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Linear Algebra: Vector space

DEFINITION 1.1 A vector space V is a set with the following properties;
(0-1) For any u,v € V, their sum u+v € V.

(0-2) For any u € V and ¢ € K, their scalar multiple cu € V.

(1-1) (u+v)+w=u+ (v+w) for any u,v,w € V.

(1-2) u+v=v+ u for any u,v € V.

(1-3) There exists an element 0 € V' such that u + 0 = u for any u € V. This
element O is called the zero-vector.

(1-4) For any element u € V, there exists an element v € V such that u+v = 0.
The vector v is called the inverse of u and denoted by —u.

)

) (c+d)u = cu+ du for any ¢,d € K,u e V.
) (ed)u = ¢(du) for any ¢,d € K,u € V.
)

Let 1 be the unit element of K. Then 1u = u for any u € V.

Fundamental property:

vectors can be stretched
and added.

The usual rules of addition
and multiplication hold.

There is a null vector.

In QM: K = C (complex
vector space)



Notation

Vectors will be denoted as follows

Dirac notation: ket «——

Therefore we have:
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Linear (in-)dependence, basis, dimension

Linear combination ci|z) + c2|y)

Linear independent vectors: a set of vectors is linearly independent iff
their only linear combination resulting in the null vector can be obtained
with all coefficients equal to 0. Otherwise there are called linearly

dependent. "

ZCZ‘CIBZ>:‘(U> L CZ:O(1§Z<I€)

1=1 Null vector

Basis: a set of linear independent vectors such that any other vector can
be written as linear combination of those vectors.

Dimension: number of basis vectors (n), always finite for us. Then, V = C"



Examples

EXERCISE 1.1 Find the condition under which two vectors

x 2
wi)={y |, |ve)=|z—y | eR’
3 1

are linearly independent.

EXERCISE 1.2 Show that a set of vectors

1 1 1
) ={1], lo)=10/[, Jug)=1{ -1
1 1 —1

is a basis of C3.
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Geometric representation of vectors and
basis (V = R?)




Inner product

It is a function
<.|.> VxV =5 C

With the following properties:

1. (zllaly) + Blz)] = alzly) + S(z|z)
2. (zly) = (ylz)”

3. (z|x) >0 andis nulliff |z) = |w)

Usual definition
(1) (1)
X2 Y2

)\

Then




Norm and metric. Hilbert spaces

The inner product defines automatically a norm

and a metric (distance)

]| = v/ {z|z)

d(z,y) = ||z — y|

|=]|* =

n
2_lail
\ i=1

|z —ylI* =
\

n
>l —il?
1=1

Hilbert space (#): a vector space with a inner product (simple definition
because we are working with vector spaces of finite dimension)




Linear functionals

It is a function f:H — C

such that f(az + By) = af(z) + Bf(y)

It naturally defines a vector space ", called the (algebraic) dual of 7£.

(f1+ f2)(z) = fi(z) + f2(7)
(af)(z) = af(z)



Linear functionals

Let {&} withi=1,...n be a basis of . Then for any vector x:

flx)=f (Z ﬂfz‘éz) = sz‘f(éi) = Z«”Eifi with & = f(é)eC
i=1 i=1 i=1

Therefore f is uniquely identified by the numbers (¢,,¢,, ... &), which are the
values of f at the basis vectors. In particular let us consider the functionals

(611621 En)

(1,0,..0) < &, By construction: &"; (&) = §;;
(0,1,..0) &> &7,
> It can be shown that {€",} forms a basis of
Ny J* called the dual basis
(0,0, 1) < e n __/



Riesz’s representation theorem

Every functional on JH can be represented in terms of an inner product
f(x) = (z|z)

where z depends on f, and is uniquely determined by it. Therefore

f <+ z suchthat f(-)=(z]")

There is a 1-to-1 correspondence between vectors and functionals.



Dirac notation

ket
the vector

z)

(2

bra
the functional

Also

(1)

z) =

)

Given a basis |1>, |2> ... |[n>in H, we
will always consider the dual basis of 7,
which we will denote as <1], <2| ... <n].

Then
<| |J> = 6ij'

Riesz’s coefficient ¢,

functional
theorem
..,x,) sothat (|(|ly)) = (x|y) = Z‘/

This gives a clear mathematical meaning to the Dirac bra-ket notation



Example

EXERCISE 1.3 Let

Find |||z}, (z|ly) and (yl|z).



