
Python libraries: numpy, scipy, matplotlib examples

Python Lecture 4 – Python libraries usage:
numpy, matplotlib e scipy examples

Numpy
Scipy
Matplotlib
Exceptions
Classes

Python libraries: numpy, scipy, matplotlib examples 2/75

★ Bibliography:

https://docs.scipy.org/doc/

http://docs.python.it/

https://matplotlib.org/

and much more available in internet

★ Learning Materials:

https://github.com/bertocco/abilita_info_units_2021

Bibliography and learning materials

https://docs.scipy.org/doc/
http://docs.python.it/
https://matplotlib.org/

Python libraries: numpy, scipy, matplotlib examples 3/75

numpy states for Numerical Python.

NumPy is the fundamental package for scientific computing in Python.

NumPy is a Python library that provides:★ a multidimensional array object, ★ various derived objects (such as masked arrays and matrices), ★ an assortment of routines for fast operations on arrays, including:
– mathematical, logical, shape manipulation
– sorting
– selecting
– I/O
– discrete Fourier transforms
– basic linear algebra
– basic statistical operations
– random simulation
– and much more…..

Numpy

Python libraries: numpy, scipy, matplotlib examples 4/75

Numpy module organization

Python libraries: numpy, scipy, matplotlib examples 5/75

 SciPy is a collection of

– mathematical algorithms and

– convenience functions

built on the numpy extension of Python.

It provides the user with high-level commands and classes for manipulating
and visualizing data.

Using an interactive Python session with scipy we have a data-processing
and system-prototyping environment rivaling systems such as MATLAB and
IDL.

Scipy

Python libraries: numpy, scipy, matplotlib examples 6/75

SciPy is organized into subpackages covering different scientific computing domains:

Scipy modules

Subpackage Description

cluster Clustering algorithms

constants Physical and mathematical constants

fftpack Fast Fourier Transform routines

integrate Integration and ordinary differential equation solvers

interpolate Interpolation and smoothing splines

io Input and Output

linalg Linear algebra

ndimage N-dimensional image processing

odr Orthogonal distance regression

optimize Optimization and root-finding routines

signal Signal processing

sparse Sparse matrices and associated routines

spatial Spatial data structures and algorithms

special Special functions

stats Statistical distribution and function

Scipy sub-packages need

to be imported separately.

Example:

from scipy import linalg, io

Python libraries: numpy, scipy, matplotlib examples 7/75

 Matplotlib is a Python 2D plotting library which produces publication quality

figures in a variety of hardcopy formats and interactive environments across

platforms.

You can generate plots, histograms, power spectra, bar charts, errorcharts,

scatterplots, etc., with just a few lines of code.

For simple plotting the pyplot sub-module provides a MATLAB-like interface,

particularly when combined with IPython. It provides users with full control of

line styles, font properties, axes properties, etc, via an object oriented

interface or via a set of functions familiar to MATLAB users.

Matplotlib

Python libraries: numpy, scipy, matplotlib examples 8/75

● The dir(module) function can be used to look at the namespace of a module or
package, i.e. to find out names that are defined inside the module.

● The help(function) function is available for each module/object and allows to know
the documentation for each module or function.

● Try (in the interpreter) the commands:
 import math
 dir()
 help(math.acos)

● The type(object) function allows to know the type of the object passed as
argument.

 l = [1, "alfa", 0.9, (1, 2, 3)]; print [type(i) for i in l]

★The source(function) function, when given a function written in Python as an
argument, prints out a listing of the source code for that function. This can be
helpful in learning about an algorithm or understanding exactly what a function is
doing with its arguments.

How to find documentation (1)

Python libraries: numpy, scipy, matplotlib examples 9/75

numpy/scipy-specific help system is also available under the command
numpy.info.

Example (try):
>>> import scipy.optimize
>>> import numpy as np
>>> np.info(scipy.optimize.fmin)

 If you use a second keyword argument of numpy.info, it defines the
maximum width of the line for printing. If a module is passed as the argument
to help then a list of the functions and classes defined in that module is
printed.

Example (try):
>>> np.info(scipy.optimize)

How to find documentation (2)

Python libraries: numpy, scipy, matplotlib examples 10/75

Generally, for brevity and convenience, it is used a convention on names used
to import packages (numpy, scipy, and matplotlib):

>>> import numpy as np

>>> import matplotlib as mpl

>>> import matplotlib.pyplot as plt

Generally scipy is not imported as module because interesting functions in
scipy are actually located in the submodules, so submodules or single functions
are imported:

The scipy namespace itself only contains functions imported from numpy.
Therefore, importing only the scipy base package does only provide numpy
content, which could be imported from numpy directly.

These functions still exist for backwards compatibility, but should be imported
from numpy directly.

Name convention

from scipy import fftpack

from scipy import integrate
import scipy

NOT used used

Python libraries: numpy, scipy, matplotlib examples 11/75

 numpy

Python libraries: numpy, scipy, matplotlib examples 12/75

ndarray object is an n-dimensional array of homogeneous data types, with many
operations being performed in compiled code for performance.

