
Python introduction

S. Bertocco

Python Lecture 1 – Introduction

Python introduction 2/49

★ Bibliography:

https://www.python.org/doc/

http://docs.python.it/

and much more available in internet

★ Learning Materials:

https://github.com/gtaffoni/Learn-Python/tree/master/

Lectures

https://github.com/bertocco/abilita_info_units_1920

Bibliography and learning materials

https://www.python.org/doc/
http://docs.python.it/

Python introduction 3/49

★ Python is an interpreted language.

– old-style interpreted languages (like bash): the code is
saved in the same format that you entered

– new-style interpreted languages (like python): the
code is pre-processed to produce a bytecode (similar
to machine language) and then executed by the
interpreter (virtual machine).

★ Code portability: means run on hardware/software
platforms different from which used to develop the
code.
– Python is portable if the interpreter is available on the

target platform

The python language

Python introduction 4/49

★Pipenv & Virtual Environments
★The next step is to install Pipenv, so you can install

dependencies and manage virtual environments.

★A Virtual Environment is a tool to keep the dependencies
required by different projects in separate places, by
creating virtual Python environments for them. It solves
the “Project X depends on version 1.x but, Project Y
needs 4.x” dilemma, and keeps your global site-
packages directory clean and manageable.

★For example, you can work on a project which requires
Django 1.10 while also maintaining a project which
requires Django 1.8.

Work Environment Setup

Python introduction 5/49

★Verify if python is already installed

★Install python3, numpy, scipy, matplotlib (next lessons)

In this course we will use python3

Work Environment Setup in Ubuntu

Python introduction 6/49

 # Step 1: Update your repositories

sudo apt-get update

Step 2: Install pip for Python3

sudo apt-get install build-essential libssl-dev libffi-dev python-dev
sudo apt install python3-pip

Step 3: Use pip to install virtualenv

sudo pip3 install virtualenv

Step 4: Launch your Python3 virtual environment, here the name of
my virtual environment will be env3

virtualenv -p python3 env3

Install Python3 virtualenv on Ubuntu (1)

https://naysan.ca/2019/08/05/install-python-3-virtualenv-on-ubuntu/

https://naysan.ca/2019/08/05/install-python-3-virtualenv-on-ubuntu/

Python introduction 7/49

Step 5: Activate your new Python3 environment. Two ways to do this

. env3/bin/activate # or source env3/bin/activate does exactly the same

you can make sure you are now working with Python3

python3 – version

this command will show you what is going on: the python executable
you are using is now located inside your virtualenv repository

which python

Step 6: code your stuff

Step 7: done? leave the virtual environment

deactivate

Install Python3 virtualenv on Ubuntu (2)

https://naysan.ca/2019/08/05/install-python-3-virtualenv-on-ubuntu/

https://naysan.ca/2019/08/05/install-python-3-virtualenv-on-ubuntu/

Python introduction 8/49

Anaconda (https://www.anaconda.com/) is a free-open source distribution
of the Python programming language for scientific computing, which aims to
simplify package management and deployment. The Anaconda distribution
includes data-science packages suitable for Windows, Linux, and macOS.

I. The default installation of Anaconda2 includes Python2.7 and
Anaconda3 includes Python3.7;

II. Anaconda Navigator is a desktop GUI included in Anaconda distribution
that allows users to manage python packages and to lunch applications.

• The following applications, among others, are available by default in
Anaconda Navigator:

• Jupyter Notebook -- a web-based interactive computational
environment for creating Jupyter notebook documents;

• Spyder -- open source cross-platform Integrated Development
Environment (IDE) for scientific programming in Python
language.

Install Anaconda

Python introduction 9/49

★ Python is an interpreted language.
The python interpreter can be used:
– Interactively to interpret a single command or little sets of commands;
– Interactively to interpret set of commands collected in a file *.py

In this case, the interpreter produces files (*.pyc), as intermediate product, and
interpret row by row the command present in the file.

