
Data in Python

S. Bertocco

Python Lecture 2 – Data in python

Data types

Data in Python 2/62

★ Bibliography:
https://www.python.org/doc/
http://docs.python.it/
https://www.w3schools.com/python/
and much more available in internet

★ Learning Materials:
https://github.com/gtaffoni/Learn-Python/tree/master/
Lectures

https://github.com/bertocco/abilita_info_units_2021

Bibliography and learning materials

https://www.python.org/doc/
http://docs.python.it/

Data in Python 3/62

 Python has two families of data types:

Simple data types:

– Int

– Float

– Complex

– Boolean

– String

Data types

 Container data types:

– list []

– tuple ()

– dict {}

– set

– frozenset

Data in Python 4/62

Simple Data Types
 – Int

 – Float

 – Complex

 – Boolean

 – String

Data in Python 5/62

• Integer
• Float
• Complex

Numeric types

In python there are 3 numeric types:

In general, an n-bit integer has values ranging
 from -2^(n-1) to 2^(n-1) – 1

information about integer dimension:
>>> sys.maxsize
9223372036854775807

information about the internal representation of floating point
>>> sys.float_info
sys.float_info(max=1.7976931348623157e+308, max_exp=1024,
max_10_exp=308, min=2.2250738585072014e-308, min_exp=-1021,
min_10_exp=-307, dig=15, mant_dig=53,
 epsilon=2.220446049250313e-16, radix=2, rounds=1)

Data in Python 6/62

Numeric types: Examples

int type can be:
 in base 2 (using the prefix 0b) bin(19)
 in base 10,
 in base 16 (using the prefix 0x) hex(300)
 in base 8 (using the prefix 0) oct(300)

>>> a=300
>>> oct(a)
'0454'
>>> hex(a)
'0x12c'
>>> bin(a)
'0b100101100'
>>> bin(19)
'0b10011'

Data in Python 7/62

float are real number in double precision.

Examples:
>>> a = 12.456
>>> c = 12232e-2
>>> b = .2
>>> a=6.12244e-5
>>> type(a)
<class 'float'>

Be careful using int and float:

What happens doing...

100/3 division int/int
100//3 floor division int/int (gets the integer part)
100.0/3 division float/int
100.0//3 floor division float/int
100%3 remainder of the division int/int

divmod(100,3) The divmod() method takes two numbers and returns a pair of
 numbers (a tuple) consisting of their quotient and remainder.

Numeric types

Note: floor (troncamento) function is the
function that takes as input a real number x
and gives as output the greatest integer less
than or equal to x.
floor: 2.1 → 2 -0.1 → -1

The ceiling (arrotondamento) function maps x
to the least integer greater than or equal to x
ceiling: -0.99 → 0 2.1 → 3

Data in Python 8/62

Complex Number represents a complex number in double precision.
The real and the imaginary parts can be accessed using the functions
‘real’ and ‘imag’.

Example:

>>> r=12+5j # ‘j’ symbol means the imaginary part
>> r=10+5j
>>> type(r)
<class 'complex'>

>>> r.real
12.0
>>> r.imag
5.0
>>> type(r.real)
<type 'float'>
>>> type(r.imag)
<type 'float'>

Numeric types

Data in Python 9/62

In Python operations on numeric types are managed by the following operators:
• Arithmetic operators
• Comparison operators
• logical operators
• bitwise (bit a bit) operators
• membership operators
• identity operators

Some built-in functions working on numeric data:
- abs(number) returns the absolute value of a number
- pow(x, y[, z]) returns the value of x to the power of y (xy). If a third parameter is
present, it returns x to the power of y, modulus z.
- round(number[, ndigits]) returns a floating point number that is a rounded version of
the specified number, with the specified number of decimals.

