® Data types

066 S. Bertocco

Bibliography and learning materials

% Bibliography:
nttps://www.python.org/doc/
nttp://docs.python.it/
nttps://www.w3schools.com/python/
and much more available in internet

* Learning Materials:
nttps://github.com/gtaffoni/Learn-Python/tree/master/
_ectures

nttps://github.com/bertocco/abilita_info _units 2021

@ ®S 0O
&/ sv Nc sh | Data in Python 2/62

https://www.python.org/doc/
http://docs.python.it/

Data types

Python has two families of data types:

Simple data types: Container data types:
— Int — list []

— Float — tuple ()

— Complex — dict {}

— Boolean — set

— String — frozenset

@ ®SO
&/ sv Nc sh | Data in Python 3/62

Simple Data Types

— Int

— Float

— Complex

— Boolean

— String

Numeric types

In python there are 3 numeric types: . |nteger

* Float
« Complex

In general, an n-bit integer has values ranging
from -2*(n-1) to 2*(n-1) — 1

information about integer dimension:
>>> gys.maxsize
9223372036854 775807

information about the internal representation of floating point
>>> gys.float_info
sys.float_info(max=1.7976931348623157e+308, max_exp=1024,
max_10_exp=308, min=2.2250738585072014e-308, min_exp=-1021,
min_10_exp=-307, dig=15, mant_dig=53,

S epsilon=2.220446049250313e-16, radix=2, rounds=1)

@‘m Data in Python 5/62

int type can be:
in base 2 (using the prefix Ob)
in base 10,
in base 16 (using the prefix 0x)
in base 8 (using the prefix 0)

>>> a=300
>>> oct(a)
'0454'

>>> hex(a)
'0x12c¢'

>>> bin(a)
'0b100101100°
>>> bin(19)
'0b10011"

D R

bin(19)

hex(300)
oct(300)

Numeric types

float are real number in double precision.

Examples:

>>> g = 12.456

>>> ¢ = 12232e-2 Note: floor (troncamento) function is the
>>>p =2

function that takes as input a real number x
and gives as output the greatest integer less
than or equal to x.

floor: 21— 2 -0.1 — -1

>>> g=6.12244e-5
>>> type(a)
<class 'float'>

Be careful using int and float: N
The ceiling (arrotondamento) function maps x

What happens doing... to the least integer greater than or equal to x
100/3 division ingint ~ ¢&Ing: 099 =0 21—3

100//3 floor division int/int (gets the integer part)

100.0/3 division float/int

100.0//3 floor division float/int

100%3 remainder of the division int/int

divmod(100,3) The divmod() method takes two numbers and returns a pair of

numbers (a tuple) consisting of their quotient and remainder.

@ ®SO
&/ sv Nc sh | Data in Python 7/62

Complex Number represents a complex number in double precision.
The real and the imaginary parts can be accessed using the functions
‘real’ and ‘imag’.

Example:

>>> r=12+5j

>> r=10+5j

>>> type(r)
<class 'complex'>

>>> r.real

12.0

>>> r.imag

5.0

>>> type(r.real)
<type 'float">
>>> type(r.imag)
<type 'float">

®S0

‘j’ symbol means the imaginary part

Operations on numeric types

In Python operations on numeric types are managed by the following operators:
 Arithmetic operators

« Comparison operators

* logical operators

* bitwise (bit a bit) operators

* membership operators

* identity operators

Some built-in functions working on numeric data:

- abs(number) returns the absolute value of a number

- pow(x, Y[, z]) returns the value of x to the power of y (x’). If a third parameter is
present, it returns x to the power of y, modulus z.

- round(number], ndigits]) returns a floating point number that is a rounded version of
the specified number, with the specified number of decimals.

Executing operations between different numeric type variables,
the implicit conversion rule is:

Int —» Float —» Complex

@ ®SO
&/ By NC sA | Data in Python 9/62

Arithmetic operators

a=10 b=21
Operator Description Example
+ Addition Adds values on either side of the operator. a+b=31
- Subtraction Subtracts right hand operand from left hand a-b=-11
operand.
* Multiplication Multiplies values on either side of the operator a*b=210
/ Division Divides left hand operand by right hand operand b/a=2.1
% Modulus Divides left hand operand by right hand operand _
. b%a=1
and returns remainder
** Exponent Performs exponential (power) calculation on a**b=10%
operators
// Floor division The division of operands where the result is the 9//2 =4
quotient in which the digits after the decimal point 9.0//2.0 = 4.0,
are removed. But if one of the operands is negative, -11//3 = -4,
the result is floored, i.e., rounded away from zero -11.0//3=-4.0
(towards negative infinity)
DO https://www.tutorialspoint.com/python3/python_basic_operators.htm
focm Data in Python 10/62

Comparison operators

a=10 b=20

Operator

Description

If the values of two operands are equal, then the
condition becomes true.