All similarly to bash except for the bytecode production.

★ To fire up the Python interpreter, open up your terminal/console application, and
type python3.
You should see something like this:
[bertocco@firiel ~]$ python3
Python 3.7.5 (default, Nov 20 2019, 09:21:52)
[GCC 9.2.1 20191008] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>>

★ Use quit() or Ctrl-D (i.e. EOF) to exit

The python interpreter

Python introduction 10/49

A Python variable is a reserved memory location to store values.
The variable must be defined assigning it a value:
>>> a=3 #works
>>> b = 3 #works
>>> a
3
>>> c # does not work
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
NameError: name 'c' is not defined

Rules for Python variable names: A variable can have a short name (like x and y) or
a more descriptive name (age, carname, total_volume):

● a variable name must start with a letter or the underscore character;
● a variable name cannot start with a number;
● a variable name can only contain alpha-numeric characters and underscores (A-

z, 0-9, and _);
● white spaces and signs with special meanings, as "+" and "-" are not allowed;
● variable names are case-sensitive (age, Age and AGE are three different

variables).

Define a variable

Python introduction 11/49

● a variable name must start with a letter or the underscore character
>>> alfa = 1
>>> alfa
1
>>> beta =10

● a variable name cannot start with a number
>>> 1cane=3
 1cane=3
 ^
SyntaxError: invalid syntax
 ^
SyntaxError: invalid syntax

● a variable name can only contain alpha-numeric characters and underscores (A-z, 0-9, and _)
>>> urca! = 10
 File "<stdin>", line 1
 urca! = 10
 ^
SyntaxError: invalid syntax

● white spaces and signs with special meanings, as "+" and "-" are not allowed
>>> a-b=0
 File "<stdin>", line 1
SyntaxError: can't assign to operator

Examples on variable names

>>> a$b='sara'
 File "<stdin>", line 1
 a$b='sara'
 ^
SyntaxError: invalid syntax

>>> _pippo = 1
>>> _pippo
1

Python introduction 12/49

Each variable in python has a type.

The variable type is not pre-defined, it is resolved at run-time.

In C programs variable declaration is:
int a = 10;
float b = 3.4;
char str[] = “pippo”;

In python variable declaration is:
a = 10
b = 3.4
str =”pippo”

In python you can do (referring to the previous example):
a = b # because type is dynamically resolved, i.e. at run-time

In python you cannot do (referring to the previous example):
new_val = a + str # because each variable has a type
 # (the language is strongly typed)

Variable types

Python introduction 13/49

Text Type: str

Numeric Types: int, float, complex

Sequence Types: list, tuple, range

Mapping Type: dict

Set Types: set, frozenset

Boolean Type: bool

Binary Types: bytes, bytearray, memoryview

Understanding and practice:
https://www.w3schools.com/python/python_datatypes.asp

Built-in data types

Python introduction 14/49

You can get the data type of any object by using the type()

function:

Example

Print the data type of the variable x:

x = 5

print(type(x))

Understanding and practice:
https://www.w3schools.com/python/python_datatypes.asp

how to get data types

Python introduction 15/49

x = 123 # integer

x = 3.14 # float

x = "hello" # string

x = [0,1,2] # list

x = (0,1,2) # tuple

x = open(‘hello.py’, ‘r’) # file

x = {1: 'apple', 2: 'ball'} # dictionary

You can also assign a single value to several variables simultaneously multiple

assignments.

Variable a,b and c are assigned to the same memory location, with the value of 1

a = b = c = 1

List of some different variable types

Python introduction 16/49

>>> a = 10
>>> b = 3.4

It is possible the assignment:
>>> a = b
>>> a
3.4

>>> a = 3
>>> b = 3.4

It is possible the sum:
>>> a+b
6.4

Example: dynamically resolved types

Python introduction 17/49

>>> a=3 # a is resolved as an integer
>>> str = 'mah' # str is resolved as a string

>>> a + str
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: unsupported operand type(s) for +: 'int' and 'str'

You can not sum a string with an integer.

