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Intrinsic Attenuation: outline

* Recap:
-solids, fluids, stress, strain
‘materials classification

* Rheology:
-creep and stress relaxation experiments

* Physical models for attenuation:
‘Maxwell, Kelvin-Voigt, SLS
‘Dynamic tests
‘Complex modulus
‘Relaxed and unrelaxed modules

* Q in the Earth
-dispersion
-complex velocities
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Elastic Deformation

2. Small load
CoCO

1. Initial

@®®8®bonds

‘“.)s’rre‘rch

Elastic means reversiblel
It goes back to its original state

3. Unload

return to
initial

Linear-
elastic

,,/ Non-Linear-

once the loading is removed.

elastic

>0
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Stress as a measure of Force

<>

It is defined as the force per unit area (=F/A) (same units as pressure).

Stress is a measure of Force.

Normal stress acts perpendicular to the surface

(F=normal force)

F

Tensile causes elongation Compressive causes shrinkage

stretching force

G —
cross sectional area
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Shear Stress as a measure of Force

Shear stress acts tangentially to the surface (F=tangential force).

AX

4 b
N v

F
shear force

T =
tangential area
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Strain as a measure of Deformation

< =%

Strain measure for simple extension (where L : initial length, L is final length)
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Linear Elastic Properties

Modulus of Elasticity, E: * Hooke's Law:

(also known as Young's modulus)
o=Fk¢

E: stiffness (material's resistance to elastic deformation)

AF R

>» &

Linear-
elastic

VP

simple
tension
test
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Strain as a measure of Deformation

<>

To understand deformation due to shear, picture two flat plates with a
fixed spacing, h, between them:

F b bs F b bi bz bz bs
—

i

....

Lx a a

a) Solid filled between plates b) Fluid filled between plates

Fluids are qualitatively different from solids in their response to a shear stress.
Ordinary fluids such as air and water have no intrinsic configuration, and hence
fluids do not develop a restoring force that can provide a static balance to a
shear stress.

When the shear stress is held steady, and assuming that the geometry does not
interfere, the shear deformation rate, may also be steady or have a meaningful
time-average.
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Strain as a measure of Deformation .«&

* A strain measure for simple shear can be obtained by dividing
the displacement of the moving plate, AX, by the distance
between the plates:

vV = Ax _ dx Shear strain

h dy

* The shear rate, or rate of shearing strain, is the rate of change
of shear strain with time:

dy_dfdx)_ dfdx

"Tar dldy) dyldt,
y:ﬂ Shear rate
dy
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Simple Shear Flow (Drag Flow)

y dimension

boundary plate (2D) A

(moving)

velocity, V

!
shear stress, T

Fluid gradient

i
X YA/

boundary plate (2D)
(stationary)

The velocity profile is a straight line:

the velocity varies uniformly from O to V,

’Y:ﬂ:vo

dy h
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Simple Shear Flow 45%/

The force, F is proportional to the velocity V,, the area in contact
with the fluid, A and inversely proportional to the gap, h:

A,
h

F

Recall, shear stress, T=F/ A

V

0

T oc —

h

In the limit of small deformations the ratio V,/h can be replaced by

the velocity gradient dv/dy, which represents the shear rate :

Rate of shearing strain vy = ﬂ Therefore: T o< ﬂ (or v)

or shear rate: dy dy

SEIS - Anelasticity




Newton's Law of Viscosity 4\*&

This is called a "flow curve”

The proportionality constant

. The deformation of a

material is due to stresses

T .
is the viscosity
) .
Y
. — dv _ dy
Newton's law of viscosity (T=N—=N—
dy dt

imposed to it.

Newtonian fluids Fluids which obey Newton's law:

Shearing stress is linearly related to the rate of shearing strain.

The viscosity of a fluid measures its resistance to flow under an

applied shear stress.