If values of two operands are not equal, then
condition becomes true.

If the value of left operand is greater than the value
of right operand, then conédition becomes true.

If the value of left operand is less than the value of
right operand, then condition becomes true.

If the value of left operand is greater than or equal
to the value of right operand, then condition
becomes true.

If the value of left operand is less than or equal to
the value of right operand, then condition becomes
true.

Example

(a ==Db) is not
true

(al=Db) is true

(a>Db) is not
true

(a<Db)istrue

(a >=Db) is not
true

(a<=Dh)is
true

https://www.tutorialspoint.com/python3/python_basic_operators.htm

Data in Python

11/62

Bitwise Operators

Bitwise operator performs bit-by-bit operation.
Examples:

a =60 and b =13 in binary format they will be

a= 00111100

b= 0000 1101

a&b = 00001100 aandb

alb= 0011 1101 aorb (o uno o l'altro o entrambi)
a’b = 0011 0001 axorb (o uno o l'altro, non entrambi)

~a= 11000011 complement (1—0 and 0->1)

a << 2=1111 0000 left shift
a >> 2 = 0000 1111 right shift

Python's built-in function bin() can be used to obtain binary representation of an

in r number. . . .
teger numbe https://www.tutorialspoint.com/python3/python_basic_operators.htm

@ ®OO
&/ v NC sa | Data in Python 12/62

Operator

& Binary AND

| Binary OR

A Binary XOR

~ Binary Ones
Complement

<< Binary Left
Shift

>> Binary Right
Shift

Description

Operator copies a bit, to the result, if it
exists in both operands

It copies a bit, if it exists in either operand.

It copies the bit, if it is set in one operand
but not both.

It is unary and has the effect of 'flipping’
bits.

The left operand's value is moved left by
the number of bits specified by the right
operand.

The left operand's value is moved right by
the number of bits specified by the right
operand.

Example

(a & b) (means 0000 1100)

(a|b) = 61 (means 0011 1101)

(a * b) = 49 (means 0011 0001)

(~a) =-61 (means 1100 0011 in
2's complement form due to a
signed binary number.

a << 2 =240 (means 1111 0000)

a>>2 =15 (means 0000 1111)

@ RN httis://www.tutorialsioint.com/iithon3/iithon basic oierators.htm

a = True
b = False

Operator

and Logical AND

or Logical OR

not Logical NOT

Description

If both the operands are true then condition
becomes true.

If any of the two operands are non-zero
then condition becomes true.

Used to reverse the logical state of its
operand.

Example

(a and b) is False.

(a orb)is True.

Not(a and b) is True.

Operator Description

in Evaluates to true if it finds a variable in the
specified sequence and false otherwise.

Example

xiny hereinresultsina 1ifxis
a member of sequence y.

not in Evaluates to true if it does not finds a x not in y, here not in results in a
variable in the specified sequence and false 1 if x is not a member of
otherwise. sequence Y.

DO https://www.tutorialspoint.com/python3/python_basic _operators.htm

Operator Description

is Evaluates to true if the variables on either
side of the operator point to the same
object and false otherwise.

is not Evaluates to false if the variables on either
side of the operator point to the same
object and true otherwise.

Example

x is y, here is results in 1 if id(x)
equals id(y).

X is not y, here is not results in
1 if id(x) is not equal to id(y).

https://www.tutorialspoint.com/python3/python_basic_operators.htm

D

>>> k=5

>>> s=5+1j

>>> type(s+k)
<type 'complex'>

>>> 4 and 2
2

>>>4 & 2
0

>>>4|2
6

imaginary part cannot be only |
imaginary number conversion

logical comparison

bitwise comparison between the binaries 100 and 010

bitwise comparison between the binaries 100 and 010

5, =

Operations on numeric types: math module

The math module provides some of the more commons mathematical
operations.

It does not work with complex numbers.

cmath module works for complex numbers.

The available functions are:

 Trigonometric functions: cos, sin, tan, asin, acos, atan, sinh, cosh, tanh.

