

<u>Pharmacoepigenetics</u>: an element of personalized therapy?

Che cos'è l'epigentica?

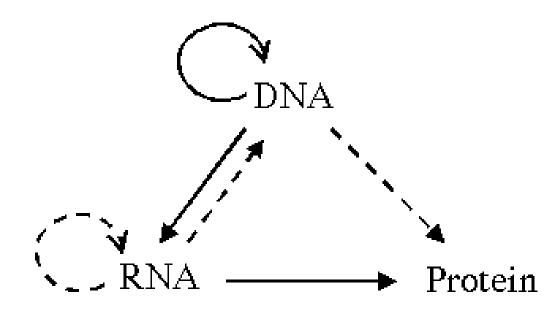
(επi) epi = "sopra"(γεννετικός) gennetikòs = "relativo all'eredità familiare"

Definita come lo studio dei meccanismi responsabili di cambiamenti ereditabili che influenzano il fenotipo (espressione genica) senza alterare il genotipo (sequenza del DNA).

Il termine risale al 1942 quando **C.H. Waddington** lo coniava per designare la branca della biologia che studia le interazioni causali fra i geni e il loro prodotto cellulare (fenotipo).

Che cos'è l'epigenetica?

Coniglio Himalayano

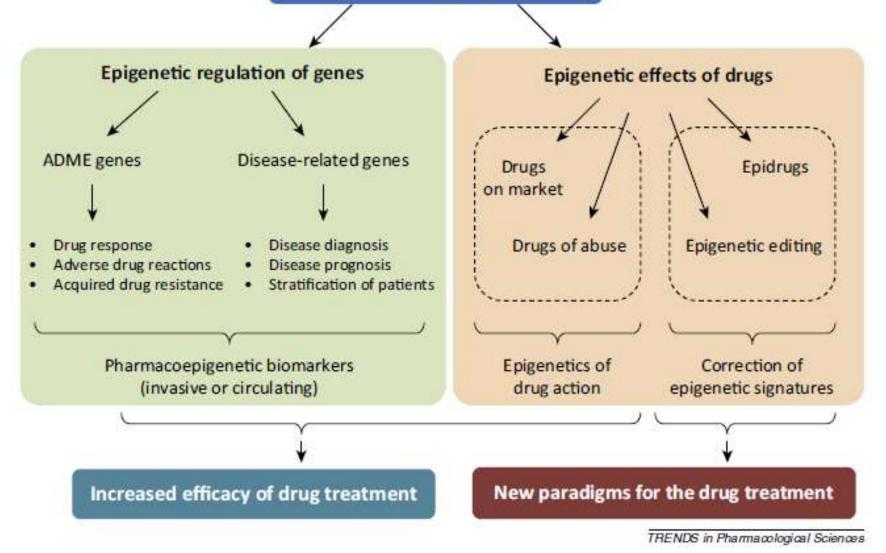

LA RIVOLUZIONE EPIGENETICA

Completion of the First draft of the Human Genome Project was announced on the 26th June 2000, jointly presented to the world by US President Bill Clinton and UK PM Tony Blair.

DOGMA DELLA BIOLOGIA MOLECOLARE

NATURE VOL. 227 AUGUST 8 1970

561


Central Dogma of Molecular Biology

bу

FRANCIS CRICK MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH The central dogma of molecular biology deals with the detailed residue-by-residue transfer of sequential information. It states that such information cannot be transferred from protein to either protein or nucleic acid.

