
Python programming - 1

S. Bertocco

Python Lecture 3
Control Flow and Python Programming

Flow control instructions
Iterators
Simple matrix examples
Lambda expressions
Input

Python programming - 1 2/54

★ Bibliography:
https://www.python.org/doc/
http://docs.python.it/
https://www.w3schools.com/python/
https://pynative.com/python-exercises-with-solutions/
and much more available in internet

★ Learning Materials:
https://github.com/gtaffoni/Learn-Python/tree/master/
Lectures

https://github.com/bertocco/abilita_info_units_2021

Bibliography and learning materials

https://www.python.org/doc/
http://docs.python.it/
https://www.w3schools.com/python/
https://pynative.com/python-exercises-with-solutions/

Python programming - 1 3/54

● Decision

● Cycle

Control flow instructions

Python programming - 1 4/54

The if statement

The if statement is used for conditional execution: if a condition is true,
we run a block of statements (called the if-block), else we process
another block of statements (called the else-block).
The else clause is optional.
Syntax:
if test_expression :
 statement(s)
or
 if test_expression :
 body of if
 else:
 body of else

if test_expression1 :
 body of if
elif test_expression2 :
 body of elif
else:
 body of else

switch-case
 simulation

Python programming - 1 5/54

The if statement: example

number = 23
guess = int(input('Enter an integer : '))

if guess == number:
 # New block starts here
 print('Congratulations, you guessed it.')
 print('(but you do not win any prizes!)')
 # New block ends here
elif guess < number:
 # Another block
 print('No, it is a little higher than that')
 # You can do whatever you want in a block ...
else:
 print('No, it is a little lower than that')
 # you must have guessed > number to reach here

print('Done')
This last statement is always executed,
after the if statement is executed.

Python programming - 1 6/54

The while statement

The while statement allows you to repeatedly execute a block of
statements as long as a condition is true.
A while statement is an example of what is called a looping statement.
A while statement can have an optional else clause. If the else clause is
present, it is always executed once after the while loop is over unless a break

statement is encountered.

Syntax:
while test_condition :
 while-statement(s)
[else:
 else-statement(s)]

else clause is optional

Python programming - 1 7/54

The while statement: example

number = 23
running = True

while running:
 guess = int(input('Enter an integer : '))

 if guess == number:
 print('Congratulations, you guessed it.')
 # this causes the while loop to stop
 running = False
 elif guess < number:
 print('No, it is a little higher than that.')
 else:
 print('No, it is a little lower than that.')
else:
 print('The while loop is over.')
 # Do anything else you want to do here
print('Done')

Python programming - 1 8/54

“do … until” does not exist in Python

The do … until cycle in python does not exist.
It can be emulated. Examples:

while True:
 do_something()
 if condition():
 break

or:

finished = False
while not finished:
 ... do something...
 finished = evaluate_end_condition()

https://stackoverflow.com/questions/1662161/is-there-a-do-until-in-python

Python programming - 1 9/54

The for statement

The for statement is a looping statement which iterates over a sequence of
objects, i.e. go through each item in a sequence. A sequence is just an ordered
collection of items.
In general we can use any kind of sequence of any kind of objects.
An else clause is optional, when included, it is always executed once after the
for loop is over unless a break statement is encountered.

Syntax:
for iterating_var in sequence:
 statements(s)
[else:
 else-statement(s)]

Example:
for i in range(1, 5):
 print(i)
else:
 print('The for loop is over')

else clause is optional

Python programming - 1 10/54

The break statement

The break statement is used to break out of a loop statement i.e. stop
the execution of a looping statement, even if the loop condition has not
become False or the sequence of items has not been completely iterated
over.

An important note is that if you break out of a for or while loop, any
corresponding loop else block is not executed.