Example: strongly typed variables

Python introduction 18/49

Python is dynamic typed because variable values are checked during
execution.

Python is strongly typed because “at runtime” it doesn’t allow implicit
conversions.

Python is dynamically and strongly typed

Python introduction 19/49

Casting is the operation to convert a variable value from one type to
another.

In Python, the casting must be done explicitly with functions such as int() or
float() or str().

Example:
>>> x = '100'
>>> y = '-90'

>>> print(x + y)
100-90

>>> print(int(x) + int(y))
10

That was the int() function. There's also another very common one, which is
float(), which does basically the same thing:

>>> print(float(x) + float(y))
10.0

Type casting

Python introduction 20/49

Type casting is a bit tricky operation.

Example: the string '100.0' can be converted in a float, but not in an integer

>>> x = '100.0' # This is a string

>>> print(float(x)) # This string can be converted in float

100.0

>>> print(int(float(x))) # Float can beconverted in integer

100

>>> print(int(x)) # The example string can not beconverted in integer

Traceback (most recent call last):

 File "<stdin>", line 1, in ?

ValueError: invalid literal for int(): 100.0

Be careful in type casting

Python introduction 21/49

Type casting is a bit tricky operation.

Example: the string '100.0' can be converted in a float, but not in an integer

>>> x = '100.0' # This is a string

>>> print(float(x)) # This string can be converted in float

100.0

>>> print(int(float(x))) # Float can beconverted in integer

100

>>> print(int(x)) # The example string can not beconverted in integer

Traceback (most recent call last):

 File "<stdin>", line 1, in ?

ValueError: invalid literal for int(): 100.0

Exercices

Python introduction 22/49

There are two ways to write comments in python code:

● Single line comments

this is a single line comment

a=13 # this is a single line comment also (an in-line comment)

● More line comments

’’’ You can write a multiple line comment using

three single quotes’’’

””” This is another way to write a multiple line comment

using three double quotes”””

How to comment code

Python introduction 23/49

script_sum.py

#!/usr/bin/python3

one = 1

two = 2

three = one + two

print(three)

script_hello.py

hello = "hello"

world = "world"

helloworld = hello + " " + world

print(helloworld)

First python scripts

Launch the script (first way):

Add execution permissions:

$ chmod +x script_sum.py

Execution:

$./script_sum.py

Launch the script (second way):

Use the interpreter for execution:

$ python3 script_hello.py

Note: anv var PATH or PYTHONPATH
must contain ‘python’ command location

PYTHONPATH is an environment variable which you can set to add
additional directories where python will look for modules and packages.

Python introduction 24/49

In python blocks of code (set of instructions to be run as a block, like functions) are
denoted by line indentation not by curly braces (as in C or Java, for example).
The number of spaces in the indentation is variable, but all statements within the
block must be indented the same amount. Example (indentation.py):
x = 2.3
y = 1.2
test is a function testing if two numbers are equal or one greater then the other
def test(x,y):
 if x==y:
 print(' the two number are equals')
 elif x > y:
 print(' the first number is the greater')
 else:
 print(' the last number is the greater')

print('now testing : ', x, y)
test(x,y)
for I in range(2,5,1):
 for J in range(5,1,-1):
 print('now testing : ', I,J)
 test(I,J)

Indentation and blocks of code

Python introduction 25/49

Try the two examples in the previous slide writing them on a file and running the file.

Exercise: indentation and blocks of code

Python introduction 26/49

A function is a block of code which only runs when it is called and can be run
repetitively.

Defining a Function:
 Function blocks begin with the keyword def followed by the function name and

parentheses () .
 Any input parameter or argument should be placed within these parentheses.
 The first statement of a function can be an optional statement (the

documentation string of the function or docstring)
 The code block within every function starts with a colon (:) and is indented.
 The statement return [value] exits a function, optionally passing back an

expression to the caller. A return statement with no arguments is the same as
return None.