» Exponentiaiton and logarithmic functions: pow, exp, log, log10, sqrt

* Angles representation and conversions: degrees, radians, ceil , floor, fabs

In the math module are defined the numerical constants pi and e
>>> import math

>>> math.pi

3.141592653589793

>>> math.e

2.718281828459045

@ ®OO
&/ v NC sa | Data in Python 18/62

Booleans True and False are available in Python.
bool is a subclass of int

True corresponds to 1

False corresponds to O

Integer values can be used to reprsent boolean values with the following convention:
0 corresponds to False
all integer values greater than zero correspond to True

It is good practice to use the bool type to represent boolean values.

Example:
>>> g=1
>>> type(a)
<type 'int'>
>>> f(a):
print("True')
True
>>> g=False
>>> type(a)
<type 'bool'>
®90O

String type

@% R °
Qpz3®

Literal strings are character sequences enclosed in quotes, single or double.
Creating strings is as simple as assigning a value to a variable.

Sequences of triple ‘double quotes’ or triple ‘single quotes’ can be used to assign
strings spanning in more than one row or containing single or double quotes of the
other type.

Example 1: Example 2:

>>> g=""| am a string spanning in 3 rows,| >>> b="| am a string spanning in 3
... containing 'sigle quotes’, rows, _

... containing "double quotes", ... containing 'sigle quotes’,

.. containing "'triple quotes™ ... containing "double quotes”,

... containing """triple quotes

>>> print(a) >>> b
| am a string spanning in 3 rows, prin (.) L

AN \ | am a string spanning in 3 rows,
containing 'sigle quotes’,

o | containing 'sigle quotes’,
containing "double quotes”, Containing "dguble quotes”,
containing "'triple quotes™

containing """triple quotes"""

@ ®OO
&/ v NC sa | Data in Python 20/62

String type

* We can create strings by enclosing characters in quotes (single or double).
Creating strings is as simple as assigning a value to a variable.

Example:
var1 = 'Hello World!'
var2 = "Python Programming"

* To access substrings, use the square brackets for slicing along with the index or
indices to obtain your substring.

Example:

#!/usr/bin/python3

var1l = 'Hello World!'

var2 = "Python Programming"

print ("var1[0]: ", var1[0]) Output:

print ("var2[1:5]: ", var2[1:5]) var1[0]: H
var2[1:5]. ytho

@ ®OO
&/ v NC sa | Data in Python 21/62

String type

* The type char does not exists. A single char can be accesed using the operator []
or slicing the string with the operator [begin:end] (slicing)
Example:
>>> g = “Hello world”
>>> g[1]
‘e
>>> a[1:2]

1 ’

e

* The single char can not be accessed, but a new value can be assigned to the
string

Example:
>>> a='Primo valore’
>>> a = “Prima valore” # Ok string re-assignment
>>> g[4] = ‘o’ #Errore # NOT OKk single character assignment

File "<stdin>", line 1

a[4] =‘o’
A

SyntaxError: invalid syntax
@ ®S
&/ v NC sa | Data in Python 22/62

String type: operators

* The operators + and * can be used for string operations.

Operators priority is maintained.

Example

>>> g = ‘Hello’

>>> g+ata # Concatenation
‘HelloHelloHello’

>>> g = ‘He'+'['*2+'0 World’ # Multiple concatenation
>>> g
‘Hello World’

* It exists also the possibility to insert wherever in the string using the operator %

Example
name = "Peter"

my_string = "Hello %s" % name # Append or insert

my_string = "Hello %s, how are you? %s" % (name, 'ok')

@ ®S 0O
&/ sv Nc sh | Data in Python

Insert multiple values

23/62

Operator

+

[:]

not in

'R

%

®S0

Description

Concatenation - Adds values on either side of the operator

Repetition - Creates new strings, concatenating multiple copies of the
same string

Slice - Gives the character from the given index

Range Slice - Gives the characters from the given range

Membership - Returns true if a character exists in the given string

Membership - Returns true if a character does not exist in the given
string

Raw String - Suppresses actual meaning of Escape characters. The
syntax for raw strings is exactly the same as for normal strings with
the exception of the raw string operator, the letter "r," which precedes
the quotation marks. The "r" can be lowercase (r) or uppercase (R)
and must be placed immediately preceding the first quote mark.

Format - Performs String formatting

Example

a + b will give
HelloPython

a*2 will give
-HelloHello

a[1] will give e

a[1:4] will give
ell

H in a will give 1

M not in a will
give 1

print r'\n' prints
\n and print
R"\n'prints \n

See at next
section

String type: escape characters

Escaping allows to add special characters inside a string.