Example (break.py):
while True:
 s = input('Enter something : ')
 if s == 'quit':
 break
 print('Length of the string is', len(s))
print('Done')

Python programming - 1 11/54

Exercise

Try a for and a while loop with an else clause verifying that the else
clause is always executed except in case a break statement is found.

Python programming - 1 12/54

The continue statement

The continue statement is used to tell Python to skip the rest of the
statements in the current loop block and to continue to the next iteration
of the loop.
Example:
while True:
 s = input('Enter something : ')
 if s == 'quit':
 break
 if len(s) < 3:
 print('Too small')
 continue
 print('Input is of sufficient length')
 # Do other kinds of processing here…

 => the continue statement works with the for loop as well.

Python programming - 1 13/54

The pass statement

The pass statement does nothing. It can be used when a statement is
required syntactically but the program requires no action.
Example:
>>> while True:
... pass # Busy-wait for keyboard interrupt (Ctrl+C)

● This is commonly used for creating minimal classes:
>>> class MyEmptyClass:
... pass

● Another place pass can be used is as a place-holder for a function or
conditional body when you are working on new code, allowing you to
keep thinking at a more abstract level. The pass is silently ignored:

>>> def initlog():
... pass # Remember to implement this!

Python programming - 1 14/54

Exercise: control_flow_step0

Prepare a python script where all the presented examples on flow
control statements are converted in functions.
Write a main block of code printing instructions and explanations useful
to the user and then calling the functions.
Example of expected output:
This is if statement usage example.
You have to guess the right number trying repetitively:
Enter an integer :
…….
This is while statement usage example.
…….

and so on…...

Python programming - 1 15/54

Exercise: control_flow_step1

Complicate the previous script giving the user the ability to choose which
statement he likes to try.
Output example:
Choose if try
1. if statement
2. while statement
3. for statement
make your choose entering the number (1 or 2 or 3)
……..

Python programming - 1 16/54

Exercise: control_flow_step2

Complicate the previous script giving the user the ability to choose how
much iteration execute in case it is trying the for statement
Output example:
Choose if try
1. if statement
2. while statement
3. for statement
make your choose entering the number (1 or 2 or 3)
3
Enter how much iteration you want execute (integer)

Python programming - 1 17/54

Exercise: control_flow_step3

Complicate the previous script giving the user the ability to choose
repeatedly the control statement to test.

Python programming - 1 18/54

Exercise: control_flow_step4

Complicate one of the previous scripts giving the user the ability to
choose the reference number used for comparison in if and while
statements (fixed to guess=23 in the already done exercices).

Python programming - 1 19/54

Iterators

for cicle is generally used to iterate on iterable types like list, tuple,
string, and in general containers.
Iterable types contain an object called iterator used by the for operator to
iterate in the container.
The iterator object contains a next() method, returning the first available
data in the container, useful to iterate in the container.

Python programming - 1 20/54

Iterators examples

>>> a = iter(list(range(10)))

>>> for i in a:

... print(i)

0

1

2

3

4

5

6

7

8

9

>>> a = iter(list(range(10)))
>>> for i in a:
... next(a)
...
1
3
5
7
9

>>> for i in a:
... print("Printing: %s" % i)
... next(a)
...
Printing: 0
1
Printing: 2
3
Printing: 4
5
Printing: 6
7
Printing: 8
9
>>>

Python programming - 1 21/54

LIST
>>> a=[1,2,3,4,5]
>>> for el in a:
 print(el)
1
2
3
4
5

Data sequences and cicles

for cicle allows to iterate on every kind of iterable object like
list, tuple, string, set, dictionary.

Example:

STRING
>>> a=‘’’Ciao’’’
>>> for el in a:
 print(el)
C
i
a
o

SET
>>>a=set([1,2,3,4])
>>> for el in a:
 print(el)
1
2
3
4

Python programming - 1 22/54

DICTIONARY (by key)
>>> a={1:’a’,2:’b’}
>>> for el in a.keys():
 print(el)
1
2

Data sequences and cicles

for cicle allows to iterate on every kind of iterable object like
list, tuple, string, set, dictionary.