Important differences between NumPy arrays and the standard Python sequences:
● NumPy arrays have a fixed size at creation, unlike Python lists (which can grow

dynamically). Changing the size of an ndarray will create a new array and delete the
original.

● The elements in a NumPy array are all required to be of the same data type, and
thus will be the same size in memory. The exception: one can have arrays of
(Python, including NumPy) objects, thereby allowing for arrays of different sized
elements.

● NumPy arrays facilitate advanced mathematical and other types of operations on
large numbers of data. Typically, such operations are executed more efficiently and
with less code than is possible using Python’s built-in sequences.

To know how to use NumPy arrays is needed to efficiently use much (perhaps even
most) of today’s scientific/mathematical Python-based software because a growing
plethora of scientific and mathematical Python-based packages are using NumPy
arrays.

Python arrays: numpy ndarray

Python libraries: numpy, scipy, matplotlib examples 13/75

In NumPy element-by-element operations are the “default mode” when an ndarray is
involved, but the element-by-element operation is speedily executed by pre-compiled C
code.

In NumPy

c = a * b

does the operation at near-C speeds

ndarray efficiency

Python libraries: numpy, scipy, matplotlib examples 14/75

Vectorization and broadcasting are two of NumPy’s features which are the basis of much
of its power.

Broadcasting is the term used to describe the implicit element-by-element behavior of
operations.

In NumPy all operations, not just arithmetic operations, but logical, bit-wise, functional,
etc., behave in this implicit element-by-element fashion.

In the example above, a and b could be multidimensional arrays of the same shape, or a
scalar and an array, or even two arrays of with different shapes, provided that the
smaller array is “expandable” to the shape of the larger in such a way that the resulting
broadcast is unambiguous.

Vectorization describes the absence of any explicit looping, indexing, etc., in the code -
these things are taking place, of course, just “behind the scenes” in optimized, pre-
compiled C code. Main vectorized code advantages are:

● vectorized code is more concise and easier to read
● fewer lines of code generally means fewer bugs
● the code more closely resembles standard mathematical notation (making it easier,

typically, to correctly code mathematical constructs)

Vectorization and broadcasting

Python libraries: numpy, scipy, matplotlib examples 15/75

array size is the number of elements in the array

array rank is the number of axis/dimentions of the array

array shape is the array dimention, i.e. an integer tupla containing the number of
integers for each dimention

The shape attribute specifies the array shape. Example:

import numpy as np

a=np.array([[1,2],[2,2]])

a.shape

(2,2)

b=np.array([[[1,2],[3,4]],[[5,6],[7,8]]])

b.shape

(2, 2, 2)

• L’attributo ndim specifica la dimensione dell’array

a.ndim

2

b.ndim

3

numpy array glossary (1)

Python libraries: numpy, scipy, matplotlib examples 16/75

itemsize allows to specify the dimension of each array element.

>>>b=array([[1, 2,3],[3, 4,5]])

>>> b.itemsize

8

>>> b.dtype

dtype('int64')

>>> b.strides # bytes to jump to get to the next element

 # of each dimension

(24, 8) # skyp_byte_row, skype_byte_col

numpy array glossary (2)

Python libraries: numpy, scipy, matplotlib examples 17/75

A NumPy array can be created by an object

Example:

>>>import numpy as np

>>>a = np.array([1,2,3,4])

>>>list1 = [1,2,3,4]

>>>tupla = (5,6,7,8)

>>>a = np.array(list) # from a list

>>>b = np.array(tupla) # from a tupla

>>>c = np.array([list1,tupla]) # from a list and from a tupla

>>> c

array([[1, 2, 3, 4],

 [5, 6, 7, 8]])

>>>a.dtype # check the array type

dtype('int32')

array creation

Python libraries: numpy, scipy, matplotlib examples 18/75

Memory allocation refers to data store.

● C-style memory allocation stores multi-dimensional data in row-major order in
memory

● Fortran-style memory allocation stores multi-dimensional data in column-major order
in memory

Array to store:

array memory allocation

Python libraries: numpy, scipy, matplotlib examples 19/75

If the array content is unknown, there are functions to fill the array.
● zeros(shape, dtype=float, order =‘C’) function

create an array of 0 of shape dimension

● ones(shape,dtype=None, order =‘C’)

create an array of 1 of shape dimension

● empty(shape, dtype=None, order =‘C’)

creates an array with shape dimension without initializing it

● identity(n, dtype=None)

creates the NxN identity matrix

● eye(N, M=None, k=0, dtype=float)

creates an MxM matrix filling with 1 the k-esima diagonal

Note: order : {‘C’, ‘F’}, optional, default: ‘C’. Means whether to store multi-dimensional
data in row-major (C-style) or column-major (Fortran-style) order in memory.