Example
>>> a = ‘What's your name?’ #Errore
SyntaxError: invalid syntax

>>> a = “What's your name?” # OKk if | create the string with double quotes
>>> g = ‘What\'s your name?’ # Ok if you escape the single quote character

Most common escape characters in string manipulation:

 \t Tab ‘Ciao\tciaol’

*\n New Line ‘Ciao\nciao!’

 \\ Backslash ‘c:\\Programmi\\pp’
 \” Double quote ‘Repeat: \"Hello\”
« \' Single quote “‘Repeat:\'Hello\”

@ ®S 0O
&/ sv Nc sh | Data in Python

Ciao ciao!

Ciao

ciao!
c:\Programmi\pp
Repeat: "Hello”
Repeat: ‘Hello’

25/62

Row string is a string preceded by r or R in front of it.
In a row string a character preceded by \ is included without changes.

Esempio

>>> a = r'Hello \t World’
#Raw string

>>> a

‘Hello \t World’

Python allows output formatting.
The % charactes has a special meaning when used in strings, because it is used to
format output.

print ("Art: %5d, Price per Unit: %8.2f" % (453, 59.058))
o I = 9 ?
.l T N
Format String Modulo Tuple with
String Operator values

l |

print ("Art: %5d, Price per Unit: %8.2f" % (453, 59.058))

The general syntax for a format \

placeholder is: output _
String Modulo Operator

%[flags][width][.precision]type

https://www.python-course.eu/python3_formatted_output.php

String type: format output

Ther are a lot of possibility to format output.

Examples:

%d or %i Integer

%s, String

%f, Floating point decimal format

%c, Single character (accepts integer or single character string)

%X, Unsigned hexadecimal (lowercase)

%o0, Unsigned octal

%%, No argument is converted, results in a "%" character in the result
%e, Floating point exponential format (lowercase)

F%I)’rga@;t output: https://www.python-course.eu/python3_formatted output.php

(& i https://www.tutorialspaigt, gemipython3/python_strings.htm .56,

https://www.python-course.eu/python3_formatted_output.php

Example
>>>"0ggi € %s %d %s” % (“Venerdi”,20,”Febbraio”)
Oggi € Venerdi 20 Febbraio

Already seen example:

name = "Peter"

my_string = "Hello %s" % name # Append and Insert

my_string = "Hello %s, how are you? %s" % (name, 'ok') # Insert multiple values
print(my_string)

With dictionaries:
person = {"name": "John", "age": 19}
print(f'{person['name'} is {person['age']} years old.")

f-string
full Python expressions inside the braces.

D R

String type: built-in functions

Strings, as all the python objects, have a set of functionalities accessible with built-in
Python functions (i.e. functions always available in the python interpreter).

« Manipulate: concat, split, characters deletion and unions.

-split([sep [,maxsplit]])
-replace (old, new|[, count])
-strip([chars])

Example

Split:

>>> g='Ciao Mondo'
>>> s.split('o’,1)
['Cia’, ' Mondof]
Replace:

>>> g.replace('o','i',1)
'Ciai Mondo’

Strip:

>>> s.strip('C')

'fao Mondo''

@ ®OO
&/ v NC sa | Data in Python 30/62

Formattazione: align, upper case, lower case

-upper() e lower() e swapcase()
-center(width], fillchar]) e ljust(width[, fillchar]) e rjust(width[,fillchar])

Example
>>> s = ‘Hello’

>>> s.center(10,’.")
“..Hello...’

>>> s.upper()
‘HELLO’

String type: search built-in functions

- find(sub [,start [,end]])
- rindex(sub [,start [,end]]) returns the highest index of the substring inside the string
(if found). If the substring is not found, it raises an

exception.
- index(sub [,start [,end]])

- rfind(sub [,start [,end]]) returns the highest index of the substring (if found). If not
found, it returns -1.

- count(subl, start[, end]])

- isupper() returns whether or not all characters in a string are
uppercased or not.
- islower() returns whether or not all characters in a string are

lowercased or not.
- startswith(prefix[, start[, end]])
- endswith(prefix][, start[, end]])

@ ®OO
&/ v NC sa | Data in Python 32/62

Container Data Types
—list]

— tuple ()
— dict {}

— set

— frozenset

®S0

D R

list][]

A list is initialized putting elements comma separated inside squared brackets.
* Items in a list can be of different type, both built-in and user defined.
* Indexes in a list start from zero.
* Alist can be instantiated without specifying the list length or data type.