Example: DICTIONARY(by value)
>>> a={1:’a’,2:’b’}
>>> for el in a.values():
 print(el)
a
b

DICTIONARY(by key-val)
>>> a={1:’a’,2:’b’}
>>> for k,v in a.items():
 print(k,v)
1 a
2 b

DICTIONARY
>>> a={1:’a’,2:’b’}
>>> for el in a:
 print(el)
1
2

DICTIONARY
>>> a={1:’a’,2:’b’}
>>> for el in (1,2,3):
 print(a.get(el))
a
b
None

Python programming - 1 23/54

range() function

Syntax:

range(stop)
range([start,] stop[, step])

The range() function returns a sequence of numbers,
starting from start (= 0 by default),
increments by step (= 1 by default),
stops before stop, range() function doesn’t include the last (stop)
number in the result.

Python programming - 1 24/54

range() function: examples

Generic with 3
parameters:

>>> for i in range(1, 10, 2):
... print(i)
...
1
3
5
7
9

With Negative Numbers:

>>> for i in range(-1, -10, -1):
... print(i)
...
-1
-2
-3
-4
-5
-6
-7
-8
-9

you must do it this way
for negative lists.
Trying to use range(-
10) will not work
because range uses a
default "step" of one.

Note that if "start" is larger
than "stop", the list returned
will be empty. Also, if "step" is
larger that "stop" minus
"start", then "stop" will be
raised to the value of "step"
and the list will contain "start"
as its only element.

Example:
>>> for i in range(70, 60):
... print(i)
...
Nothing is printed
>>> for i in range(10, 60, 70):
... print(i)
...
10

Python programming - 1 25/54

range() function: Exercises

Create a sequence of numbers from 3 to 5, and print each item in the sequence

x = range(3, 6)
for n in x:
 print(n)

Create a sequence of numbers from 3 to 19, but increment by 2 instead of 1

x = range(3, 20, 2)
for n in x:
 print(n)

Python programming - 1 26/54

zip() function

Syntax:

zip(iterator1, iterator2, iterator3 ...)

The zip() function returns a zip object, which is an iterator of tuples
where the first item in each passed iterator is paired together, and
then the second item in each passed iterator are paired together
etc.

If the passed iterators have different lengths, the iterator with the
least items decides the length of the new iterator.

Python programming - 1 27/54

zip() function: example

a = ("Marco", "Luca", "Claudio")
b = ("Giovanna", "Maria", "Anna", "Francesca")

x = zip(a, b)

print(tuple(x))

Result:

(('Marco', 'Giovanna'), ('Luca', 'Maria'), ('Claudio', 'Anna'))

If one tuple contains more items, these items are ignored

Python programming - 1 28/54

zip() function: usage example

The * operator can be used in conjunction with zip() to unzip the list.

Example:

coordinate = ['x', 'y', 'z']
value = [3, 4, 5]

result = zip(coordinate, value)
result_list = list(result)
print(result_list)

c, v = zip(*result_list)
print('c =', c)
print('v =', v)

Output:

[('x', 3), ('y', 4), ('z', 5)]
c = ('x', 'y', 'z')
v = (3, 4, 5)

Python programming - 1 29/54

Read text file in matrix

Input1.txt:
0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0
0,0,2,1,0,2,0,0,0,0
0,0,2,1,1,2,2,0,0,1
0,0,1,2,2,1,1,0,0,2
1,0,1,1,1,2,1,0,2,1

Code to read file:

l = []
with open('input.txt', 'r') as f:
 for line in f:
 line = line.strip()
 if len(line) > 0:
 l.append(map(int, line.split(',')))
print(l)

Python programming - 1 30/54

fin = open('input.txt','r')
a=[]
for line in fin.readlines():
 a.append([int (x) for x in line.split(',')])