Executing operations between different numeric type variables,
the implicit conversion rule is:

 Int Float Complex

Operations on numeric types

Data in Python 10/62

a=10 b=21

/ Floor Division

Arithmetic operators

Operator Description Example

+ Addition Adds values on either side of the operator. a+b=31

- Subtraction Subtracts right hand operand from left hand
operand.

a-b=-11

* Multiplication Multiplies values on either side of the operator a*b=210

/ Division Divides left hand operand by right hand operand b/a=2.1

% Modulus Divides left hand operand by right hand operand
and returns remainder b%a=1

** Exponent Performs exponential (power) calculation on
operators

a**b=1020

// Floor division The division of operands where the result is the
quotient in which the digits after the decimal point
are removed. But if one of the operands is negative,
the result is floored, i.e., rounded away from zero
(towards negative infinity)

9//2 = 4
9.0//2.0 = 4.0,
-11//3 = -4,
-11.0//3 = -4.0

https://www.tutorialspoint.com/python3/python_basic_operators.htm

Data in Python 11/62

a=10 b=20

Comparison operators

Operator Description Example

== If the values of two operands are equal, then the
condition becomes true.

(a == b) is not
true

!= If values of two operands are not equal, then
condition becomes true.

(a!= b) is true

> If the value of left operand is greater than the value
of right operand, then condition becomes true.

(a > b) is not
true

< If the value of left operand is less than the value of
right operand, then condition becomes true.

(a < b) is true

>= If the value of left operand is greater than or equal
to the value of right operand, then condition
becomes true.

(a >= b) is not
true

<= If the value of left operand is less than or equal to
the value of right operand, then condition becomes
true.

(a <= b) is
true

(a > b) is not true

https://www.tutorialspoint.com/python3/python_basic_operators.htm

Data in Python 12/62

Bitwise operator performs bit-by-bit operation.
Examples:

a = 60 and b = 13 in binary format they will be
a = 0011 1100
b = 0000 1101

a&b = 0000 1100 a and b

a|b = 0011 1101 a or b (o uno o l’altro o entrambi)

a^b = 0011 0001 a xor b (o uno o l’altro, non entrambi)

~a = 1100 0011 complement (1→0 and 0->1)

a << 2 = 1111 0000 left shift
a >> 2 = 0000 1111 right shift

Python's built-in function bin() can be used to obtain binary representation of an
integer number.

Bitwise Operators

https://www.tutorialspoint.com/python3/python_basic_operators.htm

Data in Python 13/62

Bitwise Operators

https://www.tutorialspoint.com/python3/python_basic_operators.htm

Data in Python 14/62

Logical Operators

a = True
b = False

Data in Python 15/62

Membership Operators

https://www.tutorialspoint.com/python3/python_basic_operators.htm

Data in Python 16/62

Identity Operators

https://www.tutorialspoint.com/python3/python_basic_operators.htm

Data in Python 17/62

>>> k=5
>>> s=5+1j # imaginary part cannot be only j
>>> type(s+k) # imaginary number conversion
<type 'complex'>

>>> 4 and 2 # logical comparison
2

>>> 4 & 2 # bitwise comparison between the binaries 100 and 010
0

>>> 4 | 2 # bitwise comparison between the binaries 100 and 010
6

 Examples: Operations on numeric types

Data in Python 18/62

The math module provides some of the more commons mathematical
operations.
It does not work with complex numbers.
cmath module works for complex numbers.

The available functions are:
• Trigonometric functions: cos, sin, tan, asin, acos, atan, sinh, cosh, tanh.
• Exponentiaiton and logarithmic functions: pow, exp, log, log10, sqrt
• Angles representation and conversions: degrees, radians, ceil , floor, fabs

In the math module are defined the numerical constants pi and e
>>> import math
>>> math.pi
3.141592653589793
>>> math.e
2.718281828459045

Operations on numeric types: math module

Data in Python 19/62

Booleans True and False are available in Python.
bool is a subclass of int
True corresponds to 1
False corresponds to 0

Integer values can be used to reprsent boolean values with the following convention:
0 corresponds to False
all integer values greater than zero correspond to True

It is good practice to use the bool type to represent boolean values.

Example:
>>> a=1
>>> type(a)
<type 'int'>
>>> if(a):
print('True')
True
>>> a=False
>>> type(a)
<type 'bool'>

Bool type

Data in Python 20/62

Literal strings are character sequences enclosed in quotes, single or double.
Creating strings is as simple as assigning a value to a variable.

