
Bash scripting beyond the basics
Course titleCourse title

Bash Lecture 4 – Bash Scripting
beyond the basics

Bash scripting beyond the basics 2/48

★ Bibliography:

https://www.rigacci.org/docs/biblio/online/sysadmin/toc.htm

https://www.tldp.org/LDP/abs/html/

★ Learning Materials:

http://www.ee.surrey.ac.uk/Teaching/Unix/

https://github.com/bertocco/abilita_info_units_2021

Traditional service delivery
Bibliography and learning materials

https://www.rigacci.org/docs/biblio/online/sysadmin/toc.htm
https://www.tldp.org/LDP/abs/html/

Bash scripting beyond the basics 3/48

★Redirection

★Bash scripting programming:
– Main programming elements (if, for, while,…)
– Functions
– Scope of variables
– Examples (using files)
– Basic `sed`
– Basic `awk`

Traditional service delivery
Arguments of this lesson

Bash scripting 4/48

Traditional service delivery
Redirection (1)

Each UNIX command (or program) is connected to three communication channels
between the command and its environment:

 Standard input (stdin) where the command read its input
 Standard output (stdout) where the command writes its output
 Standard error (stderr) where the command writes its error

 When a command is executed via an interactive shell, the streams are typically
connected to the text terminal on which the shell is running, but can be changed with
redirection or with a pipeline

Standard Input, Standard Output and Standard Error Symbols:

redirect stdout to a file redirect stderr and stdout to a file

redirect stderr to a file redirect stderr and stdout to stdout

redirect stdout to stderr redirect stderr and stdout to stderr

redirect stderr to stdout

standard input 0<

standard output 1>

standard error 2>

Bash scripting 5/48

Traditional service delivery
Redirection (2)

Redirection [> &> >& >>].
● Redirect stdout to file (overwrite filename if it already exists):

scriptname > filename
scriptname >> filename # appends the output of scriptname to file filename. If
 # filename does not already exist, it is created

● Redirect stderr to file (overwrite filename if it already exists):
scriptname 2> filename

● Redirect both the stdout and the stderr of command to filename:
command &> filename redirects both the stdout and the stderr of command to filename

● Redirects stdout of command to stderr:
command >&2

● Redirects stderr of command to stdout:
command 2>&1

Bash scripting 6/48

Traditional service delivery
Redirection: Examples

● Stdout redirected to file
find . -name pippo > find-output.txt

● Stderr redirected to file
find . -name pippo 2> find-errors.txt

● discards any errors that are generated by the find command
find / -name "*" -print 2> /dev/null
/dev/null is a simple device (implemented in software and not corresponding to any
hardware device on the system).
 /dev/null looks empty when you read from it.
 Writing to /dev/null does nothing: data written to this device simply "disappear."
Often a command's standard output is silenced by redirecting it to /dev/null, and this is
perhaps the null device's commonest use in shell scripting:
command > /dev/null

● Redirect both stdout and stderr to file
find . -name pippo &> out_and_err.txt

● Redirect stderr to stdout: find . -name filename 2>&1
● Redirect stdout to stderr: find . -name filename 1>&2

Bash scripting 7/48

Traditional service delivery
Special characters: Pipe

Pipe [|]. Passes the output (stdout) of a previous command to the input (stdin) of the
next one, or to the shell. This is a method of chaining commands together.

echo ls -l | sh
Passes the output of "echo ls -l" to the shell,
#+ with the same result as a simple "ls -l".

cat *.lst | sort | uniq
Merges and sorts all ".lst" files, then deletes duplicate lines.

A pipe sends the stdout of one process to the stdin of another. In a typical case, a
command, such as cat or echo, pipes a stream of data to a command that transforms it
in input for processing:

cat $filename1 $filename2 | grep $search_word

Bash scripting 8/48

Traditional service delivery
Redirection with pipe and tee examples

Examples of redirection of the output of a command to be used as input of another:
● Display the output of a command (in this case ls) by pages:

ls -la | less
● Count files in a directory:

ls -l | wc -l
● Count the number of rows containing of the word “canadesi” in the file vialactea.txt

grep canadesi vialactea.txt | wc -l
● Count the number of words in the rows containing the word “canadesi”

`tee` is useful to redirect output both to stdout and to a file. Example:
find . -name filename.ext 2>&1 | tee -a log.txt
This will take stdout and append it to log file. The stderr will then get converted to
stdout which is piped to tee which appends it to the log and sends it to stdout which
will either appear on the tty or can be piped to another command.

