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Quantum Integral Transform

DEFINITION 6.1 (Discrete Integral Transform) Let n € N and S,, =
{0,1,...,2" — 1} be a set of integers. Consider a map

K:S, xS, — C. (6.1)

~

For any function f : S,, — C, its discrete integral transform (DIT) f :
S,, — C with the kernel K is defined as:

2" —1

fly) =) K(y,z)f(x). (6.2)

The transformation f — f is also called the discrete integral transform.

We define N = 2" to simplify our notations. The kernel K is expressed as
a matrix,
0) ... K(O,N-1)
0) ... K({,N-1) (6.3)

K(N—-1,0)... K(N—1,N — 1),



Quantum Integral Transform

PROPOSITION 6.1 Suppose the kernel K is unitary: KT = K—!. Then
the inverse transform f — f of a DIT exists and is given by

= Y Ko, y) (). (6.4)
y=0

Proof. By substituting Eq. (6.2) into Eq. (6.4), we prove

N—-1

Z_:K‘L(x,y)f(y)Z (,y) [ZK@/ ]
- [ZKTM )]f()

N

z=0

z



Quantum Integral Transform

Now we make the connection with quantum computing

Let U be an N x N unitary matrix which acts on the n-qubit space H =
(C2)®™, Let {|z) = |Tn_1,Tn_2...,20)} (zx € {0,1}) be the standard binary
basis of H, where x = x,,_ 12" ' + 2,,_22" 2 + ... + 292°. Then

Ul = 3 o) wlU]z) = 3 Uty 2)ly). (6.5)

The complex number U(x,y) = (x|Uly) is the (z,y)-component of U in this
basis.



PROPOSITION 6.2 Let U be a unitary transformation, acting on 'H =

(C?)®", Suppose U acts on a basis vector |z) as

N-—1
Ulz) = Y K(y,z)ly).

(6.6)

Then U computes* the DIT f(y) = Zivz_ol K(y,x)f(x) for any y € Sy, in the

sense that

Here |x) and |y) are basis vectors of H.

Proof. In fact,

U Zf<x>|x>] — Y f(@)Ula)
— Y @) | K(y,x>|y>] -y
N—-1

(6.7)
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The unitary matrix U implementing
a discrete integral transform as in
Eqg. (6.7) is called the quantum
integral transform (QIT).



Quantum Integral Transform

We will introduce three types of QIT:

1. Quantum Fourier Transform (QFT)
2. Walsh Hadamard Transform (which we already saw)

3. Selective Phase Rotation Transform



Quantum Fourier Transform

Fourier transform. Let w,, be the Nth primitive root of 1;

wy, = 2N (6.10)

where N = 2™ as before. The complex number w,, defines a kernel K by

1

The discrete integral transform with the kernel K,

K(xay) —

~ 1 Nl 2y <
fly) = i Z:;) wy ™Y f (), (6.12)

is called the discrete Fourier transform (DFT).
The kernel K is unitary since

(KK (z,y) = (2[K ) _|2)(2|Ky) = ) K(z,2)K'(z,9)

— %Zw;“wgz = %Zw_(x_y)z = gy

The inverse DFT is given by



Quantum Fourier Transform

The quantum integral transform defined with this kernel is called the
quantum Fourier transform (QFT).

1 N—1 1 N—-1N-1
Ugrr|z) = \/—W Z wy, Y y) = \/—N — 2 wy, Y y) (|
Y= z=0 y=
It is important to note that
=

where UqrTy, is the n-qubit QFT gate. This equality shows that the QFT of

f(z) = 0,0 is f(y) = 1/v/27, which is similar to the FT of the Dirac delta
function d(x). Observe that a single application of UqrT, on the state |0) has
produced the superposition of all the basis vectors of H.