Sequences of triple ‘double quotes’ or triple ‘single quotes’ can be used to assign
strings spanning in more than one row or containing single or double quotes of the
other type.

Example 1:

>>> a="""I am a string spanning in 3 rows,
... containing 'sigle quotes',
... containing "double quotes",
... containing '''triple quotes'''
... """
>>> print(a)
I am a string spanning in 3 rows,
containing 'sigle quotes',
containing "double quotes",
containing '''triple quotes'''

String type

Example 2:

>>> b='''I am a string spanning in 3
rows,
... containing 'sigle quotes',
... containing "double quotes",
... containing """triple quotes"""
... '''
>>> print(b)
I am a string spanning in 3 rows,
containing 'sigle quotes',
containing "double quotes",
containing """triple quotes"""

Data in Python 21/62

● We can create strings by enclosing characters in quotes (single or double).
Creating strings is as simple as assigning a value to a variable.

Example:
var1 = 'Hello World!'
var2 = "Python Programming"

● To access substrings, use the square brackets for slicing along with the index or
indices to obtain your substring.

Example:
#!/usr/bin/python3
var1 = 'Hello World!'
var2 = "Python Programming"

print ("var1[0]: ", var1[0])
print ("var2[1:5]: ", var2[1:5])

String type

Output:

var1[0]: H
var2[1:5]: ytho

Data in Python 22/62

● The type char does not exists. A single char can be accesed using the operator []
or slicing the string with the operator [begin:end] (slicing)

Example:
>>> a = “Hello world”
>>> a[1]
‘e’
>>> a[1:2]
‘e’

● The single char can not be accessed, but a new value can be assigned to the
string

Example:
>>> a=‘Primo valore’
>>> a = “Prima valore” # Ok string re-assignment
>>> a[4] = ‘o’ #Errore # NOT Ok single character assignment
 File "<stdin>", line 1
 a[4] = ‘o’
 ^
SyntaxError: invalid syntax

String type

Data in Python 23/62

● The operators + and * can be used for string operations.
Operators priority is maintained.

Example
>>> a = ‘Hello’
>>> a+a+a # Concatenation
‘HelloHelloHello’

>>> a = ‘He’+’l’*2+’o World’ # Multiple concatenation
>>> a
‘Hello World’

● It exists also the possibility to insert wherever in the string using the operator %

Example
name = "Peter"
my_string = "Hello %s" % name # Append or insert
my_string = "Hello %s, how are you? %s" % (name, 'ok') # Insert multiple values

String type: operators

Data in Python 24/62

String type: operators

Data in Python 25/62

Escaping allows to add special characters inside a string.

Example
>>> a = ‘What’s your name?’ #Errore
SyntaxError: invalid syntax
>>> a = “What’s your name?” # Ok if I create the string with double quotes
>>> a = ‘What\’s your name?’ # Ok if you escape the single quote character

Most common escape characters in string manipulation:
• \t Tab ‘Ciao\tciao!’ Ciao ciao!
• \n New Line ‘Ciao\nciao!’ Ciao
 ciao!
• \\ Backslash ‘c:\\Programmi\\pp’ c:\Programmi\pp
• \” Double quote ‘Repeat: \”Hello\”’ Repeat: ”Hello”
• \’ Single quote “Repeat:\’Hello\’” Repeat: ‘Hello’

String type: escape characters

Data in Python 26/62

Row string is a string preceded by r or R in front of it.
In a row string a character preceded by \ is included without changes.

Esempio
>>> a = r’Hello \t World’
#Raw string
>>> a
‘Hello \t World’

String type: row string

Data in Python 27/62

Python allows output formatting.
The % charactes has a special meaning when used in strings, because it is used to
format output.

String type: format output

The general syntax for a format
placeholder is:

%[flags][width][.precision]type

Format output:
https://www.python-course.eu/python3_formatted_output.php

https://www.tutorialspoint.com/python3/python_strings.htm

https://www.python-course.eu/python3_formatted_output.php

Data in Python 28/62

Ther are a lot of possibility to format output.

