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Elastodynamic theorems
 - unicity
 - reciprocity (Betti)
 - Elastodynamic Green Function
 - representation 
 
Equivalent body forces
 - shear dislocation
 - density of moment tensor
 - moment tensor for point sources
 - double couple
 - scalar moment
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Kinematic description

Map of the surface rupture of the Izmit earthquake (red line). The geometry of the fault model used in the inversion 
follows the red line but is continuous across the junction with the eastern segment. The symbols indicate the location of the 
epicenter (red star) and of the recording stations (triangles). Middle and bottom: Images of the rupture front, slip, and rise 
time on the fault. The position of the rupture front is shown at 1-sec intervals from the beginning of the rupture. From: 
Bouchon et al., 2002. BSSA;  v. 92; no. 1; p. 256-266
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Kinematic model - Tohoku 
 

13 
 

  

  

Fig. S6 
Kinematic fault slip models constrained by GPS measurements and teleseismic P-waveforms.  
Estimated fault slip (left) and predicted vertical seafloor displacements (right) are shown for the 
two-plane (top) and one-plane (bottom) kinematic models.  Dip angles and depth are given in the 
northeast corner of each fault plane.  White contours indicate temporal evolution of the rupture 
front, with time in seconds.  The yellow star shows the epicenter used for each inversion.  The 
respective moment rate functions are plotted in the insets. 
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Kinematic fault slip models 
constrained by GPS measurements and 
teleseismic P-waveforms. 

Estimated fault slip (left) and 
predicted vertical seafloor 
displacements (right) are shown for 
the two-plane (top) and one-plane 
(bottom) kinematic models. Dip angles 
and depth are given in the northeast 
corner of each fault plane. White 
contours indicate temporal evolution 
of the rupture front, with time in 
seconds. The yellow star shows the 
epicenter used for each inversion. The 
respective moment rate functions are 
plotted in the insets.

Simons et al., 2011. 
Science, vol. 332 no. 6036 pp. 1421-1425
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Fundamental papers

Maruyama T. (1963). On the force equivalents of dynamical elastic 
dislocations with reference to the earthquake mechanism. Bulletin of the 
Earthquake Research Institute 41: 467–486.

Burridge R. and Knopoff L. (1964). Body force equivalents for seismic 
dislocations. Bulletin of the Seismological Society of America 54: 1875–
1878.

“An explicit expression is derived for the body force to be 
applied in the absence of a dislocation, which produces radiation 
identical to that of the dislocation. This equivalent force 
depends only upon the source and the elastic properties of the 
medium in the immediate vicinity of the source and not upon the 
proximity of any reflecting surfaces. The theory is developed 
for dislocations in an anisotropic inhomogeneous medium; in the 
examples isotropy is assumed. For displacement dislocation 
faults, the double couple is an exact equivalent body force.”
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Fundamental papers
Pujol J. (2003): The body force equivalent to an earthquake: a tutorial. 
Seism. Res. Lett. 74, 163-168.

“During the 1950’s another theoretical tool was brought to bear, namely dislocation theory. This theory originated in 
the work of a number of Italian mathematicians, particularly Volterra, who used the word “distorsione”. “Dislocation” is 
Love’s translation (Love, 1927). A dislocation can be visualized through the following thought experiment, based on 
Steketee (1958). Consider a cut made over a surface Σ within an elastic body. After the cut has been made there are 
two surfaces, indicated with Σ+ and Σ−, which will be deformed differently by application of some force distribution. 
If the combined system of forces is in static equilibrium, then the body will remain in the original equilibrium state. 
The result of this operation is a discontinuity in the displacement across Σ, known as a dislocation, which is 
accommodated by deformation within the body. This description should be compared to our model for a tectonic 
earthquake, which is represented by slip on a fault plane. When an earthquake occurs, the two sides of the fault suffer 
a sudden relative displacement with respect to each other, and this discontinuity in the displacement across the fault 
is the source of the displacement elsewhere in the medium.

The debate ended when Maruyama (1963), Haskell (1964) and Burridge and Knopoff (1964) demonstrated that the body 
force equivalent was a double couple. In the three cases the derivations were based on a number of results derived in 
the context of theoretical elasticity and wave propagation. However, while the first two authors addressed the case of 
homogeneous isotropic media, what distinguishes Burridge and Knopoff’s paper is its generality, as their results apply 
to heterogeneous anisotropic media”.