SEIS - Anelasticity




Newtonian Fluids

Viscosity of Newtonian fluids depends only on

temperature and pressure, e.g.:

AE[To-T |

(7P| =mod L L

Where:m, is viscosity at T, and P, (reference temperature and pressure)

AE: activation energy for flow
R: gas constant

p: material property [m2/N]

SEIS - Anelasticity



Plasticity and Yield Stress 4\&/

G

The structure of some polymers, especially filled polymers or concentrated
suspensions can be sufficiently rigid that it permits the material to withstand a
certain level of deforming stress without flowing. The maximum stress that can be
sustained without flow is called the "yield stress” and this type of behavior is called

“plasticity”

Pseudoplastic
T ..............
“““““““““““““““““““ Y _ O for < 1:0
Plastic .
T, e T=T,+My for t=7,
ewtonian
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Model parameters for different fluids

=Ky + 1,

When stress is less than
yield stress, material
does not flow.

Shear

It behaves like a solid
stress

Shear rate

SEIS - Anelasticity
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Introduction to Viscoelasticity

*All viscous fluids deform continuously (flow) under
the influence of an applied stress - They exhibit
viscous behavior.

‘Viscoglastic materials can exhibit both viscosity
and elasticity, depending on the conditions.

*Selids deform under an applied stress, but soon
reach a position of equilibrium, in which further
deformation ceases. If the stress is removed they
recover their original shape - They exhibit elastic
behavior.

SEIS - Anelasticity

Viscous fluid

Viscoelastic fluid

Viscoelastic solid

Elastic solid



Materials classification

we can classify materials respect to stress-strain relationship:

If one applies a force to a selid it deforms to a certain extent:
@ Rigid (Euclidean): €=0
OLinear elastic (Hookean): 0 = G €

©Non Linear elastic: 0 = G(€) €

If one applies a force to a fluid it deforms continuously (flowing):
@ Inviscid (Pascalian): T=0
PLinear viscous (Newtonian): T = n ’Y

<@ Non Linear viscous (Non Newtonian): T = n(v) ”Y

Viscoelasticity: time-dependent material behavior where the stress response of that
material depends on both the strain applied and the strain rate at which it was applied!
A viscoelastic material has infinite material responses depending on the strain-rate.

SEIS - Anelasticity
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Rheology

The response of polymeric liquids, such as melts and solutions, to an
imposed stress may under certain conditions resemble the behavior of a
solid or a liquid, depending on the situation.

Reiner used the biblical expression that "mountains flowed in front of God"

to define the DEBORAH number:

time of relaxation
De =

time of observation

*Solid-like response: De—ee
*Liquid-like response: De—0

Rheology is the science of the

deformation and flow of materials.

SEIS - Anelasticity

M. Reiner is credited with naming the Deborah Number after the song of
Deborah, Judges 5:5- "The mountains flowed before the Lord"(Fig. 3.10).
It was first mentioned in his article "The Deborah Number” in the January
1964 issue of Physics Today.

Figure. 3.10 Nestles Canyon, Arizona. Courtesy of Wolfgang Cohnen (©1997)
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Elastic (Solid-like) Response N

A material is perfectly elastic, if the equilibrium shape is attained instantaneously
when a stress is applied. Upon imposing a step input in strain, the stresses do not
relax.

The simplest elastic solid model is the Hookean model, which we can represent by
the "spring” mechanical analog.

|
».
-2
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Elastic (Solid-like) Response 4\3‘&

O Stress Relaxation experiment (suddenly applying a strain to the sample and
following the stress as a function of time as the strain is held constant).

T (stress)
GY,

Yo

Y (strain) *

t,=0 time t =0 time

O Creep Experiment (a constant stress is instantaneously applied to the
material and the resulting strain is followed as a function of time)

T (stress) “ ”Y(strain)

=

t.=0 t

tO:O ts time S time

SEIS - Anelasticity
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Viscous (Liquid-like) Response 4\&/

A material is purely viscous (or inelastic) if following any flow or deformation
history, the stresses in the material become instantaneously zero, as soon as the
flow is stopped; or the deformation rate becomes instantaneously zero when the
stresses are set equal to zero. Upon imposing a step input in strain, the stresses
relax as soon as the strain is constant.

