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Elementary x-ray diffraction theory

The general nature of crystals

In the crystalline state the atoms are arranged in patterns which are
characterized by periodic repetition in three dimensions. A good two-
dimensional analogue of a crystal is a wallpaper pattern. In a wallpaper
pattern the motif is an arbitrary design, whereas in a crystal the motif
is not arbitrary, but rather a comparatively small collection of atoms
representing the chemical composition of the crystal.

Figure 1 shows a two-dimensional analogue of a crystal pattern. The
motif consists of several kinds of circles, which can be taken to represent
as many kinds of atoms in an actual crystal. From a geometrical view-
point, the pattern can be thought of as the repetition of the motif at
intervals #; in one direction and ¢, in another direction. The geometrical
motion of repetition is a pure translation; accordingly & and {, are called
conjugate translations. If the motif is a single geometrical point, its
periodic repetition by the translations ¢ and ¢, generates an infinite col-
lection of points, a small region of which is shown in Fig. 2. The set of
such geometrical points is called a laltice. If a motif more complicated
than a geometrical point is repeated periodically by translations ¢; and
ts, as in Fig. 1, the entire collection is a two-dimensional pattern (not a
lattice).

These notions also apply to repetition in three directions. Repetition
of a geometrical point generates a space lallice (or simply a lattice) and
repetition of a more complex motif generates a space pattern. If the
motif is a group of atoms, as in a crystal, the material body generated by
the repetition defined by the three conjugate translations is called a
crystal structure.

The region determined by the three conjugate translations &, s, and
t; is a parallelepiped known as a primative cell. The shape of this cell
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6 Chapter 2

simple pattern be termed a lattice array of atoms. Then, for a more
complicated crystal, the entire crystal can be regarded as several lattice
arrays of atoms each somewhat displaced from one another (Fig. 3). In

Fig. 3

this way any crystal structure can be decomposed into several parallel
lattice arrays.

The diffraction of x-rays by a lattice array of atoms

An atom is an electrical system capable of being disturbed by an
external electric field. The fluctuation of the electric field of an imping-
ing electromagnetic wave displaces the electrons of an atom. For this
reason they undergo vibration having the same frequency as the electro-
magnetic wave which, in the present connection, is x-radiation. These
accelerating charged particles are themselves the origin of radiation of
this frequency. The electrons of an atom, therefore, absorb and reemit
x-rays, and in accordance the atoms are said to scatler x-radiation.

When a wave front of x-rays impinges on 2 set of atoms, each atom
scatters the x-rays. If the atoms are centered on points in a plane, for
example, a plane in a lattice array corresponding to a crystallographic
plane (hkl), two directions of scattering have special properties, as shown
in Fig. 4. In both these directions the distance from the original wave
front, to an atom, and on to a new wave front is the same for all atom
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A = ABC
= 24B. (1)
Since AB = dy sin 6, (2)
the total path difference is
A = 2AB
= 2d; Sin 6. (3)

If both these planes are to scatter in @759.?@ path &mwwmsom .Dﬁgcm.a
be an integral number of wavelengths, that is, n\ where n is an integer.

Therefore, the condition for scattering-in-phase is
nA = A
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The term \/2 is constant for the experiment. The term 7 can only have
the discrete values of integers, and the term dua can only have the dis-
crete values of the spacings of the planes (hkl). Therefore,  can only
have certain discrete values. The possible discrete values are further
limited by the fact that the term in parentheses cannot exceed unity.

In most cases it is convenient to avoid the explicit use of n by incor-
porating it in the indices of the plane. This can be done as follows:
Equation (5) can be rearranged to

A

i
n

0 = sin—1

(6)

The term dj;/n has a specific meaning. It signifies g spacing 1/nth that
of the spacing of the plane (hkl). This is the spacing of the plane
(nh nk nl). That is,

n

&33 nk nl —

@)

This can be substituted in the denominator of (6) to give

. A
= n—1 5
b e AM&:\F nk iv Amv

One notes that the indices in (8) contain the common factor n. In clas-
sical crystallography such indices were not permitted. In x-ray crystal-
lography, however, it is convenient to refer a reflection to a plane whether
it has a common factor or not. If 1t does contain a common factor, this
factor is the n of Bragg’s law, (4) and (5).