Single list elements can be accessed with the operator []

Example:

>>>|=[] # empty list instance

>>> print(l)

(]

>>>m=['Lista’,’di’,4,’elementi’] # initialize a list

>>>print m[2],m[0] # access single list elements
>>>4 | ista

A list is an ordered sequence list, so the list items order is maintained.

@ ®SO
&/ sv Nc sh | Data in Python 34/62

list[] : Basic List Operations

Lists respond to the operators

+ concatenation
* repetition

like strings, except that the result is a new list, not a string.

In fact, lists respond to all of the general sequence operations we saw on strings.

Python Expression
len([1, 2, 3])

[1, 2, 3] + [4, 5, 6]
[Hi!'] * 4

3in[1, 2, 3]

for x in [1, 2, 3]: print X,

®SO
L@&mm

Results

3

[1,2, 3,4, 5, 6]

[Hil', "Hil", "Hil", "Hil"]

True
123

Data in Python

Description
Length
Concatenation
Repetition
Membership

lteration

35/62

list[] : slicing operator

List support the slicing operator [start:stop:step]

L = ['spam’, 'Spam’, 'SPAM!]

L[2] —* SPAM! # Offsets start at zero

L[-2] —» Spam # Negative: count from the right
L[1:] —»[Spam’, 'SPAM!"] # Slicing fetches sections

Example:

>>>3=[0,1,2,3,4,5,6,7]

>>>3[0:6]

[0,1,2,3,4,5]

>>>3[1.6:2]

[1,3,5]

>>>3[1::2] # no ‘stop’ means until the end of list

[1,3,5,7]

>>>3[::2] # no ‘start’ means from the first item of the list
[0,2,4,6]

Slicing can be also negative

>>>3[6:0:-2] # starts fom index 6, ends to index 0 going back with step 2

&/ v NC sa | Data in Python 36/62

The range() function is used to generate lists of integer numbers.

Syntax:
range(start,stop,step) generates a list of integer from ‘start’ to ‘stop’ with interval ‘step’

Example
>>>a=range(3)
[0,1,2]

>>>type(a)
<type 'list'>

>>>a=range(1,10)
[0,1,2,3,4,5,6,7,8,9]

>>>a=range(1,10,2)
[1 ,3,5,7’9]

D R

Lists supports complex operations.

Examples:

>>> g=range(10)

>>> b=[el*2 for el in a]
>>> b

[0, 2,4,6,8, 10, 12, 14, 16, 18]

>>> |=[1,2]

>>> |2=['a','b’]

>>> |3=[4,5]

>>> f=[(e1,e2,e3) for e1 in | for e2 in 12 for €3 in 3]
>>> f

[(1,'a', 4), (1,'d, 5), (1,'b", 4), (1,'b", 5), (2, 'a", 4), (2, 'a', 5), (2,'b', 4), (2,'b’, 5)]

This can be done also with:
>>> for el in |
for e2 in 12:
for e3 in 13:
f.append((e1,e2,e3))
®HO

list[] : main functions

Function Description

cmp(list1, list2) Compare elements of lists

len(list) Gives the total length of the list

max(list) Returns item from the list with max value
min(list) Returns item from the list with min value
list(seq) Converts a tuple into list

Syntax : cmp(list1, list2)

Parameters :
list1 : The first argument list to be compared.
list2 : The second argument list to be compared.

Returns : This function returns 1, if first list is “greater” than second list, -1 if first list is
smaller than the second list else it returns 0 if both the lists are equal.

@ ®OO
&/ v NC sa | Data in Python 39/62

list[] : main methods

List containers can be modified.
List objects contain built-in methods to modify members of a list.

Method Description

list.append(object) Appends object to list

list.insert(index, object) Inserts object obj into list at offset index

list.extend(seq) Appends the contents of seq to list

list.pop(index) :?emoves and returns last object or obj at index from
ist

list.remove(obj) Removes object obj from list

list.count(value) Returns count of how many times value occurs in list

list.index(obj) Returns the lowest index in list where obj appears

list.reverse() Reverses objects of list in place

list.sort([func]) Sorts objects of list, use compare func if given

@ ®SO
&/ sv Nc sh | Data in Python 40/62

Practice with the list methods proposed in the previous slide

list[] : about efficiency

The operators concatenation + (or +=) and repetition * are supported by lists.
The operator + and the function extend() have the same functionality, but different
execution time (efficiency)

Example:

import time

|I=range(100000000)
v=range(1000000)

T1=time.clock()

s=l+v

T2=time.clock()

print(* + execution time: :’, T2-T1, ‘s’)
, 'S

T3=time.clock()

l.extend(v)

T4=time.clock()

print(‘extend execution time:’, T4-T3 , ‘s’)
Output:

+ execution time: 2.81 s

extend execution time: 0.033 s

@ ®OO
&/ v NC sa | Data in Python 42/62

list[] for queue and stack

List can be easily used as stack or queue.

pop and append methods can be used to implement the LIFO logic typical of stacks.
pop with index 0 and append can be used to implement the FIFO logic typical of queue.

