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SEIS - Anelasticity

Intrinsic Attenuation: outline

• Recap: 
•solids, fluids, stress, strain
•materials classification

• Rheology:
•creep and stress relaxation experiments 

• Physical models for attenuation: 
•Maxwell, Kelvin-Voigt, SLS
•Dynamic tests
•Complex modulus
•Relaxed and unrelaxed modules 

• Q in the Earth
•dispersion
•complex velocities
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Elastic means reversible!
It goes back to its original state 
once the loading is removed.

Elastic Deformation

1. Initial 2. Small load

F

δ

bonds 
stretch

3. Unload

return to 
initial

δ

F Linear- 
elastic

Non-Linear-
elastic
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Stress as a measure of Force

Stress is a measure of Force. 

It is defined as the force per unit area (=F/A) (same units as pressure). 

Normal stress acts perpendicular to the surface 

(F=normal force)

Tensile causes elongation Compressive causes shrinkage

FF F F
A A

  

� 

σ = stretching force
cross sectional area
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Shear Stress as a measure of Force

Shear stress acts tangentially to the surface (F=tangential force).

F

F A

ΔX

  

� 

τ = shear force
tangential area
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Strain as a measure of Deformation

Strain measure for simple extension (where Lo: initial length, L is final length)

Lo

δX1(to)

F

δX1(t)

L
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Linear Elastic Properties

 Modulus of Elasticity, E:
  (also known as Young's modulus)

• Hooke's Law:

σ = E ε

σ

Linear- 
elastic

E

ε

F

F
simple 
tension 
test

E: stiffness (material’s resistance to elastic deformation) 
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Strain as a measure of Deformation

 To understand deformation due to shear, picture two flat plates with a 
fixed spacing, h, between them:

Fluids are qualitatively different from solids in their response to a shear stress. 
Ordinary fluids such as air and water have no intrinsic configuration, and hence 
fluids do not develop a restoring force that can provide a static balance to a 
shear stress.
When the shear stress is held steady, and assuming that the geometry does not 
interfere, the shear deformation rate, may also be steady or have a meaningful 
time-average.

x

y



SEIS - Anelasticity

Strain as a measure of Deformation

• A strain measure for simple shear can be obtained by dividing 
the displacement of the moving plate, ΔX, by the distance 
between the plates:

Shear strain

• The shear rate, or rate of shearing strain, is the rate of change 
of shear strain with time:

Shear rate

γ = Δx
h
!
dx
dy

!γ = dγ
dt

= d
dt

dx
dy
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Simple Shear Flow (Drag Flow)

The velocity profile is a straight line: 

the velocity varies uniformly from 0 to Vo

Vo

x

y
       

!γ = dv
dy

=
V

0

h



SEIS - Anelasticity

Simple Shear Flow

The force, F is proportional to the velocity Vo, the area in contact 
with the fluid, A and inversely proportional to the gap, h:

Recall, shear stress, τ = F / A

In the limit of small deformations the ratio Vo/h can be replaced by 

the velocity gradient dv/dy, which represents the shear rate :

Rate of shearing strain
or shear rate:

Therefore:

F ∝
AV

0

h

τ ∝
V

0

h

γ = dv
dy

τ ∝ dv
dy

 (or γ)
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Newton’s Law of Viscosity

The viscosity of a fluid measures its resistance to flow under an 
applied shear stress.

 Newton’s law of viscosity

Newtonian fluids Fluids which obey Newton’s law:

Shearing stress is linearly related to the rate of shearing strain.

τ

η

This is called a “flow curve”

The proportionality constant 

is the viscosity

∴The deformation of a 

material is due to stresses 

imposed to it.   
τ = ηdv

dy
= η dγ

dt



SEIS - Anelasticity

Newtonian Fluids

Viscosity of Newtonian fluids depends only on 

temperature and pressure, e.g.:

Where:ηo is viscosity at To and Po (reference temperature and pressure)

 ΔE: activation energy for flow

 R: gas constant

 β: material property [m2/N]
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Plasticity and Yield Stress

The structure of some polymers, especially filled polymers or concentrated 
suspensions can be sufficiently rigid that it permits the material to withstand a 
certain level of deforming stress without flowing. The maximum stress that can be 
sustained without flow is called the “yield stress” and this type of behavior is called 
“plasticity”

τ

Plastic

Newtonian

Pseudoplastic

το

ideal
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Model parameters for different fluids

Shear 
stress

Shear rate

New
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0<n<1

1<n

n=1

When stress is less than 
yield stress, material 
does not flow.