Other array creations

Python libraries: numpy, scipy, matplotlib examples 20/75

An array can be created from a numbers sequence with functions similar to function
range() for lists:

=> arange([start,] stop[, step,], dtype=None)

creates an array of numbers between ‘start’ and ‘stop’ with step ‘step’

=> linspace(start, stop, num=50, endpoint=True, restep=False)

creates a sequence of num numbers uniformely distributed between start and stop,

If endpoint=True, stop is the last sample; If restep=True, return (samples, step)

arange() and linspace()

Python libraries: numpy, scipy, matplotlib examples 21/75

An array can be created from a string using the function fromstring()

Example:

>>> np.fromstring('1 2', dtype=int, sep=' ')

array([1, 2])

>>> np.fromstring('1, 2', dtype=int, sep=',')

array([1, 2])

Create an array from string

Python libraries: numpy, scipy, matplotlib examples 22/75

Numerical operators in numpy acts elementwise (element-by-element) on arrays.

This rule is valid both for unary and binary operators and also for transcendental
functions (like sin, cos, log, etc.)

Example:

b=np.array([5,6,7,8])

c=np.arange(1,5)

d=c+b

print("Sum " ,b,"+",c, "= ", b+c)

b+=1

print("Autoincrement b +=1 b=", b)

print("Multiply c*3 " ,c, "* 3= ",c*3)

print("Sin (c)", np.sin(c))

Output:

Sum [5,6,7,8] + [1,2,3,4] = [6,8,10,12]

Autoincrement b+=1 b= [6,7,8,9]

Multiply c*3 [1,2,3,4] *3 = [3,6,9,12]

Sin(c) [0.84147098, 0.90929743, 0.14112001, -0.7568025]

Numerical operations on arrays

To deep:
http://scipy-lectures.org/intro/numpy/operations.html

http://scipy-lectures.org/intro/numpy/operations.html

Python libraries: numpy, scipy, matplotlib examples 23/75

Product vector-matrices

Given two vectors

v1=np.array([1,2,3])

v2=np.array([10,20,30])

product element by element between monodimensional array

v1*v2

Output:

array([10, 40, 90])

scalar product between monodimensional array

np.dot(v1,v2)

Output:

140

Numerical operations on arrays

Python libraries: numpy, scipy, matplotlib examples 24/75

product between matrices

use the np.matrix type

m1=np.matrix(v1)

m2=np.matrix(v2)

are bidimensional arrays:

m1.shape,m2.shape

Output:

((1, 3), (1, 3))

You can use standard operators

like in traditional linear algebra:

try:

 m1*m2 #ERRORE

except Exception as err:

 print(err)

Output:

shapes (1,3) and (1,3) not aligned: 3 (dim 1) != 1 (dim 0)

e quindi:

In [10]:

m1*m2

Out[10]:

matrix([[140]])

che è equivalente a:

In [11]:

np.dot(m1,m2)

Out[11]:

matrix([[140]])

Numerical operations on arraysNumerical operations on arrays

Re-define m2 as column vector:

m2=np.matrix(v2[:,np.newaxis])

re-try:

m1*m2

Output:

matrix([[140]])

The same doing:

np.dot(m1,m2)

Output:

matrix([[140]])

Python libraries: numpy, scipy, matplotlib examples 25/75

Reshaping and resizing arrays

Methods resize e reshape allow to modify shape and dimension of an array.

● reshape(shape, order=‘C’)

Return a new data structure with array elements re-distributed on the base of the
new shape with the new order

With reshape() the number of array elements is unmodified

● resize(new_shape, refcheck=True, order=False)

Allow to modify the array shape and the dimension also

 Resize gives an error if the array is referenced.

Examples:

>>>a=arange(20)
>>>a.resize(5,6)
#Ok

>>>b=a
>>>a.resize(3,3)
#Error a is referenced by b
Traceback (most recent call last):
File "<pyshell#160>", line 1, in <module>
a.resize(3,3)
ValueError: cannot resize an array that has been referenced or is
referencing another array in this way. Use the resize function

Python libraries: numpy, scipy, matplotlib examples 26/75

reshape() example output

Shape (8,)

C-style c_style [[[1, 2],

 [3, 4]],

 [[5, 6],

 [7, 8]]]

Fortran-style f_style [[[1,5],

 [3, 7]]

 [[2, 6],

 [4, 8]]]

Reshape c_style [[1, 2, 3, 4],

 [5, 6, 7,8]]

Reshape f_style [[1, 5, 3, 7],

 [2, 6, 4,8]]

Python libraries: numpy, scipy, matplotlib examples 27/75

reshape() example (try)

>>> a=np.array(range(1,9))

>>> print(“Shape” , a.shape)

>>> c_style = a.reshape((2,2,2),order=‘C’) # Array Method: C Style

>>> f_style = a.reshape((2,2,2),order=‘F’) # Array Method: Fortran Style

>>> print(“C-style “, c_style)

>>> print(“Fortran-style “, f_style)

>>> c_style = c_style.reshape((2,4))

>>> print(“Reshape c_style“, c_style)

>>> f_style = f_style.reshape((2,4))

>>>print(“Reshape f_style”,f_style)

Python libraries: numpy, scipy, matplotlib examples 28/75

indexing – slicing – iteration (1)
The access to array elements is done by the operator[]

array has the slicing operator[:]

In case of monodimensional arrays the built-in list notation

Example

>>> a = np.ones(4)

>>> a

array([1., 1., 1., 1.])