Examples:
%d or %i Integer
%s, String
%f, Floating point decimal format
%c, Single character (accepts integer or single character string)
%x, Unsigned hexadecimal (lowercase)
%o, Unsigned octal
%%, No argument is converted, results in a "%" character in the result
%e, Floating point exponential format (lowercase)

Format output: https://www.python-course.eu/python3_formatted_output.php
 https://www.tutorialspoint.com/python3/python_strings.htm

String type: format output

https://www.python-course.eu/python3_formatted_output.php

Data in Python 29/62

Example
>>> ”Oggi è %s %d %s” % (“Venerdì’’,20,”Febbraio”)
Oggi è Venerdì 20 Febbraio

Already seen example:
name = "Peter"
my_string = "Hello %s" % name # Append and Insert
my_string = "Hello %s, how are you? %s" % (name, 'ok') # Insert multiple values
print(my_string)

With dictionaries:
person = {"name": "John", "age": 19}
print(f"{person['name']} is {person['age']} years old.")

f-string
full Python expressions inside the braces.

String type: format output

Data in Python 30/62

Strings, as all the python objects, have a set of functionalities accessible with built-in
Python functions (i.e. functions always available in the python interpreter).

• Manipulate: concat, split, characters deletion and unions.

-split([sep [,maxsplit]])
-replace (old, new[, count])
-strip([chars])

Example
Split:
>>> s='Ciao Mondo'
>>> s.split('o',1)
['Cia', ' Mondo‘]
Replace:
>>> s.replace('o','i',1)
'Ciai Mondo‘
Strip:
>>> s.strip('C')
'iao Mondo '

String type: built-in functions

Data in Python 31/62

Formattazione: align, upper case, lower case

-upper() e lower() e swapcase()

-center(width[, fillchar]) e ljust(width[, fillchar]) e rjust(width[,fillchar])

Example
>>> s = ‘Hello’

>>> s.center(10,’.’)
‘..Hello...’

>>> s.upper()
‘HELLO’

String type: format built-in functions

Data in Python 32/62

- find(sub [,start [,end]])
- rindex(sub [,start [,end]]) returns the highest index of the substring inside the string
 (if found). If the substring is not found, it raises an
 exception.
- index(sub [,start [,end]])

- rfind(sub [,start [,end]]) returns the highest index of the substring (if found). If not
found, it returns -1.

- count(sub[, start[, end]])
- isupper() returns whether or not all characters in a string are
 uppercased or not.
- islower() returns whether or not all characters in a string are
 lowercased or not.
- startswith(prefix[, start[, end]])
- endswith(prefix[, start[, end]])

String type: search built-in functions

Data in Python 33/62

Container Data Types

 – list []

 – tuple ()

 – dict {}

 – set

 – frozenset

Data in Python 34/62

list[]

A list is initialized putting elements comma separated inside squared brackets.
● Items in a list can be of different type, both built-in and user defined.
● Indexes in a list start from zero.
● A list can be instantiated without specifying the list length or data type.

Single list elements can be accessed with the operator []

Example:
>>>l=[] # empty list instance
>>> print(l)
[]
>>>m=[‘Lista’,’di’,4,’elementi’] # initialize a list
>>>print m[2],m[0] # access single list elements
>>>4 Lista

A list is an ordered sequence list, so the list items order is maintained.

Data in Python 35/62

list[] : Basic List Operations

Lists respond to the operators
+ concatenation
* repetition
like strings, except that the result is a new list, not a string.

In fact, lists respond to all of the general sequence operations we saw on strings.

Python Expression Results Description

len([1, 2, 3]) 3 Length

[1, 2, 3] + [4, 5, 6] [1, 2, 3, 4, 5, 6] Concatenation

['Hi!'] * 4 ['Hi!', 'Hi!', 'Hi!', 'Hi!'] Repetition

3 in [1, 2, 3] True Membership

for x in [1, 2, 3]: print x, 1 2 3 Iteration

Data in Python 36/62

list[] : slicing operator

List support the slicing operator [start:stop:step]

L = ['spam', 'Spam', 'SPAM!']
L[2] SPAM! # Offsets start at zero
L[-2] Spam # Negative: count from the right
L[1:] ['Spam', 'SPAM!'] # Slicing fetches sections

Example:
>>>a=[0,1,2,3,4,5,6,7]
>>>a[0:6]
[0,1,2,3,4,5]
>>>a[1:6:2]
[1,3,5]
>>>a[1::2] # no ‘stop’ means until the end of list
[1,3,5,7]
>>>a[::2] # no ‘start’ means from the first item of the list
[0,2,4,6]
Slicing can be also negative
>>>a[6:0:-2] # starts fom index 6, ends to index 0 going back with step 2
[6,4,2]

Data in Python 37/62

list[] : range() built-in function

The range() function is used to generate lists of integer numbers.