The liquid behavior can be simply represented by the Newtonian model. We can
represent the Newtonian behavior by using a "dashpot” mechanical analog:

SEIS - Anelasticity




Viscous (Liquid-like) Response .«&/

O Stress Relaxation experiment (suddenly applying a strain to the sample and
following the stress as a function of time as the strain is held constant).

e
'Y(strain) Y, = const T (stress)

y =0

t,=0 time t,=0 time

O Creep Experiment (a constant stress is instantaneously applied to the
material and the resulting strain is followed as a function of time)

T (stress) “ ’Y(strain) slope = § = ﬂ _ T
d T
T, y
£ =0 t  time £,=0 t, time

SEIS - Anelasticity



Network Formulation of Viscoelasticity

The "art” of viscoelastic modeling is choosing the proper forms
of the elastic and viscous components (e.g. linear), as well as
combining the elements into the best possible network so
that the proper time dependent behavior is predicted

Series element:

0,=0,=0

| m =

Parallel element:
I
n 2N

SEIS - Anelasticity




Viscoelastic - Maxwell Element

A viscoelastic material (liquid or solid) will not respond instantaneously when

stresses are applied, or the stresses will not respond instantaneously to any
imposed deformation. Upon imposing a step input in strain the viscoelastic liquid or
solid will show stress relaxation over a significant time.

At least two components are needed, one to characterize elastic and the other
viscous behavior. One such model is the Maxwell model:

" | — AW —— T(Y) =G(tY) Y

G(t,y) = relaxation modulus.
If G = 6(t) only, then we have linear viscoelastic behavior

SEIS - Anelasticity



Maxwell Model Response

< 4

Let's try to deform the Maxwell element

The deformation rate of the Maxwell model is equal to the sum of the individual
deformation rates:

Y = Yﬂuid + Ysolid

T,
T] G Stress
n. . —

T+—T=
G ny

T+AT=1Y (1)

A=n/6G is called the relaxation time

SEIS - Anelasticity



Maxwell Model Response 53

1) Stress Relaxation Experiment: If the mechanical model is suddenly

extended to a position and held there (y,=const., y=0):

()=t """

Exponential decay

modulus: G(t) = )

Vo
—t/\
G.e

- T(t) = (Goyo)e—t/k

/

Also recall the definition of the “"relaxation”
w(t)=(G,y, )e ™ | and |G(t) =
v, G,Y,
Y (strain) T (stress)
t,=0 time

SEIS - Anelasticity
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Maxwell Model Response

G

2) Creep Experiment: If a sudden stress is imposed, an instantaneous stretching of the

spring will occur, followed by an extension of the dashpot.

Deformation after removal of the stress is known as creep recovery.

Or by defining the "creep compliance":

T T
t)=—"+—t
Y(t) Gy
|
J(t) =—+—
G
T(stress) 1
To T,/G
£,=0 e Time

SEIS - Anelasticity

Elastic Recovery

/

J(t) =

y(t)

T

Q)

Permanent

Set
</
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[4 The Maxwell model can describe successfully the phenomena of elastic strain, creep

Maxwell Model Response 45%/

recovery, permanent set and stress relaxation observed with real materials

[ Moreover the model exhibits relaxation of stresses after a step strain deformation
and continuous deformation as long as the stress is maintained. These are
characteristics of liquid-like behaviour

[ Therefore the Maxwell element represents a VISCOELASTIC FLUID.

o CREEP RECOVERY € RELAXATION

e| | ti of | t]

Maxwell / \\

€ ! E ¢ E O i t-g

Real |

Material | i |
t t
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Viscoelastic - Voigt-Kelvin Element

G

The Voigt-Kelvin element consists of a spring and a
dashpot connected in parallel.

Y = Yspring = Ydashpot

G | —
n T = Tspring T Idashpot

T=0GYy+ny

A=n/6G is called the relaxation time

SEIS - Anelasticity
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Voigt-Kelvin Model Response

Creep Experiment (1,=const.):

J(t)= é

/

If the stress is removed after equilibrium has been reached (creep recovery):

Exponential decay

T ( )
v(t)= EO l1-e? or
\ /)
T t
H=—e"’
el
T(stress)
T./G
To ‘ y
t,=0 T ’ri;ne

SEIS - Anelasticity

J)= é[l - e_%

J
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Voigt-Kelvin Model Response

Stress relaxation (y,=const.):

= o NY0(1)+ 6y, H(t) =7
£ v(t) = voH(t)
4 >
Time
The response is given immediately:
the stress is initially infinitely
N large because of the viscous
.y ‘ A element, but immediately returns
Initial state: l A B to a constant finite level
.
Instantaneous 3 | “
] - N
response. —\W—— %‘
a |
. - G
Final state: [ — fo
AN

SEIS - Anelasticity

Time



Voigt-Kelvin Model Response ..\:%;

[ The Voigt-Kelvin element does not continue to deform as long as stress is applied,
rather it reaches an equilibrium deformation. It does not exhibit any permanent set.
These resemble the response of cross-linked rubbers and are characteristics of solid-
like behaviour. The Voigt-Kelvin element cannot describe stress relaxation.