Examples

The kernel for n =1 is

(A H(0) e

which is nothing but our familiar Hadamard gate. For n = 2, we have w; =

e2™/4 = j and
1 1 1 1 11 1 1
ol lwtwrtwyt |l 11— -1
K2_§ lw, 2wy w; | " 211-11 -1 (6.14)

—6  —9 1

_3 . . _.
1w2 Wy = Wy 7 1 —1



Circuit implementation of QFT: n =1

n=1
Eq. (6.13) shows that the kernel for n = 1 QFT is the Hadamard gate H,
whose action on |x), x € {0, 1}, is concisely written as

1
1
Unlz) = —=(|0) + (-1 —= 1)*y). (6.24)
% )= A"
In fact, this is the defining equation for n =1 QFT as
1
Uqgri|z) = waxy\y Z 1)*]y). (6.25)

u=0



Circuit implementation of QFT: n = 2

n =2

This case is considerably more complicated than the case n = 1. It also
gives important insights into implementing QFT with n > 3. Let us introduce
an important gate, the controlled-Bjj gate. The Bj; gate is defined by the
matrix

1 0 2T

where j, k € {0,1,2,...} and k > j.

LEMMA 6.1 The controlled-B,; gate Uji in Fig. 6.1 (a) acts on |z)|y),
xz,y € {0,1}, as

0 21
Ujk’gj7y> =e O;k y’x,y> — exp (— k11 xy) \x,y> (627)

Bik

(b)




Circuit implementation of QFT: n = 2

Proof. The controlled-B;;, gate is written as
Use = 10)(0] & I + |1){1] & By, (6.28)
and its action on |z, y) is

Ujklz,y) = 10)(0]z) @ [y) + |1)(1]z) @ Bjr|y)

{ z)®ly) =0
- (6.29)
|z) ® Bjkly) © = 1.

Moreover, when = = 1 we have
1Y) y=0
Bikly) =14 (6.30)
e "Wik|ly) y = 1.

Thus the action of Ujy on |y) is trivial if xy = 0 and nontrivial if and only if
x =y = 1. These results may be summarized as Eq. (6.27). I

.

— Bjk
(a) (b)

The action of the controlled-Bx
gate on a basis vector |x)|y) is
determined by the combination
xy and not by x and y
independently. Therefore the
controlled-Bj gate and the
“inverted” controlled-Bi gate are
equivalent; see Fig. 6.1.




Circuit implementation of QFT:

Equation (6.6) in Proposition 6.2 states that our task is to find a unitary
matrix UgrT2 such that

3
1 —z
Ugrr2lz) = > wy y). (6.32)

Let us write x and y in the binary form as x = 2z + xg and y = 2y1 + yo,
respectively. The action of UQFT2 on |z) is

Uqrra|rizo) =

—_

3 V
yO:yl =0

- Z 6*—27ri93y1/2|y1> ® i 6—27rz'gcy0/22 |y0>
Y1 Yo

(10 + w“(w) ® (10} + e722/2 1))
(10) + e2mierten2 1)) @ (10) + ¢
(10) + e~ ™0|1)) ® (|0> + e T e i(T/2)T0 \1>>

(10) + (=1)*[1)) *1)),

l\D

DN

—2mi(2z1 +10) /22 m)

NI RN RN RN

® B3 (|0) + (— (6.33)

1 0 0., = 2w

= (g i)
12 — 0 e_lTL'/2

Note that BX,,is the controlled-B gate
with the control bit

Xo and the target bit x;; B9, = | while B1;,=
B... Note also that, in spite of

its tensor product looking appearance,
the last line of Eq. (6.33) is entangled due
to this conditional operation.




Circuit implementation of QFT: n = 2

Uqrra|r170) = \/%—2 (10) + (=1)*1)) ® Bz (|0) + (=1)**[1))

Equation (6.33) suggests that the n = 2
QFT are implemented with the Hadamard and the U, gates. Before writing
down the quantum circuit realizing Eq. (6.33), we should note that the first
qubit has a power (—1)%°, while the second one has (—1)*!, when the input
state is |r1xg). If we naively applied the Hadamard gate to the second qubit,
we would obtain

1
V2
These facts suggest that we need to swap the first and second qubits at the
beginning of the implementation

(I ® Un)|z1wo) = |21) @ —=(|0) + (=1)*[1)).