Basis

(eilej) = di;

Let |z) =Y | ¢;le;). The inner product of |x) and (e;| yields

M:

cilejle;) = ZC@ i =c¢; — ¢ = (ej|x).
1 =1 1=1

(ejlz) =



Linear Operator

A map A:C" — C" is a linear operator if
Aler|z) + c2ly)) = crAlz) + c2Aly)

is satified for arbitrary |z),|y) € C" and ¢, € C. Let us choose an arbitrary
orthonormal basis {|ex)}. It is shown below that A is expressed as an n X n
matrix.

Aler) =Y led i Aj=(e;lAler). A= Ajles)enl
1=1 7.k



Projection Operator

P, = |ex)(ex|

The set { P, = |eg)(ex|} satisfies the conditions
(i) Pg = Py,
(i)  PPj=0 (k#37),

[v) = Pelv)

(iii) Z P, =1 (completeness relation).
k

EXAMPLE 1.1 Let

-5 () - ()

Sa= ()=

They define an orthonormal basis as is easily verified. Projection operators and the orthogonality condition

are

1 /11 1 /1 —1
=l =5 (11) Po=leadleal = 5 (4 7).

They satisfy the completeness relation

00
nr- (00).

The reader should verify that P? = Pg.



Hermitian Conjugate — Hermitian operator

DEFINITION 1.2 (Hermitian conjugate) Given a linear operator A :
C™ — C", its Hermitian conjugate A' is defined by

(ulAlv) = (ATulv) = (v]AT[u)",
where |u), |v) are arbitrary vectors in C”.

The above definition shows that (e;|Alex) = (ex|AT|e;)*. Therefore, we find
the relation A = (AT),’;j, namely

(AT)jk — Zj'

(cA)T =c¢*A", (A+B)I =A"+ B, (AB)! = B'AT.

DEFINITION 1.3 (Hermitian matrix) A matrix A : C" — C" is said to
be a Hermitian matrix if it satisifies AT = A.



Unitary operator

DEFINITION 1.4 (Unitary matrix) Let U : C* — C" be a matrix which
satisfies UT = U~!. Then U is called a unitary matrix. Moreover, if U is
unimodular, namely det U = 1, U is said to be a special unitary matrix.

The set of unitary matrices is a group called the unitary group, while
that of the special unitary matrices is a group called the special unitary
group. They are denoted by U(n) and SU(n), respectively.

Let {|e1),...,|en)} be an orthonormal basis in C™. Suppose a matrix U :
C™ — C" satisifes UTU = I. By operating U on {|ex)}, we obtain a vector
| fx) = Uler). These vectors are again orthonormal since

(filfx) = (ej|UTUlex) = (ejler) = dju- (1.26)

Note that |det U| = 1 since det UTU = det UT det U = |det U|? = 1.



Eigenvalues & Eigenvectors

Alv) = A|v), A eC.

Then A is called an eigenvalue of A, while |v) is called the corresponding
eigenvector. The above equation being a linear equation, the norm of the
eigenvector cannot be fixed. Of course, it is always possible to normalize
[v) such that |||v)|| = 1. We often use the symbol |\) for an eigenvector
corresponding to an eigenvalue A to save symbols.

Let us find the eigenvalue A next. Note first that the eigenvalue equation is
rewritten as

Z(A — )\I)ijvj = 0.
J
This equation in v; has nontrivial solutions if and only if the matrix A — A
has no inverse, namely

D(\) = det(A — A) = 0. characteristic equation




Eigenvalues & Eigenvectors of Hermitian
operators

THEOREM 1.2 All the eigenvalues of a Hermitian matrix are real num-

bers. Moreover, two eigenvectors corresponding to different eigenvalues are
orthogonal.

Proof. Let A be a Hermitian matrix and let A|A\) = A|A). The Hermitian
conjugate of this equation is (A|[A = A*(\|. From these equations we obtain
(AA|A) = AAA) = X*(A|A), which proves A = A* since (A|A) #£ 0.