It behaves like a solid

  τ =Kγn + τ0
.
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Introduction to Viscoelasticity

•All viscous fluids deform continuously (flow) under 
the influence of an applied stress – They exhibit 
viscous behavior.

•Viscoelastic materials can exhibit both viscosity 
and elasticity, depending on the conditions.

•Solids deform under an applied stress, but soon 
reach a position of equilibrium, in which further 
deformation ceases.  If the stress is removed they 
recover their original shape – They exhibit elastic 
behavior.

Viscous fluid

Viscoelastic fluid

Elastic solid

Viscoelastic solid
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Materials classification
we can classify materials respect to stress-strain relationship:

If one applies a force to a solid it deforms to a certain extent:

Rigid (Euclidean): ε=0

Linear elastic (Hookean): σ = G ε
Non Linear elastic: σ = G(ε) ε

If one applies a force to a fluid it deforms continuously (flowing):

Inviscid (Pascalian): τ =0

Linear viscous (Newtonian): τ = η γ

Non Linear viscous (Non Newtonian): τ = η(γ) γ
Viscoelasticity: time-dependent material behavior where the stress response of that 
material depends on both the strain applied and the strain rate at which it was applied! 
A viscoelastic material has infinite material responses depending on the strain-rate.

.

..
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Rheology

The response of polymeric liquids, such as melts and solutions, to an 
imposed stress may under certain conditions resemble the behavior of a 
solid or a liquid, depending on the situation.

Reiner used the biblical expression that “mountains flowed in front of God” 
to define the DEBORAH number:

•Solid-like response:  De➝∞

•Liquid-like response: De➝0

  
De = time of relaxation

time of observation

Rheology is the science of the 

deformation and flow of materials.
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Elastic (Solid-like) Response

A material is perfectly elastic, if the equilibrium shape is attained instantaneously 
when a stress is applied. Upon imposing a step input in strain, the stresses do not 
relax.

The simplest elastic solid model is the Hookean model, which we can represent by 
the “spring” mechanical analog.
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Elastic (Solid-like) Response

γ (strain)

time

τ (stress)

timeto=0

τ (stress)

timeto=0

γ (strain)

timeto=0

to=0

ts
ts

τo
τo/G

γo

Stress Relaxation experiment (suddenly applying a strain to the sample and 
following the stress as a function of time as the strain is held constant).

Creep Experiment (a constant stress is instantaneously applied to the 
material and the resulting strain is followed as a function of time)

G γo
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Viscous (Liquid-like) Response

A material is purely viscous (or inelastic) if following any flow or deformation 
history, the stresses in the material become instantaneously zero, as soon as the 
flow is stopped; or the deformation rate becomes instantaneously zero when the 
stresses are set equal to zero. Upon imposing a step input in strain, the stresses 
relax as soon as the strain is constant.

The liquid behavior can be simply represented by the Newtonian model. We can 
represent the Newtonian behavior by using a “dashpot” mechanical analog:
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Viscous (Liquid-like) Response

γ (strain)

time

τ (stress)

timeto=0

τ (stress)

timeto=0

γ (strain)

timeto=0

to=0

ts
ts

τo

γo

Stress Relaxation experiment (suddenly applying a strain to the sample and 
following the stress as a function of time as the strain is held constant).

Creep Experiment (a constant stress is instantaneously applied to the 
material and the resulting strain is followed as a function of time)
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The “art” of viscoelastic modeling is choosing the proper forms 
of the elastic and viscous components (e.g. linear), as well as 
combining the elements into the best possible network so 
that the proper time dependent behavior is predicted

Series element:

Parallel element:

1 2

1

2

1

2

1 2

Network Formulation of Viscoelasticity
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Viscoelastic – Maxwell Element

A viscoelastic material (liquid or solid) will not respond instantaneously when 
stresses are applied, or the stresses will not respond instantaneously to any 
imposed deformation. Upon imposing a step input in strain the viscoelastic liquid or 
solid will show stress relaxation over a significant time.

