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Quantum Algorithms

We will study the three historically most important algorithms:

* Simple ones (Deutsch, Deutsch-Jozsa...)
e Grover (search in a data base)
 Shor (factorization)

What is special about quantum algorithms?



Quantum Parallelism

Given an input x, a typical quantum computer computes f(x) in such a way
as

Uy )]0} = [a) (). (4.61)

where Uy is a unitary matrix that implements the function f.

Suppose Uy acts on the input which is a superposition of many states. Since
Uy is a linear operator, it acts simultaneously on all the vectors that constitute
the superposition. Thus the output is also a superposition of all the results;

Uy : >y |2)[0) (4.62)

All values of the function computed at once. Very easy!!
But... measurements will make the wave function collapse
giving only one output. No advantage



Quantum Algorithms

The goal of a quantum algorithm is to operate in such a way that the
particular outcome we want to observe has a larger probability to be
measured than the other outcomes.



Deutsch Algorithm

Let f:{0,1} — {0,1} be a binary function. Note that there are only four
possible f, namely

f1:0—0,1—0, fo:0—1, 11,
f3:0—0,1—1, f4:0—1, 1—0.

The first two cases, f1 and fs, are called constant, while the rest, f3 and f4,
are balanced. If we only have classical resources, we need to evaluate f twice
to tell if f is constant or balanced. There is a quantum algorithm, however,
with which it is possible to tell if f is constant or balanced with a single
evaluation of f, as was shown by Deutsch [2].




Deutsch Algorithm

First we need to turn the classical function f(x) into a quantum one.

1. Make it reversible.

2. Define it on the computational basis to act like the classical circuit
and extend it by linearity.

Us : [e,y) — la,y @ f(o))

Where @ is addition mod 2.



Deutsch Algorithm

The algorithm is structured as follows.

1. Start with the state |01).

1
2. Apply an Hadamard on both qubits: 5(]00) —|01) 4+ |10) — |11))

3. Apply the operator U; implementing the function

Quantum
parallelism:

20, £(0)) — 0.1 F(0)) + 1, /(1)) ~ [1,1& F(1))
| « all values
= 20, £(0) — 0.7(0) + L. F(1)) — 1.~ (1)). computed at

once




Deutsch Algorithm

4. Apply an Hadamard to the first qubit

1
W [(10) +11)(1£(0)) = [=£(0))) + (10) = [1)([f (1)) = |=fF(1)))]

The wave function reduces to

1
\ﬁ|0>(|f(0)> — [=£(0))) (5.1)
in case f is constant, for which |f(0)) = |f(1)), and
1
\ﬁ|1>(|f(0)> — [=/(0))) (5.2)

if f is balanced, for which |=f(0)) = |f(1)). Therefore the measurement of
the first qubit tells us whether f is constant or balanced.



Deutsch Algorithm

5. Measure the first qubit
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Deutsch-Jozsa Algorithm

Let us first define the Deutsch-Jozsa problem. Suppose there is a binary
function

f:8.={0,1,...,2" —1} — {0, 1}. (5.3)

We require that f be either constant or balanced as before. When f is constant,
it takes a constant value 0 or 1 irrespetive of the input value x. When it is
balanaced the value f(x) for the half of x € .S, is 0, while it is 1 for the rest of
x.

It is clear that we need at least 2"~ ! + 1 steps, in the worst case with
classical manipulations, to make sure if f(x) is constant or balanced with
100% confidence. It will be shown below that the number of steps reduces to
a single step if we are allowed to use a quantum algorithm.



Deutsch-Jozsa Algorithm

1. Prepare an (n + 1)-qubit register in the state |1pg) = [0)®" @ |1). First
n qubits work as input qubits, while the (n + 1)st qubit serves as a
“scratch pad.” Such qubits, which are neither input qubits nor output

qubits, but work as a scratch pad to store temporary information are
called ancillas or ancillary qubits.