Syntax:
range(start,stop,step) generates a list of integer from ‘start’ to ‘stop’ with interval ‘step’

Example
>>>a=range(3)
[0,1,2]

>>>type(a)
<type 'list'>

>>>a=range(1,10)
[0,1,2,3,4,5,6,7,8,9]

>>>a=range(1,10,2)
[1,3,5,7,9]

Data in Python 38/62

list[] : Complex Operations

Lists supports complex operations.

Examples:
>>> a=range(10)
>>> b=[el*2 for el in a]
>>> b
[0, 2, 4, 6, 8, 10, 12, 14, 16, 18]

>>> l=[1,2]
>>> l2=['a','b']
>>> l3=[4,5]
>>> f=[(e1,e2,e3) for e1 in l for e2 in l2 for e3 in l3]
>>> f
[(1, 'a', 4), (1, 'a', 5), (1, 'b', 4), (1, 'b', 5), (2, 'a', 4), (2, 'a', 5), (2, 'b', 4), (2, 'b', 5)]

This can be done also with:
>>> for e1 in l:
 for e2 in l2:
 for e3 in l3:
 f.append((e1,e2,e3))

Data in Python 39/62

list[] : main functions

Function Description

cmp(list1, list2) Compare elements of lists

len(list) Gives the total length of the list

max(list) Returns item from the list with max value

min(list) Returns item from the list with min value

list(seq) Converts a tuple into list

Syntax : cmp(list1, list2)

Parameters :
list1 : The first argument list to be compared.
list2 : The second argument list to be compared.

Returns : This function returns 1, if first list is “greater” than second list, -1 if first list is
smaller than the second list else it returns 0 if both the lists are equal.

Data in Python 40/62

list[] : main methods

List containers can be modified.
List objects contain built-in methods to modify members of a list.

Method Description

list.append(object) Appends object to list

list.insert(index, object) Inserts object obj into list at offset index

list.extend(seq) Appends the contents of seq to list

list.pop(index) Removes and returns last object or obj at index from
list

list.remove(obj) Removes object obj from list

list.count(value) Returns count of how many times value occurs in list

list.index(obj) Returns the lowest index in list where obj appears

list.reverse() Reverses objects of list in place

list.sort([func]) Sorts objects of list, use compare func if given

Data in Python 41/62

list[] : main methods exercises

Practice with the list methods proposed in the previous slide

Data in Python 42/62

list[] : about efficiency

The operators concatenation + (or +=) and repetition * are supported by lists.
The operator + and the function extend() have the same functionality, but different
execution time (efficiency)

Example:
import time
l=range(100000000)
v=range(1000000)
T1=time.clock()
s=l+v
T2=time.clock()
print(‘ + execution time: :’ , T2-T1, ‘s’)
, “s”
T3=time.clock()
l.extend(v)
T4=time.clock()
print(‘extend execution time:’, T4-T3 , ‘s’)
Output:
 + execution time: 2.81 s
 extend execution time: 0.033 s

Data in Python 43/62

list[] for queue and stack

List can be easily used as stack or queue.
pop and append methods can be used to implement the LIFO logic typical of stacks.
pop with index 0 and append can be used to implement the FIFO logic typical of queue.