At least two components are needed, one to characterize elastic and the other 
viscous behavior. One such model is the Maxwell model:

G(t,γ) = relaxation modulus. 
If G = G(t) only, then we have linear viscoelastic behavior

η
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Maxwell Model Response

The deformation rate of the Maxwell model is equal to the sum of the individual 
deformation rates:

λ=η/G is called the relaxation time

(1)

Let’s try to deform the Maxwell element
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Maxwell Model Response

1) Stress Relaxation Experiment: If the mechanical model is suddenly 
extended to a position and held there (γο=const., γ=0):

Exponential decay

γ (strain)

time

τ (stress)

timeto=0 to=0

.

γo

Also recall the definition of the “relaxation” modulus:

and

Goγo
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Maxwell Model Response

2) Creep Experiment: If a sudden stress is imposed, an instantaneous stretching of the 
spring will occur, followed by an extension of the dashpot. 

Deformation after removal of the stress is known as creep recovery.

τ (stress)

timeto=0

γ

time
to=0ts ts

τo τo/G

τo/G

Or by defining the “creep compliance”:

Elastic Recovery

Permanent 
Set
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Maxwell Model Response
The Maxwell model can describe successfully the phenomena of elastic strain, creep 

recovery, permanent set and stress relaxation observed with real materials

Moreover the model exhibits relaxation of stresses after a step strain deformation 
and continuous deformation as long as the stress is maintained. These are 
characteristics of liquid-like behaviour

Therefore the Maxwell element represents a VISCOELASTIC FLUID.

t

t

t

#

!

!

CREEP RECOVERY RELAXATION

#

#

!

Maxwell

Real

Material

t

t

t



SEIS - Anelasticity

Viscoelastic – Voigt-Kelvin Element

 The Voigt-Kelvin element consists of a spring and a 
dashpot connected in parallel.

λ=η/G is called the relaxation time
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Voigt-Kelvin Model Response

Creep Experiment (το=const.): 

τ (stress)

timeto=0

γ 

timeto=0ts ts

τo

τo/G

or

If the stress is removed after equilibrium has been reached (creep recovery): 

Exponential decay

  

� 

γ(t)= τ0

G
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λ
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Time

St
ra

in

Initial state:

Instantaneous 
      response:

Final state:

The response is given immediately: 
the stress is initially infinitely 
large because of the viscous 
element, but immediately returns 
to a constant finite level

Time

St
re

ss

Voigt-Kelvin Model Response

  

� 

γ(t) = γ0H(t)
  

� 

γ0

  

� 

Gγ0

  

� 

ηγ0δ(t) + Gγ0H(t) = τ

Stress relaxation (γο=const.): 



SEIS - Anelasticity

Voigt-Kelvin Model Response
The Voigt-Kelvin element does not continue to deform as long as stress is applied, 

rather it reaches an equilibrium deformation. It does not exhibit any permanent set. 
These resemble the response of cross-linked rubbers and are characteristics of solid-
like behaviour. The Voigt-Kelvin element cannot describe stress relaxation.

Therefore the Voigt-Kelvin element represents a VISCOELASTIC SOLID.

Both Maxwell and Voigt-Kelvin elements can provide only a qualitative description of 
the response. Various other spring/dashpot combinations have been proposed.

t

t

t

"

!

!

CREEP RECOVERY RELAXATION

"

"

!