2. Apply the Walsh-Hadamard transforamtion to the register. Then we
have the state

= 7 > o) ® —==(10) = [1)). (5.4)



Deutsch-Jozsa Algorithm

3. Apply Uyglz)|c) = [x)|c® f(x))
The state changes into

[Wa) = Uslth1)

o E_Z )5 (@) = [~ ()

f(x)x . .
\/272 I\f(|0> 1)) (5.5)

Although the gate Uy is applied once for all, it is applied to all the
n-qubit states |z) simultaneously.




Deutsch-Jozsa Algorithm

4. The Walsh-Hadamard transformation (4.11) is applied on the first n
qubits next. We obtain

2" —1

h3) = (Wn @ I)[1p2) = Z DI DU )

5(10) = [1)). (5.6)

Sl -

\/2_n



On the Hadamard gate

It is instructive to write the action of the one-qubit Hadamard gate in
the following form,

! o)1)y = L 1y
UH\$>=E(|O>+(—1) ’1>)_\fye%:,1}( 1)*ly),

where x € {0, 1}, to find the resulting state. The action of the Walsh-
Hadamard transformation on |x) = |z,_1...2120) yields

Walz) = (Unl|zn-1))(Un|zn-2)) ... (Unlzo))

— 1 Z (_1)wn—lyn—1+9€n—2yn—2+---+$0y0

V2

X |yn—1yn—2 .- .y0>

2" —1
1

= =5 2 (-0, (5.7)

y=0

ynflayTL*Qa"'ayOe{Oal}

where T Y =Tpn-1Yn—-1PTn—2Yn—2®...BToYo.



Deutsch-Jozsa Algorithm

Coming back to step 4:

4. The Walsh-Hadamard transformation (4.11) is applied on the first n
qubits next. We obtain

2" —1

[h3) = (Wn @ I)|the) = Z f(x)U®n|$>

\/z_n (10) = 11)). (5.6)

1 2" —1 N oy 1
L (Z (~1)/@(=1) y>) —50) ~ D).

x,y=0

7

As we will see, this operation will make the different terms interfere in
order to read the desired result



Deutsch-Jozsa Algorithm

5. The first n qubits are measured. Suppose f(x) is constant. Then [i3)

is put in the form Example with 3 qubits.
1 1
- — —1)® YN ——(l0) — |1 Take y = 110. Then
[¥s) = 5n > (=1 |y>\/§(| ) — (1)) A,
.,y 2 1
up to an overall phase. Now let us consider the summation
X X,®X4
271 000 0
3 > (7
2n p— 001 0
. . : : . 010 1
with a fixed y € S,,. Clearly it vanishes since x - y is 0 for half of z and
1 for the other half of x unless y = 0. Therefore the summation yields g .
dy0. Now the state reduces to 100 1
1 101 1
— n
‘¢3> - |0> ﬁ(‘m o |1>)7 110 0
o 111 0
and the measurement outcome of the first n qubits is always 00...0.




Deutsch-Jozsa Algorithm

Suppose f(x) is balanced next. The probability amplitude of |y = 0) in
|13) is proportional to

2" —1 2" —1
> (IO = 37 () =0,
=0 =0

Therefore the probability of obtaining measurement outcome 00...0 for
the first n qubits vanishes. In conclusion, the function f is constant if
we obtain 00...0 upon the meaurement of the first n qubits in the state
14)3), and it is balanced otherwise.



Deutsch-Jozsa Algorith
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Bernstein-Vazirani Algorithm

The Bernstein-Vazirani algorithm is a special case of the Deutsch-Jozsa
algorithm, in which f(z) is given by f(x) = ¢ x, where ¢ = ¢,—1¢n—2...Co
is an n-bit binary number [4]. Our aim is to find ¢ with the smallest number
of evaluations of f. If we apply the Deutsch-Jozsa algorithm with this f, we

obtain

) = 5 | 3 (U707 | =(10) — 1)

Let us fix y first. If we take y = ¢, we obtain



Bernstein-Vazirani Algorithm

If y # ¢, on the other hand, there will be the same number of x such that
c-x = 0 and z such that ¢-x = 1 in the summation over x and, as a result,

the probability amplitude of |y # ¢) vanishes. By using these results, we end
up with

1

[93) = \C>\/§(\0> — 1) (5.9)

We are able to tell what ¢ is by measuring the first n qubits.