[ Therefore the Voigt-Kelvin element represents a VISCOELASTIC SOLID.

Kelvin

Real
Material

CREEP

' RECOVERY |

gl |

€

' RELAXATION |

gBo’rh Maxwell and Voigt-Kelvin elements can provide only a qualitative description of
the response. Various other spring/dashpot combinations have been proposed.

SEIS - Anelasticity



Neither the Maxwell fluid nor the Kelvin (Voigt) solid gives a
viscoelastic response that can qualitatively capture even the most
basic features; therefore, more complex network models must be
used, e.g. three element models (aka Standard Linear Solids):

More Complex Network Models ..g%;

A Kelvin solid in series with a spring (Zener's model):

)
I
I_ M| By —
w1 6,
G,

T=6,7,+MY;, = 6272\

=" T ,> = (6,+6;)1+N1=6,6,7+ N6,y

SEIS - Anelasticity




"‘,’%/ SLS: creep 4&/

Consider the response of the three element model to creep and stress relaxation:

Perfect creep:

to 1 T H( )= 6y, My, = 6,7,
0 T=T,H(t
o o) Kelvin element:
£ | e
V! Time T H(t)= 6.y, +nY, :>y1(’r)=60[1_e n ]
1
Elastic element:
| tH()
| _ _ 0
Initial state: [ AN T H(F)=6,7, = 1,(1) G,
W Total s‘rr'gin:
/| Gyt
Instantaneous i e 1
response: [ " W ()= To\ 3 + 3
- < & e,
Final state: l— A 'é G,"
W v :
Time

SEIS - Anelasticity



SLS - Creep and Relaxation Functions

)

The creep function, J(1), and relaxation function, G(t), for a
material model is determined by setting the input (stress and
strain, respectively) to be unity

For the three component model considered previously:

Creep function:

Y(T): To

( 6yt

l-e " 1

6,

\

Relaxation function:

6370
G,+6,

©(t)=6,7, -

SEIS - Anelasticity

_(Gl+62)
l-e O

l-er 1 __m
= J ()= 3 +62,’c—61
J
( t
66, |6,-6,e"
6(+)= 1= 72
=6M=c"%6.1" &
\

:Gl+62




; Elh \
P
>
),

&

SLS Response

.v
: r I‘
{
3
&

A%

The strain is seen to be made up of two components - an instantaneous deformation corresponding to the spring,
and a delayed response corresponding to the Kelvin element. The creep compliance changes from an unrelaxed
value, Ju=1/61,at + = 0, to a relaxed value, Jr = 1/61 + 1/6G>, at infinite time.

G| | CREEP ' RECOVERY |

el t
Standard | | |
Linear
Solid

Real
Material

t

€

' RELAXATION |

t

The stress relaxes exponentially with time from a high initial value to a lower equilibrium value. The relaxation time
depends on both the spring stiffness, 61, and the Kelvin element parameters, n and G2. This is in contrast with the
retardation time in creep, which depends only on the Kelvin element parameters. In general, the relaxation time is less
than the retardation time. The relaxation modulus changes from an unrelaxed value, Gy = G2, at t+ = O, to a relaxed

value, Gr = 61 G2 / (61 + G2), at infinite time.

SEIS - Anelasticity
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Standard linear solid - again

Zener's SLS model: a solid in which the stress, the strain and their first
derivatives are related to each other in a linear relation:

o+T06=M |[e+T¢E
o R g

where 1, is the characteristic relaxation time for strain under an applied
step in stress (creep experiment), and 1, is the characteristic relaxation
time for stress under an applied step in strain (relaxation experiment).

M, represents the relaxed modulus, i.e. the stress/strain ratio when all the
relaxation is occurred and the time derivatives are O.