>>> b = np.arange(1,5)

>>> b

array([1, 2, 3, 4])

>>> a+=b ; a # a+=b means a=a+b

array([2., 3., 4., 5.])

>>> print(“a[0] “, a[0])

>>> 2.0

>>> a[1:3]=a[1:3]*3 # Modify the elements from 1 to 3

>>> print(a)

>>> [2., 9., 12., 5.]

a[0] a[1:3]

Python libraries: numpy, scipy, matplotlib examples 29/75

indexing – slicing – iteration (2)

,12]])

(

(

(

(

()

)

)

)

)

Python libraries: numpy, scipy, matplotlib examples 30/75

indexing – slicing – iteration (3)

Example:
>>> a=np.arange(25)
>>> a=a.reshape((5,5)) ; print(a)
array([[0, 1, 2, 3, 4],
[5, 6, 7, 8, 9],
[10, 11, 12, 13, 14],
[15, 16, 17, 18, 19],
[20, 21, 22, 23, 24]])

>>> print(a[::,1])
array([1, 6, 11, 16, 21])
>>> print(a[1])
array([5, 6, 7, 8, 9])
>>> print(a[1,:])
array([5, 6, 7, 8, 9])
>>> print(a[1,::])
array([5, 6, 7, 8, 9])
>>> print(a[1,::2])
array([5, 7, 9])
>>> print(a[1,10::-1])
array([9, 8, 7, 6, 5])

Python libraries: numpy, scipy, matplotlib examples 31/75

Array copy
Copy can be of two types:

● copy by reference (it is the copy of memory area pointer)

● copy by value (a new memori area is crested with the same value)

Array copy is by default by reference:
>>>a=np.arange(5)
a: [0,1,2,3,4]
>>>b=a
>>>b[0]=100
>>>print ("a:", a , "b:" , b)
a: [100,1,2,3,4] b: [100,1,2,3,4]

Array assignment by value is done using method copy: >>>c=a.copy()
 >>print("id(a): ", id(a), "id(c):", id(c))
 id(a): 18820584 id(c): 21335648
 >>> c[0]=122
 >>> print("c" , c , "a", a)
 c [122, 1, 2, 3, 4] a [100, 1, 2, 3, 4]

100 1 2 3 4

a

b

a = b means:

a

b

a 3

3b

Python libraries: numpy, scipy, matplotlib examples 32/75

Copy element by element is by value

The copy is done element-by-element and the two objects are different.

Example:
>>> a = np.arange(5)
>>> b = np.zeros_like(a) # Return an array of zeros with the same shape and type as a
given array.
>>> b[:] = a[:] # Copy is element-by-element and the two objects are different
>>> b[3] = 1000
>>> b == a
array([True,True,True,False,True],dtype=bool)

Python libraries: numpy, scipy, matplotlib examples 33/75

Slicing is by reference

Note:
The slicing operation for numpy arrays is different from slicing for python built-in lists:

● in numpy array slicing the generated sub-array is a reference to the original memory
area

● in built-in python lists the generated sub-list is a by-value copy of the original
memory area

 >>> a=np.arange(6) ; a
array([0, 1, 2, 3, 4, 5])
>>> b=a[2:5] ; b
array([2, 3, 4])
>>> b[0]=40
>>> b[1]=50
>>> print “a:“, a , “b:”, b
a: [0 1 40 50 4 5] b: [40 50 4]

This impacts on performances and memory consumption and results.

>>> a=range(6) ; a
[0, 1, 2, 3, 4, 5]
>>> b=a[2:5] ; b
[2, 3, 4]
>>> b[0]=40
>>> b[1]=50
>>> print “a:“, a , “b:”, b
a: [0 1 2 3 4 5] b: [40 50 4]

Python libraries: numpy, scipy, matplotlib examples 34/75

Broadcasting

Basic operations on numpy arrays (addition, etc.) are elementwise (element-by-element)

This works on arrays of the same size.

Nevertheless, It’s also possible to do operations on arrays of different sizes if NumPy can transform
these arrays so that they all have the same size: this conversion is called broadcasting.
The image below gives an example of broadcasting:

Python libraries: numpy, scipy, matplotlib examples 35/75

Broadcasting rules

The broadcasting has two rules:
● If the two arrays have not the same number of dimension

then the more little array is re-shaped (adding dimension ‘1’ until both arrays have the same
dimension

● Arrays with dimension ‘1’ along one direction behaves as the array bigger along that version.
The value is repeated along the broadcast direction.

Python libraries: numpy, scipy, matplotlib examples 36/75

Broadcasting example

c=np.arange(1,5)
d=np.array([[1,1,1,1],[2,2,2,2]])
print d, ”+”, c “= “ d+c

Python libraries: numpy, scipy, matplotlib examples 37/75

Broadcasting example

Broadcast can always be used on 1-dimensional arrays.