To go deep: https://stackoverflow.com/questions/2871233/write-stdout-stderr-to-a-
logfile-also-write-stderr-to-screen

Bash scripting 9/48

Traditional service delivery
Exercise: redirection

Create a directory and file tree like this one:
my_examples /ex1.dir
 /ex2.txt
 /ex3.dir
 /ex3.dir/file1.txt
 /ex3.dir/file2.txt
 /ex3.dir/file3.txt

Remove read permissions to directory /ex2.dir
Redirect output on a file. Error is displayed on terminal
Redirect error on a file. Output is displayed on terminal
Verify the content of the files
Stderr redirected to file
Redirect output and errors symultaneously

Use pipe to redirect the output of a command to another command and to a file
Use tee to redirect output both to stdout and to a file

Bash scripting beyond the basics 10/48

Conditional execution

 Conditional statements:

★If … then

★ If … then … else

★ If … then … elif

★ case

Bash scripting beyond the basics 11/48

The if construction allows you to specify different courses of action to be
taken in a shell script, depending on the success or failure of a
command.

The most compact syntax of the if command is:

if TEST-COMMANDS; then COMMANDS; fi

Which is the same, less compact:

if TEST-COMMANDS
 then COMMANDS
fi

The TEST-COMMAND list is executed, and if its return status is zero (True), the
COMMANDS are executed. The return status is the exit status of the last
command executed, or zero if the condition tested is not True (different from 0).

Conditional statement “if...then”

Bash scripting beyond the basics 12/48

● Testing exit status
The ? variable holds the exit status of the previously executed command
(the most recently completed foreground process).
Example
Test to check if a command has been successfully executed:

ls -l
if [$? -eq 0]
 then echo 'That was a good job!'
fi

● Numeric comparisons
The example below use numerical comparisons:

num=`less work.txt |wc -l`
echo $num
If [["$num" -gt "150"]]
then echo ; echo "you've worked hard enough for today."
fi

Example of conditional statement “if...then”

Bash scripting beyond the basics 13/48

Relational operators
● -lt (<) lower-than
● -gt (>) greather-then
● -le (<=) lower-equal
● -ge (>=) greather-equal
● -eq (==) equal
● -ne (!=) not equal

Boolean operators
● && and
● || or
● | not

Files operators:
● if [-x "$filename"]; then # if filename is executable
● if [-e "$filename"]; then # if filename exists
● …………….

Main conditional operators

Bash scripting beyond the basics 14/48

The [[]] construct is the more versatile Bash version of [].
This is the extended test command.

No filename expansion or word splitting takes place between [[and]],
but there is parameter expansion and command substitution.

file=/etc/passwd
if [[-e $file]]
then
 echo "Password file exists."
fi

Using the [[...]] test construct, rather than [...] can prevent many logic
errors in scripts. For example, the &&, ||, <, and > operators work within a
[[]] test, despite giving an error within a [] construct.

Condition check

Bash scripting beyond the basics 15/48

Exercise: True and false result

a=3

(($a>10))
echo $? # print 1 because the condition is false

(($a>2))
echo $? # print 0 because the condition is true

Bash scripting beyond the basics 16/48

 #!/bin/bash
 s1='string'
 s2='String'
 if [$s1 == $s2]
 then
 echo "s1 ('$s1') is not equal to s2 ('$s2')"
 fi
 If [$s1 == $s1]
 then
 echo "s1('$s1') is equal to s1('$s1')"
 fi

Be careful: the use of if [$s1 = $s2] can be dengerous:
if one of the two strings is empty, a syntax error will be thrown.
Use instead:
 X$1 == x$2 or "$1" == "$2"

Strings comparison example (try)

Bash scripting beyond the basics 17/48

Try:

if [[X == X$variable_to_check]]
 then
 echo “variable is empty”
 else
 echo “variable value is $variable_to_check”
fi

Then try:

variable_to_check=”I_am_not_empty”
if [[X == X$variable_to_check]]
 then
 echo “variable is empty”
 else
 echo “variable value is $variable_to_check”
fi

Check if a variable is empty example

Bash scripting beyond the basics 18/48

a=3

if ["$a" -gt 0]
then
 if ["$a" -lt 5]
 then
 echo "The value of \"a\" lies somewhere between 0 and 5."
 fi
fi

Same result as:

if ["$a" -gt 0] && ["$a" -lt 5]
then
 echo "The value of \"a\" lies somewhere between 0 and 5."
fi

Nested conditional if...then statement

Bash scripting beyond the basics 19/48

if [condition-true]
then
 command 1
 command 2
 ...
else # Adds default code block executing if original condition tests false.
 command 3
 command 4
 ...
fi

Note:
When if and then are on same line in a condition test, a semicolon must
terminate the if statement. Both if and then are keywords. Keywords (or
commands) begin statements, and before a new statement on the same
line begins, the old one must terminate.

