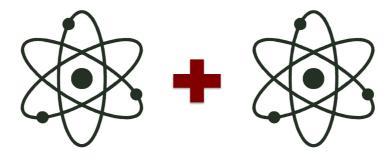
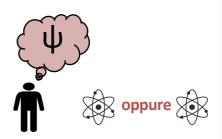

Bell's Theorem

Sovrapposizioni quantistiche


$$\Psi_{\text{\tiny atomo}} = \psi_{\text{\tiny qui}} + \psi_{\text{\tiny là}}$$

In questo modo si riesce a dare una "spiegazione" dell'esperimento delle due fenditure

Cosa significa?



$$\Psi_{\text{\tiny atomo}} = \psi_{\text{\tiny qui}} + \psi_{\text{\tiny là}}$$

Due posizioni: Einstein e Bohr

Incompletezza:

 ψ = ignoranza sullo stato del sistema

Due posizioni: Einstein e Bohr

Incompletezza:

 ψ = ignoranza sullo stato del sistema

Completezza:

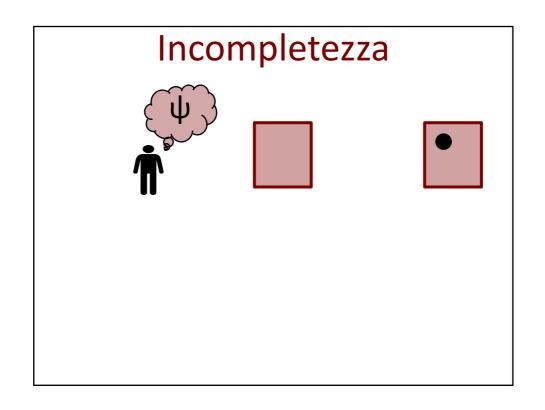
ψ = descrizione completa dello stato sistema

La scatola di Einstein

ψ = particella in una scatola

La scatola di Einstein

ψ = particella in una scatola


Divido la scatola in due parti

La scatola di Einstein $\psi = \text{particella in una scatola}$ Divido la scatola in due parti $\psi = \psi_{\text{sinistra}} + \psi_{\text{destra}}$ Dov'è la particella?

Incompletezza

Guardo nella scatola a sinistra e <u>non</u> trovo la particella. Concludo che è nella seconda. La mi conoscenza è cambiata, non lo stato "vero" della particella

Completezza

Completezza

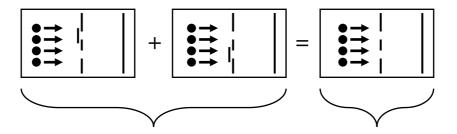
+

Guardo nella scatola a sinistra e <u>non</u> trovo la particella. Concludo che è a destra. Lo stato è cambiato sia a sinistra che a destra

Completezza

+

Guardo nella scatola a sinistra e <u>non</u> trovo la particella. Concludo che è a destra. Lo stato è cambiato sia a sinistra che a destra



Effetto non-locale (e per Einstein motivo per rifiutare questa posizione)

Se è così semplice, allora la posizione più ragionevole è quella epistemica, classica

Questo significa che la meccanica quantistica è una teoria **incompleta**, non mi dice lo stato vero dei sistemi fisici (dove si trova la particella, per esempio)

Se questo fosse vero...

Le particelle sono palline classiche, e in entrambi i casi passano metà attraverso la fenditura superiore e metà attraverso quella inferiore (magari qualcuna va persa perché sbatte contro lo schermo)

Tuttavia...

I dati sperimentali sembrano contraddire questa possibilità (sembrano...)

Le cose non sono così semplici

50 anni di storia in 1 minuto

1935: A. Einstein insiste sull'incompletezza della teoria. Argomento EPR

50 anni di storia in 1 minuto

1935: A. Einstein insiste sull'incompletezza della teoria. Argomento EPR

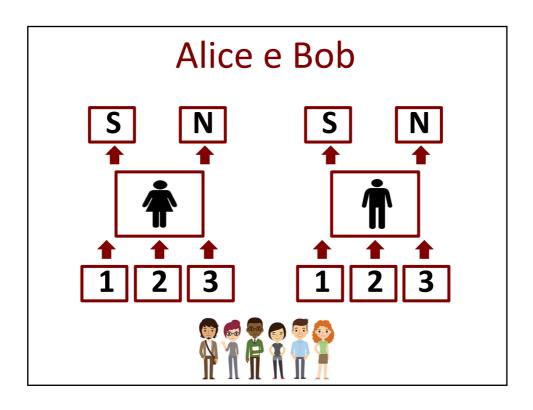
Anni '50: D. Bohm - teoria di particelle che si muovono lungo traiettorie definite. La teoria è non locale...

50 anni di storia in 1 minuto

1935: A. Einstein insiste sull'incompletezza della teoria. Argomento EPR

Anni '50: D. Bohm - teoria di particelle che si muovono lungo traiettorie definite. La teoria è non locale...

Anni '60: J. Bell prova a rendere la teoria di Bohm locale. Non ci riesce. **Disuguaglianze di Bell**


50 anni di storia in 1 minuto

1935: A. Einstein insiste sull'incompletezza della teoria. Argomento EPR

Anni '50: D. Bohm - teoria di particelle che si muovono lungo traiettorie definite. La teoria è non locale...

Anni '60: J. Bell prova a rendere la teoria di Bohm locale. Non ci riesce. **Disuguaglianze di Bell**

Anni '80: Le disuguaglianze di Bell vengono sottoposte a verifica sperimentale

Esito del gioco

Round
1
2
3
4
5
6
7
8

Carta per A	Carta per B
1	3
2	2
2	3
1	2
3	3
1	1
1	2
2	3

Risposta A	Risposta B
S	N
S	S
N	N
N	S
N	N
S	S
S	N
N	S

Ogni volta a cui a Alice e Bob viene data una carta con lo stesso numero, danno la stessa risposta. **Sono telepatici!**

Il solito Einstein...