Circuit implementation of QFT: n = 2

Uqra|r120) = \/%—2 (10) + (=1)*[1)) @ B3 (|0) + (=1)*"|1))

= (Un ® I)Ur2(I @ Un)|zo, 1)
= (Un @ INU12(I ® Un)Uswap|z120)- (6.34)

PROPOSITION 6.3 The n =2 QFT gate is implemented as

UQFTQ = (UH & I)Ulg(f X UH)USWAP (6.35)
(see Fig. 6.2).
SWAP
’331> H— 1 3
X I B sz‘”\w
y=0
7o) HBo——
FIGURE 6.2

Implementation of the n =2 QFT, Ugrre.



Circuit implementation of QFT: n =3

UqrTs|r2z120)

1 —2mix —2mi(x T 2 ~ o izy 22
= Z55(10) + e @ (J0) + e T L) ) G
B(]0) + o722 /P w0 2 ) - = o)+ ) (0 - ),
1 x x x F )
= \/2—3(!0>+(—1) °11)) ® Byy (0) + (=1)"*[1)) orn

®Bys Bis (10) + (=1)*2|1))
= (Uu®I®@1Un(I @Un @ I)UpUi2(I ® I @ Un)|zoz122)
= (Un®@1I®1)Up(I ®Un®I)UpUi2(I @ I ® Un)P|row120), (6.36)

where Ui is the controlled-Bj; gate with the control qubit z;, and the gate
P reverses the order of the qubits as P|xox129) = |xox122). For a three-qubit
QFT, P is a SWAP gate between the first qubit (x2) and the third qubit (x).
Again note here that we should be careful in ordering the gates so that the
control bit z; acts in Uj, before it is acted by a Hadamard gate.



Circuit implementation of QFT: n =3

UQFTg = (UH ® I ® I)Um(]@ Ug ® I)U02U12(1® I ® UH>P (6.38)

Equation (6.38) readily leads us to the quantum circuit in Fig. 6.3.

[T2) — * H [~
T 1 <
ey
z1) — P AHB ———= > ws ")
|21) T 01 N
|zg) — H FB12(Bo2
FIGURE 6.3

Implementation of the n = 3 QFT.



Exercise

EXERCISE 6.5 Let 2 = 2225 + 221 + 20 and y = 22ys + 241 + 0.
(1) Write down the RHS of

2°—1
3
Uqrrs|Ter120) = Z e 2Ty /27 ) (6.37)

explicitly in terms of x; and ;.
(2) Show that the RHS of Eq. (6.37) agrees with the first line of the RHS of
Eq. (6.36).

Since Eq. (6.36) is true for any |zoxix9), we have found

UQFTS = (UH ® I X I)U()l(f QR Uy ® I)UOQUlQ(I ® I UH>P (638)



Circuit implementation of QFT: n general

Now the generalization of the present construction to n > 4 should be easy.
The equation that generalizes Eq. (6.36) is

UQrTn|Tn—1...T120)

1 —2mix —2mi(x1 o 2
= o te 2 /21)) @ (|0) + e 2rie /2R 2 1))

®(]0) + e_QWi(x2/2+x1/22—|—a:0/23)’1>) ...

.. ®(|0) + 6—27Ti(a:n_1/2—|—xn_2/22—|—...x1/2n_1—|—x0/2n)|1>)
=UpRI®.. NUn(IRUgRI®...Q I)UjU;:

XIRIUp®...0I)...

XUopn—1Uin—1.. . Up—2n-1(I®...0 I @ Un)|zoz1...Tn-1)
=UpR®I®.. NUn(IRUgRI®...Q 1UyUs

XIRIRQUpg®...01)...Uppn-1Uin-1...Up—2n-1

X(I®...0 I @ Unp)Plry—1...2120), (6.39)

where P reverses the order of xp as P|lx,_1...T1%0) = |ToX1 ... Trn_1).



Circuit implementation of QFT: n general

We finally find the following decompostion of UgrTy:

UQFTn = (UH®I®...®])U01(I®UH®]®...®I)U02U12
X(I@]@UH@)...@])...
XUO,n—lUl,n—l e Un_g,n_l(l R...0 I ® UH)P (640)

A quantum circuit which implements Ugpr, is found from Eq. (6.40) as in
Fig. 6.4. It may be proved, by induction, for example, that the circuit in

et} - — r—{r}-
2} - — - 1 Hpo,
' p 1 2" —1
. . wn Y
. S 7 2 el
1) - T HJ -
wd HeH H H H B—




Circuit implementation of QFT: n general

PROPOSITION 6.4 The n-qubit QFT may be constructed with ©(n?)
elementary gates.