Example:
stack=[1, 2, 3, 4]
print(‘Initial Stack : ’, stack)
for i in range(5,7):
 stack.append(i)
print (“Append: “, stack)
stack.pop()
print (“Pop: ” , stack)

queue=[‘a’,’b’,’c’,’d’]
print(“Initial Queue : ”, queue)
queue.append(‘e’)
queue.append(‘f’)
print(“Append : ”, queue)
queue.pop(0)
print(“Pop : ”, queue)

Output:
Initial Stack : [1, 2, 3, 4]
Append: [1, 2, 3, 4, 5, 6]
Pop: [1, 2, 3, 4, 5]
Initial Queue : ['a', 'b', 'c', 'd']
Append: ['a', 'b', 'c', 'd', 'e', 'f']
Pop: ['b', 'c', 'd', 'e', 'f']

Data in Python 44/62

tuple()

A tuple is a sequence ordered data enclosed between ().
Tuples are sequences, just like lists. The differences between tuples and lists are,

● the tuples cannot be changed unlike lists, tuple are immutable.
● tuples use parentheses, whereas lists use square brackets.

A tuple is created putting in it different comma-separated values. Optionally, can be put
these comma-separated values between parentheses also.
Example:
tup1 = "a", "b", "c", "d";
tup2 = ('physics', 'chemistry', 1997, 2000); # Data in a tuple can be heterogeneous
tup3 = (1, 2, 3, 4, 5);

The empty tuple is written as two parentheses containing nothing. Example:
tup1 = ();

A tuple containing a single value must be written including a comma. Example:
tup1 = (50,);

Tuple indices start at 0, like string indices.

Data in Python 45/62

tuple() : Accessing Values in Tuples

To access values in tuple, use the square brackets for access the single element.
slicing [start:end] is also available to obtain value available at that index.
Example
tup1 = ('physics', 'chemistry', 1997, 2000)
tup2 = (1, 2, 3, 4, 5, 6, 7)
print("tup1[0]: ", tup1[0]) # access to single element
print("tup2[1:5]: ", tup2[1:5]) # access to slice
Output:
tup1[0]: physics
tup2[1:5]: [2, 3, 4, 5]

● tuple are immutable, so does NOT contain methods to:
– eliminate elements
– insert elements

● 'tuple' object does not support item assignment
 Example:
 >>>t1=(1,2,3,4,’ciao’,’mondo’,[2,3])
 >>>t1[3]=‘jkjk’

Traceback (most recent call last):
 File "<pyshell#26>", line 1, in
<module>
 t1[1]=3
 TypeError: 'tuple' object does not
support item assignment

Output:

Data in Python 46/62

tuple() : Delete

Removing individual tuple elements is not possible.
It can be created a new tuple with the undesired elements discarded.

To explicitly remove an entire tuple, just use the del statement.

Example
tup = ('physics', 'chemistry', 1997, 2000)
print tup
del tup
print("After deleting tup : ")
print(tup)
This produces an exception raised, because after del tup tuple does not exist any more
Output:
('physics', 'chemistry', 1997, 2000)
After deleting tup :
Traceback (most recent call last):
 File "test.py", line 9, in <module>
 print tup;
NameError: name 'tup' is not defined

Data in Python 47/62

tuple() : basic operations

Tuples respond to the + and * operators much like strings;
+ means concatenation
* means repetition
the result is a new tuple, not a string.

Tuples respond to all of the general sequence operations availble on strings:

Python Expression
Results Description

len((1, 2, 3)) 3 Length

(1, 2, 3) + (4, 5, 6) (1, 2, 3, 4, 5, 6) Concatenation

('Hi!',) * 4 ('Hi!', 'Hi!', 'Hi!', 'Hi!') Repetition

3 in (1, 2, 3) True Membership

for x in (1, 2, 3): print x, 1 2 3 Iteration

Data in Python 48/62

tuple() : Built-in Tuple Functions

Function Description

cmp(tuple1, tuple2) Compares elements of both tuples

len(tuple) Gives the total length of the tuple

max(tuple) Returns item from the tuple with max value

min(tuple) Returns item from the tuple with min value

tuple(seq) Converts a list into tuple

Data in Python 49/62

dict{}

Python dictionary is an unordered collection of items.

Elements in a dictionary are key:value pairs.
● values can be of any data type and can repeat,
● keys must be of immutable type (string, number or tuple with immutable elements)

and must be unique. Keys are case-sensitive

Each element in a dictionary is identified by the key.
Dictionaries are optimized to retrieve values when the key is known.