Example:

stack=[1, 2, 3, 4]

print(‘Initial Stack : ', stack)

foriin range(5,7):
stack.append(i)

print (“Append: “, stack)

stack.pop()

print (“Pop: ” , stack)

queue=[‘a’,’b’,'c’,’'d"]

print(“Initial Queue : ”, queue)

queue.append(‘e’)

queue.append(‘f’)

print(“Append : ”, queue)

queue.pop(0)

print("Pop : 7, queue)

®SO
L@m

Data in Python

Output:

Initial Stack : [1, 2, 3, 4]
Append: [1, 2, 3, 4, 5, 6]
Pop: [1, 2, 3, 4, 5]

Initial Queue : ['a', 'b', 'c', 'd']
Append: ['a", 'b', 'c', 'd', 'e’, 'f']
Pop: ['b', 'c', 'd", 'e', 'f]

43/62

tuple()

A tuple is a sequence ordered data enclosed between ().

Tuples are sequences, just like lists. The differences between tuples and lists are,
* the tuples cannot be changed unlike lists, tuple are immutable.
* tuples use parentheses, whereas lists use square brackets.

A tuple is created putting in it different comma-separated values. Optionally, can be put
these comma-separated values between parentheses also.

Example:

tup1 - Ilall, Ilbll, "CII’ "d";

tup2 = (‘physics’, '‘chemistry', 1997, 2000); # Data in a tuple can be heterogeneous
tup3=(1,2,3,4,5);

The empty tuple is written as two parentheses containing nothing. Example:
tup1 = ();

A tuple containing a single value must be written including a comma. Example:
tup1 = (50,);

Tuple indices start at 0, like string indices.

@ ®S 0O
&/ sv Nc sh | Data in Python 44/62

VR 'Vﬁ%

tuple() : Accessing Values in Tuples

o TEREE
%@mxﬁ“&

To access values in tuple, use the square brackets for access the single element.
slicing [start:end] is also available to obtain value available at that index.
Example

tup1 = ('physics’, '‘chemistry', 1997, 2000)

tup2=(1,2,3,4,5,6,7)

print("tup1[0]: ", tup1[0]) # access to single element
print("tup2[1:5]: ", tup2[1:5]) # access to slice
Output:

tup1[0]: physics
tup2[1:5]: [2, 3, 4, 5]

* tuple are immmutable, so does NOT contain methods to:
— eliminate elements
— insert elements

* 'tuple' object does not support item assignment Output:
Example: Traceback (most recent call last):
>>>t1=(1,2,3,4,’ciao’,’ mondo’,[2,3]) File "<pyshell#26>", line 1, in
>>>t1[3]="jkjK’ <module>

t1[1]=3
TypeError: 'tuple' object does not
DO support item assignment
L‘:Q‘m Data in Python 45/62

tuple() : Delete

Removing individual tuple elements is not possible.
It can be created a new tuple with the undesired elements discarded.

To explicitly remove an entire tuple, just use the del statement.

Example
tup = ('‘physics’, 'chemistry', 1997, 2000)
print tup
del tup
print("After deleting tup : ")
print(tup)
This produces an exception raised, because after del tup tuple does not exist any more
Output:
('physics’, '‘chemistry', 1997, 2000)
After deleting tup :
Traceback (most recent call last):
File "test.py", line 9, in <module>
print tup;
NameError: name 'tup’ is not defined

@ ®OO
&/ v NC sa | Data in Python 46/62

tuple() : basic operations

Tuples respond to the + and * operators much like strings;
+ means concatenation

* means repetition

the result is a new tuple, not a string.

Tuples respond to all of the general sequence operations availble on strings:

Results Description
Python Expression
len((1, 2, 3)) 3 Length
(1,2, 3) + (4, 5, 6) (1,2, 3,4, 5, 6) Concatenation
('Hi!",) * 4 ('Hi!", 'Hit', 'Hil', 'Hi!") Repetition
3in (1, 2, 3) True Membership
for xin (1, 2, 3): print X, 123 Iteration

@ ®OO
&/ v NC sa | Data in Python 47/62

tuple() : Built-in Tuple Functions

Function Description
cmp(tuple1, tuple2) Compares elements of both tuples

len(tuple) Gives the total length of the tuple
max(tuple) Returns item from the tuple with max value
min(tuple) Returns item from the tuple with min value
tuple(seq) Converts a list into tuple

@ ®OO
&/ v NC sa | Data in Python 48/62

dict{}

Python dictionary is an unordered collection of items.