Let Alp) = p|lp) (u # A), next. Then (u|A = p(u| since p € R. From
(| A[A) = A(p|A) and (u[A[A) = p(p|A), we obtain 0 = (A — p){u[A). Since
i # A, we must have (u|\) = 0. 1

Therefore, the set of eigenvectors {|A;)} of a Hermitian matrix A may be made into a complete set

I= Z ) (| A= Z AilAi)(N\il, | spectral decomposition of A
1=1 )




Exercises

EXERCISE 1.9 Let

1 0 147
A‘ﬁ(1—z‘ 0 )

Find the eigenvalues and the corresponding normalized eigenvectors. Show
that the eigenvectors are mutually orthogonal and that they satisty the com-
pleteness relation. Find a unitary matrix which diagonalizes A.

EXERCISE 1.10 (1) Suppose A is skew-Hermitian, namely AT = —A.
Show that all the eigenvalues are pure imaginary.

(2) Let U be a unitary matrix. Show that all the eigenvalues are unimodular,
namely [\;| = 1.

(3) Let A be a normal matrix. Show that A is Hermitian if and only if all
the eigenvalues of A are real.

A matrix A is normal if it satisfies AAT = ATA




Exercises

Exercise 2.12: Prove that the matrix

is not diagonalizable.

Exercise 2.13: If |w) and |v) are any two vectors, show that (|w)(v))T = |v){w|

Exercise 2.20: (Basis changes) Suppose A’ and A" are matrix representations of an
operator A on a vector space V' with respect to two different orthonormal bases,
[v;) and |w;). Then the elements of A" and A" are A;; = (v;|A|v;) and
Al = (w;| Alw;). Characterize the relationship between A’ and A”.



Pauli matrices

oo = (

01
10

) o

0 —2
1 0

Product of Pauli matrices

) o

{oi,0;} =005+ 00, =201

05,05 =005 —0j0; =20 g Eiik Ok,

3
0;0 =1 E EijkOk —|—5sz

k=1

k

10
0-—-1)/"°

Eijk = {

1, (4,4, k) =

—1 (2,4, k) =

0 otherwise.



Pauli matrices

The spin-flip (“ladder”) operators are defined by

(02— i) = ((1)8) |

1=(y). 1v=(}) Eigenstates of o,

| =

1 , 01
oy = §(agg—|—wy): (OO)’ o_ =

Verify that 0| 1) = o_| 1) = 0, oy 1) = | 1) o_| 1) = | 1) The
projection operators to the eigenspaces of o, with the eigenvalues £1 are

Pe= 111 = 4 +0) = (57,
=il =4-a=(1).

05 =0, Pi=P., P,P_ =0.



Function of an operator

PROPOSITION 1.1 Let A be Hermitian matrix in the above theorem. Then
for an arbitrary n € N, we obtain

If, furthermore, A~ exists, the above formula may be extended to n € Z by
noting that A ! is an eigenvalue of A™1.

Proof. Let n € N. Then
A"Py = \A" 1P, = ... = \""1AP, = \"P,,

from which we obtain
A" =A"Y P,=) A"P,=) AP,

To prove the second half of the proposition, we only need to show that A~!
has an eigenvalue A\ !, provided that A1 exists (and hence A, # 0), and the
corresponding projection operator is P,. We find

P‘a,p> = A_IA‘)‘a,p> = )‘ozA_1|>‘oc,p> - A_1|)‘a,p> = )‘c_yl‘)‘a,p>-

Therefore the projection operator corresponding to the eivengalue A ! is P,.
The case n = 0, I = )  P,, is nothing but the completeness relation. Now
we have proved that Eq. (1.42) applies to an arbitrary n € Z. I



Exercises

EXAMPLE 1.6 Let us consider o, again. It follows directly from Example

1.5 that
. — (iag,)* i o cosa sin o
exp(iaoy,) = Z ¢ Pi+e P =| “ine cosa |
k=0 '

EXERCISE 1.13 Suppose a 2 x 2 matrix A has eigenvalues —1, 3 and the
corresponding eigenvectors

-5 (7) -5 ()

respectively. Find A.
21
1= (1)

EXERCISE 1.14 Let

(1) Find the eigenvalues and the corresponding normalized eigenvectors of A.
(2) Write down the spectral decomposition of A.

(3) Find exp(iaA).



Exercises

EXERCISE 1.15 Let

5 —2 -4
A= -2 2 2
—4 2 5

(1) Find the eigenvalues and the corresponding eigenvectors of A.
(2) Find the spectral decomposition of A.
(3) Find the inverse of A by making use of the spectral decomposition.