Proof. The n-qubit QFT is made of a P gate, n Hadamard gates and (n —
1)+ (n—2)+...4+24+1=n(n—1)/2 controlled-B,;, gates (see Fig. 6.4).
It has been shown in §4.2.3 that it requres three CNOT gates to construct
—— a SWAP gate. Furthermore, a P gate for n qubits requires |n/2] SWAP
gates, assuming that there exists a SWAP gate for any pair of qubits. Thus
a P gate requires 3 x |[n/2| = O(n) elementary gates. Proposition 4.1 states
that a controlled-B;; gate is constructed with at most six elementary gates.
Thus it has been proved that the n-qubit QFT is made of ©(n?) elementary

gates. i
|[Tn—1) ~—— - T H -
|Tn—2) 1 H [7Bo1
4 : P 1 2”2—1
@ i A wy, Ny)
; : : . V2 =
= 1) ? H e
v ~ lzo) 4 HHH H H H F——-----




Walsh Hadamard Transform

We have already encountered the Walsh-Hadamard transform in §4.2.2 and
§5.2. Let x,y € S,, = {0,1,..., N—1} with binary expressions &, _1Z,_2 . . . Zg
and Yn—1Yn—2 - .- Yo, where N = 2. The Walsh-Hadamard transform, written
in the form of Eq. (5.7), shows that it is a quantum integral transform with a
kernel W, : S,, x S,, — C defined by

Wy (x,y) = (—=D)*Y (x,y € Sn), (6.41)

-

where x -y = Ty, 1Yn—1DPTn_2Yn_o®...PBxoyo. This kernel defines a discrete

integral transform
N—

}—l

1
=7y & Unla) = Z=(0)+ (<) =75 2 0
v
Whalz) = (Unlzn-1))(Un|zn-2)) ... (Un|zo))
— 1 Z (_1)wnflynfl+xn72yn72+---+$Oy0

A/on
2 Yn—1,Yn—2,--+, yOG{O,l}
X‘yn 1Yn— 2---y0>

\/27 Z )" 1y), (5.7)




Selective Phase Rotation Transform

DEFINITION 6.2 (Selective Phase Rotation Transform) Let us de-

fine a kernel |
Kn(x7 y) — ewx(gafiya V,y € Sn, (643)

where 0, € R. The discrete integral transform

F)= S K@) = 3 %o f() = ) (6.44)

with the kernel K, is called the selective phase rotation transform.

EXERCISE 6.7 Show that K, defined above is unitary. Write down the
inverse transformation K 1.



Selective Phase Rotation Transform

The matrix representations for K1 and K5 are

eo 0 0 0
etfo 0 % 0 0
Kl:( 0 ewl)’ B2=1 0 0 e o |

0 0 0 eis



Selective Phase Rotation Transform

The implementation of K, is achieved with the universal set of gates as
follows. Take n = 2, for example. The kernel K5 has been given above. This
is decomposed as a product of two two-level unitary matrices as

Ky = Ap Ay, (6.45)
where ,
eo 0 00 10 0 0
0 €100 01 0 0
Ao = 0 0 10 A1 = 00e¥2 0 (6.46)
0 0 01 00 0 eis
Note that

etfo
Ao = 10)(0| @ Uy + |1){1| ® I, U():( 0 62-91),

1:92 0
A= [0)(0| @ T+ 1)(1|@ Uy, Uy = (60 ews)



Selective Phase Rotation Transform

Thus A; is realized as an ordinary controlled-U; gate while the control bit Ay = 00| ® Uy + [1)(1| & I,
is negated in Ag. Then what we have to do for Ay is to negate the control
bit first and then to apply ordinary controlled-U, gate and finally to negate A =10)(0|® I+ |1){(1]| ® Uy,

the control bit back to its input state. In summary, Ay is implemented as in

Fig. 6.5. In fact, it can be readily verified that the gate in Fig. 6.5 is written
as

(X @ D)(J0)(0] ® T + |1)(1] @ Up)(X ® I)
= X[0)(0|X @ I + X|1){1|X @ Up = |1)(1]| @ I + [0){0] ® Uy = Ao.