Love, A., 1927. A treatise on the mathematical theory of elasticity, Cambridge University Press (Reprinted by Dover, New York, 1944.)
Haskell, N., 1964, Total energy and energy spectral density of elastic wave radiation from propagating faults, Bull. Seism. Soc. Am. 54, 1811-1841.
Steketee, J., 1958. Some geophysical applications of the elasticity theory of dislocations, Can. J. Phys. 36, 1168-1198.
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Equivalent Forces: concepts

The actual slip process is described by superposition of equivalent body 
forces acting in space (over a fault) and time (rise time).

The observable seismic radiation is through energy release as the fault 
surface moves: formation and propagation of a crack. This complex 
dynamical problem can be studied by kinematical equivalent approaches.
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Considering an elastic body of volume V and surface S, the application of body 
forces, as well as the application of tractions, will generate a displacement field  
that is constrained to satisfy the equations of motion:

Elastodynamic basic theorems

The equation for elastic displacement can be written also using the vector 
differential operator,
as:     

� 

L(u)( )i = ρ˙ ̇ u i − cijkluk ,l( ),j
= ρ˙ ̇ u i − σ ij,j

    

L(u) = 0    homogeneous
L(u) = f    inhomogeneous

ρ!!u
i
= f

i
+
∂σ

ij

∂x
j

= f
i
+ σ

ij,j



SEIS - Sources 2 - Body forces

Uniqueness theorem

Uniqueness theorem: the displacement field, u=u(x,t), is 
uniquely determined, after time t0, by:

a) initial values of displacement and velocities (at t0) in all V;
b) body forces and heat in V, after t0;
c) tractions over any part S1 of S, after t0;
d) displacement over S2 of S,  with S1+S2=S, after t0.
 
Proof: Suppose there are two (u1 and u2) and consider the 

difference: it will be 0…
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Consider a pair of solutions for the displacement through an elastic body V and 
look for relationships between them...

u is due to body forces f, boundary conditions on S and initial conditions at t=0; v 
is due to body forces g and other boundary and initial conditions; the two 
tractions on surfaces normal to n being respectively T(u,n) and T (v,n). Using the 
equations of motion and the divergence theorem one has the first form of 
reciprocity theorem (Betti theorem):

Reciprocity theorem - 1

f − ρ!!u( )
V
∫∫∫ ⋅ vdV + T u,n( )

S
∫∫ ⋅ vdS =

= g − ρ!!v( )
V
∫∫∫ ⋅udV + T v,n( )

S
∫∫ ⋅udS
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Note that Betti’s theorem does not involve initial conditions for u or v, and it is 
true even if the quantities (u, du/dt, T(u,n)) and  (v, dv/dt, T(v,n)) are evaluated 
at different times, e.g. at t and τ-t. Integrating over (0,τ) and assuming a 
quiescent past (u=du/dt=v=dv/dt=0 for t<0), one obtains:

Reciprocity theorem - 2

dt
−∞

+∞

∫ u(x, t) ⋅ g(x, τ − t) − v(x, τ − t) ⋅f(x, t){ }
V
∫∫∫ dV =

= dt
−∞

+∞

∫ v(x, τ − t) ⋅T u(x, t),n( ) − u(x, t) ⋅T v(x, τ − t),n( ){ }
S
∫∫ dS
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G(x,s)

Green's function (GF) is a basic solution to a linear 
differential equation, a building block that can be used 
to construct many useful solutions.

If one considers a linear differential equation written as:

L(x)u(x)=f(x)

where L(x) is a linear, self-adjoint differential operator, 
u(x) is the unknown function, and f(x) is a known non-
homogeneous term, the GF is a solution of:

L(x)u(x,s)=δ(x-s)

Green’s function
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Why GF is important?
If such a function G can be found for the operator L, then if we multiply the 
second equation for the Green's function by f(s), and then perform an integration 
in the s variable, we obtain:

  u(x) = G∫ (x,s)f(s)ds

Thus, we can obtain the function u(x) through knowledge of the Green's 
function and the source term. This process has resulted from the linearity 
of the operator L.

  

� 

L∫ (x)G(x,s)f(s)ds = δ∫ (x− s)f(s)ds = f(x) = Lu(x)

L G∫ (x,s)f(s)ds = Lu(x)
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The displacement from the simplest source, unidirectional unit impulse, is the 
elastodynamic Green function. 

If the unit impulse is applied at x=ζ and t=τ and in the n-direction, the i-th 
component of displacement at (x,t) is Gin(x,t;ζ,τ). 