PROPOSITION 1.2 Let i € R? be a unit vector and o« € R. Then
exp (ian - o) = cosal +i(n - o)sina,

where o = (0, 0y,02).



Exercises

Exercise 2.34: Find the square root and logarithm of the matrix

i



Tensor product

DEFINITION 1.5 Let A be an m x n matrix and let B be a p X ¢ matrix.

Then
allB, algB, coay alnB

a’21B7 a’QQBa R a’2nB

A® B = (1.47)

amlB7 a’m2B7 s aa’mnB

is an (mp) X (ng) matrix called the tensor product (Kronecker product)
of A and B.

It should be noted that not all (mp) x (ng) matrices are tensor products
of an m X n matrix and a p X ¢ matrix. In fact, an (mp) X (np) matrix has
mnpq degrees of freedom, while m X n and p X ¢ matrices have mn + pq in
total. Observe that mnpg > mn + pq for large enough m,n,p and ¢g. This
fact is ultimately related to the power of quantum computing compared to its
classical counterpart.



Exercises

EXAMPLE 1.8

0010
J@J:(Oaz): 00 0-1
* ? o, 0 1 000
0—-10 0

EXAMPLE 1.9 We can also apply the tensor product to vectors as a special
case. Let

Then we obtain
ac

el (5) - |5
bd

The tensor product |u) ® |v) is often abbreviated as |u)|v) or |uv) when it
does not cause confusion.



Exercises

" 1x27 [2°
1) [2] |13 |3
2 30 | 2x2 | | 4
| 2 X 3 | | 6
"0 0 0 —i
0.y 1-Y] |0 0 4 0
X®Y_[1-Y O-Y]_ 0 —i 0 0
i 0 0 0 |

Exercise 2.26: Let |¢0) = (|0) + |1))/+/2. Write out [¢))®2 and [1))®? explicitly, both

in terms of tensor products like |0)|1), and using the Kronecker product.

Exercise 2.27: (alculate the matrix representation of the tensor products of the Pauli
operators (a) X and Z; (b) I and X; (c) X and I. Is the tensor product

commutative?



Exercises

EXERCISE 1.18 Let A and B be as above and let C' be an n X r matrix
and D be a ¢ x s matrix. Show that
(A® B)(C ® D) = (AC) ® (BD).
It similarly holds that
(A1 ® B1)(A2 ® B2)(As ® Bs) = (A1 42 A3) ® (B1B2B3),

and its generalizations whenever the dimensions of the matrices match so that
the products make sense.

EXERCISE 1.19 Show that

AR (B4+C)=AB+AC
(Ao B)t = AT @ Bf
(AeB) '=A1te B!
whenever the matrix operations are well-defined.
Show, from the above observations, that the tensor product of two unitary

matrices is also unitary and that the tensor product of two Hermitian matrices
is also Hermitian.

EXERCISE 1.20 Let A and B be an m X m matrix and a p X p matrix,
respectively. Show that
tr(A® B) = (trl)(trB),
det(A ® B) = (det A)P(det B)™.



Exercises

EXERCISE 1.21 Let |a), |b),|c), |d) € C™. Show that
(la) () @ (le){d]) = (Ja) © |c))({b] @ (d]) = |ac)(bd].

THEOREM 1.6 Let A be an m X m matrix and B be a p X p matrix.
Let A have the eigenvalues Aq,...,\,, with the corresponding eigenvectors
[u1), ..., |um) and let B have the eigenvalues p1, ..., pu, with the correspond-
ing eigenvectors |v1),...,|vp). Then A ® B has mp eigenvalues {\;u} with
the corresponding eigenvectors {|u;vg)}.

Proof. We show that |u;vk) is an eigenvector. In fact,

(A® B)(lujvr)) = (Alu;)) @ (Blok)) = (Ajluz)) @ (plvr))
= Aju(lujv)) -

Therefore, the eigenvalue is A;u, with the corresponding eigenvector |ujvy).
Since there are mp eigenvectors, the vectors |u;v) exhaust all of them. i

EXERCISE 1.22 Let A and B be as above. Show that A® I, + I,,, ® B
has the eigenvalues {\; + ux} with the corresponding eigenvectors {|u;vg)},
where [, is the p X p unit matrix.