Pharmacoepigenetics

Ivanov M et al., Trends in Pharmacological Sciences 2014

Type of enzyme	Drug	Target enzyme	Clinical application
DNMT inhibitors	5-Azacytidine (Vidaza)	DNMT1	Approved by the FDA in 2004 for treatment of myelodysplastic syndromes (MDS)
	5-Aza-2'-deoxycytidine (aza-dC, decitabine,	DNMT1	Approved by the FDA in 2006 for treatment of MDS
	Dacogen)		Reversed platinum resistance in ovarian cancer when coadministered with carboplatin (Phase II trial)
	Hydralazine	DNMT1	Clinical benefit in cancer patients with refractory solid tumors when added to valproic acid (Phase II trial)
			Reversed imatinib resistance in patients with chronic myeloid leukemia when coadministered with magnesium valproate
HDAC inhibitors	Valproic acid	HDAC	Promising nontoxic and effective therapy for MDS in combination with hydralazine (Phase II trial ongoing)
			Under evaluation in metastatic cervical cancer in combination with hydralazine (Phase III trial ongoing)
			Combined with aza-dC for non-small-cell lung cancer (Phase I trial)
	Suberoylanilide hydroxamic acid	HDAC	Approved by the FDA in 2006 for treatment of advanced cutaneous T-cell lymphoma
	(vorinostat, Zolinza)		Reversed hormone resistance in patients with ER ⁺ metastatic breast cancer, when coadministered with tamoxifen (Phase II trial)
	Romidepsin (depsipeptide, Istodax)	HDAC	Approved by the FDA in 2009 for treatment of advanced cutaneous T-cell lymphoma
	Sodium butyrate	HDAC	Induces antimicrobial peptide LL-37 in the rectum of shigellosis patients (Phase II trial)
	Panobinostat	HDAC	Promising results in monotherapy of heavily pretreated Hodgkin's lymphoma patients (Phase II trial)
			Recaptures responses in bortezomib- resistant multiple myeloma patients (Phase II trial)
	Entinostat	HDAC1, HDAC2	Improved survival in women with ER ⁺ advanced breast cancer when added to exemestane (Phase II trial)
	Mocetinostat	HDAC1, HDAC2	Promising effect in monotherapy of relapsed Hodgkin's lymphoma (Phase II trial)
	Selisistat	SIRT1	Under evaluation for treatment of Huntington's disease (Phase II trial ongoing)

2224

C

EPIDRUGS

treatment

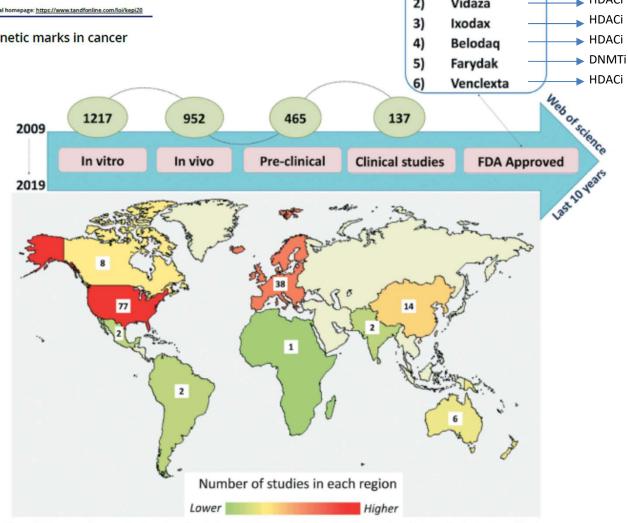
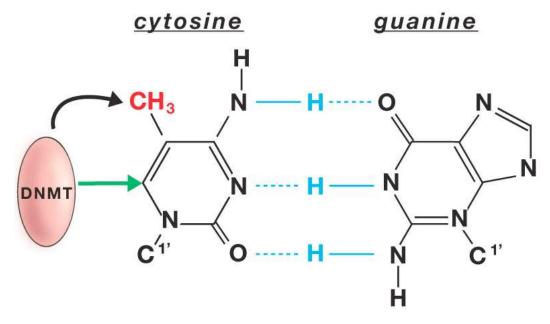
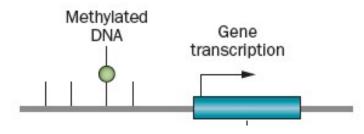


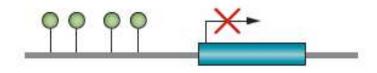
Figure 2. Progress of epigenetic drugs in different stages of pharmacological studies. The number of epigenetic studies from 2009 to 2019 according to 'web of science' database is showed according to each study phase: *in vitro* (1217) *in vivo* (952), preclinical (465) and clinical (137). The map represents the global distribution of clinical epigenetic drug studies according to clinical trial database (www.clinicaltrial.org, june, 2019), and the box show the exact number of studies.