Examples:
a=np.array([1,2,3])
a.shape # (3,)
b=np.array([[1,2,3],[4,5,6]])
b.shape #(2,3)
c=a+b # OK!! Broadcastable

a=np.arange(6)
a=a.reshape((2,1,3))
b=np.arange(8)
b=b.reshape((2,4,1))
c=a+b # OK!! Broadcastable

a=np.arange(30)
a=a.reshape((2,5,3))
b=np.arange(8)
b=b.reshape((2,4,1))
c=a+b # No Broadcastable
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: operands could not be broadcast together with shapes (2,5,3) (2,4,1)

Python libraries: numpy, scipy, matplotlib examples 38/75

Vectorization

For loops are slow in Python.
One advatage in using numpy arrays is the provided ability to execute a lot of operations
avoiding explicit loops.
Avoiding explicit loops is called vectorization.

Example:
a=np.arange(0,4*np.pi,0.1)

VECTORIZED VERSION
y=np.sin(a)*2

SCALAR VERSION
y=np.zeros(len(a))
for i in range(len(a)):
 y[i]=np.sin(a[i])*2

Sometimes it is needed to vectorize explicitely the algorithm:
• Directly: vectorize(function) # a bit slow!
• Manually: with suitable techniques, like slicing for example

Python libraries: numpy, scipy, matplotlib examples 39/75

Vectorization
Vectorization is not always possible. Example:
def func(x):
 if x<0: return 1
 else: return np.sin(x)
func(3)
func(np.array([1,-2,9]))
Traceback (most recent call last):
ValueError: The truth value of an array with more than one element is
ambiguous. Use
a.any() or a.all()

● Scalar version to work with arrays. Example:
def func_NumPy(x):
 r = x.copy() # allocate result array
 for i in range(np.size(x)):
 if x[i] < 0:
 r[i] = 0.0
 else:
 r[i] = sin(x[i])
 return r
 This implementation is very slow in Python and it works only for 1-dimensional arrays
=> The ‘where’ statement can be used instead

Python libraries: numpy, scipy, matplotlib examples 40/75

Vectorization

def f(x):
 if condition:
 x = <expression1>
 else:
 x = <expression2>
 return x

def f_vectorized(x):

 x1 = <expression1>
 x2 = <expression2>

 return where(condition, x1, x2)

Using vectorization, the previous examples becomes:

def func_NumPyV2(x):
 return where(x < 0, 0.0, sin(x))

• Avoid for cicle usage
• Run on molti-dimentional structures

This is the famous pythonic way of work

Python libraries: numpy, scipy, matplotlib examples 41/75

Vectorization

Array slicing can be used to vectorize operations.

In scientific field, for example, applications regarding
 – schemas for finite differences equations
 – image processing
it is common to find expressions like:

xk = xk-1 + 2xk + xk-1 k=1,2,...,n-1

It can be managed:
● with scalar functions

 for i in range(len(x)-1):
 x[i]=x[i-1]+2*x[i]+x[i+2]

● or using vectorization:

 x[1:n-1]=x[0:n-2]+2*x[1:n-1]+x[2:n]

Python libraries: numpy, scipy, matplotlib examples 42/75

I/O with array NumPy
Functions eval and repr can be used to write and read ASCII format files
a = linspace(1, 21, 21)
a.shape = (2,10)
ASCII format:
file = open(’tmp.dat’, ’w’)
file.write(’Here is an array a:\n’)
file.write(repr(a)) # dump string representation of a
file.close()
load the array from file into b:
file = open(’tmp.dat’, ’r’)
file.readline() # load the first line (a comment)
b = eval(file.read())
file.close()

Files I/O can be managed with loadtxt and savetxt
Read file:
numpy.loadtxt(fname, dtype=<type'float'>, comments='#', delimiter=None, converters=None,

skiprows=0,usecols=None, unpack=False, ndmin=0)
Write file:
numpy.savetxt(fname, X, fmt='%.18e', delimiter='', newline='\n', header='', footer='',comments='#)

Python libraries: numpy, scipy, matplotlib examples 43/75

I/O with array NumPy
Text.txt
Student test1 test2 test3 test4
Lisa 98.3 94.2 95.3 91.3
Carlo 47.2 49.1 54.2 34.7
Mario 84.2 85.3 94.1 76.4

>>>a = loadtxt('textfile.txt',skiprows=2,usecols=range(1,5))
>>>print a
[[98.3 94.2 95.3 91.3]
 [47.2 49.1 54.2 34.7]
 [84.2 85.3 94.1 76.4]]

>>>b = loadtxt(‘textfile.txt’,skiprows=2,usecols=(1,-2))
>>> print b
[[98.3 95.3]
 [47.2 54.2]
 [84.2 94.1]]

Python libraries: numpy, scipy, matplotlib examples 44/75

Matrix

Numpy provides standard classes, inheriting by array and using its internal
structure