Exercise

EXERCISE 5.1 Let us take n = 2 for definiteness. Consider the following
cases and find the final wave function |¢3) and evaluate the measurement
outcomes and their probabilities for each case.

(1) f(x) =1Vx € 9.

(2) £(00) = £(01) = 1, (10) = f(11) = 0.
(3) £(00) = 0, £(01) = F(10) = f(11) = 1

nor balanced.)

. (This function is neither constant

EXERCISE 5.2 Consider the Bernstein-Vazirani algorithm with n = 3 and
c = 101. Work out the quantum circuit depicted in Fig. 5.2 to show that the
measurement outcome of the first three qubits is ¢ = 101.



Grover’s search algorithm

Suppose there is a stack of N = 2" files, randomly placed, that are numbered
by x € S, ={0,1,..., N — 1}. Our task is to find an algorithm which picks
out a particular file which satisfies a certain condition.

In mathematical language, this is expressed as follows. Let f : S, — {0,1}
be a function defined by

ra={o827 (7.1)

where z is the address of the file we are looking for. It is assumed that
f(x) is instantaneously calculable, such that this process does not require any
computational steps. A function of this sort is often called an oracle as noted
in Chapter 5. Thus, the problem is to find z such that f(z) = 1, given a
function f : S, — {0, 1} which assumes the value 1 only at a single point.




Grover’s search algorithm

Clearly we have to check one file after another in a classical algorithm,
and it will take O(N') steps on average. It is shown below that it takes only
O(V'N) steps with Grover’s algorithm. This is accomplished by amplifying
the amplitude of the vector |z) while cancelling that of the vectors |z) (x # z2).




Grover’s search algorithm

We first needs to implement the function f(x) qguantum mechanically. We
define U; as follows (oracle)

Usle) = (=1)7)|z)

On the computational basis. We see that if x is an unmarked item, the
oracle does nothing to the state. It flips the phase for the marked item. It
is easy to see that

Up =1 —=2|z)(z]



Grover’s search algorithm

Step 1: Create an initially equal weighted superposition of all states (this
is done with N Hadamard gates):

1
o) = \/—N Z ).

2

/ o)
)




Grover’s search algorithm

Step 2: Apply the oracle U;. Geometrically this corresponds to a reflection
of the state |z) about |s). This transformation means that the amplitude
in front of the | z) state becomes negative, which in turn means that the
average amplitude has been lowered.

| Z > d | A

ﬂm,r;//{(_aé_




Grover’s search algorithm
Step 3: Apply the gate

D = —TI + 2{po){¥o|.

The action of the gate is the following

Reflection
around the
average

)= 3 wila) — Dlp) = [% > r:c><y\] > ) = Y wile)

=0

N—-1
1
with &=+ > w. average

=0




Grover’s search algorithm

In our case we get

T

ﬂ’"/’/éaoc_
[ AL
—
2
=
4 i\‘_

Since the average
amplitude has been
lowered by the first
reflection, this
transformation boosts
the negative amplitude
of |z) to roughly three
times its original value,
while it decreases the
other amplitudes.

llermg



Grover’s search algorithm

Step 3: go to step 2 an repeat the application of U; and D a sufficient
number of times. Let us call G; =D Ux.

PROPOSITION 7.2 Let us write

Glpo) = arlz) + by Y |x) (7.17)
TH#z
with the initial condition |
ag = by = —.
0= 0o N
Then the coefficients {ay, by} for k > 1 satisfy the recursion relations
N -2 2(N —-1)
= _ br.— 1
ar N ar—1 + N k—15 (7.18)
2 N -2
b = ——aj— br.— 7.19
k Nak; 1+ N k—1 ( )

fork=1,2,....