Kelvin

Real

Material

t

t

t
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Neither the Maxwell fluid nor the Kelvin (Voigt) solid gives a 
viscoelastic response that can qualitatively capture even the most 
basic features; therefore, more complex network models must be 
used, e.g. three element models (aka Standard Linear Solids):

A Kelvin solid in series with a spring (Zener’s model):

More Complex Network Models

  

� 

γ1   

� 

γ2

  

� 

G1

  

� 

G2

  

� 

τ = G1γ1 + η˙ γ 1 = G2γ2

γ = γ1 + γ2

⎫ 
⎬ 
⎭ 
⇒ G1 + G2( )τ+ η˙ τ = G1G2γ + ηG2˙ γ 
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Consider the response of the three element model to creep and stress relaxation:

Perfect creep:

TimeSt
re

ss

Initial state:

Instantaneous 
      response:

Final state:

Kelvin element:

Elastic element:

Total strain:

TimeSt
ra

in

SLS: creep

  

� 

τ0

  

� 

τ = τ0H(t)
  

� 

τ0H(t)= G1γ1 + η˙ γ 1 = G2γ2

  

� 

τ0H(t)= G1γ1 + η˙ γ 1 ⇒ γ1(t)= τ0

G1
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η
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⎟ ⎟ 
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The creep function, J(t), and relaxation function, G(t), for a 
material model is determined by setting the input (stress and 
strain, respectively) to be unity

For the three component model considered previously:

 Creep function:

 Relaxation function:

SLS - Creep and Relaxation Functions

  

� 

γ(t)= τ0
1− e

-G1t
η

G1

+ 1
G2
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SLS Response

t

t

t

!

"

"

CREEP RECOVERY RELAXATION

!

!

"

Standard

Linear

Solid

Real

Material

t

t

t

 
Figure 8:  Response of Standard Linear Solid model for creep, creep recovery and stress relaxation 

 

SLS model solution for stress relaxation (constant strain "0): 

 

Integration of the governing equation in this case gives: 

 

! ")/exp(.12

21

01 #
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where # = $/(E1 + E2), the relaxation time. 

 

SLS model relaxation modulus 

 

G(t) = 
21

1

EE

E

'
[E2 + E1. exp (-t/!) ] 

 

where # = $/(E1 + E2) 

 

The stress relaxes exponentially with time from a high initial value to a lower equilibrium 

value (see Fig. 8).  The relaxation time depends on both the spring stiffness, E1, and the 

Kelvin element parameters, $ and E2.  This is in contrast with the retardation time in creep, 

which depends only on the Kelvin element parameters.  In general, the relaxation time is less 

than the retardation time. 

 

The relaxation modulus changes from an unrelaxed value, GU = E1, at t = 0, to a relaxed 

value, GR = E1 E2 / (E1 + E2), at infinite time. 

 

Standard Linear Solid Model Summary: The model provides a good qualitative 

description of both creep and stress relaxation behaviour of polymeric materials. 
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The stress relaxes exponentially with time from a high initial value to a lower equilibrium value.  The relaxation time 
depends on both the spring stiffness, G1, and the Kelvin element parameters, η and G2.  This is in contrast with the 
retardation time in creep, which depends only on the Kelvin element parameters.  In general, the relaxation time is less 
than the retardation time. The relaxation modulus changes from an unrelaxed value, GU = G2, at t = 0, to a relaxed 
value, GR = G1 G2 / (G1 + G2), at infinite time. 

The strain is seen to be made up of two components – an instantaneous deformation corresponding to the spring, 
and a delayed response corresponding to the Kelvin element.  The creep compliance changes from an unrelaxed 
value, JU = 1/G1, at t = 0, to a relaxed value, JR = 1/G1 + 1/G2, at infinite time. 
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Standard linear solid - again

Zener’s SLS model: a solid in which the stress, the strain and their first 
derivatives are related to each other in a linear relation:

where  τε is the characteristic relaxation time for strain under an applied 
step in stress (creep experiment), and τσ is the characteristic relaxation 
time for stress under an applied step in strain (relaxation experiment).  

MR represents the relaxed modulus, i.e. the stress/strain ratio when all the 
relaxation is occurred and the time derivatives are 0.

If the changes in stress and strain in the material occur so rapidly (e.g., at 
sufficiently high frequencies) that relaxation cannot proceed to completion, 
it can be shown that the stress/strain ratio is given by the unrelaxed 
elastic modulus.