If the changes in stress and strain in the material occur so rapidly (e.g., at
sufficiently high frequencies) that relaxation cannot proceed to completion,
it can be shown that the stress/strain ratio is given by the unrelaxed
elastic modulus.

SEIS - Anelasticity
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Creep function 4%

The response to a step function load o=6yH(t) of the SLS can be written as:

e(’r):i 1—(1—1—0\2_”%
M, T

and M; gives the ratio of stress to strain when t goes to infinity (i.e. f->0).
The response can be written also as:

(1) =2 olt)]

U
where ¢ is called the creep function for that modulus.

For elastic materials $=0 and M =u (for S waves) or M =A+2u (for P-waves), while
for anelastic materials there is an istantaneous strain (i.e. high frequencies), 6y/M,

explaining that the subscript u stands for unrelaxed modulus. By comparison with
previous expression one has:

M, =M, = and ¢(t)=|=-1|(1-e )
T N J

SEIS - Anelasticity
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In general, the ratio of stress to strain for a SLS is:

(My-M, o i(/v\u—/v\ o1

Complex modulus

R o

) e
8(1’)_ SR 1+ o't | 1+ o't

that represents a complex modulus that is frequency dependent, implying
dispersed seismic velocities.

It can be shown that: ~ ( ) -2
M M _ M (DZTZ
c’ ((0) ALY PP AT :

P 2 M, 1+ 0)21(25

L (M) o

Q(o)) M 1+0)2T(25

R

9)
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Debye peak

That can be plotted versus frequency, showing that maximum of attenuation
occurs at a frequency of (1,.7,)/2 (Debye peak). Velocity is (My/p)Y2 at v=0
(full relaxation) and (M/p)¥2 at infinite frequency (unrelaxed), while the
internal friction is O for both these extreme cases.

cmax

Inverse qualltytactor
Aj|o0|ea eseyd

0
=4
=

tfrequency [HZ]
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Aﬁ; Different definitions of Q

If a volume of material is cycled in stress at a frequency w, then a dimensionless
measure of the internal frictionis givenby 1 AE

Qw)  2nE

where E is the peak strain energy stored in the volume and AE is the energy lost in
each cycle because of imperfections in the elasticity of the material.

The definition is rarely of direct use and more commonly one observes either
1) the temporal decay of amplitude in a standing wave at fixed wavenumber
2) the spatial decay of amplitude in a propagating wave at fixed frequency.

The assumption that is usually made is that attenuation is a linear phenomenon and a

wave may be resolved into its Fourier components, each of which can be studied by
1or?2.

SEIS - Anelasticity



Intrinsic attenuation

For a propagating wave, infrinsic attenuation can be described by Q factor:
A) after n periods of oscillation (i.e. at t=nT=n 21/w)

A(nT) = AO (1 — %)” = AO (1 — %Tfor:lzﬂ(‘r) = AO exp(—m—T]

times
resulting in a definition of temporal Q

Ill ||' I'.| [ /\ - 7
LN ||‘ 1|| ,"; %"\ ',"'Yl \ 1"
I|| |n' ".\ “‘." \/ , \/ '
B) after a path of a wavelength the amplitude decay is A . pY
p .
dA Ant  dA 2nc ;
dx

Afe)=n,e0 -2

Q dx o 2¢cQ
resulting in a definition of spatial Q and the effect is to replace real
frequencies and wavenumbers with complex valued quantities in the
expression: exp[i(ot -kx)

SEIS - Anelasticity



Frequency dependence of Q

0.1 . ——- . ———y . ——r . —1

S 001 | Normal mode and surface wave data - v
& 1 .
=
©
=
o
@
2
Q@
>
= :

0.001 L

Aki’'s conjecture
00001 1 i | 1 1 Fa | 1 1 =0 i 1 PO |

0.001 0.01 0. 10 100

1 1

Frequency [Hz)
Figure |

Schematic sketch of frequency dependent Q measurements. The height of the boxes indicates roughly the

uncertainty in measurements. The position of the resonance peak conjectured by Aki (1980) is also shown.
After SipKIN and JORDAN (1979), Ak1 (1980) and SATO and FEHLER (1998).