Conditional statement “if...then...else”

Bash scripting beyond the basics 20/48

Write a simple example of the construct if...then...else

Suggestion:
Basic example of if .. then ... else:
 #!/bin/bash
 if ["foo" = "foo"]; then
 echo expression evaluated as true
 else
 echo expression evaluated as false
 fi

Example of condition with variables:
 #!/bin/bash
 t1="foo"
 t2="bar"
 if ["$t1" = "$t2"]; then
 echo expression evaluated as true
 else
 echo expression evaluated as false
 fi

Exercise: “if...then...else”

Bash scripting beyond the basics 21/48

elif is a contraction for else if. The effect is to nest an inner if/then construct
within an outer one.

 if [condition1]
 then
 command1
 command2
 else if [condition2]
 then
 command3
 command4
 else
 default-command
 fi

Conditional statement “else if and elif”

 if [condition1]
 then
 command1
 command2
 elif [condition2]
 then
 command3
 command4
 else
 default-command
 fi

Bash scripting beyond the basics 22/48

Translate the previously seen “Nested if...then” example in an “if...elif” form

Study and execute examples in:

https://linuxize.com/post/how-to-compare-strings-in-bash/

https://www.linuxtechi.com/compare-numbers-strings-files-in-bash-script/

Exercise: “else if and elif”

https://linuxize.com/post/how-to-compare-strings-in-bash/
https://www.linuxtechi.com/compare-numbers-strings-files-in-bash-script/

Bash scripting beyond the basics 23/48

The BASH CASE statement takes some value once and test it multiple times.
Use the CASE statement if you need the IF-THEN-ELSE statement with many ELIF
elements.
Syntax:
case $variable in
 pattern-1)
 commands
 ;;
 pattern-2)
 commands
 ;;
 pattern-3|pattern-4|pattern-5)
 commands
 ;;
 pattern-N)
 commands
 ;;
 *)
 commands
 ;;
esac

Case

Bash scripting beyond the basics 24/48

#!/bin/bash
printf 'Which Linux distribution do you know? '
read DISTR

case $DISTR in
 ubuntu)
 echo "I know it! It is an operating system based on Debian."
 ;;
 centos|rhel)
 echo "Hey! It is my favorite Server OS!"
 ;;
 windows)
 echo "Very funny..."
 ;;
 *)
 echo "Hmm, seems i've never used it."
 ;;
esac

Exercise: case

Bash scripting beyond the basics 25/48

Loops

 Loop statements:

★ for

★ while

★ until

Bash scripting beyond the basics 26/48

Executes an iteration on a set of words.
It is slightly different from other languages (like C) where the iteration is done
respect to a numerical index.

Syntax: for CONDITION; do
 COMMANDS
 done
Examples:
 #!/bin/bash
 for i in $(ls); do
 echo item: $i
 done

C-like for:
 #!/bin/bash
 for i in `seq 1 10`;
 do
 echo $i
 done

for loop

Bash scripting beyond the basics 27/48

Counting:
#!/bin/bash
for i in {1..25}
do
 echo $i
done

or:
#!/bin/bash
for ((i=1;i<=25;i+=1)
do
 echo $i
done

Counting on "n" steps
#!/bin/bash
for i in {0..25..5}
do
 echo $i
done

That will count with 5 to 5
steps.

for loop examples (try)
Counting backwards
#!/bin/bash
for i in {25..0..-5}
do
 echo $i
done

Acting on files
#!/bin/bash
for file in ~/*.txt
do
echo $file
done

That example will just list all
files with "txt" extension. It is
the same as ls *.txt

Calculate prime numbers
#!/bin/bash
read -p "How many prime
numbers ?: " num
c=0
k=0
n=2

numero=$[$num-1]
while [$k -ne $num]; do
 for i in `seq 1 $n`;do
 r=$[$n%$i]
 if [$r -eq 0]; then
 c=$[$c+1]
 fi
 done

 if [$c -eq 2]; then
 echo "$i"
 k=$[$k+1]
 fi
 n=$[$n+1]
 c=0
done

Bash scripting beyond the basics 28/48

break statement is used to break the loop before it actually finish executing.
You are looking for a condition to be met, you can check the status of a variable for that condition.
Once the contidition is met, you can break the loop. Pseudo-code example:

for i in [series]
do
 command 1
 command 2
 command 3
 if (condition) # Condition to break the loop
 then
 command 4 # Command if the loop needs to be broken
 break
 fi
 command 5 # Command to run if the "condition" is never true
done

With the use of if ... then you can insert a condition, and when it is true, the loop will be broken
with the break statement

break statement in for loop

Bash scripting beyond the basics 29/48

continue stop the execution of the commands in the loop and jump to the next value in the series.
It is similar to continue which completely stop the loop.