Furtado et al., Epigenetics 2019

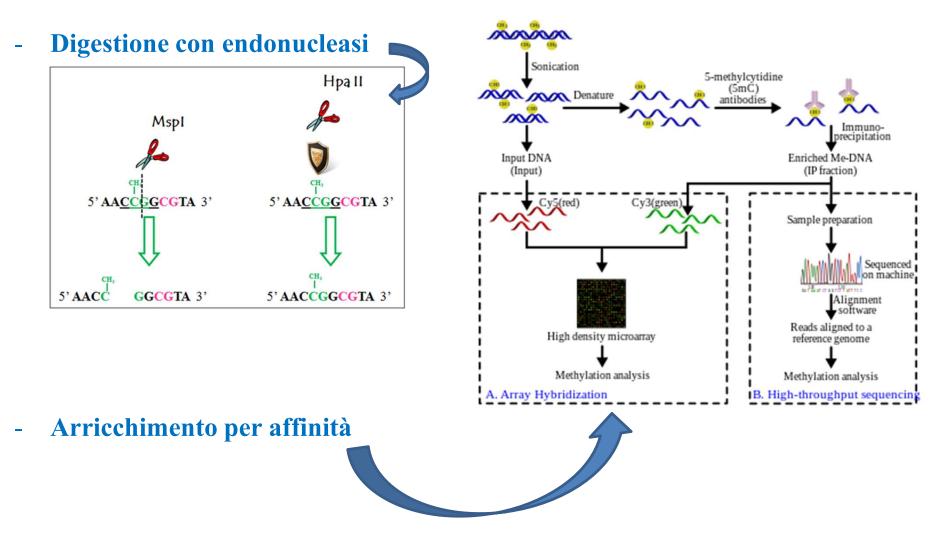


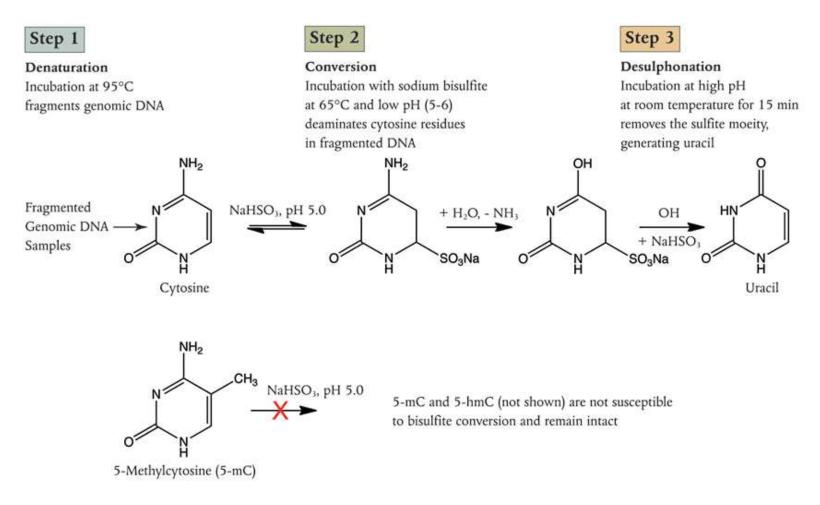
I principali componenti del codice epigenetico:


- Metilazione del DNA
- Metilazione dell'RNA (N6-metiladenosina)
- Modificazione della cromatina (acetilazione e/o metilazione degli istoni)
- \circ RNA non codificanti



METILAZIONE DEL DNA


La citosina metilata NON esiste nel pool dei nucleotidi liberi presenti nella cellula! E' una modificazione post-replicativa del genoma catalizzata da enzimi DNA-metil-transferasi. Avviene a carico dei dinucleotidi CpG.