Si sono messi d'accordo prima

Round	Carta :
1	S
2	N
3	S
4	N
5	N
6	S
7	S
8	N

Carta 1	Carta 2	Carta 3
S	S	N
N	S	N
S	N	N
N	S	S
N	N	N
S	N	S
S	N	S
N	N	S

4

Alice e Bob hanno preparato in precedenza un librone con la lista di tutte le risposte, per ogni round del gioco

Il solito Einstein...

Si sono messi d'accordo prima

Round	Carta 1	Carta 2	Carta 3
1	S	S	N
2	N	S	N
3	S	N	N
4	N	S	S
5	N	N	N
6	S	N	S
7	S	N	S
8	N	N	S
	'-	-	

L'idea di fondo

Impossibilità di telepatia, ovvero Alice e Bob non possono comunicare istantaneamente a distanza, ovvero **località**

Le risposte di Alice e Bob erano state stabilite in anticipo, ovvero esistevano prima del gioco, ovvero la nostra conoscenza è **incompleta**

Ma arriva John Bell...

Guardiamo a tutta la statistica

Round	Carta 1	Carta 2	Carta 3
1	S	S	N
2	N	S	N
3	S	N	N
4	N	S	S
5	N	N	N
6	S	N	S
7	S	N	S
8	N	N	S

Alice Bob	1	2	3
1	Α	Α	D
2	Α	Α	D
3	D	D	Α

- A = Accordo
- B = Disaccordo

Ma arriva John Bell...

Guardiamo a tutta la statistica

Round	Carta 1	Carta 2	Carta 3
1	S	S	N
2	N	S	N
3	S	N	N
4	N	S	S
5	N	N	N
6	S	N	S
7	S	N	S
8	N	N	S
	-		

Alice Bob	1	2	3
1	Α	Α	D
2	Α	Α	D
3	D	D	Α

- A = Accordo
- **B** = Disaccordo

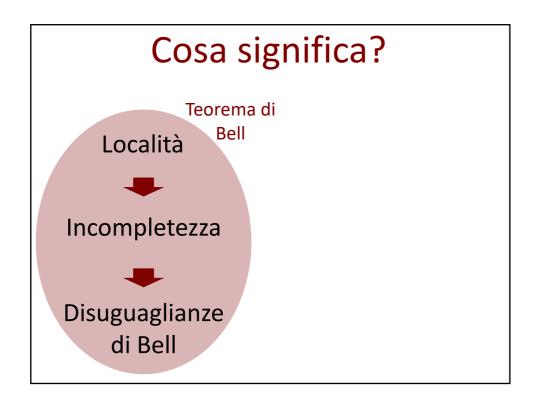
Gli accordi superano i disaccordi

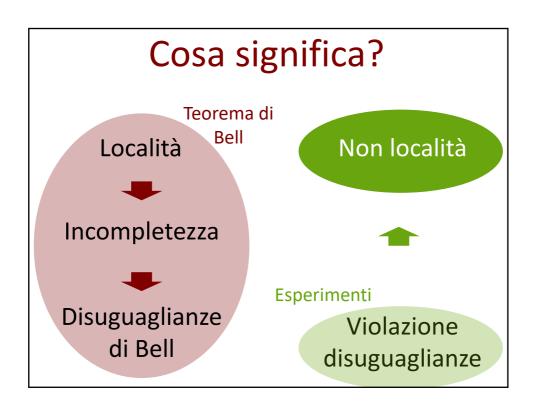
Disuguaglianza di Bell

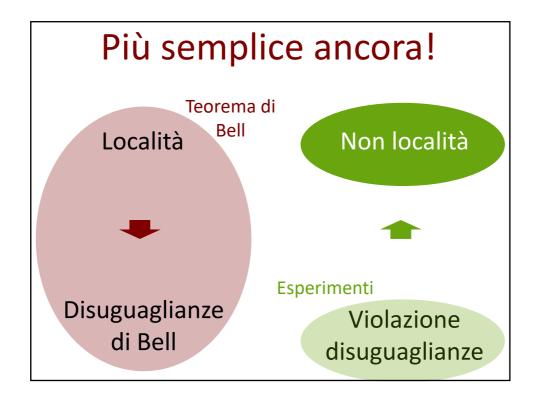
Facciamo i conti

La statistica dice

Round	Carta per A	Carta per B	Risposta di A	Risposta di B
1	1	3	S	N
2	2	2	S	S
3	2	3	N	N
4	1	2	N	S
5	3	3	N	N
6	1	1	S	S
7	1	2	S	N
8	2	3	N	S


Facciamo i conti


La statistica dice


Round	Carta per A	Carta per B	Risposta di A	Risposta di B
1	1	3	S	N
2	2	2	S	S
3	2	3	N	N
4	1	2	N	S
5	3	3	N	N
6	1	1	S	S
7	1	2	S	N
8	2	3	N	S
· · · · · · · · · · · · · · · · · · ·	-			•

A /D
A/D
D
Α
Α
D
Α
Α
D
D

A = D

La Natura è non locale

Questo pone seri problemi in relazione alla relatività ristretta, che si fonda sul principio di località.

Il conflitto non è diretto, però esiste.

Nessuno per ora sa cosa fare.

E l'incompletezza?

La domanda rimane aperta.

Esistono completamenti della meccanica quantistica (Meccanica Bohmiana) e esistono teorie in cui la funzione d'onda è tutto (Modelli di Collasso Spontaneo)