This tensor depends on both receiver and source coordinates and satisfies, 
throughout V, the equations:

Elastodynamic GF

The initial conditions for Gin(x,t;ζ,τ), and its time derivative, are that they 
are 0 for t≤τ and x≠ζ, and, to be uniquely specified, it remains to state the 
boundary conditions on S (for example if it is rigid or free).

ρ
∂2G

in

∂t2
= δ

in
δ x − ζ( )δ t − τ( ) + ∂

∂x
j

c
ijkl

∂G
kn

∂x
l

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
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Green’s function

If the boundary conditions are independent of time, then G will depend on time 
only via the combination t-τ.

 If G satisfies homogeneous boundary conditions on S, reciprocity theorem can 
be used to obtain relations for source and receiver positions.
 
Considering  Gim(x,t;ξ1,τ1) and Gin(x,t;ξ2,-τ2) one has: 

Gnm(ξ2,τ+τ2;ξ1,τ1) = Gmn(ξ1,τ−τ1;ξ2,-τ2), and if τ1=τ2=0

Gnm(ξ2,τ;ξ1,0) = Gmn(ξ1,τ;ξ2,0), thus a spatial reciprocity, and if τ=0

Gnm(ξ2,τ2;ξ1,τ1) = Gmn(ξ1,−τ1;ξ2,-τ2) thus a space-time reciprocity.
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Using Betti’s theorem with a Green function for the displacement field, i.e. due 
to gi(x,t)=δinδ(x-ξ)δ(t), we obtain a representation for the other :

Representation theorem - 1st

That states how the displacement  u at a certain point is given by contributions  
due to force f throughout V, traction T and u itself on S. 

u
n
(x, t) = dτ

−∞

+∞

∫ f
i
(ξ, τ)G

in
(ξ, t − τ;x, 0)

V
∫∫∫ dV(ξ) +

+ dτ
−∞

+∞

∫ G
in
(ξ, t − τ;x, 0)T

i
u(ξ, τ),n( ){

S
∫∫ +

−u
i
(ξ, t)c

ijkl
n

j
G

kn,l
(ξ, t − τ;x, 0)}dS(ξ)
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Representation theorem - 1st

schematically, the displacement field at a point of the volume V with surface S is 
given by:

 a volume integral over the body forces f convolved with the EGF;

 a surface integral over the tractions T convolved with the EGF; 

 a surface integral over a quantity convolved with the spatial 
derivative of the EGF.

    
un(x, t) = fp ∗Gnp

V
∫∫∫ dV + uicijpqν j ∗Gnp,q −Tp ∗Gnp( )

S
∫∫ dS
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Internal sources & faults
External sources (e.g. atmospheric storms, ocean waves, meteorite impacts) can be 
described by time-dependent stress perturbations of the surface of the Earth.

For internal sources, like earthquakes or underground explosions, the analytical 
framework is difficult to develop since the equation of elastic motion are no more valid 
throughout the whole Earth, since discontinuities are present.

A volume source is an event associated with an internal volume, such as a sudden 
expansion throughout a volumetric source. A faulting source is an event associated 
with an internal surface, such as slip across a fracture plane. 

A unified treatment of both kind of sources is possible, the common link being the 
concept of an internal surface across which discontinuities can occur in 
displacement or in stress.

The surface is usually considered as external to V, but it is useful to include two 
adjacent internal surfaces, being the opposite faces of a buried fault     S+Σ’+Σ”. The 
fault plane (Σ) is described by its normal ν(ξ) over Σ.
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If slip occurs across Σ the displacement field is discontinuous there, but 
equations of motion are satisfied throughout the interior of the surface S+Σ’+Σ”. 
Assuming that u and G satisfy homogeneous conditions on S (that is no more of 
direct interest): 

Representation theorem - 2nd

Where square brackets are used for the difference between values on Σ+ and Σ-;  
η is a general position within V and ξ a general position on Σ . 

u
n
(x, t) = dτ

−∞

+∞

∫ f
p
(η, τ)G

np
(x, t − τ;η, 0)

V
∫∫∫ dV(η) +

− dτ
−∞

+∞

∫ G
np
(x, t − τ;ξ, 0) T

p
u(ξ, τ), ν( )⎡

⎣
⎤
⎦{

Σ
∫∫ +

+ u
i
(ξ, t)⎡

⎣
⎤
⎦cijpq

ν
j
∂G

np
(x, t − τ;ξ, 0) / ∂ξ

q}dΣ(ξ)
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In the case of a shear dislocation, tractions across Σ are continuous and, 
neglecting body forces, one has that only the third right term remains; thus 
displacement on the fault determines the displacement everywhere. Using the 
delta function derivative one can write:
 