Techniques for profiling DNA methylation

Techniques for profiling DNA methylation

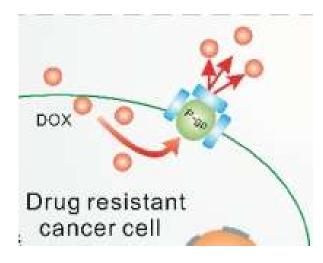
- Trattamento con bisolfito

High-throughput techniques for profiling DNA methylation

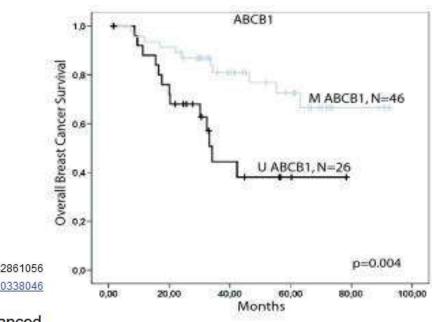
Widely used high throughput techniques	WGBS	RRBS	Illumina 27K/450K arrays	MeDIP-Seq	MRE-Seq
Full name	Whole-genome Bisulfite sequencing	Reduced representation bisulfite sequencing	Infinium HumanMethylation27/450 BeadChip arrays	Methylation dependent immuno precipitation sequencing	Methylation-sensitive restriction enzyme digestion sequencing
Pretreatment	Sodium bisulphite	Enzyme digestion Sodium bisulphite CU	Sodium bisulphite	Affinity enrichment	Enzyme digestion
Detection method	Next-generation sequencing	Next-generation sequencing	BeadArray microarray	Next-generation sequencing	Next-generation sequencing
Resolution	Single C sites	Sparse single C sites	Selected single CpG site	Methylated Region	Un-methylated Region
Visualization					
Special application	Whole-genome cytosine methylation analysis at single-base resolution	Specific methylation analysis across a large number of cell lines Varley, K.E., et al., Genome Res, 2013. 23(3)	Aberrant methylation analysis in a large number of cancer tissues	Combination Identification of intermediate methylation regions WGBS MRE-Seq MeDIP-Seq Elliott, G., et al. Nat Commun, 2015. 6	

MARCATORI EPIGENETICI ASSOCIATI ALLA RISPOSTA DI ANTINEOPLASTICI

Table 1. Relevant examples of epigenetic biomarkers of drug responses

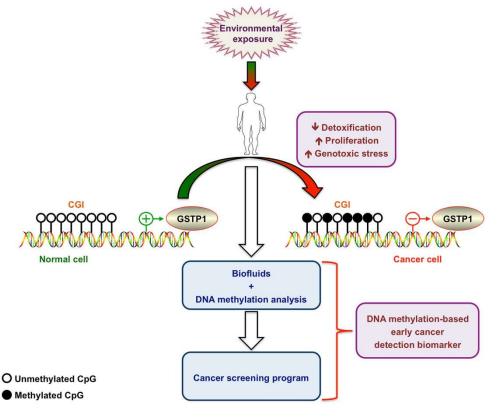

Drug	Gene	Power		
Anthracyclines	ABCB1	Transport	Promoter methylation correlated with	n = 75, P = 0.004
	GSTP1	Detoxification	survival in breast cancer patients and may be a marker for the efficacy of doxonubicin treatment	(validation cohort n = 163)
	PITX2	Cell proliferation	Promoter methylation correlated with clinical outcome for anthracycline-based chemotherapy	n = 241, P = 0.002
Alkylating agents	BRCA1	DNA damage response	Promoter hypermethylation of BRCA1 predicted enhanced sensitivity to platinum-derived drugs in cancer cell lines and xenografted tumors; it also predicted increased time to relapse (P =0.0087) and survival (P =6.4 × 10 ⁻⁷) in ovarian cancer patients under cisplatin treatment	n = 30
	GPX3	Detoxification of hydrogen peroxide	Loss of GPX3 expression due to promoter hypermethylation correlated with resistance to cisplatin (P=0.014) and with reduced disease-free survival (P=0.02) in head and neck cancer patients	n = 46
	MGM T*	DNA repair	Promoter methylation of MGMT associated with improved overall survival (21.2 vs 14 months; HR 1.74, P < 0.001), progression-free survival (8.7 vs 5.7 months; HR 1.63, $P < 0.001$), and response ($P = 0.012$) in glioma patients treated with temozolomide	n = 411
	PLK2	Turn or suppression	Promoter methylation of PLK2 associated with a higher risk of relapse in ovarian cancer patients	n = 54, P = 0.003
Fluoropyrimidines	TFAP2E	Transcriptional regulation	Hypermethylation of TFAP2E associated with clinical nonresponsiveness in colorectal cancer patients	n = 220, P < 0.001
DNMTi	GSTP1	Detoxification	DNA methylation of GSTP1 correlated with efficiency of DNMTi therapy in prostate cancer cells	
Tyrosine kinase inhibitors	OSCP1	Transport	Patients with higher methylation of OSCP1 were resistant to imatinib treatment	n = 90, P = 0.0003
	SFRP5	WNT signaling	DNA methylation of SFRP5 correlates with lower progression-free survival rate in non-small-cell lung cancer patients in response to EGFR tyrosine-kinase inhibitors	n = 155, P = 0.011
Docetaxel	RASSF1A	Cell cycle, DNA repair	Promoter methylation of RASSFIA is associated with nonresponsiveness to docetaxel in breast cancer patients	n = 45, P = 0.042