Thus these gates are implemented with the set of universal gates. In fact, the
order of A; does not matter since [Ag, A1] = 0.

X — X —




Back on Grover’s search algorithm

We need to prove that the D gate used to perform the quantum search
can be implemented efficiently. We now show that

D = W,,RoW,,, (7.6)

where W, is the Walsh-Hadamard transform,
Wo(x,y) = —=(—1)*Y, (x,y € Sp) (7.7)

and Ry is the selective phase rotation transform defined by

Ro(z,y) = em(l_éxo)(sxy = (_1)1_69605%- (7.8)



Back on Grover’s search algorithm

Proof
(2lDly) = {a| [T + 210} (eoll ly) = ~0y + = e
(W RoWalg) = Y (elWoala)ul Bofe) (W3} = = 37 (—1)7(—1)1=505,,(~ 1),

U,V u,v




Back on Grover’s search algorithm

=A

< [1 DI VATEIE

u#0

:%[1—(N—1)]:—1+%

-y

u#0

1
X=Yy: A=~

X #Yy. As discussed in relation to the Deutsch-Jozsa algorithm

N-—-1 N-—-1
(D=0 = Y (1) =-1
u=0 u=%£0

1 2
Therefore: A=—[-(-1)=



Back on Grover’s search algorithm

Therefore the D gate can be implemented efficiently. The overall circuit is

Wy

| Imcasurc

We are not interested on how to
implement the oracle U; since this
is supposed to be given



Shor’s factorization algorithm

Shor's algorithm is a polynomial-time quantum computer algorithm for
integer factorization. It solves the following problem: Given an integer
N, find its prime factors. It was invented in 1994 by Peter Shor.

Shor's algorithm consists of two parts:

1. A reduction, which can be done on a classical computer, of the
factoring problem to the problem of order-finding.

2. A quantum algorithm to solve the order-finding problem.

The first part can be done easily. We will see the second part.



Order finding — the problem

Number to factorize

|

Define fy : N — N by a — m® mod N. Find the smallest P € N, such
that m© = 1 mod N. The number P is called the order or period.
It is known that this takes exponentially large steps in any classical
algorithm, but it takes only polynomial steps in Shor’s algorithm. A

quantum computer is required only in this step, and the rest may be
executed in polynomial steps even with a classical computer.



Order finding —the quantum solution

Our quantum computer has two n-qubit registers which we call |[REG1) and

IREG2):

‘REG1>’REG2> = \a>|b> = |CLn_1 ce &1a0>‘bn_1 ce blb()), (87)
where decimal numbers a, b € S,, are expressed in binary numbers in the RHS;
n—1 n—1
a = Zaﬂj, b= 26323
j=0 7=0

Step 0. Set the registers to the initial state
7o) = |REG1)|REG2) =|00...0)|00...0). (8.9)

n qubits n qubits




Order finding — the guantum solution

Step1l. The QFT F is applied on the first register;

4b0) = 10)]0) 2" 1) = f Z )|0). (8.10)

The first register is in a superposition of all the states |r) (0 < x < Q — 1),

with Q = 2". Remember that QFT on all |0>’s gives the equal weighted
superposition of all computational basis states



Order finding —the quantum solution

Step 2. Let us define a function f :
f(x) =m*mod N, x€ S,={0,1,..., Q—-1} (8.11)

Suppose that the unitary gate Uy realizes the action of f on x in such a way
that Ug|x)|0) = |z)|f(x)). Apply Uy on the state prepared in step 2.1 to yield

Uslipr) = |1h2) = Z|a: f (@ (8.12)



Order finding —the quantum solution

Step 3. Apply QFT on |REG1) again to yield

Q-1Q—1

) = (F @ Do) = g 3 Z W) £ (@)
1= 1= T (y))
=5 g WITW) = 5 g IT@I - ) et (813

where

Q-1
= > W, f(x)). (8.14)



Order finding —the quantum solution

Step 4, IREG1) is measured. The result y € S,, is obtained with the
probability

_ H\Té;»\l{ (8.15)

and, at the same time, the state collapses to

T(y))
TSRO

Prob(y)

The measurement process generates a random variable following a classical
probability distribution & over .5,,, in which “symbols” y € §,, are generated
with the probability (8.15).