Representation theorem - 3rd 

obtaining the body-force equivalent to a displacement discontinuity:

      

� 

un(x,t) = dτ
−∞

+∞
∫ fp

[u](η, τ)
V
∫∫∫ Gnp(x,t − τ;η,0)dV

∂G
np
(x, t − τ;ξ, 0)

∂ξ
q

= − ∂
∂η

qV
∫∫∫ δ(η − ξ)G

np
(x, t − τ;η, 0)dV(η)

f
p
[u](η, τ) = − u

i
(ξ, τ)⎡

⎣
⎤
⎦cijpq

ν
j

∂δ(η − ξ)
∂η

q

dΣ
Σ
∫∫
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Representation theorem

the displacement field at a point of the volume V with surface S is given by:

 a volume integral over the body forces f convolved with the EGF;
 a surface integral over the discontinuity of tractions T across a surface 

convolved with the EGF; 
 a surface integral over a quantity, depending on the discontinuity of 

displacements, convolved with the spatial derivative of the EGF.

    
un(x, t) = fp ∗Gnp

V
∫∫∫ dV + ui[ ]cijpqν j ∗Gnp,q − Tp[ ]∗Gnp( )

Σ

∫∫ dΣ

neglecting the physical body forces (e.g. gravity), and considering a pure 
shear dislocation, the remaining term can be represented as the result of 
an equivalent body force:

  
fp

[u] = − ui[ ]cijpqνj
∂δ
∂ηq

dΣ
Σ

∫∫
    
un(x, t) = fp

[u]∗Gnp
V
∫∫∫ dV
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Using the convolution symbol, the representation theorem for a shear dislocation 
becomes: 

Moment density tensor 

Where the derivative can be thought as the equivalent of having a single couple (for 
example (p,q) , with arm in th ξq direction) on Σ at ξ with strength [ui]cijpqvj; the 
integral represents the effect of a sum of couples distributed over Σ. For 3 
components of force and 3 possible arm directions there are 9 generalized couples. 
Defining the moment density tensor, one has:

u
n
(x, t) = [u

i
]c

ijpq
ν
j
∗
∂G

np

∂ξ
q

dΣ
Σ
∫∫

m
pq
= [u

i
]c

ijpq
ν

j
       u

n
(x, t) = m

pq
∗
∂G

np

∂ξ
q

dΣ
Σ
∫∫
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For an isotropic solid, and for slip parallel to Σ at ξ, one has respectively: 

Moment tensor 

And if the source can be considered a point-source (for wavelengths greater than 
fault dimensions), the contributions from different surface elements can be 
considered in phase. Thus for an effective point source, one can define the moment 
tensor:

m
pq
= λν

k
[u

k
]δ

pq
+ µ ν

p
[u

q
] + ν

q
[u

p
]( )        mpq

= µ ν
p
[u

q
] + ν

q
[u

p
]( )  

M
pq
= m

pq
dΣ

Σ
∫∫  

 u
n
(x, t) = M

pq
∗G

np,q
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Moment tensor decomposition 

For a shear dislocation, the equivalent point force is a double-couple, since internal 
faulting implies that the total force f[u] and its total moment are null. The seismic 
moment has a null trace and one of the eigenvalues is 0. 

The moment tensor is symmetric (thus the roles of u and ν can be interchanged 
without affecting the displacement field, leading to the fault plane-auxiliary plane 
ambiguity), and it can be diagonalized and decomposed in an isotropic and deviatoric 
part: 

M0 is called seismic moment, a scalar quantity related to the area of the fault and to 
the slip, averaged over the fault plane. 