Grover’s search algorithm

Proof. 1t is easy to see the recursion relations are satified for k£ = 1

Let G?‘I‘]go@ = ag-1/2) +bk—1,. |r). Then

G?\@(ﬁ =Gy (ak—1|2> + bg—1 Z $>)

TH#z

= (=1 + 2lpo){pol) (—ak1|Z> +hr-1 ) $>>

TrH#z

2 2ak_1
= b1 ) |7) + ar-1l2) + —=(N — Dbg—1p0) — |00)
p— VN VN
2 Qak_l
= —bp_ 1;@ + ap—1|2) N N — 1)by— 1Z|x N zm:‘@

N —2 2(N —1 2 —2
:[ N ap—1 + <N )bk—1:| ‘Z>+[_Nak;—1+ N bk—l}gfﬁ%

and proposition is proved.



Grover’s search algorithm

PROPOSITION 7.3 The solutions of the recursion relations in Proposition
7.2 are explicitly given by
1

=sin|(2k+ 1)0|, b =
aj = sin|( )0] k ]

cos[(2k + 1)6], (7.20)

for k=0,1,2,..., where

1 1
sin@zwﬁ, cosf = 1—N. (7.21)



Grover’s search algorithm

Proof. Let ¢ = v/N — 1b;. The recursion relations (7.18) and (7.19) are

written in a matrix form,

(o) = ()= (Va2 oy ) = (g sonot )

Note that M is a rotation matrix in R?, and its kth power is another rota-
tion matrix corresponding to a rotation angle 2k6. Thus the above recursion

relation is easily solved to yield
ai\ _ gk (90 _ ( cos 2k0 sin 2k6 sinf \ [ sin[(2k 4+ 1)6]
ck ) co ) \ —sin2kf cos2kf ) \ cos® )]  \ cos[(2k +1)0] )

Replacing c; by by proves the proposition. B



Grover’s search algorithm

We have proved that the application of G # k times on o) results in the
state

— 1
G%|po) = sin[(2k + 1)0]|z) + ViR cos[(2k +1)0 mZ# |x). (7.22)

Measurement of the state U J’?|900> yields |z) with the probability

P, ) = sin®[(2k 4 1)6]. (7.23)

STEP 4 Our final task is to find the k that maximizes P, . A rough estimate
for the maximizing k is obtained by putting

(2k+1)9:g—>k:%(1—1>. (7.24)



Grover’s search algorithm

PROPOSITION 7.4 Let N > 1 and let

m = L%J , (7.25)

where |z] stands for the floor of x. The file we are searching for will be
obtained in G'}'|po) with the probability

1
N
and

m = O(VN). (7.27)

|

This is the number of times we
repeat the algorithm, which
grows with the square root of N

Integer numbers




Grover’s search algorithm

Proof. Equation (7.25) leads to the inequality 7/40 — 1 < m < 7/46. Let us
define m by

DO | =

~ T - T

Observe that m and m satisfy



Grover’s search algorithm

Considering that § ~ 1/4/N is a small number when N > 1 and sinz is
monotonically increasing in the neighborhood of z = 0, we obtain

0 <sin|(2m+1)0 — /2| < sinf

— = cos|(2m + 1)6)]

or
1

cos?[(2m + 1)0] < sin? 0 = N (7.30)

Thus it has been shown that

1
P, =sin®[(2m 4+ 1)0] = 1 — cos*[(2m + 1)0] > 1 — - (7.31)
It also follows from 6 > sinf = 1/v/N that
T Tom
=|—=| < =< = . .

" LLQJ <w<7vV (7:32)



Grover’s search algorithm

It is important to note that this quantum algorithm takes only O(v/N)
steps and this is much faster than the classical counterpart which requires
O(N) steps.

Next we will show how how to implement the gates