Step 5.  Extract the order P from the measurement outcome.



Order finding — the guantum solution

P is what we want to find

I

PROPOSITION 8.1 Let Q = 2" = Pq+r, (0 <r < P), where ¢ and r
are uniquely determined non-negative integers. Let ()9 = Pq. Then

y

r sin? (Wgy (61230 + 1)) + (P — r)sin? (Wpy . Qo

Q P
2 qin2 ( *Py
Prob(y) = < (7 sin ( Q )

r(Qo+ P)? + (P —r)Q}
\ QQPQ

) (Py # 0 mod Q)

(Py =0 mod Q).




Proof. 1t is found from the definition that¥

Qo—1
Z‘”_wy‘f Z w () + Z W fla Definition + splitting the sum
z=Qo X1
P—1 Qo/P-1 A
_ —(Pzitzo)y| £(p
:BOZZO :Ulz:o w |f( T+ $0)> X = le + Xg QO/P -1 QO -p QO —P +1 QO -1
r—1
t2, WP(QO/PWO]W(P@O/m
xo=0
P-1 Qo/P—1 / ﬁ 1 |P P+1 2P-1
— Z w0y ( Z wP:cly) | F(zo)) + Z w TV PY(Qo/P)| £ (1))
£o=0 x1=0 xo=0 O O 1 P'l R XO
Qo/P—1
- T oS W) _ -1
xo=0 x1=0
— Qo/P-1 r—1 M
+ Y WY WP fag)) + Y w TN PV P £(2g))  Splitting the sum
To=r x1=0 xo=0
r—1 QO/P
= D W [ 30 W ()
20=0 21=0 Merges the two sums

To=T x1=0

P—-1 Qo/P—1
2 w( 2 wpy”“) (o).



So far we have

r—1 Qo/P Qo/P—1
Z L~ T0Y Z wPYEL ) | f(20)) + Z W~ ToY Z wPYEL | f(20)).
xo=0 x1=0 ro=r x1=0

Note that the map f: a— m® mod Nis1:1on {0,1,2,...,P—1}

This implies that |f(0)),|f(1 )), . |f(P—=1)) are mutually orthogonal Accordingly

QO/P Qo/P—l

XTI =r| > w5 +(P—r)| 3 w P

.561:0 5131:0




In case Py = 0 mod (Q, we put Py = a(), a € N and obtain

w—Pyacl _ 6—27Tz(Py/Q)a:1 _ 6—27max1 — 1

Therefore

ey =r (L 1) v -n (%)

which leads to the result independent of y,

r(Qo+ P>+ (P—r)Q3 r(qg+1)*+ (P - fr)qz.

Prob(y) = —

PQQZ QQ

(8.16)



If Py # 0 mod @, on the other hand, we obtain

2 2

—Py(Qo/P+1) _ |
- +(P 1)

XWITW) =r|——=p,—3

w Py —1

2

e—(2mi/Q)Py(Qo/P+1) _ 1 e—(2mi/Q)Py(Qo/P) _
=7 : + (P —r) :
e—(2mi/Q)Py _ ] e—(2mi/Q)Py _
Here we find from
i0 2 .o 0
e — 1] =2(1 — cosf) = 4sin 3
that
sin’ %Py <% + 1) sin? %Py%
XWITW) = r—n (P
sin® — Py sin”® — Py

Q Q

Therefore, the probability distribution is given by

rsin” [EPZJ (@ + 1)] + (P —r)sin? lzPy@]

T 2
Prob(y) — i (y2)>|| _ Q p _ Q" Pl
Q Q? sin® = Py
Q
(8.17)
which proves the proposition. I

-
‘ 3



COROLLARY 8.1 Suppose Q/P € Z (namely Qo = (). Then the proba- . =0
bility of obtaining a measurement outcome y is