Read text file in matrix

Input1.txt:
0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0
0,0,2,1,0,2,0,0,0,0
0,0,2,1,1,2,2,0,0,1
0,0,1,2,2,1,1,0,0,2
1,0,1,1,1,2,1,0,2,1

Code to read file:

fin = open('input.txt','r')
a=[]
for line in fin.readlines():
 a.append([int (x) for x in line.split(',')])

l = []
with open('input.txt', 'r') as f:
 for line in f:
 line = line.strip()
 if len(line) > 0:
 l.append(map(int, line.split(',')))
print(l)

Python programming - 1 31/54

Read text file in matrix using numpy

Input1.txt:
0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0
0,0,2,1,0,2,0,0,0,0
0,0,2,1,1,2,2,0,0,1
0,0,1,2,2,1,1,0,0,2
1,0,1,1,1,2,1,0,2,1

Code to read file:

import numpy as np
input = np.loadtxt("input.txt", dtype='i',
delimiter=',')
print(input)

numpy is a library

numpy.loadtxt(fname, dtype=<class 'float'>, comments='#',
delimiter=None, converters=None, skiprows=0, usecols=None,
unpack=False, ndmin=0, encoding='bytes', max_rows=None)
[source]
Load data from a text file.

Each row in the text file must have the same number of values.

https://docs.scipy.org/doc/numpy/reference/generated/numpy.loadtxt.html

Python programming - 1 32/54

Read text file in matrix: example
Input2.txt:
"0","0","0","0","1","0"
"0","0","0","2","1","0"

Code to read file:

with open('Input2.txt', 'r') as f:
 data = f.readlines() # read raw lines into an array

cleaned_matrix = []
for raw_line in data:
 split_line = raw_line.strip().split(",") # ["1", "0" ...]
 nums_ls = [int(x.replace('"', '')) for x in split_line] # get rid of the
quotation marks and convert to int
 cleaned_matrix.append(nums_ls)

print(cleaned_matrix)

Python programming - 1 33/54

Multiply matrices: Matrix Multiply Constant

https://www.mathsisfun.com/algebra/matrix-multiplying.html

To multiply a matrix by a single number is easy:

These are the calculations:
2×4=8 2×0=0
2×1=2 2×-9=-18

We call the number ("2" in this case) a scalar, so this is called "scalar
multiplication".

Python programming - 1 34/54

Multiply matrices: Multiplying a Matrix by Another Matrix

https://www.mathsisfun.com/algebra/matrix-multiplying.html

1st row X 1st column:
(1, 2, 3) • (7, 9, 11) = 1×7 + 2×9 + 3×11
 = 584

1 2
6
3

5

87
9

1211
10x = 58

"Dot Product"

4
1 2

6
3

5

87
9

1211
10x = 58 64

4
1 2

6
3

5

87
9

1211
10x = 58 64

391 541

1st row X 2nd column:
(1, 2, 3) • (8, 10, 12) = 1×8 + 2×10 + 3×12
 = 64

2nd row X 1st column:
(4, 5, 6) • (7, 9, 11) = 4×7 + 5×9 + 6×11
 = 139

2nd row X 2nd column:
(4, 5, 6) • (8, 10, 12) = 4×8 + 5×10 + 6×12
 = 154

Matrix product is possible only
between matrices
nXm mXp → nXp (result
 dimension)

Python programming - 1 35/54

Example

Program to multiply two matrices using nested loops
3x3 matrix
X = [[12,7,3],
 [4 ,5,6],
 [7 ,8,9]]
3x4 matrix
Y = [[5,8,1,2],
 [6,7,3,0],
 [4,5,9,1]]
result is 3x4
result = [[0,0,0,0],
 [0,0,0,0],
 [0,0,0,0]]
iterate through rows of X
for i in range(len(X)):
 # iterate through columns of Y
 for j in range(len(Y[0])):
 # iterate through rows of Y
 for k in range(len(Y)):
 result[i][j] += X[i][k] * Y[k][j]
for r in result:
 print(r)