M
pq
=

M
1

0 0
0 M

2
0

0 0 M
3

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

 = 1
3

tr(M) 0 0
0 tr(M) 0
0 0 tr(M)

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

+
M'

1
0 0

0 M'
2

0
0 0 M'

3

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

M
pq

(doublecouple) =
M

0
0 0

0 0 0
0 0 −M

0

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

   with M
0
= µA[u]
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Moment tensor components

Point sources can 
be described by 
the seismic 
moment tensor 
Mpq, whose 
elements have 
clear physical 
meaning of forces 
acting on 
particular planes.
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Moment tensor and fault vectors
The orthogonal eigenvectors to the above eigenvalues give the directions of the 
principal axes: b, corresponding to eigenvalue 0, gives the null-axis, t, 
corresponding to the positive eigenvalue, gives the tension axis (T) and p gives 
the pressure axis (P) of the tensor. 
They are related to the u and ν vector, defining respectively the slip vector and 
the fault plane:

t = 1

2
ν + u( )

b = ν × u( )
p = 1

2
ν − u( )

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

     

u = 1

2
t + p( ); 1

2
t − p( )

ν = 1

2
t − p( ); 1

2
t + p( )

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪
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Moment tensor and fault plane solution

� 

u =
[u ] cosλ cosφ+ cosδsinλ sinφ( )ˆ e x
[u ] cosλ sinφ− cosδsinλ cosφ( )ˆ e y
[u ] −sinδsinλ( )ˆ e z

⎧ 

⎨ 
⎪ 

⎩ ⎪ 
    ν =

−sinδsinφ( ) ˆ e x
−sinδcosφ( ) ˆ e y
−cosδ( ) ˆ e z

⎧ 

⎨ 
⎪ 

⎩ ⎪ 
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Moment tensor and fault plane solution

The slip vector and the fault normal con be expresses in terms of strike (φ), dip (δ) 
and rake(λ):

Then the Cartesian components of the simmetric moment tensor can be written as:

u=

[u] cosλcosφ + cosδsinλsinφ( ) êx

[u] cosλsinφ − cosδsinλcosφ( ) êy

[u] −sinδsinλ( ) êz

⎧

⎨
⎪
⎪

⎩
⎪
⎪

    ν=

−sinδsinφ( ) êx

−sinδcosφ( ) êy

−cosδ( ) êz

⎧

⎨
⎪
⎪

⎩
⎪
⎪

M
xx

= −M
0

sinδcosλsin2φ + sin2δsinλsin2 φ( ) M
xy
=  M

0
sinδcosλsin2φ + 0.5sin2δsinλsin2φ( )

M
yy
=   M

0
sinδcosλsin2φ − sin2δsinλcos2 φ( ) M

xz
= -M

0
cosδcosλcosφ + cos2δsinλsinφ( )

M
zz
=   M

0
sin2δsinλ( ) M

yz
= -M

0
cosδcosλsinφ − cos2δsinλcosφ( )
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Convention for 
naming blocks, 
fault plane, 
and slip vector, 
i.e. strike, dip 
and rake   

Angle and axis conventions

Force system or a double 
couple in the xz-plane 

T and P axes are the 
directions of maximum 
positive or negative first 
break.
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Moment tensor components

Point sources can 
be described by 
the seismic 
moment tensor 
Mpq, whose 
elements have 
clear physical 
meaning of forces 
acting on 
particular planes.
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The fault Σ lies in the plane ζ3=0, and then ν3=1, ν1=ν2=0; for a pure shear 
dislocation mechanism in the ζ1 direction, one has: [u2]=[u3]=0. 
The body force equivalent in general is:

 and becomes:
 

A particular case 

� 

fp
[u](η,τ) = − ui(ξ,τ)[ ]cijpqν j

∂δ(η− ξ)
∂ηq

dΣ
Σ
∫∫

� 

fp
[u](η,τ) = − u1(ξ,τ)[ ]c13pq

∂δ(η− ξ)
∂ηq

dξ1dξ2
Σ
∫∫
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In isotropic media, the constitutive relation establishes that  all c13pq vanish 
except c1313=c1331=µ 

A particular case: body force equivalent

� 

f1
[u](η,τ) = − u1(ξ,τ)[ ]µδ(η1 − ξ1)δ(η2 − ξ2 )

∂δ(η3)
∂η3

dξ1dξ2
Σ
∫∫

f2
[u](η,τ) = 0

f3
[u](η,τ) = − u1(ξ,τ)[ ]µ ∂δ(η1 − ξ1)

∂η1
δ(η2 − ξ2 )δ(η3)dξ1dξ2

Σ
∫∫

and after integration:

� 

f1
[u](η,τ) = − u1(η,τ)[ ]µ ∂δ(η3)

∂η3
f2
[u](η,τ) = 0

f3
[u](η,τ) = −

∂ u1(η,τ)[ ]µ
∂η1

δ(η3)



SEIS - Sources 2 - Body forces

The first one represents a system of single couples distributed over the fault 
plane: forces in the  +-η1 direction, arm along η3 direction and moment along η2 
direction.:

A particular case - 1st bf 



SEIS - Sources 2 - Body forces

Since faulting, within V, is an internal process, the total force due to any f[u] 
and the total moment about any fixed point must be 0:

A particular case - 1st bf moment

� 

f [u](η,τ)
V
∫∫∫ dV(η)∝ δ

S
∫∫ (η− ξ)dS(η) = 0

The total moment of this force component alone does not vanish, actually the 
moment about the η2 axis is:

� 

η3
V
∫∫∫ f1dV= − η3

V
∫∫∫ µ[u1]

∂δ(η3)
∂η3

dη1dη2dη3 = µ[u1]dΣ
Σ
∫∫

that averaged over the fault plane gives 

µ<u>A

along the direction of η2 increasing



SEIS - Sources 2 - Body forces

A particular case - 2nd bf moment

The total moment of this force 
component about the η2 axis is:

� 

η1
V
∫∫∫ ∂µ[u1]

∂η1
δ(η3)dη1dη2dη3 = − µ[u1]dΣ

Σ
∫∫

that averaged over the fault plane gives again µ<u>A along the direction of η2 
decreasing. Thus the total moment is null!

� 

f3
[u](η,τ) = −

∂ u1(η,τ)[ ]µ
∂η1

δ(η3)



SEIS - Sources 2 - Body forces

A particular case - double couple
The force equivalents to a given fault slip are not unique:

Double couple distribution!

∂G
n1

∂ξ
3

=
G

n1
x, t − τ,ξ + εξ

3
, 0( ) − G

n1
x, t − τ,ξ − εξ

3
, 0( )

2ε
, ε → 0

∂G
n3

∂ξ
1

=
G

n3
x, t − τ,ξ + εξ

1
, 0( ) − G

n3
x, t − τ,ξ − εξ

1
, 0( )

2ε
, ε → 0

u
n
(x, t) = [u

i
]c

ijpq
ν
j
∗
∂G

np

∂ξ
q

dΣ
Σ
∫∫ = µ[u

1
] ∗

∂G
n1

∂ξ
3

+
∂G

n3

∂ξ
1

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
dΣ

Σ
∫∫



SEIS - Sources 2 - Body forces

The force equivalents to a given fault slip are not unique:

� 

un(x,t) = [ui]cijpqν j ∗
∂Gnp
∂ξq

dΣ
Σ
∫∫ = µ [u1]∗

∂Gn1
∂ξ3

+ ∂[u1]
∂ξ1

Gn3
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ dΣ

Σ
∫∫

The body force equivalent is unique, but force/(unit area) on a finite fault is not: the 
dynamic process cannot be studied with the radiation by individual elements!

A particular case - double couple



SEIS - Sources 2 - Body forces

If we are in the FAR SOURCE condition (at distances greater than the fault 
dimension), and for periods longer than the slip duration:

obtaining the double-couple point source equivalent to fault slip!
� 

f1
[u](η,τ) = − u1(η,τ)[ ]µ(η)∂δ(η3)

∂η3
= −M0δ(η1)δ(η2 )

∂δ(η3)
∂η3

H(τ)

f2
[u](η,τ) = 0

f3
[u](η,τ) = −

∂ u1(η,τ)[ ]µ(η)
∂η1

δ(η3) = −M0
∂δ(η1)
∂η1

δ(η2 )δ(η3)H(τ)

A particular case - point source



SEIS - Sources 2 - Body forces

A particular case - moment tensor

φ=0°, δ=0°, λ°=0°� 

m =
0 0 µ[u1(ξ,τ)]
0 0 0

µ[u1(ξ,τ)] 0 0

⎛ 

⎝ 

⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ ⎟ 

� 

M =
0 0 M0

0 0 0
M0 0 0

⎛ 

⎝ 

⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ ⎟ 

� 

u =
[u ]ˆ e x
0
0

⎧ 
⎨ 
⎪ 

⎩ ⎪ 
    ν =

0
0
ˆ e z

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

� 

t = 1
2

ˆ e z +[u ]ˆ e x( )
b = ˆ e z ×[u ]ˆ e x( ) = [u ]ˆ e y
p = 1

2
ˆ e z − [u ]ˆ e x( )

⎧ 

⎨ 
⎪ 
⎪ 

⎩ 
⎪ 
⎪ 

     

� 

M =
M0 0 0
0 0 0
0 0 −M0

⎛ 

⎝ 

⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ ⎟ 

referred to 
principal axes