(0 (Py # 0mod Q)
Prob(y) = ¢ —— Peaks are repeated
| p (Py=0mod Q) at distance q,
Proof. When Py # 0 mod @, r = 0 implies (Q = Pq. Therefore because we are in
Psin® my the.first situation
Prob(y) = QP sin” = 0. until y = g

In case Py = 0 mod (), we obtain

PQ> 1

Prob(y) = O2PE P



Factoring 15 (Credits: Dr. G. Crognaletti)

N =15.
m=7.
Quindi: f(x) = 7*mod 15

Il numero di qubit n e stabilito da 2 log,(N) < n < 2 log,(N)+1, in questo caso
7.8<n < 8.8 = n= 8§, necessito di 28 = 256 ampiezze di probabilita.

Ro) = 10)™ =5 H® [« = QFT > o)
Umodexp

R, = |o)®q ¢ t ® z°modN Do k)




Factoring 15

Ad ogni stato della macchina e associato
un istogramma di questo tipo:

* |l primo asse rappresenta la base
computaizionale del primo registro, i cui
valori verranno indicati con c. 06 |

* |l secondo rappresenta la base
computazionale del secondo, limitato ai
valori ottenuti nell pratica (in questo
caso 13), i cui valori verranno indicati
con k.

* L'asse verticale rappresenta la
probabilita di misura P(c,k) associata ad

ogni elemento della base della coppia di
registri. Es: lo stato iniziale |Ro) |R1) = |00...0)4|00...0), = |0) |0)

0.8




Factoring 15

1. Trasformata di Hadamard

Creo lo stato sovrapposto di tutta la base computazionale. Cio richiede in totale n
operazioni (applicazione di H ad ognuno dei Qubit)

05 r

171) H

04

14

|J7) . H .|
|J8) . H— )
_[(10)+11) _ 1 “
|Ro) |R1) = K 7 ) |00...0>7] 00...0), = \/§<|OO“O>8 it |10...0>8) 00...0),

=0 =128



Factoring 15

1. Trasformata di Hadamard

0.004 r
0.0035 |

0.003 F

—— 0.0025 |-

=
2
I
S
&
Q
=
X
Q
Q
IS

Umod exp 0.002 e it

t@mamodN —— 0.0015 f

0.001

0.0005

&

|

=

K
wevseclenc]

IRo) |Ry) = K'm\gl)) <|0>;§|1>>] 00...0), = \/21T)f5<|00"'0>8 + ... |11...1>8) 00...0),



Factoring 15

2. Applico lI'operatore esponenziale modulare U;

1
|Ro) |R1) = —— ( 10Y 1) + [1)[7) + |2) [4) + [3) |13) + [4) |1) + |5) |7) ... |255) |13>)
vV 256
_ \M
N\ N"‘“‘m.
A . e ap e ’N."’"-.. ...""'u..
E uno stato non separabile, descrivibile come v — """""'\:""’”"*-m
sovrapposizione con uguale ampiezza di probabilita oo | \\"-.--...:”“”

0.003 +

di 4 stati separabili

0.0025 -

0.002 +

1 |())+|4>+...+|252>> 1 (|1>+|5>+...+|253))
Ry) |R1) = 1) + 7
oy ) = — (PR -+ - m
1 2 6 ... + 1254 1 3 7 o (255 0.0005 |-
P (R0 n) ) 1 (e




Factoring 15

3. Applico la Trasformata di Fourier Quantistica

L'algoritmo utilizzato in questo caso e quello relativo alla QFT esatta, schematizzato dal

circuito: \
[ |
. \
i) —{HR R R R X o008 \\
| 0.007
52) . (1} — Bs [ Rs .|
[ |
g 0.005 |
. 0.004
|77) : @—Rl
M 0.003
|78) : W 0.002 |
[ | 0.001 K
[ |
1 |0)+|4>+...+|124)) s (|1)+|5)+...+|125>)
Ro)|Ry) = ﬂ( = )+ = 7
1 /2 +[6) +...+[126)\ 1 |3>+|7>+...+|127)> )
+\/1< N3 )IJ‘Hﬂ( /32 I13)



lj1)

|72)

|77)