Output:

[114, 160, 60, 27]
[74, 97, 73, 14]
[119, 157, 112, 23]

Python programming - 1 36/54

Example Matrix Multiplication Using Nested List Comprehension

Program to multiply two matrices using list comprehension

3x3 matrix
X = [[12,7,3],
 [4 ,5,6],
 [7 ,8,9]]

3x4 matrix
Y = [[5,8,1,2],
 [6,7,3,0],
 [4,5,9,1]]

result is 3x4
result = [[sum(a*b for a,b in zip(X_row,Y_col)) for Y_col in zip(*Y)] for X_row in X]

for r in result:
 print(r) Output:

[114, 160, 60, 27]
[74, 97, 73, 14]
[119, 157, 112, 23]

Python programming - 1 37/54

zip() function

The zip() function takes iterables (can be zero or more), aggregates them in a tuple, and return it.

Syntax of the zip() function is:

zip(*iterables)

Return Value

The zip() function returns an iterator of tuples based on the iterable objects.

 If we do not pass any parameter, zip() returns an empty iterator
 If a single iterable is passed, zip() returns an iterator of tuples with each tuple having only one
element.
 If multiple iterables are passed, zip() returns an iterator of tuples with each tuple having
elements from all the iterables.

Example
 Suppose, two iterables are passed to zip(); one iterable containing three and other containing
five elements. Then, the returned iterator will contain three tuples. It's because iterator stops
when the shortest iterable is exhausted.

Python programming - 1 38/54

Multiply matrices: Matrix Multiply Constant

https://www.mathsisfun.com/algebra/matrix-multiplying.html

To multiply a matrix by a single number is easy:

These are the calculations:
2×4=8 2×0=0
2×1=2 2×-9=-18

We call the number ("2" in this case) a scalar, so this is called "scalar
multiplication".

Python programming - 1 39/54

Write a python script where

★Write a function to multiply a matrix nxm for a scalar number.

★Declare the matrix of the previous example as a list of lists

★Declare a scalar number

★Multiply the matrix for the scalar

★Print the result

Exercise 1: matrix x scalar

Python programming - 1 40/54

a=3
b=[[3,6,9],
 [1,2,3],
 [2,4,8]]

def matrix_per_scalar(matrix, scalar):
 result=[]
 for i in range(len(matrix)):
 tmp=[]
 for j in range(len(matrix[i])):
 tmp.append(matrix[i][j]*scalar)
 result.append(tmp)
 return result

def print_matrix(matrix):
 for i in range(len(matrix)):
 for j in range(len(matrix[i])):
 print(str((matrix[i][j]))+"\t", end='')
 print("\n")

print("Input:")
print("Scalar=" + str(a))
print("Matrix=")
print_matrix(b)

print("Matrix x scalar multiplication result:")print_matrix(matrix_per_scalar(b,a))

Exercise 1: matrix x scalar

Python programming - 1 41/54

Multiply matrices: Multiplying a Matrix by Another Matrix

https://www.mathsisfun.com/algebra/matrix-multiplying.html

1st row X 1st column:
(1, 2, 3) • (7, 9, 11) = 1×7 + 2×9 + 3×11
 = 584

1 2
6
3

5

87
9

1211
10x = 58

"Dot Product"

4
1 2

6
3

5

87
9

1211
10x = 58 64

4
1 2

6
3

5

87
9

1211
10x = 58 64

391 541

1st row X 2nd column:
(1, 2, 3) • (8, 10, 12) = 1×8 + 2×10 + 3×12
 = 64

2nd row X 1st column:
(4, 5, 6) • (7, 9, 11) = 4×7 + 5×9 + 6×11
 = 139

2nd row X 2nd column:
(4, 5, 6) • (8, 10, 12) = 4×8 + 5×10 + 6×12
 = 154

Matrix product is possible only
between matrices
nXm mXp → nXp (result
 dimension)