Example how to create a dictionary:
>>>d={ } # empty dictionary
>>>d={1: ’Hello’, ‘due’: ’World’} # dictionary with two elements
>>>d[1] # access to a dictionary element
‘hello’

Data in Python 50/62

dict{} : Creation examples

empty dictionary
my_dict = {}

dictionary with integer keys
my_dict = {1: 'apple', 2: 'ball'}

dictionary with mixed keys
my_dict = {'name': 'John', 1: [2, 4, 3]}

using dict()
my_dict = dict({1:'apple', 2:'ball'})

from sequence having each item as a pair
my_dict = dict([(1,'apple'), (2,'ball')])

Data in Python 51/62

dict{} : Access elements
In the other container types indexing is used to access values,
Dictionary uses keys to access values.
Key can be used either inside square brackets or with the get() method.

get() returns None if the key is not found.
[] returns KeyError if the key is not found.

Example:
my_dict = {'name':'Jack', 'age': 26}

print(my_dict['name']) # Output: Jack

print(my_dict.get('age')) # Output: 26

Trying to access keys which doesn't exist throws error (try)
my_dict.get('address')
my_dict['address']

● keys() and values() functions return respectively the keys and the values present in
a dictionary.

Data in Python 52/62

dict{} : change or add elements in a dictionary

Dictionary are mutable. We can add new items or change the value of existing items
using assignment operator.

If the key is already present, value gets updated,
else a new key: value pair is added to the dictionary.

Example:
my_dict = {'name':'Jack', 'age': 26}

update value
my_dict['age'] = 27

#Output: {'age': 27, 'name': 'Jack'}
print(my_dict)

add item
my_dict['address'] = 'Downtown'

Output: {'address': 'Downtown', 'age': 27, 'name': 'Jack'}
print(my_dict)

Data in Python 53/62

dict{}: delete or remove elements

We can remove a particular item in a dictionary by using the method pop(). This
method removes as item with the provided key and returns the value.

The method, popitem() can be used to remove and return an arbitrary item (key, value)
form the dictionary.

All the items can be removed at once using the clear() method.

del keyword can be used to remove individual items or the entire dictionary itself.

Data in Python 54/62

dict{}: delete or remove elements examples

create a dictionary
squares = {1:1, 2:4, 3:9, 4:16, 5:25}

remove a particular item
print(squares.pop(4)) # Output: 16
print(squares) # Output: {1: 1, 2: 4, 3: 9, 5: 25}

remove an arbitrary item
print(squares.popitem()) # Output: (1, 1)
print(squares) # Output: {2: 4, 3: 9, 5: 25}

delete a particular item
del squares[5]
print(squares) # Output: {2: 4, 3: 9}

remove all items
squares.clear()
print(squares) # Output: {}

delete the dictionary itself
del squares

print(squares) # Throws Error

Data in Python 55/62

dict{}: built-in functions

Example:
squares = {1: 1, 3: 9, 5: 25, 7: 49, 9: 81}

print(len(squares)) # Output: 5
print(sorted(squares)) # Output: [1, 3, 5, 7, 9]

Exercise: Practice with these functions

Function Description
all() Return True if all keys of the dictionary are true (or if the dictionary is

empty).

any() Return True if any key of the dictionary is true. If the dictionary is
empty, return False.

len()
Return the length (the number of items) in the dictionary.

cmp() Compares items of two dictionaries.

sorted() Return a new sorted list of keys in the dictionary.

Data in Python 56/62

dict{}: built-in methods
Method Description

clear() Remove all items form the dictionary.

copy() Return a shallow copy of the dictionary.

fromkeys(seq[, v]) Return a new dictionary with keys from seq and value equal to v
(defaults to None).

get(key[,d]) Compares items of two dictionaries.

items() Return a new sorted list of keys in the dictionary.

keys() Return a new view of the dictionary's keys.

pop(key[,d]) Remove the item with key and return its value or d if key is not
found. If d is not provided and key is not found, raises KeyError.

popitem() Remove and return an arbitary item (key, value). Raises
KeyError if the dictionary is empty.