Syntax:
def function_name(parameters):
 "function_docstring"
 instruction_set
 …..
 return [value]

Functions: defining a function

Python introduction 27/49

Defining a function you specify:
name, parameters and the structure of the block of code.

Given the basic structure of the function, it can executed by calling it from another
function, from a python script or directly from the python prompt.

Example:
#!/usr/bin/python3

Function definition
def print_string(str):
 "This prints a passed string into this function"
 print(str)
 return

Function call
print_string("I'm first call to user defined function!")
print_string("Again second call to the same function")

Functions: calling a function

Python introduction 28/49

You can call a function by using the following types of formal arguments:

Required arguments:

the arguments passed to a function in correct positional order. Here, the number of
arguments in the function call should match exactly with the function definition.

Keyword arguments:

are related to the function calls. When you use keyword arguments in a function call,
the caller identifies the arguments by the parameter name. This allows you to skip
arguments or place them out of order because the Python interpreter is able to use
the keywords provided to match the values with parameters

Default arguments:

are arguments that assume a default value if a value is not provided in the function
call for these arguments

Variable-length arguments:

when a function has to be processed for more arguments than the specified in the
function, the variable-length arguments are used. They are not named in the
function definition, unlike required, and default arguments (next lesson).

Function Arguments

Python introduction 29/49

#!/usr/bin/python3

Function definition is here
def my_print(str):
 "This function prints the passed string"
 print(str)

Now you can call my_print function
my_print()

When the code is executed, the following is the result:

Traceback (most recent call last):
 File "my_print.py", line 11, in <module>
 my_print();
TypeError: my_print() takes exactly 1 argument (0 given)

Example: Required Arguments

Python introduction 30/49

#!/usr/bin/python3

Function definition is here
def print_info(name, age):
 "This prints the info passed as parameter"
 print("Name: ", name)
 print("Age ", age)

Now you can call print_info function
print_info(age=30, name="Silvia")

Example: Keyword Arguments

Python introduction 31/49

#!/usr/bin/python3

Function definition is here
def print_user_info(name, age = 35):
 "This prints a passed info into this function"
 print("Name: ", name)
 print("Age ", age(

Now you can call print_user_info function
print_user_info(age=30, name="Silvia")
print_user_info(name="Silvia")

When the script is executed, the result is:

Name: Silvia
Age 30
Name: Silvia
Age 35

Example: Default Arguments

Python introduction 32/49

All variables in a program may not be accessible at all locations in that program. This
depends on where you have declared a variable.

The scope of a variable determines the portion of the program where you can access a
particular identifier. There are two basic scopes of variables in Python:

 Global variables
 Local variables

Scope of variables

Python introduction 33/49

Variables that are defined inside a function body have a local scope,
those defined outside have a global scope.

This means that local variables can be accessed only inside the function in which they
are declared,
whereas global variables can be accessed throughout the program body by all functions.
When you call a function, the variables declared inside it are brought into scope.

Example (try):
#!/usr/bin/python3

total = 0 # This is global variable.
Function definition is here
def sum(arg1, arg2):
 # Add both the parameters and return them.
 total = arg1 + arg2; # Here total is local variable.
 print("Inside the function local total : ", total)

Now you can call sum function
sum(10, 20);
print("Outside the function global total : ", total)

Global vs. local variables

Output calling the script:

Inside the function local total : 30
Outside the function global total : 0

Python introduction 34/49

Variables that are defined inside a function body have a local scope,
those defined outside have a global scope.

This means that local variables can be accessed only inside the function in which they
are declared,
whereas global variables can be accessed throughout the program body by all functions.
When you call a function, the variables declared inside it are brought into scope.