The diffraction by the whole crystal structure

Any crystal structure can be regarded as several mutually displaced
lattice arrays (Fig. 3). Each lattice array can diffract x-rays as if
reflecting them from a plane (hki), provided the glancing angle 6 is
adjusted so that it is one of the discrete solutions of (5). Now consider
how the diffraction from several lattice arrays of the crystal structure
interacts for a particular reflection (Fig. 7). Let the crystal structure
be composed of only two lattice arrays, labeled 1 and 2 in Fig. 7. When
(5) is satisfied, all atoms of lattice array 1 scatter in phase with each
other, and all atoms of lattice array 2 scatter in phase with each other.
But the path from the incoming wave front to array 2 is longer than to
array 1. This means that array 2 contributes to the resultant wave
scattered by the whole crystal a wave whose phase is behind that scat-
tered by array 1. The resultant scattered wave is not destroyed unless
this phase difference is =, and only then if the two amplitudes are equal,
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Snls, and rubidium aluminum alum, RbAI(S0,)»12H,0. Both these
compounds have primitive isometric unit cells of edge 12.2 A.

On the other hand, the relative intensities of the various reflections
hkl of a crystal depend upon the way the contributions from its several
lattice arrays interfere with each other for the several reflections hkl.
Therefore, the set of intensities of the reflections Akl depends entirely on
the arrangement of atoms in the motif.

These conclusions can be brought together as follows: The locations of
the reflections of a crystal depend on the shape and type of its unit cell; the
relative intensities of these reflections depend on the arrangement of the atoms
within this cell. The combination of the unit cell and the arrangement
of atoms in it comprises the crystal structure itself. Therefore, the loca-
tions and relative intensities of the reflections of a crystal are character-
istics of the crystal structure. Whether or not the powder diagram of an
unknown crystal can be interpreted, at least this diagram is characteris-
tic of the crystal and can be used like a fingerprint to distinguish it from
other crystals, and hence to identify it. This is the philosophic basis for
using the powder diagram of x-ray reflections in crystal identification.
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Principles of powder photography

Collimating system

In all common x-ray diffraction methods, w.o 18 Ewowmmmaw \ao:H.EBM Sum
x-radiation to a small pencil. This is accomplished with a *‘collimator,
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Production of the powder diagram

The principles involved in the production of a powder diagram can be
appreciated by considering the simplified experimental arrangement
shown in Fig. 2. An x-ray beam is defined by the pinhole system, just
described. A photographic film is then placed normal to the x-ray beam.
The powder sample is introduced into the path of the x-ray beam. As
the beam travels through the powder sample, it meets thousands of pow-
der grains, each a tiny crystal in a different orientation. Among these

photographic film
26
2, |
x-ray beam QAVA %
sample 4 p w
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grains many are so oriented that a particular set of planes (hkl) makes
the appropriate glancing angle 6 (for that plane) with the x-ray beam.
Such grains are in position to reflect x-rays. The reflection occurs in a
direction making an angle 26 with the direct x-ray beam. The locus
of directions making an angle 26 with a given direction is a cone of half-
opening angle 26 (Fig. 2). For each solution of the Bragg equation

. An
0 =sn'{z-— 1
St AM &:iv A v
there exists such a cone.

Considering a particular cone (Fig. 3), the separate reflections from all
crystals which satisfy (1) for a particular n/dug lie along the directrices
of a certain cone of half angle 26. If the experimental arrangements are
appropriate, these diffracted rays are sufficiently numerous so that the
cone is densely outlined by rays. These rays cut the photographic plate
in a circle which is continuous if the rays along the cone are sufficiently
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dense. From a measurement of the radius of the circle, and the known
crystal-to-film distance, it is an easy matter to compute the cone angle,
and eventually determine 6.

The use of a flat film severely limits the maximum angle 26 which can
be recorded. A much greater range of 20 can be recorded if the film is
wrapped on a cylindrical form coaxial with the specimen, with the axis
of the cylinder at right angles to the x-ray beam, as shown in Fig. 44.
Only a narrow strip of film is required. With this arrangement, the cone
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intersects the cylinder in a curve; that part of the curve which is caught
by the narrow strip of photographic film is 2 nearly circular arc. The
distance S between similar arcs (Fig. 4B) corresponds to 40, and if R is
the radius of the film, this distance is

S =R - 49, 2)
(6 expressed in radians)
S

= iR (3)

S0

Tt is evidently an easy matter to determine @ for each cone by measuring

Principles of powder photography
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It is customary to use a specimen whose shape is that of a tiny cylinder
coaxial with the film cylinder (Fig. 44). This tends to give a ‘“‘shape”
to the arc recorded on the film. The reason for this is shown in Fig. 54.
Each element of length of the sample produces an arc, and these individ-
ual arcs are displaced depending on the location of the element of length
producing them. The result is a ‘‘shaded are’” (Fig. 5B)

Some actual powder photographs are shown in Fig. 6

.
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B. PbTe, isometric, a = 6.439 A.
C. PbCl, orthorhombic, a
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