Pseudo-code example:

for i in [series]
do
 command 1
 command 2
 if (condition) # Condition to jump over command 3
 continue # skip to the next value in "series"
 fi
 command 3
done

continue statement in for loop

Bash scripting beyond the basics 30/48

The script start with a=1 & move to
inner loop and when it reaches b=4,
it break the outer loop.

Exercise:
In this same script, use break
instead of break 2, to break inner
loop & see how it affects the output.

break statement in iteration

break command is used to exit out of current loop completely before the
actual ending of loop.
Break command can be used in scripts with multiple loops. If we want to exit
out of current working loop whether inner or outer loop, we simply use break
but if we are in inner loop & want to exit out of outer loop, we use break 2.
Example
#!/bin/bash
Breaking outer loop from inner loop
for ((a = 1; a < 5; a++))
do
echo “outer loop: $a”
for ((b = 1; b < 100; b++))
do
if [$b –gt 4]
then
break 2
fi
echo “Inner loop: $b ”
done
done

Bash scripting beyond the basics 31/48

continue command is used in script to skip current iteration of loop &
continue to next iteration of the loop.

Example
#!/bin/bash
using continue command
for i in 1 2 3 4 5 6 7 8 9
do
if [$i –eq 5]
then
echo “skipping number 5”
continue
fi
echo “I is equal to $i”
done

continue statement in iteration

Bash scripting beyond the basics 32/48

Executes one or more instructions while a condition is true.
It stops when the control condition is true or when the execution is intentionally
stopped by the programmer with an explicit interruption instruction (break or
continue)

Syntax:
 while CONDITION; do
 COMMANDS
 done

Example:

 #!/bin/bash
 counter=0
 while [$counter -lt 10]; do
 echo The counter is $counter
 let counter=counter+1
 done

while loop

Bash scripting beyond the basics 33/48

Interrupt the loop at number … (try)
#!/bin/bash

num=1
while [$num -lt 10]
do
if [$num -eq 5]
then
echo “$num equal to 5 so I interrupt the loop”
break
fi
echo $num
let num+=1
done
echo “Loop is complete”

Example of break statement in while loop

Bash scripting beyond the basics 34/48

Executes one or more instructions until a condition is false.

Syntax:
 until CONDITION; do
 COMMANDS
 done

Example:
 #!/bin/bash
 counter=20
 until [$counter -lt 10]; do
 echo counter $counter
 let counter-=1
 done

until loop

Bash scripting beyond the basics 35/48

Until is similar to while, but it is a slightly difference:
Until is executed while the condition is false,
While is executed while the condition is true.
What means it?

Try the following code and check the output:

num=1
while [[$num -lt 10]]
do
if [[$num -eq 5]]
then
break
fi
echo $num
let num=num+1
done
echo “Loop while is complete”

until vs. while

num1=1
until [[$num1 -lt 10]]
do
if [[$num1 -eq 5]]
then
break
fi
echo $num1
let num1=num1+1
done
echo “Loop until is complete”

Bash scripting beyond the basics 36/48

Functions are use to group sets of commands logically related making them
reusable without the need to re-write them.

A function does not need to be declared.

Function example:
 #!bin/bash
 function quit {
 exit
 }
 function hello {
 echo Hello!
 }
 hello
 quit
 echo foo

Functions

Syntax: function func_name {
 command1
 command2
 …..
 }

How to call the function in a script:

 func_name

Bash scripting beyond the basics 37/48

Parameters does not need to be declared.
It is good practice

● to put a comment before the function definition describing parameters and
their meaning

● Read the parameters at the beginning of the function
Function with parameters example:
#!/bin/bash
function quit {
 exit
}
input parameter msg=”a message”
function my_func {
 msg=$1
 echo $msg
}
my_func Hello
my_func World
quit
echo foo

Functions parameters/arguments

Syntax with parameters:
function func_name {
 command1
 command2
 …..
}

How to call the function with
parameters in a script:

func_name para1 param2 ...