Example (try):
#!/usr/bin/python3

total = 0 # This is global variable.
Function definition is here
def sum(arg1, arg2):
 # Add both the parameters and return them.
 total = arg1 + arg2; # Here total is local variable.
 print("Inside the function local total : ", total)
 return total

Now you can call sum function
total = sum(10, 20);
print("Outside the function global total : ", total)

Global vs. local variables

Output calling the script:

Inside the function local total : 30
Outside the function global total : 30

Python introduction 35/49

All parameters (arguments) of functions in Python are passed by reference:
if you change what a parameter refers to within a function,
then the change also reflects back in the calling function.

Example:
#!/usr/bin/python3

Function definition is here
def changeme(mylist):
 "This changes a passed list into this function"
 mylist.append([1,2,3,4])
 print("Values inside the function:\n ", mylist)

Now you can call changeme function
mylist = [10,20,30]
changeme(mylist)
print("Values outside the function: \n", mylist)

Pass function arguments by reference vs. value

Output:

Values inside the function:
[10, 20, 30, [1, 2, 3, 4]]

Values outside the function:
[10, 20, 30, [1, 2, 3, 4]]

Python introduction 36/49

#!/usr/bin/python3
Function definition is here
def changelist(mylist):
 "This changes a passed list into this function"
 mylist = [1,2,3,4] # This assigns new reference in mylist
 print("Values inside the function: ", mylist)

Function call
mylist = [10,20,30]
changelist(mylist)
print("Values outside the function: ", mylist)

The parameter mylist is local to the function changelist. Changing mylist within the
function does not affect mylist outside the function.

Output:
Values inside the function: [1, 2, 3, 4]
Values outside the function: [10, 20, 30]

Be careful duplicating variable names

Python introduction 37/49

!/usr/bin/python3
Function definition is here
def changelist(mylist):
 "This changes a passed list into this function"
 mylist = [1,2,3,4] # This assigns new reference in mylist
 print("Values inside the function: ", mylist)
 return mylist

Function call
mylist = [10,20,30]
mylist=changelist(mylist)
print("Values after the function: ", mylist)

The parameter mylist is local to the function changelist. Changing mylist within the
function does not affect mylist outside the function.

Output:
Values inside the function: [1, 2, 3, 4]
Values outside the function: [1, 2, 3, 4]

Be careful duplicating variable names and return

Python introduction 38/49

Modules are file containing Python statements and definitions.

A file containing python code is called a module
If the file is my_lib.py, the module name is my_lib

Modules are useful to break down large programs into small manageable and organized
files.

Modules provide re-usability of code: useful functions can be put in a module and later
imported in another module/script and re-used.

How to import module:
import my_module

How to import module by name:
import my_module as example

How to import a single function by a module:
from my_module import my_function | from my_module import my_function as example

How to import all names in a module:
from my_module import *

Modules

Python introduction 39/49

File (module) my_libs.py:
def add(a, b):
 #This program adds two numbers and return the result
 result = a + b
 return result
def multiply(a,b):
 #This program multiply two numbers and return the result
 result = a * b
 return result

● Import the entire module (my_modules_example_1.py)
import my_libs
print(“add 4 and 5.5. Result:”, my_libs.add(4,5.5))

● Import a single function (my_modules_example_2.py)
from my_libs import multiply
print("Multiply 4 X 5. Result:", multiply(4, 5))

● Import the entire module by name(my_modules_example_3.py)
import my_libs as example
print(“add 4 and 5.5. Result:”, example.add(4,5.5))

Example: module imports

Python introduction 40/49

import os

#namespace of module os
>>> os.curdir
’.’
>>> os.getenv('HOME')
'/home/bertocco'
>>> os.listdir('.')
['my_modules_example_1.py',
 'read_by_line.py',
 '.mozilla',
 '.bash_logout',
…..
]
In [2]: import os

In [3]: os.defpath
Out[3]: ':/bin:/usr/bin'

Example: module os (manage OS dialog operations)

Python introduction 41/49

To import a module, Python looks at several places.
Interpreter first looks for a built-in module then the search is in this order:

● The current directory

● PYTHONPATH (an environment variable with a list of directory. It can be

modified by either applications or user)

● The installation-dependent default directory

Module Search Path

Python introduction 42/49

The Python interpreter imports a module only once during a session.
This makes things more efficient.