Q for seismic waves is observed to be largely independent of frequency between
0.001 and 1.0 Hz; at higher frequencies it increases. To explain this, one has to
superpose humerous Debye peaks, obtaining an absorption band.
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Figure 3.7-16: Relaxation spectrum for a polycrystalline material.
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Physical dispersion due to anelasticity:

Assume that a delta function wave propagates through a homogeneous elastic medium with intrinsic veloc-
ityc: u(x,t)=9d(t — x/c)

The Fourier transform of the delta functionis  F(w) = I u(x, e ''dt = J 5(t — x/c)e ' dt = @Y/

[f there 1s no dispersion, all the frequencies travel at the same speed and arrive at the same time.

: . : —WX
The effect of attenuation varies as a function of frequency, A(w) = exp (—)

2¢cQ

SEIS - Anelasticity



Figure 3.7-14: Demonstration of physical dispersion for an attenuated pulse.

|

Amplitude

1
t=X/C

E=XIC:

t=X/C

Multiply F(@) by A(@) and take inverse Fourier transform:

oo

1 : 1 - —i@: :
nulx, D)= o J A(o)F(w)e'” dw = s J exp (%Qt)exp( lz)t)e’“”da)

—00

. _ _ (x/2cQ)
Evaluating the integral yields  u(x, ) = 7[(x/2¢0%. + (xlc — 1)7]

so the delta function is broadened by attenuation into a wavelet that is
. . - . ° : ' . '
SEIS - Anelasticity ~ SYMmMEtric in time about 1ts maximum at / = x/c. Problem! Non-causal!



Figure 3.7-14: Demonstration of physical dispersion for an attenuated pulse.

|

Amplitude

f=X/C t=X/C t=x/C.

The physical mechanisms that cause attenuation must prevent waves of all frequencies from traveling at the
same speed. Dispersion!

A dispersion relation for phase velocity as a function of frequency, called Azimi’s attenuation law, is

| @ . : :
c(w) = co[l + —In (—)] (¢ 1s a the velocity corresponding to a reference frequency wy)
/4 @



Attenuation and dispersion

“GN

Wave propagation in anelastic media can be treated once the elastic problem is
solved: elastic velocity and propagation factor have to be replaced by:

( )
1 > 1 g
e, <o)l 2Qo),
exp[i(m’r—Kxﬂ:exp ZC((;;DCZ((D) exp| i

\

Since Q has to be constant in the absorption range, dispersion still have to be

present (body wave dispersion). Using a reference frequency, o,, the wave velocity in

an anelastic medium is:

c(mo) 1+i|n e |

QR O, ZQ_

SEIS - Anelasticity




Complex velocities

An expression for the wave slowness can be given for S (and P) waves:

1.1 g

B B, °

where B, is the frequency dependent velocity and B, is the phase attenuation:

Bl ((DO) B — 1

8 (o) - ~ B,(o)

1428 (0,8 o, log| @ 8, (0)Q,
n \(Do)

The surface wave phase velocity will be expressed as:

1.1 ¢

c C °

1

where C; is the attenuated phase velocity and C, is the phase attenuation, necessary

to compute synthetic seismograms in anelastic media.
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Q in the Earth

Rock Type Q Qs
Shale 30 10
Sandstone 58 31

Granite 250 70-250

Peridotite 650 280

Mid mantle 360 200

Lower mantle 1200 520
Outer Core 8000 0

SEIS - Anelasticity
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Q in the Earth

ATTENUATION VARIES
BOTH WITH DEPTH AND
LATERALLY

In the crust, the greatest
attenuation (lowest Q or
highest Q!) is near the
surface, presumably due
fluids.

Attenuation is lowest at
~20-25 km, and increases
again, presumably due to
Increasing temperature.
Attenuation decreases as a
function of frequency.

SEIS - Anelasticity

Figure 3.7-17: Regional variations in lithospheric attenuation.
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Seismograms from an P
earthquake in Texas l
recorded in Nevada MV

and Missouri.

Figure 3.7-1: Regional effects of attenuation.

(Mina, NV)

The MNV record has

less high frequencies

because the

tectonically-active ﬁ |
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Attenuation laws
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Figure 1.2-5: Predicted strong ground motion in eastern and western U.S.
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