setdefault(key[,d]) If key is in the dictionary, return its value. If not, insert key with a
value of d and return d (defaults to None).

update([other]) Update the dictionary with the key/value pairs from other,
overwriting existing keys.

values() Return a new view of the dictionary's values

has_key(k) Return True or Falese if key is in the dictionary

Data in Python 57/62

dict{}: Built-in methods example

marks = {}.fromkeys(['Math','English','Science'], 0)

print(marks) # Output: {'English': 0, 'Math': 0, 'Science': 0}

for item in marks.items():
 print(item)
list(sorted(marks.keys())) # Output: ['English', 'Math', 'Science']

Data in Python 58/62

dict{}: Other operations

Iterating Through a Dictionary
Using a for loop we can iterate though each key in a dictionary.

Example:
squares = {1: 1, 3: 9, 5: 25, 7: 49, 9: 81}
for i in squares:
 print(squares[i])

Dictionary Membership Test
We can test if a key is in a dictionary or not using the keyword in. Notice that
membership test is for keys only, not for values.

Example:
squares = {1: 1, 3: 9, 5: 25, 7: 49, 9: 81}

print(1 in squares) # Output: True
print(2 not in squares) # Output: True

membership tests for key only not value
print(49 in squares) # Output: False

Data in Python 59/62

dict{}: Python dictionary comprehension

Dictionary comprehension is an elegant and concise way to create new
dictionary from an iterable in Python.

Dictionary comprehension consists of an expression pair (key: value)
followed by for statement inside curly braces {}.

Example to make a dictionary with each item being a pair of a number and
its square.
squares = {x: x*x for x in range(6)}
print(squares) # Output: {0: 0, 1: 1, 2: 4, 3: 9, 4: 16, 5: 25}
Equivalent to:
odd_squares = {x: x*x for x in range(11) if x%2 == 1}
print(odd_squares) # Output: {1: 1, 3: 9, 5: 25, 7: 49, 9: 81}
A dictionary comprehension can optionally contain more for or if statements.
An optional if statement can filter out items to form the new dictionary.
Example to make dictionary with only odd items.
odd_squares = {x: x*x for x in range(11) if x%2 == 1}
print(odd_squares) # Output: {1: 1, 3: 9, 5: 25, 7: 49, 9: 81}

Data in Python 60/62

set - fronzenset

Python has two structures to represent sets of elements:
● set is a mutable, unordered collection of etherogeneous objects
● frozenset is an immutable, unordered collection of etherogeneous objects. It is a

freezed set
In both cases, elements are unique.

Example:
>>>s=set((‘ciao’,1,’Mondo’))
>>>fs=frozenset((‘ciao’,2))

● Sets provide methods to modify the data set:

– insert with add(obj)

– modify with update(obj)
Example:
>>>s=set(('abc','def',1,2,3,'ghi'))
>>>s.add(4)
>>>s.update((‘lmn’,5))
>>>s
set([1, 2, 3, 4, 5, 'abc', 'lmn', 'ghi', 'def'])

Data in Python 61/62

set - frozenset

● Removal

– discard(x)

– remove(x)

– clear()

– pop()

ExampleExample::
>>> s=set([2, 3, 'abc', 'ghi', 'def'])
>>> s
set([2, 3, 'abc', 'def', 'ghi'])
>>> s.remove(3)
>>> s.discard(2)
>>> s.pop()
'abc'
>>> s.clear(); s
set([])

Data in Python 62/62

set - frozenset
● Both containers contain methods to manage operations :

– union,
– intersection,
– difference,
– issubset,
– issuperset

Example:
>>>s=set((1,2))
>>>s2=frozenset((2,3,4))
>>>s3=s.union(s2)
>>>s4=s.difference(s2)
>>>s5=s2.intersection(s)
>>>s.issubset(s2)
False
>>>print(’s3’, s3 , ’s4’, s4, ’s5’, s5)
s3
s3 {1, 2, 3, 4} s4 {1} s5 frozenset({2})
In both cases data can be of different types.
 => frozenset are immutable, so they can be used to index dictionaries

In both cases data can be of different types.
=> frozenset are immutable, so they can be used to index dictionaries

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62