If the module is changed during the course of the program, we would have
to reload it. To reload the module you have two ways:

● Restart the interpreter (not much clean).

● Use the function reload() inside the importlib module. Example:
In [29]: import my_libs

In [30]: import importlib

In [31]: importlib.reload(my_libs)
Out[31]: <module 'my_libs' from 'my_libs.pyc'>

How to reload a Module

Python introduction 43/49

Introspection of a language is the ability of the language itself to provide information
of its objects at runtime.

Python has a very good support for introspection.

The interpreter can be used interactively to better know and understand the code.

Following the description of useful python built-in functions for introspection

Introspection

Python introduction 44/49

The dir() function can be used to find out names that are defined inside a module.

For example, we have defined the functions add(a,b) and multiply(a,b) in the module
my_libs. We can find them:
In [32]: dir(my_libs)
Out[32]:
['__builtins__',
 '__doc__',
 '__file__',
 '__name__',
 '__package__',
 'add',
 'multiply']
names that begin with an underscore are default Python attributes associated with
the module (we did not define them ourself).

All the names defined in the current namespace can be found out using the dir()
function without any arguments. Example (try):
dir()

dir()

Python introduction 45/49

The function help is available for each module/object and allows to know the
documentation for each function.
Try (in the interpreter) the commands:
import math
dir()
help(math.acos)
Example:
In [8]: import math
In [9]: dir(math)
Out[9]:
['__doc__',
 '__name__',
 '__package__',
 'acos',
 'acosh',
……….
In [19]: help(math.acos)
Help on built-in function acos in module math:
acos(...)
 acos(x)
 Return the arc cosine (measured in radians) of x.

help()

Python introduction 46/49

The type function allows to know the type of the object passed as argument.

Example:
In [1]: a=5
In [2]: type a
 File "<ipython-input-2-e92615c5fd0c>", line 1
 type a
 ^
SyntaxError: invalid syntax
In [3]: type(a)
Out[3]: int

In [5]: l = [1, "alfa", 0.9, (1, 2, 3)]
In [6]: print([type(i) for i in l])
[<type 'int'>, <type 'str'>, <type 'float'>, <type 'tuple'>]

type()

Python introduction 47/49

Pydoc is a python tool for introspection.
It provides information enclosed in a module in a clear and compact manner.

Pydoc uses the doc string __doc__ and other standard attributes of objects
(__name__, __file__, ...).
$ pydoc os
Help on module os:
NAME
os - OS routines for Mac, DOS, NT, or Posix depending on what system we're on.
FILE
/usr/lib64/python2.4/os.py
DESCRIPTION
This exports:
- all functions from posix, nt, os2, mac, or ce, e.g. unlink, stat, etc.
- os.path is one of the modules posixpath, ntpath, or macpath
- os.name is 'posix', 'nt', 'os2', 'mac', 'ce' or 'riscos'
- os.curdir is a string representing the current directory ('.' or ':')
……………………...

pydoc

Python introduction 48/49

Type in the interpreter: import this

The zen of python

Output: the zen of python
The Zen of Python, by Tim Peters
Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.
Special cases aren't special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.
In the face of ambiguity, refuse the temptation to guess.
There should be one-- and preferably only one --obvious way to do it.
Although that way may not be obvious at first unless you're Dutch.
Now is better than never.
Although never is often better than *right* now.
If the implementation is hard to explain, it's a bad idea.
If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea -- let's do more of those!

Python introduction 49/49

Go to page
https://docs.python.org/2/tutorial/introduction.html
to the paragraph
“Using Python as a Calculator”
practice with the described operators.
Just to practice with the language,
write a module containing a python function executing the operation for each operator,
write your own script importing the module, reading input from command line,
executing the operations using the functions previously coded,
print the operators and the result for each function.

Exercise

https://docs.python.org/2/tutorial/introduction.html

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49