Python programming - 1 42/54

Write a python script where

★Write a function to multiply a matrix nxm for a matrix mxn

★Write a function to print such kind of matrix

★Declare the two matrices as list of lists

★Multiply the two matrices

★Print the result

Exercise 2: matrix x matrix

Python programming - 1 43/54

Program to multiply two matrices
using nested loops
3x3 matrix
A = [[12,7,3],
 [4 ,5,6],
 [7 ,8,9]]
3x4 matrix
B = [[5,8,1,2],
 [6,7,3,0],
 [4,5,9,1]]
def print_matrix(matrix):
 for i in range(len(matrix)):
 for j in range(len(matrix[i])):
 print(str((matrix[i][j]))+"\t", end='')
 print("\n")
def matrix_x_matrix(X, Y):
 # iterate through rows of X
 # result is 3x4
 result = [[0,0,0,0], [0,0,0,0], [0,0,0,0]]
 for i in range(len(X)):
 # iterate through columns of Y
 for j in range(len(Y[0])):
 # iterate through rows of Y
 for k in range(len(Y)):
 result[i][j] += X[i][k] * Y[k][j]
 return result

Exercise 2: matrix x matrix
Main:
print("Input")
print("A = ")
print_matrix(A)
print("B = ")
print_matrix(B)
print("Output AxB")
print_matrix(matrix_x_matrix(A, B))

Output:
Input
A =
12 7 3
4 5 6
7 8 9

B =
5 8 1 2
6 7 3 0
4 5 9 1

Output AxB
114 160 60 27
74 97 73 14
119 157 112 23

Python programming - 1 44/54

Exercise

Write a python script to multiply two matrices.
You can use the previous example.
The matrices can be defined inside the program or read by file.
Try the case in which matrices are in two different files or in one unique
file.

Try also the special case of product between matrix and vector
[mXn X nX1]

Verify with an example that
AXB != BXA [must be mXn * nXm]
Suggestion: incapsulate the matrix product in a function receiving the
two matrices as parameters.

Python programming - 1 45/54

Anonymous functions or lambdas are small functions which do not need a name (i.e., an
identifier).
In Python an anonymous function has 3 parts:

● The lambda keyword, used in place of the keyword ‘def’ used for generic functions
● A set of parameters (can take any number of parameters)
● The function body, which can contain only one expression (in one line of code).

Syntax:

 lambda [arg1 [,arg2,.....argn]]:expression

Features:

● The lambda function return just one value in the form of an expression.
● The lambda function cannot be a direct call to print because lambda requires an

expression
● Lambda functions have their own local namespace and cannot access variables

other than those in their parameter list and those in the global namespace.

The Anonymous Functions or Lambdas

Python programming - 1 46/54

A script can require one or more input parameters.

There are different ways to provide input parameters to a script:

● by command line

● by user

● by an input file

Input parameters

Python programming - 1 47/54

A script requiring parameters can be executed with:

$ python script.py param_1 param_2 param_3 …… param_n

• The argv[*] provided by tye sys module can be used to read the input parameters:

– argv[0]: contains the script name
– argv[1]: param_1
– …...
– argv[i]: param_i

Input parameters by command line.sys.argv

Python programming - 1 48/54

script reqiring 2 input parameters
import sys

usage="""Requires two parameters (param1, param2)
Usage: python script.py param1 param2"""

if len(sys.argv) < 3:
 print('The script: ',sys.argv[0],usage)
 sys.exit(0) # exits after help printing

read the two input parameters
param1 = sys.argv[1]
param2 = sys.argv[2]

output the read parameters
print('''The two parameters received as input
for the script are:\n ''',param1, param2)

Example: command line input (try)

