viruses (71). Because the shortest reads were 50 nt, the
minimum tolerable overlap was 25 nt and the mean overlap was no less
than 73 nt, depending on the characteristics of each virome. Any contigs
of �200 nt or with ambiguous characters were removed prior to further
analysis. Length and GC content variation among contigs were assessed by
using box-and-whisker plots created with Microsoft Excel 2007 (Mi-
crosoft Corp., Redmond, WA).

We used BLASTX analysis against the NR database (E score cutoff,
10�5) to find viral homologues to contigs from each subject and biogeo-
graphic site. Homologous contigs were determined by parsing BLASTX
results for known viral genes, including replication, structural, transposi-
tion, restriction/modification, hypothetical, and other genes previously
found in viruses for which the E score was at least 10�5. Each individual
virome contig was annotated by this technique (Fig. 1); however, if the
best hit for any portion of the contig was to a gene with no known func-
tion, lower-level hits were used as long as they had known functions and
still met the E score cutoff. The annotation data were compiled for all of
the subjects and used to determine the relative proportion of assembled
contigs that contained viral homologues. The phylum of the cellular hosts
for each annotated contig was used to determine taxonomic distributions
in each subject and at each biogeographic site. The relative abundances of

virus families were determined by BLASTX analysis of the SEED database
with MG-RAST (72). Analysis of shared homologues in each virome was
performed by creating custom BLAST databases for each virome, com-
paring each database with all other viromes by BLASTN analysis (E score,
�10�10). Heat maps were generated on the basis of shared homologues
across all of the subjects and depicted with JAVA Treeview (73). Heat map
data were normalized on the basis of the total number of viral contigs for
each virome. PCOA was performed on homologous virome contigs by
using binary Sorensen distances and Qiime (74). We also used a separate
technique for assembly by constructing global assemblies from all of the
reads from all of the subjects and all of the time points with 98% identity
over a minimum of 50% read overlap. The contribution of each subject
and time point to each assembly was assessed and used to construct heat
maps with Java Treeview (73).

Analysis of 16S rRNA. Genomic DNA was prepared from saliva or
pooled subgingival or supragingival plaque from each subject with the
Qiagen QIAamp DNA minikit (Qiagen, Valencia, CA). Each sample was
subjected to a bead-beating step prior to nucleic acid extraction with
Lysing Matrix-B (MP Bio, Santa Ana, CA). We amplified the bacterial 16S
rRNA V3 hypervariable region with the forward primer 341F (CCTACG
GGAGGCAGCAG) fused with the Ion Torrent Adaptor A sequence and
one of 23 unique 10-bp bar codes and reverse primer 514R (ATTACCGC
GGCTGCTGG) fused with the Ion Torrent Adaptor P1 from each subject
and biogeographic site (75). PCRs were performed with Platinum PCR
SuperMix (Invitrogen, Carlsbad, CA) with the following cycling parame-
ters: 94°C for 10 min, followed by 30 cycles of 94°C for 30 s, 53°C for 30 s,
and 72°C for 30 s and a final elongation step of 72°C for 10 min. Resulting
amplicons were purified on a 2% agarose gel stained with SYBR Safe
(Invitrogen, Carlsbad, CA) with the MinElute PCR purification kit (Qia-
gen, Valencia, CA). Amplicons were further purified with AMPure beads
(Beckman Coulter, Brea, CA), and molar equivalents were determined for
each sample with a Bioanalyzer 2100 HS DNA kit (Agilent Technologies,
Santa Clara, CA). Samples were pooled into equimolar proportions and
sequenced on 314 chips with an Ion Torrent PGM according to the man-
ufacturer’s instructions (Life Technologies, Grand Island, NY) (55). Re-
sulting sequence reads were removed from the analysis if they were
�130 nt, had any bar code or primer errors, contained any ambiguous
characters, or contained any stretch of �6 homopolymers. Sequences
were assigned to their respective samples on the basis of their 10-nt bar
code sequences and analyzed further with Qiime (74). Briefly, represen-
tative OTUs from each set were chosen at a minimum sequence identity of
97% with UClust (76) and aligned with PyNast (77) against the Green-
Genes database (69). Multiple alignments then were used to create phy-
logenies with FastTree (78), and taxonomy was assigned to each OTU
with the RDP classifier (79, 80). PCOA was performed on the basis of beta
diversity by using weighted UniFrac distances (81). Qiime was also used to
calculate Shannon diversity indices.

Statistical analysis. To assess whether viromes had significant overlap
within or between subjects or subject groups, we performed a permuta-
tion test based on resampling (10,000 iterations). We simulated the dis-
tribution of the fraction of shared virome homologues from different
subjects, biogeographic sites, or oral health statuses that were randomly
chosen across all of the subjects and sites. For each set, we computed the
summed fraction of shared homologues by using 1,000 random contigs
between randomly chosen subjects or subject groups and from these com-
puted an empirical null distribution of our statistic of interest (the frac-
tion of shared homologues). The simulated statistics within each subject
or group of subjects was referred to the null distribution of intersubject or
intergroup comparisons, and the P value was computed as the fraction of
times the simulated statistic for the each exceeded the observed statistic.
An identical analysis was performed at the OTU level for the 16S rRNA
taxonomic assignments. This technique was also used to assess the relative
contributions of individual subjects and time points to global virome
assemblies constructed from the reads of all of the subjects at all of the
time points. We assessed whether any randomly selected contig had a
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higher proportion of intrasubject reads than intersubject reads recruited
in its assembly.

Nucleotide sequence accession numbers. The virome and 16S rRNA
sequences obtained in this study are available for download in the MG-
RAST database (http://metagenomics.anl.gov/) under the project Phage
Biofilm Study or under consecutive individual accession numbers
4547358.3 to 4547405.3 for the viromes and 4547630.3 to 4547677.3 for
the 16S rRNAs.
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