Elements in a dictionary are key:value pairs.
* values can be of any data type and can repeat,
* keys must be of immutable type (string, number or tuple with immutable elements)
and must be unique. Keys are case-sensitive

Each element in a dictionary is identified by the key.
Dictionaries are optimized to retrieve values when the key is known.

Example how to create a dictionary:

>>>d={} # empty dictionary

>>>d={1: 'Hello’, ‘due’: 'World’} # dictionary with two elements
>>>d[1] # access to a dictionary element
‘hello’

@ ®OO
&/ v NC sa | Data in Python 49/62

empty dictionary
my_dict = {}

dictionary with integer keys
my_dict = {1: 'apple’, 2: 'ball’}

dictionary with mixed keys
my_dict = {'name’: 'John', 1: [2, 4, 3]}

using dict()
my_dict = dict({1:'apple’, 2:'ball'})

from sequence having each item as a pair
my_dict = dict([(1,'apple'), (2,'ball')])

dict{} : Access elements

In the other container types indexing is used to access values,
Dictionary uses keys to access values.
Key can be used either inside square brackets or with the get() method.

get() returns None if the key is not found.
[] returns KeyError if the key is not found.

Example:
my_dict = {'name’.'Jack’, 'age': 26}

print(my_dict['name']) # Output: Jack
print(my_dict.get('age')) # Output: 26

Trying to access keys which doesn't exist throws error (try)
my_dict.get('address')
my_dict['address']

* keys() and values() functions return respectively the keys and the values present in
a dictionary.

@ ®OO
&/ v NC sa | Data in Python 51/62

dict{} : change or add elements in a dictionary

Dictionary are mutable. We can add new items or change the value of existing items
using assignment operator.

If the key is already present, value gets updated,
else a new key: value pair is added to the dictionary.

Example:
my_dict = {'name'.'Jack’, 'age": 26}

update value
my_dict['age'] = 27

#Output: {'age": 27, 'name": 'Jack’}
print(my_dict)

add item
my_dict['address'] = 'Downtown’

Output: {'address': 'Downtown’, ‘age': 27, 'name"; 'Jack'}

print(my_dict)
@ ®OO
&/ v NC sa | Data in Python 52/62

dict{}. delete or remove elements

We can remove a particular item in a dictionary by using the method pop(). This
method removes as item with the provided key and returns the value.

The method, popitem() can be used to remove and return an arbitrary item (key, value)
form the dictionary.

All the items can be removed at once using the clear() method.

del keyword can be used to remove individual items or the entire dictionary itself.

@ ®OO
&/ v NC sa | Data in Python 53/62

dict{}: delete or remove elements examples

TERTER D .
TR ® N
%@m };@%3“&

create a dictionary

squares = {1:1, 2:4, 3.9, 4:16, 5:25}

remove a particular item
print(squares.pop(4))
print(squares)

remove an arbitrary item
print(squares.popitem())
print(squares)

delete a particular item
del squares|[9]
print(squares)

remove all items
squares.clear()
print(squares)

delete the dictionary itself
del squares

Gg)éirg(squares)

Output: 16
Output: {1: 1, 2: 4, 3: 9, 5: 25}

Output: (1, 1)
Output: {2: 4, 3: 9, 5: 25}

Output: {2: 4, 3: 9}

Output: {}

Throws Error
Data in Python

54/62

dict{}: built-in functions

Function Description

all() Return True if all keys of the dictionary are true (or if the dictionary is
empty).

any() Return True if any key of the dictionary is true. If the dictionary is

empty, return False.
Return the length (the number of items) in the dictionary.

len()

cmp() Compares items of two dictionaries.

sorted() Return a new sorted list of keys in the dictionary.
Example:

squares ={1: 1, 3: 9, 5: 25, 7: 49, 9: 81}

print(len(squares)) # Output: 5
print(sorted(squares)) # Output: [1, 3, 5, 7, 9]

Exercise: Practice with these functions

@ ®OO
&/ v NC sa | Data in Python 55/62

dict{}: built-in methods

e Method Description
clear() Remove all items form the dictionary.
copy() Return a shallow copy of the dictionary.