Python programming - 1 49/54

The input parameters provided by the user can be read from the standard input
(stdin) using the function input()
Example (try):
the script takes from the user two input parameters
import sys

while(True):
 print('PLEASE INSERT AN INTEGER NUMBER IN THE RANGE 0-10')
 param1 = input()
 if int(param1) in range(11):
 while(True):
 print('PLEASE INSERT A CHAR PARAMETER IN [A,B,C]')
 param2 = input()
 if param2 in ['A','B','C']:
 print('uso I due parametri passati dall utente: ',param1,param2)
 sys.exit()
 else: print('TRY AGAIN PLEASE')
 else: print('TRY AGAIN PLEASE')

Input parameters user provided

Python programming - 1 50/54

infile='mydata.dat'
outfile='myout.dat'

indata = open(infile, 'r')
linee=indata.readlines()
indata.close()
processati=[]
x=[]
for el in linee:
 valori = el.split()
 x.append(float(valori[0])); y = float(valori[1])
 processati.append(f(y))

outdata = open(outfile, 'w')
i=0
for el in processati:
 outdata.write('%g %12.5e\n' % (x[i],el))
 i+=1
outdata.close()
Format output: https://www.python-course.eu/python3_formatted_output.php

Input parameters from file

def f(y):
 if y >= 0.0:
 return y**5*math.exp(-y)
 else:
 return 0.0

cat mydata.dat
2 16
13 5
19.3 11

Python programming - 1 51/54

You can read the file with file.read()
file = open('.env', "r")
filecontent = file.read()
print("File content:")
print(filecontent)
my_line = ""

for line in filecontent.splitlines():
 print("Working on line", line)
 if line.find("DB_DATABASE="):
 print("Found line containing DB_DATABASE=")
 break

Source file:
cat .env
DB_HOST= http://localhost/
DB_DATABASE= bheng-local
DB_USERNAME= root
DB_PASSWORD= 1234567890
UNIX_SOCKET= /tmp/mysql.sock

Input parameters from file

Next lesson will go deeply on
structured data and how to red
them from files

Python programming - 1 52/54

Anonymous functions or lambdas are small functions which do not need a name (i.e., an
identifier).
In Python an anonymous function has 3 parts:

● The lambda keyword, used in place of the keyword ‘def’ used for generic functions
● A set of parameters (can take any number of parameters)
● The function body, which can contain only one expression (in one line of code).

Syntax:

 lambda [arg1 [,arg2,.....argn]]:expression

Features:

● The lambda function return just one value in the form of an expression.
● The lambda function cannot be a direct call to print because lambda requires an

expression
● Lambda functions have their own local namespace and cannot access variables

other than those in their parameter list and those in the global namespace.

The Anonymous Functions or Lambdas

Python programming - 1 53/54

#!/usr/bin/python

Function definition is here

sum = lambda arg1, arg2: arg1 + arg2;

Now you can call sum as a function
print("Value of total : ", sum(10, 20))
print("Value of total : ", sum(20, 20))

When the above code is executed, it produces the following result:

Value of total : 30
Value of total : 40

Example 1: The Lambda/Anonymous
Functions

Keyword ExpressionParameters

Python programming - 1 54/54

Code:
string=’Hello World!’
print(lambda string : print(string))

Output:
$ python3
Python 3.6.9 (default, Apr 18 2020, 01:56:04)
[GCC 8.4.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> string='Hello World!'
>>> print(lambda string : print(string))
<function <lambda> at 0x7fe0922ebd90>

Explanation:
Define a string
Declare a lambda that calls a print statement
prints the result, passing the string as parameter.
Why doesn't the program print the string we pass?
Because the lambda itself returns a function object.
The external print instruction prints the result of the lambda function, i.e. the function
 object and the memory location where it is stored.

Example 2: The print and lambda function (1)

Works with python3 where
print is a function (and a function

application is an expression, so it will
work in a lambda). In python2 print is a

statement and this example does not work.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54