• Matrix inherit from ndarray methods and attributes
• Matrix class specific attributes
 – .T trasposta
 – .H coniugata trasposta
 – .I inversa
 – .A array bidimensionale
• Matrix defines only bidimensional objects
• Matrix * operator executes multiplication
• Matrix objects have priority respect to simple arrays

Python libraries: numpy, scipy, matplotlib examples 45/75

Matrix

Python libraries: numpy, scipy, matplotlib examples 46/75

linalg

The Numpy module contains interesting submodules. One of them is

linalg

containing some algorithm of linear algebra.
It contains functions to solve:

– linear systems

– compute eigenvalues

– compute eigenvectors

– factorization

– invert matrix

– matrix multiply

>>> dir(linalg)

Python libraries: numpy, scipy, matplotlib examples 47/75

linalg: example

>>> A = np.zeros((10,10)) # arrays initialization
>>> x = np.arange(10)/2.0
>>> for i in range(10):
… for j in range(10):
… A[i,j] = 2.0 + float(i+1)/float(j+i+1)
>>> b = np.dot(A, x)
>>> y = np.linalg.solve(A, b) # A*y=b → y=x

eigenvalues only:
>>> A_eigenvalues = np.linalg.eigvals(A)

eigenvalues and eigenvectors:
>>> A_eigenvalues, A_eigenvectors = np.linalg.eig(A)

Python libraries: numpy, scipy, matplotlib examples 48/75

Datala matrice A, quadrata di ordine n, esistono

•uno scalareλ

•un vettore (a n componenti) v, non nullo,

tali che, scrivendo v come colonna, risulti

Av=λv ?

Se si,

λ viene detto autovalore di A e

v viene detto autovettore di A relativo a λ

Autovettore e autovalore

Python libraries: numpy, scipy, matplotlib examples 49/75

random

random is another NumPy sub-module to generate random numbers

>>> dir(random)

The standard numpy module is not efficient in random number ganeration, it is
more efficient to use numpy.random

Example:
>>> np.random.seed(100)
>>> x = np.random.random(4)
array([0.89132195, 0.20920212, 0.18532822,0.10837689])
>>> y = np.random.uniform(1, 1, n) # n uniform
numbers in interval (1,1)
Distribuzione normale
>>> mean = 0.0; stdev = 1.0
>>> u = np.random.normal(mean, stdev, n)

Python libraries: numpy, scipy, matplotlib examples 50/75

 scipy

Python libraries: numpy, scipy, matplotlib examples 51/75

 SciPy is a collection of

– mathematical algorithms and

– convenience functions

built on the numpy extension of Python.

It provides the user with high-level commands and classes for manipulating
and visualizing data.

Using an interactive Python session with scipy we have a data-processing
and system-prototyping environment rivaling systems such as MATLAB, IDL.

 https://docs.scipy.org/doc/scipy/reference/tutorial/index.html

Scipy

https://docs.scipy.org/doc/scipy/reference/tutorial/index.html

Python libraries: numpy, scipy, matplotlib examples 52/75

SciPy is organized into subpackages covering different scientific computing domains:

Scipy modules

Subpackage Description

cluster Clustering algorithms

constants Physical and mathematical constants

fftpack Fast Fourier Transform routines

integrate Integration and ordinary differential equation solvers

interpolate Interpolation and smoothing splines

io Input and Output

linalg Linear algebra

ndimage N-dimensional image processing

odr Orthogonal distance regression

optimize Optimization and root-finding routines

signal Signal processing

sparse Sparse matrices and associated routines

spatial Spatial data structures and algorithms

special Special functions

stats Statistical distribution and function

Scipy sub-packages need

to be imported separately.

Example:

from scipy import linalg, io

Python libraries: numpy, scipy, matplotlib examples 53/75

 matplotlib

Python libraries: numpy, scipy, matplotlib examples 54/75

 Matplotlib is a Python 2D plotting library which produces publication quality

figures in a variety of hardcopy formats and interactive environments across

platforms.

You can generate plots, histograms, power spectra, bar charts, errorcharts,

scatterplots, etc., with just a few lines of code.

For simple plotting the pyplot sub-module provides a MATLAB-like interface,

particularly when combined with IPython. For the power user, you have full

control of line styles, font properties, axes properties, etc, via an object

oriented interface or via a set of functions familiar to MATLAB users.

Matplotlib

Python libraries: numpy, scipy, matplotlib examples 55/75

https://matplotlib.org/gallery/index.html#examples-index

This gallery contains examples of the many things you can do with Matplotlib.

It is completely searchable from the search page:

https://matplotlib.org/search.html

A set of tutorial is accessible:

https://matplotlib.org/tutorials/index.html

Matplotlib: Gallery

https://matplotlib.org/gallery/index.html#examples-index
https://matplotlib.org/search.html
https://matplotlib.org/tutorials/index.html

Python libraries: numpy, scipy, matplotlib examples 56/75

Simple plot of a sin function, with labels on x and y axis (simple_plot.py):

import matplotlib.pyplot as plt

import numpy as np

t = np.arange(0.0, 2.0, 0.01)

s = 1 + np.sin(2*np.pi*t)

plt.plot(t, s)

plt.xlabel('time (s)')

plt.ylabel('voltage (mV)')

plt.title('About as simple as it gets, folks')

plt.grid(True)

plt.savefig("test.png")

plt.show()

 https://matplotlib.org/examples/pylab_examples/simple_plot.html

example code: simple_plot.py

https://matplotlib.org/examples/pylab_examples/simple_plot.html

Python libraries: numpy, scipy, matplotlib examples 57/75

Using the previous example, make some try changing the scale and the labels.