1


Ivanov M et al., Trends in Pharmacological Sciences 2014

MARCATORI EPIGENETICI ASSOCIATI ALLA RISPOSTA DI ANTRACICLINE

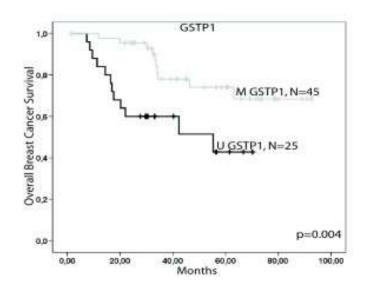
DNA methylation of the *ABCB1* CpG island is associated with response to doxorubicin treatment and overall survival in a doxorubicin-exposed cohort of primary breast cancers.



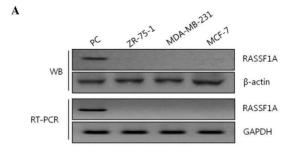
Mol Cancer. 2010; 9: 68. Published online 2010 Mar 25. doi: [10.1186/1476-4598-9-68] PMCID: PMC2861056 PMID: 20338046

DNA methylation profiling in doxorubicin treated primary locally advanced breast tumours identifies novel genes associated with survival and treatment response

Emelyne Dejeux,^{#1} Jo Anders Rønneberg,^{#2,3} <u>Hiroko Solvang</u>,^{3,4} <u>Ida Bukholm</u>,^{3,5} <u>Stephanie Geisler</u>,⁶ <u>Turid Aas</u>,⁷ <u>Ivo G Gut</u>,¹ <u>Anne-Lise Børresen-Dale</u>,^{2,3} <u>Per Eystein Lønning</u>,^{6,8} <u>Vessela N Kristensen</u>,^{2,3} and <u>Jörg Tost</u>^{®1}



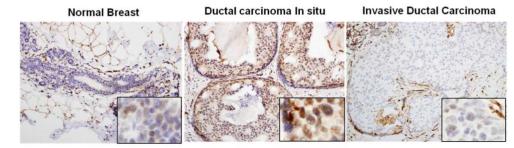
Mol Cancer, 2010; 9: 68. Published online 2010 Mar 25. doi: [10.1186/1476-4598-9-68] PMCID: PMC2861056 PMID: 20338046


DNA methylation profiling in doxorubicin treated primary locally advanced breast tumours identifies novel genes associated with survival and treatment response

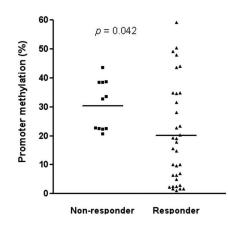
Emelyne Dejeux,^{#1} Jo Anders Rønneberg,^{#2,3} <u>Hiroko Solvang</u>,^{3,4} <u>Ida Bukholm</u>,^{3,5} <u>Stephanie Geisler</u>,⁶ <u>Turid Aas</u>,⁷ <u>Ivo G Gut</u>,¹ <u>Anne-Lise Børresen-Dale</u>,^{2,3} <u>Per Eystein Lønning</u>,^{6,8} <u>Vessela N Kristensen</u>,^{2,3} and <u>Jörg Tost</u>^{®1}

DNA methylation of the *GSTP1* CpG island is associated with overall survival in a doxorubicin-exposed cohort of primary breast cancers.

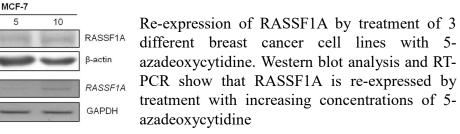
MARCATORI EPIGENETICI ASSOCIATI ALLA RISPOSTA DI DOCETAXEL


B

Α


5-aza-deoxycytidine (µM)

(A) Expression of RASSF1A in 3 breast cancer cell lines, determined by western blot analysis and RT-PCR analysis. (B) RASSF1A protein expression in normal breast, DCIS and invasive ductal carcinoma. Brown staining in immunohistochemistry is indicative of RASSF1A protein expression


0

0

Comparison of mean level of methylation of RASSF1A between non-responder and responder to chemotherapy.