σ + τ
σ
!σ = M

R
ε + τ

ε
!ε( )
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Creep function

The response to a step function load σ=σ0H(t) of the SLS can be written as:

 
and MR gives the ratio of stress to strain when t goes to infinity (i.e. f->0). 
The response can be written also as:

where φ is called the creep function for that modulus. 
For elastic materials φ=0 and MU=µ (for S waves) or MU=λ+2µ (for P-waves), while 
for anelastic materials there is an istantaneous strain (i.e. high frequencies), σ0/MU, 
explaining that the subscript u stands for unrelaxed modulus. By comparison with 
previous expression one has:
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Complex modulus

In general, the ratio of stress to strain for a SLS is:

that represents a complex modulus that is frequency dependent, implying 
dispersed seismic velocities. 

It can be shown that:

σ t( )
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Debye peak

That can be plotted versus frequency, showing that maximum of attenuation 
occurs at a frequency of (τετσ)−1/2 (Debye peak). Velocity is (MR/ρ)1/2 at ω=0 
(full relaxation) and (MU/ρ)1/2 at infinite frequency (unrelaxed), while the 
internal friction is 0 for both these extreme cases.
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Different definitions of Q

If a volume of material is cycled in stress at a frequency w, then a dimensionless 
measure of the internal friction is given by 

where E is the peak strain energy stored in the volume and      is the energy lost in 
each cycle because of imperfections in the elasticity of the material.

The definition is rarely of direct use and more commonly one observes either

1) the temporal decay of amplitude in a standing wave at fixed wavenumber

2) the spatial decay of amplitude in a propagating wave at fixed frequency.

The assumption that is usually made is that attenuation is a linear phenomenon and a 
wave may be resolved into its Fourier components, each of which can be studied by 
1 or 2.

  

� 

1
Q ω( )

= − ΔE
2πE
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ΔE
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Intrinsic attenuation

For a propagating wave, intrinsic attenuation can be described by Q factor:
A) after n periods of oscillation (i.e. at t=nT=n 2π/ω)

resulting in a definition of temporal Q

B) after a path of a wavelength the amplitude decay is

resulting in a definition of spatial Q and the effect is to replace real 
frequencies and wavenumbers with complex valued quantities in the 
expression: exp[i(ωt -kx)

for large 
times

ΔA = dA
dx

λ ⇒ −Aπ
Q

= dA
dx

2πc
ω
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Frequency dependence of Q

Q for seismic waves is observed to be largely independent of frequency between 
0.001 and 1.0 Hz; at higher frequencies it increases. To explain this, one has to 
superpose numerous Debye peaks, obtaining an absorption band.
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Attenuation and dispersion

Wave propagation in anelastic media can be treated once the elastic problem is 
solved: elastic velocity  and propagation factor have to be replaced by:

Since Q has to be constant in the absorption range, dispersion still have to be 
present (body wave dispersion). Using a reference frequency, ω0, the wave velocity in 
an anelastic medium is:
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Complex velocities

An  expression for the wave slowness can be given for S (and P) waves:

where B1 is the frequency dependent velocity and B2 is the phase attenuation:

The surface wave phase velocity will be expressed as: 

where C1 is the attenuated phase velocity and C2 is the phase attenuation, necessary 
to compute synthetic seismograms in anelastic media.
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Q in the Earth

Rock Type Qp QS

Shale 30 10

Sandstone 58 31

Granite 250 70-250

Peridotite

Mid mantle

Lower mantle

Outer Core

650

360

1200

8000

280

200

520

0
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ATTENUATION VARIES 
BOTH WITH DEPTH AND 
LATERALLY 

In the crust, the greatest 
attenuation (lowest Q or 
highest Q-1) is near the 
surface, presumably due 
fluids. 
Attenuation is lowest at 
~20-25 km, and increases 
again, presumably due to 
increasing temperature.
Attenuation decreases as a 
function of frequency.

Q in the Earth



SEIS - Anelasticity

Seismograms from an 
earthquake in Texas
recorded in Nevada 
and Missouri.

The MNV record has 
less high frequencies 
because the 
tectonically-active 
western U.S.
is more attenuating 
than the stable mid-
continent.
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Attenuation laws



SEIS - Anelasticity
http://pasadena.wr.usgs.gov/office/hough/east-vs-west.jpg

Seismic hazard