Try to plot also different functions.

Exercise

Python libraries: numpy, scipy, matplotlib examples 58/75

import numpy as np

import matplotlib.pyplot as plt

x1 = np.linspace(0.0, 5.0)

x2 = np.linspace(0.0, 2.0)

y1 = np.cos(2 * np.pi * x1) * np.exp(-x1)

y2 = np.cos(2 * np.pi * x2)

plt.subplot(2, 1, 1)

plt.plot(x1, y1, 'o-')

plt.title('A tale of 2 subplots')

plt.ylabel('Damped oscillation')

plt.subplot(2, 1, 2)

plt.plot(x2, y2, '.-')

plt.xlabel('time (s)')

plt.ylabel('Undamped')

plt.show()

 https://matplotlib.org/gallery/subplots_axes_and_figures/subplot.html

Example: subplots

Python libraries: numpy, scipy, matplotlib examples 59/75

import numpy as np

from matplotlib import pyplot as plt

read data by file

data = np.loadtxt('data/populations.txt')

read variables by line

year, hares, lynxes, carrots = data.T

plot populations

print("plot the 4 populations on the same graph")

plt.axes([0.2, 0.1, 0.5, 0.8])

plt.plot(year, hares, year, lynxes, year, carrots)

plt.legend(('Hare', 'Lynx', 'Carrot'), loc=(1.05, 0.5))

plt.show()

plt.close()

http://scipy-lectures.org/intro/numpy/operations.html

Example: statisctics

print("The mean populations over time:")

populations = data[:, 1:]

print(populations.mean(axis=0))

Expected result:

[34080.95238095 20166.66666667 42400.]

print("The sample standard deviations:")

print(populations.std(axis=0))

Expected result:

[20897.90645809 16254.59153691 3322.5062]

print("Which species has the highest population

 each year?:")

print(np.argmax(populations, axis=1))

Expected result:

[2 2 0 0 1 1 2 2 2 2 2 2 0 0 0 1 2 2 2 2 2]

Python libraries: numpy, scipy, matplotlib examples 60/75

 astropy

Python libraries: numpy, scipy, matplotlib examples 61/75

The astropy package contains key functionality and common tools needed

for performing astronomy and astrophysics with Python.

It is at the core of the Astropy Project, which aims to enable the community

to develop a robust ecosystem of Affiliated Packages covering a broad

range of needs for astronomical research, data processing, and data

analysis.

 http://docs.astropy.org/en/stable/

Astropy

http://docs.astropy.org/en/stable/

Python libraries: numpy, scipy, matplotlib examples 62/75

Data structures and transformations
Constants (astropy.constants)
Units and Quantities (astropy.units)
N-dimensional datasets (astropy.nddata)
Data Tables (astropy.table)
Time and Dates (astropy.time)
Astronomical Coordinate Systems (astropy.coordinates)
World Coordinate System (astropy.wcs)
Models and Fitting (astropy.modeling)
Uncertainties and Distributions (astropy.uncertainty)

Files, I/O, and Communication
Unified file read/write interface
FITS File handling (astropy.io.fits)
ASCII Tables (astropy.io.ascii)
VOTable XML handling (astropy.io.votable)
Miscellaneous: HDF5, YAML, ASDF, pickle (astropy.io.misc)
SAMP (Simple Application Messaging Protocol (astropy.samp)

 http://docs.astropy.org/en/stable/

Astropy: content

http://docs.astropy.org/en/stable/

Python libraries: numpy, scipy, matplotlib examples 63/75

Computations and utilities
Cosmological Calculations (astropy.cosmology)
Convolution and filtering (astropy.convolution)
Data Visualization (astropy.visualization)
Astrostatistics Tools (astropy.stats)

Nuts and bolts
Configuration system (astropy.config)
I/O Registry (astropy.io.registry)
Logging system
Python warnings system
Astropy Core Package Utilities (astropy.utils)
Astropy Testing Tools
Try the development version

http://docs.astropy.org/en/stable/

Astropy: content

http://docs.astropy.org/en/stable/

Python programming - 1 64/75

Exceptions

Errors detected during execution are called exceptions.
Exceptions are errors raised executing a statement or an expression,
also in case they are syntactically correct.
Exceptions are not unconditionally fatal: they can be handled in Python
programs. Most exceptions are not handled by programs, however, and
result in error messages.

Example:
>>> 10 * (1/0)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ZeroDivisionError: integer division or modulo by zero

● Exceptions come in different types, and the type is printed as part of
the message. Example are ZeroDivisionError, NameError and
TypeError.