Bash scripting beyond the basics 38/48

cat usage.sh

#!/bin/bash

display_usage() {
 # echo "This script must be run with super-user privileges."
 echo -e "\nUsage:\n$0 [arguments] \n"
}

if less than two arguments supplied, display usage
if [[$# -le 1]]
 then
 display_usage
 exit 1
fi

Add help to a script

Bash scripting beyond the basics 39/48

Example

 #!/bin/bash
 if [-z "$1"]; then # check if one parameter exists
 echo usage: $0 directory
 exit
 fi
 srcd=$1
 bakd="/tmp/"
 mkdir $bakd
 of=home-$(date +%Y%m%d).tgz
 tar -czf $bakd$of $srcd

Add help to a script

Bash scripting beyond the basics 40/48

Positional parameters are a series of special variables ($0 through $9) that
contain the contents of the command line.
If my_script is a bash shell script, we could read each item on the command line
because the positional parameters contain the following:
$0 would contain "some_program"
$1 would contain "parameter1"
$2 would contain "parameter2"
…..

This way, if I call my_script with two parameters:
my_script Hello world
Then inside the script I can read them with:
#!/bin/bash
script_name=$0
first_word=$1
second_word=$2
Echo “$script_name says $first_word $second_word

The mechanism is the same to read functions parameters.

Positional parameters

Bash scripting beyond the basics 41/48

● Example on how to read the user’s input:

 #!/bin/bash
 echo Please, enter your name
 read NAME
 echo "Hi $NAME!"

● Example on how to read multiple user’s input:

 #!/bin/bash
 echo Please, enter your firstname and lastname
 read FN LN
 echo "Hi! $LN, $FN !"
 echo "How are you?"

Read the user’s input examples

Bash scripting beyond the basics 42/48

In general you can distinguish between
Global
Local Scope
Function

Bash (like Python) doesn't have block scope in conditionals.

It has local scope within functions, it is also possible to use the ‘local’ modifier
which is a keyword to declare the local variables.
Local variables are visible only within the block of code.

Variable scope (visibility) is related mainly to the shell.
Exported variables are visible in all subshells.

Scope of variables

Global
Local

Function

Function

Bash scripting beyond the basics 43/48

A variable exported is a global variable.

A variable defined in the main body of the script is called a local variable.
• It will be visible throughout the script,
• A variable which is defined inside a function is local to that function.
• It is accessible from the point at which it is defined until the end of the
function, and exists for as long as the function is executing.

• Global variables can have unintended consequences because of their
wide-ranging effects: we should almost never use them

Scope of variables

Bash scripting beyond the basics 44/48

#!/bin/bash
e=2
echo At beginning e = $e
function test1() {
 e=4
 echo "hello. Now in the function1 e = $e"
}
function test2() {
 local e=4
 echo "hello. Now in the function2 e = $e"
}
test1
echo "After calling the function1 e = $e"

e=2
echo In the file before to call func2 reassign e = $e
test2
echo "After calling the function2 e = $e"

Exercise: Scope of variables

Justify the result !

Bash scripting beyond the basics 45/48

 Sed is a non interactive editor.
It is generally used to parse and transform text, using a simple, compact
programming language.

It allows to modify a file usinf scripts with instructions for sed editing plus the
filename. Example of string substitution:

 $sed 's/old_text/new_text/g' /tmp/testfile

Sed substitute the string 'old_text' with the string 'new_text' reading from file
/tmp/testfile. The result is redirected to stdout, but it can be redirected also to a
file using '>'

 $sed 12, 18d /tmp/testfile

Sed displays all the rows from 12 to 18. The original file is not modified by this
command, but if you redirect stdout on a new file, if is different from the original
one (try).

Sed

Bash scripting beyond the basics 46/48

 Awk match a string on the base of a regular expression and execute a required
action:
Create a file /tmp/filetext as follow:
cat filetext <
test123
test
Tteesstt
EOF
 $awk '/test/ {print}' /tmp/filetext
test123
test
The regular expression requires to match the string 'test'
The required action is to 'print'the string containing ‘test’ when found.

 $awk '/test/ {i=i+1} END {print i}' /tmp/filetext
3

Awk

Bash scripting beyond the basics 47/48

Create a script which launch one of the script you wrote by exercise,
Test the output of the command,
Write if the execution is ok or not.

How to check your scripts

Bash scripting beyond the basics 48/48

Create a script which launch one of the script you wrote by exercise,
Test the output of the command,
Write if the execution is ok or not.

How to check your scripts

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48