1Js)

Factoring 15

3. Applico la Trasformata di Fourier Quantistica

i

n

HH ” = —{ R [ { B "

(7 :

o

:

Hi— R -

n

:

n
|R“>|R1>:\}Z(lo>+|1>\ji|2>+|3>>|1>+\}1<|O>_|1>t/i1|2>_i|3>
L (10)+11) —12) - [3) 1 [0) —[1) —i|2) +1i]3)

rm () Vi

)i
)13

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0




Factoring 15

3. Applico la Trasformata di Fourier Quantistica

L (DDA ) L (1) 7)) — |4) — i [13) . ’
o) ) = oy (D) 4 e ( - ) . . :
1 DD+ —13) 1 ()i =4 +il13)\ oo, . -
-7 Vi )+ 7t ( Vi ) : , '
dove si ricordano le espressioni in binario 004 |

0.03

64 — 01000000
128 — 10000000
192 — 11000000

0.02

0.01




Factoring 15

0.8

0.6 F




0.15F

0.10

0.05

Factoring 15

A questo punto |'algoritmo prevede la misura del primo registro: La distribuzione di
probabilita marginale ottenuta e riassunta in figura:

P(c) = >, P(c, k)
' . Quindi g = 64

Q/P=256/64=4

Che e l'ordine cercato

50 100 150 200 250






Example: Factorize 799. Take m = 7.

We have to find the order P of the function f(a) = 72 mod 799.
(The answer is P = 368). We take n = 20

STEP 0: The initial state is

[%0) = 10)0). (8.18)

STEP 1: The QFT on the first register results in

1hr) = f Z )[0), (8.19)



Example: Factorize 799. Take m = 7.

STEP 2: Application of U on [i1) produces
1 =

1)) = 70 z_% 2)|7% mod 799)

= = [I0)[1) + 10)17) + 12)[49) + [3)[343) + [4]4) + |5) 28)

VQ
+ ...+ [368)[1) + [369)|7) + [370)]49) + ...
Q= 2)|756) + |Q — 1>y498>] (8.20)

Note that there are only P = 368 different states in the second register.



Example: Factorize 799. Take m = 7.

STEP 3: The QFT with w = €2™/? Q = 2", is applied to the first register.
This results in

T R 1
[1h3) = @; 75 ;Ow y)|7" mod 799) = 7 yZ:O Y)Y (y)),

where
Q-1 Q-1
T(y) = > w ™[7" mod 799) = » e >™¥/ Q|7 mod 799)
x=0 =0



Q-1
T(y)) = Y e /@7 mod 799)

=0

= |1) + w Y|7) + wY|49) + wY|343) + . ..
_|_w—368y|1> + w—369y‘7> + w—370y|49> e w—371y|343> 4+

+ ...+
0w B 4w T TY 4w TIBY|49) 4w T |343) 4 .
+ ...+

_|_w—1048432y‘1> _|_w—1048433y‘7> _|_w—1048434y’49> _|_w—1048435y|343>
”._,’_w—1048575y’498>

= (1+ w368y L ,mT36y w—1048432y>|1>

_l_(w—y i w—369y i w—737y 44+ w—1048433y)|7> There are
_|_(w—2y L3Oy T8y w—1048434y)’49> b = 368 ket
—3y — 371y — 739y — 1048435y .
+(w Y +w +w + ... 4w )1343) vectors in the
) T above
(w8 4T L T L )(794). (8.22)

expansion.



Prob(y)

0.0025¢

0.0027

0.0015y

0.001}

0.0005y
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Prob(y)

0.00257

0.002;

0.0015¢

0.001¢

0.0005¢

Y

102000 104000 106000 108000 110000

The coefficient of each vector becomes sizeable when and only when y is
approximately a multiple of 2849. That means that g ~ 2849 (in general r # 0)
and therefore P - Q/2849 -~ 368.0505. The order thus obtained is probabilistic,
and its plausibility must be checked. This strategy is not practical when N is
considerably large. There is a powerful method of continued fraction expansion
by which we find the order P with a single measurement of the first register.