Python programming - 1 65/75

Classes

Classes provide a means of bundling data and functionality together.
Creating a new class creates a new type of object, allowing new
instances of that type to be made. Each class instance can have
attributes attached to it for maintaining its state. Class instances can also
have methods (defined by its class) for modifying its state.

Example:
● Create class

class MyClass:
 def __init__(self, name, age):
 self.attribute1 = value1
 self.attribute2 = value2

 def myfunc(self):
 print("Hello my attrib1 is " + self.attribute1)

Example:
● Create and use

object
●

p1 = MyClass()

p1.myfunc()

print(p1.attribute1)

Python programming - 1 66/75

Classes: the __init__ object

To understand the meaning of classes we have to understand the built-in
__init__() function.

All classes have a function called __init__(), which is always executed when the
class is being initiated, i.e.every time the class is being used to create a new
object.

Use the __init__() function to assign values to object properties, or other
operations that are necessary to do when the object is being created.

Example
Create a class named Person, use the __init__() function to assign values for
name and age:
class Person:
 def __init__(self, name, age):
 self.name = name
 self.age = age

p1 = Person("John", 36)
print(p1.name)
print(p1.age)

Python programming - 1 67/75

Classes: methods

Classes can also contain methods. Methods in objects are functions that
belongs to the object.

Let us create a method in the Person class that prints a greeting, and execute it
on the p1 object:

Example
class Person:
 def __init__(self, name, age):
 self.name = name
 self.age = age

 def myfunc(self):
 print("Hello my name is " + self.name)

p1 = Person("John", 36)
p1.myfunc()

Python programming - 1 68/75

User Defined Exceptions

Programs may name their own exceptions by creating a new exception
class.

Python programming - 1 69/75

Exceptions handling

Programs can handle exceptions with the following structure

try:
 statement(s)
except ExceptionType1:
 statement(s)
except exceptionType2, exceptionType3:
 statement(s)
……
except:
 statement(s)
else:
 statement(s)
finally:
 statement(s)

finally is always executed

except EceptionType1 is executed if an
Exception of Type1 is raised in the try
block

except is executed if a not previously
catchd exception is thrown

else is executed if no one exception is
thrown in try block

Python programming - 1 70/75

Exceptions handling: try….except clause

The try statement works as follows: the try clause (the statement(s) between
the try and except keywords) is executed.
If no exception occurs, the except clause is skipped and the execution of the try
statement is finished.
If an exception occurs during execution of the try clause, the rest of the clause
is skipped. Then if its type matches the exception named after the except
keyword, the except clause is executed, and then execution continues after the
try statement.
If an exception occurs which does not match the exception named in the except
clause, it is passed on to other except statements and at the end, to the generic
except clause, if it is present. If no handler is found, it is an unhandled exception
and execution stops with a message.
When a try statement has more than one except clause, to specify handlers for
different exceptions, at most one handler will be executed. Handlers only handle
exceptions that occur in the corresponding try clause, not in other handlers of
the same try statement.

Python programming - 1 71/75

Exceptions handling: except clause

An except clause may name multiple exceptions as a parenthesized
tuple. Example:

... except (RuntimeError, TypeError, NameError):

... pass

Python programming - 1 72/75

Exceptions handling: else clause

The try … except statement has an optional else clause, which, when
present, must follow all except clauses. It is useful for code that must be
executed if the try clause does not raise an exception. Example:

for arg in sys.argv[1:]:
 try:
 f = open(arg, 'r')
 except OSError:
 print('cannot open', arg)
 else:
 print(arg, 'has', len(f.readlines()), 'lines')
 f.close()

The use of the else clause is better than adding additional code to the try
clause because it avoids accidentally catching an exception that wasn’t
raised by the code being protected by the try … except statement.

Python programming - 1 73/75

Exceptions handling: final clause

The try statement has the final optional clause.
The final clause, which is intended to define clean-up actions,
is always executed before leaving the try statement, whether an
exception has occurred or not.
When an exception has occurred in the try clause and has not been
handled by an except clause (or it has occurred in an except or else
clause), it is re-raised after the finally clause has been executed.
The finally clause is also executed “on the way out” when any other
clause of the try statement is left via a break, continue or return
statement.

Python programming - 1 74/75

Exceptions handling: a complete example

>>> def divide(x, y):
... try:
... result = x / y
... except ZeroDivisionError:
... print("division by zero!")
... else:
... print("result is", result)
... finally:
... print("executing finally clause")
...
>>> divide(2, 1)
result is 2.0
executing finally clause
>>> divide(2, 0)
division by zero!
executing finally clause
>>> divide("2", "1")
executing finally clause
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "<stdin>", line 3, in divide
TypeError: unsupported operand type(s) for /: 'str' and 'str'

Python programming - 1 75/75

Exceptions handling: the raise statement

The raise statement allows the programmer to force a specified
exception to occur. For example:

>>>
>>> raise NameError('HiThere')
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
NameError: HiThere

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75