Quantum Mechanics

1. The state of a physical system is represented by a normalized vector
| P> of a suitable Hilbert space.

2. Observables (like position, momentum, spin...) are represented by
suitable Hermitian operators.

3. The state evolved according to the Schrodinger equation

OlY)

h
o

= Hl),

It is a linear equation, and implies the superposition principle: the
linear combination of two possible states is still a possible state of the
system.



Quantum Mechanics

4. In a measurement, the only possible outcomes are the eigenvalues
of the Hermitian operator associated to the observable. The outcomes
are random and distributed with the Born rule

Plei] = [{cilv)]”

where |c.> is the eigenstate associated to the eigenvalue ¢, and | > is
the state of the system at the time of the measurement.

5. After the measurement, the state collapses to the eigenstate
associated to the measured observable (von Neumann collapse)

) — an)



Comments

In Axiom 1, the phase of the vector may be chosen arbitrarily; [)
in fact represents the “ray” {e'®|y) | € R}. This is called the ray
representation. In other words, we can totally igonore the phase of a
vector since it has no observable consequence. Note, however, that the
relative phase of two different states is meaningful. Although [{(¢p|e**))|?
is independent of «, |(p|y1 + e"*1h2)|? does depend on .



Axiom 4 may be formulated in a different but equivalent way as
follows. Suppose we would like to measure an observable a. Let
A =" Al Ai) (Ai] be the corresponding operator, where A|X;) = ;| ;).
Then the expectation value (A) of a after measurements with respect to
many copies of a state [¢)) is

(A) = (W|A[Y). (2.2)

Let us expand [¢) in terms of |\;) as [1)) = > . ¢;|A;) to show the equiv-
alence between two formalisms. According to A 2, the probability of
observing \; upon measurement of a is |c;|?, and therefore the expec-
tation value after many measurements is Y, A;|¢;|?. If, conversely, Eq.
(2.2) is employed, we will obtain the same result since

¢‘A|¢ ZC CZ )\ ‘A|)\ ZC;CZ)‘Z(S@] = Z)‘Z‘CZF
2,7 )

This measurement is called the projective measurement. Any par-
ticular outcome A\; will be found with the probability

s = (Y| Pi[Y), (2.3)

where P; = |\;)(\;] is the projection operator, and the state immediately
after the measurement is |\;) or equivalently

P;|vy)
WPy

where the overall phase has been ignored.

(2.4)

Comments



Comments

The Schrodinger equation (2.1) in Axiom A 3 is formally solved to yield

(1)) = e 1M p(0)), (2.5)
if the Hamiltonian H is time-independent, while
.t
w0) = Texo |-+ [ H0a) 10(0) (2.6
0

if H depends on t, where 7 is the time-ordering operator defined by

7[A<t1>B<t2>]={§(<2)>%32 Ly

for a product of two operators. Generalization to products of more
than two operators should be obvious. We write Eqgs. (2.5) and (2.6) as
1(t)) = U(t)]1p(0)). The operator U(t) : [1(0)) — |1(t)), which we call
the time-evolution operator, is unitary. Unitarity of U(t) guarantees
that the norm of |y (t)) is conserved:

(WG(OITT U ()]1(0)) = (¥ (0)[(0)) = 1.



Uncertainty principle

EXERCISE 2.1 (Uncertainty Principle)
(1) Let A and B be Hermitian operators and |¢)) be some quantum state on

which A and B operate. Show that

[(I[A, Bll)? + [({A, BY)|* = 4|(L|ABy)[*.
(2) Prove the Cauchy-Schwarz inequality

[(WIABJ)|* < (Y[ A% ) (| B [).

(3) Show that
[(WI[A, Bl[¥)|* < 4| A%[¢) (| B[).

(4) Show that

1
A(AA(B) z 5[4, Bl[¥)l, (2.7)
where A(A) = \/(¢[A2]¢) — (Y[A])2.
(5) Suppose A =Q and B= P = ?% Deduce from the above arguments
that "
A(Q)A(P) = 5.



Example

EXAMPLE 2.1 Let us consider a time-independent Hamiltonian

h
H = — W (2.8)

Suppose the system is in the eigenstate of o, with the eigenvalue +1 at time

t = 0;
won = (o).

The wave function |¢(t)) (¢ > 0) is then found from Eq. (2.5) to be

(1)) = exp (i50st) [1(0)), (2.9)

The matrix exponential function in this equation is evaluated with the help
of Eq. (1.44) and we find

coswt/2 isinwt/2 1 coswt /2

PO =1 <0> = . (2.10)
isinwt/2 coswt/2 isinwt/2

Suppose we measure the observable o.. Note that |1 (t)) is expanded in terms

of the eigenvectors of o, as

[4(t)) = cos %t|0z = +1) +isin %t|az = —1).