fromkeys(seq[, v]) Return a new dictionary with keys from seq and value equal to v
(defaults to None).

get(key[,d]) Compares items of two dictionaries.

items() Return a new sorted list of keys in the dictionary.

keys() Return a new view of the dictionary's keys.

pop(key[,d]) Remove the item with key and return its value or d if key is not

found. If d is not provided and key is not found, raises KeyError.

popitem() Remove and return an arbitary item (key, value). Raises
KeyError if the dictionary is empty.

setdefault(key[,d]) If key is in the dictionary, return its value. If not, insert key with a
value of d and return d (defaults to None).

update([other]) Update the dictionary with the key/value pairs from other,
overwriting existing keys.

values() Return a new view of the dictionary's values
has_key(k) Return True or Falese if key is in the dictionary
m Data in Python 56/62

marks = {}.fromkeys(['Math','English','Science'], 0)

print(marks) # Output: {'English': 0, 'Math': 0, 'Science': 0}

for item in marks.items():
print(item)
list(sorted(marks.keys())) # Output: ['English’, 'Math', 'Science']

dict{}: Other operations

Iterating Through a Dictionary
Using a for loop we can iterate though each key in a dictionary.

Example:
squares ={1:1, 3: 9, 5: 25, 7: 49, 9: 81}
for i in squares:

print(squares]i])

Dictionary Membership Test
We can test if a key is in a dictionary or not using the keyword in. Notice that
membership test is for keys only, not for values.

Example:
squares ={1:1, 3: 9, 5: 25, 7: 49, 9: 81}

print(1 in squares) # Output: True
print(2 not in squares) # Output: True

membership tests for key only not value
8)@%49 in squares) # Output: False
@‘m Data in Python 58/62

dict{}: Python dictionary comprehension

Dictionary comprehension is an elegant and concise way to create new
dictionary from an iterable in Python.

Dictionary comprehension consists of an expression pair (key: value)
followed by for statement inside curly braces {}.

Example to make a dictionary with each item being a pair of a number and
its square.

squares = {x: x*x for x in range(6)}

print(squares) # Output: {0: 0, 1: 1, 2: 4, 3: 9, 4: 16, 5: 25}

Equivalent to:

odd_squares = {x: x*x for x in range(11) if x%2 == 1}

print(odd_squares) # Output: {1: 1, 3: 9, 5: 25, 7: 49, 9: 81}

A dictionary comprehension can optionally contain more for or if statements.
An optional if statement can filter out items to form the new dictionary.
Example to make dictionary with only odd items.

odd_squares = {x: x*x for x in range(11) if x%2 == 1}

print(odd_squares) # Output: {1: 1, 3: 9, 5: 25, 7: 49, 9: 81}

@ ®OO
&/ v NC sa | Data in Python 59/62

set - fronzenset

Python has two structures to represent sets of elements:
* setis a mutable, unordered collection of etherogeneous objects
* frozenset is an immutable, unordered collection of etherogeneous objects. It is a
freezed set
In both cases, elements are unique.

Example:
>>>s=set((‘ciao’,1,’Mondo’))
>>>fs=frozenset((‘ciao’,2))

* Sets provide methods to modify the data set:
— insert with add(obj)

— modify with update(obj)
Example:
>>>s=set((‘abc','def',1,2,3,'ghi"))
>>>s.add(4)
>>>s update((‘lmn’,5))
>>>9

seté[t 2,3, 4,5, 'abc', 'Imn’, 'ghi', 'def)
@0c
&/ v NC sa | Data in Python 60/62

* Removal

— discard(x)
— remove(x)

- clear()
- pop()

Example:

>>> g=set([2, 3, 'abc’, 'ghi', 'def])
>>> S

set([2, 3, 'abc', 'def', 'ghi'])

>>> s.remove(3)

>>> g.discard(2)

>>> s.pop()

‘abc’

>>> s.clear(); s

set([])

®S0

* Both containers contain methods to manage operations :
=~ union,
- intersection,
- difference,
— issubset,
— issuperset

Example:

>>>s=set((1,2))

>>>s2=frozenset((2,3,4))

>>>s3=s.union(s2)

>>>s4=s.difference(s2)

>>>s5=s2.intersection(s)

>>>s.issubset(s2)

False

>>>print('s3’, s3, 's4’, s4, 'sd’, s5)

s3

s3 {1, 2, 3, 4} s4 {1} s5 frozenset({2})

In both cases data can be of different types.
=> frozenset are immutable, so they can be used to index dictionaries

D R

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62