The state oscillates
among the two
eigenstates. Why?
What should happen
to not have the
oscillation? What are
the probabilities of
outcomes of
measurements?




Example

Next let us take the initial state

which is an eigenvector of o, (and hence the Hamiltonian) with the eigenvalue
+1. We find |¢(t)) in this case as

coswt/2 isinwt/2) 1 [1 ewt/2 (1
() = .. — = — : (2.11)
isinwt/2 coswt/2 ) /2 \ 1 V2 \1
Therefore the state remains in its initial state at an arbitrary ¢ > 0. This is an
expected result since the system at ¢ = 0 is an eigenstate of the Hamiltonian.



Exercise

EXERCISE 2.2 Let us consider a Hamiltonian
h

H = ——Wwoy.

2

Suppose the initial state of the system is

won = (7).

(1) Find the wave function |¢(t)) at later time ¢ > 0.

(2.12)

(2.13)

(2) Find the probability for the system to have the outcome +1 upon mea-

surement of o, at t > 0.

(3) Find the probability for the system to have the outcome +1 upon mea-

surement of o, at ¢t > 0.



Exercise: generalization

Now let us formulate Example 2.1 and Exercise 2.2 in the most general
form. Consider a Hamiltonian

h
H = —§w'fz .o, (2.14)

where 7o is a unit vector in R3. The time-evolution operator is readily ob-
tained, by making use of the result of Proposition 1.2, as

U(t) = exp(—iHt/h) = cos gt [+i(f-o)sin gt. (2.15)

o) = (o).

(0] = Uolw()) = (5fet/D e sne2))

The reader should verify that [ (¢)) is normalized at any instant of time ¢ > 0.

Suppose the initial state is

for example. Then we find

(2.16)



Bipartite systems

A system composed ot
two separate components is called bipartite. Then the system as a whole
lives in a Hilbert space ' H = H; ® Ho, whose general vector is written as

V) = cijlers) ® lea), (2.29)

@]

where {|eq;)} (a = 1,2) is an orthonormal basis in H, and ), ; [ci;]* = 1.

A state [¢)) € H written as a tensor product of two vectors as [¢) =
1) @ [12), (|he) € Hg) is called a separable state or a tensor prod-
uct state. A separable state admits a classical interpretation such as “The
first system is in the state [i1), while the second system is in |¢3).” It is
clear that the set of separable states has dimension dimH; + dimHs. Note
however that the total space H has different dimensions since we find, by
counting the number of coefficients in (2.29), that dimH = dimH;dimHs.
This number is considerably larger than the dimension of the sparable states
when dimH, (a = 1,2) are large. What are the missing states then?



Bipartite systems

Such non-separable states are called entangled in quantum theory [9]. The
fact

dimH;dimHs > dimH; + dimH,

tells us that most states in a Hilbert space of a bipartite system are entangled
when the constituent Hilbert spaces are higher dimensional. These entangled
states refuse classical descriptions. Entanglement will be used extensively as
a powerful computational resource in quantum information processing and

quantum computation.

Entanglement is deeply related to quantum nonlocality, the most
fascinating lesson of quantum theory



Schmidt decomposition

PROPOSITION 2.1 Let 'H = H; ® Hs be the Hilbert space of a bipartite
system. Then a vector |¢)) € ‘H admits the Schmidt decomposition

) = Vil fri) @ | fa) with Y s =1, (2.31)
1=1 7

where s; > 0 are called the Schmidt coefficients and {|f, ;) } is an orthonor-
mal set of H,. The number r € N is called the Schmidt number of |¢)).

The proof will be done in Introduction to Quantum Information Theory

It follows from the above proposition that a bipartite state [v) is separable
if and only if its Schmidt number r is 1.



Multipartite systems

Generalization to a system with more components, i.e., a multipartite
system, should be obvious. A system composed of N components has a
Hilbert space

H=Hi1®Hs®...R Hn, (2.32)

where H, is the Hilbert space to which the ath component belongs. Classifi-
cation of entanglement in a multipartite system is far from obvious, and an
analogue of the Schmidt decompostion is not known to date for N > 3.*