ZR-75-1

5

10

0

WB

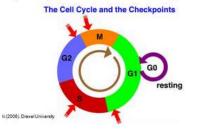
RT-PCR

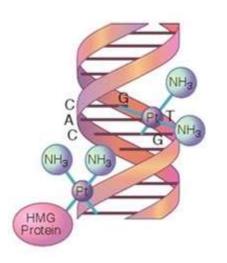
Promoter methylation of RASSF1A modulates the effect of the microtubule-targeting agent docetaxel in breast cancer.

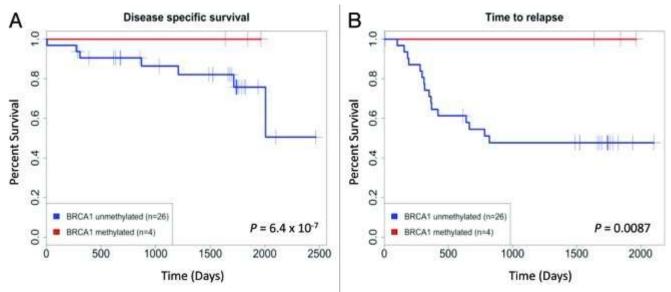
MBA-MD-231

5

10


Gil EY1, Jo UH, Jeong H, Whang YM, Woo OH, Cho KR, Seo JH, Kim A, Lee ES, Koh I, Kim YH, Park KH.




MARCATORI EPIGENETICI ASSOCIATI ALLA RISPOSTA DI AGENTI ALCHILANTI

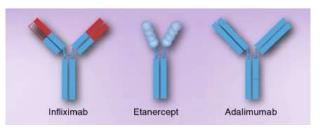
BRCA1 regulates the cell cycle in response to DNA damage

For example, BRCA1 represses transcription of Cyclin B, which is needed for entry into mitosis

BRCA1 hypermethylation proves to be a predictor of good response to chemotherapy with cisplatin in ovarian cancer patients. BRCA1 hypermethylation in patients with ovarian cancer is associated with longer time to relapse and improved disease-specific survival.

Epigenetics. 2012 Nov 1; 7(11): 1225–1229. doi: [10.4161/epi.22561] PMCID: PMC3499323 PMID: 23069641

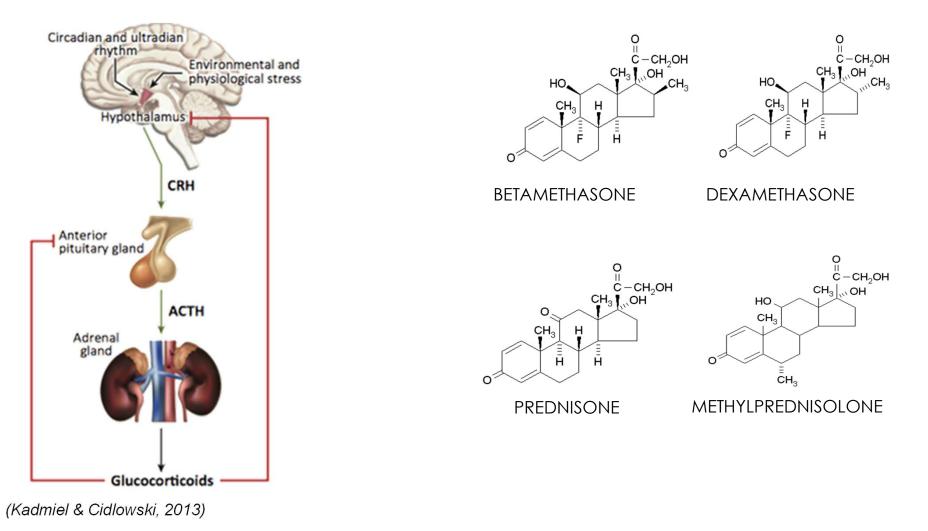
BRCA1 epigenetic inactivation predicts sensitivity to platinum-based chemotherapy in breast and ovarian cancer


Olafur A. Stefansson, ¹ Alberto Villanueva, ² August Vidal, ³ Lola Martí, ⁴ and Manel Esteller ^{1,5,6,*}

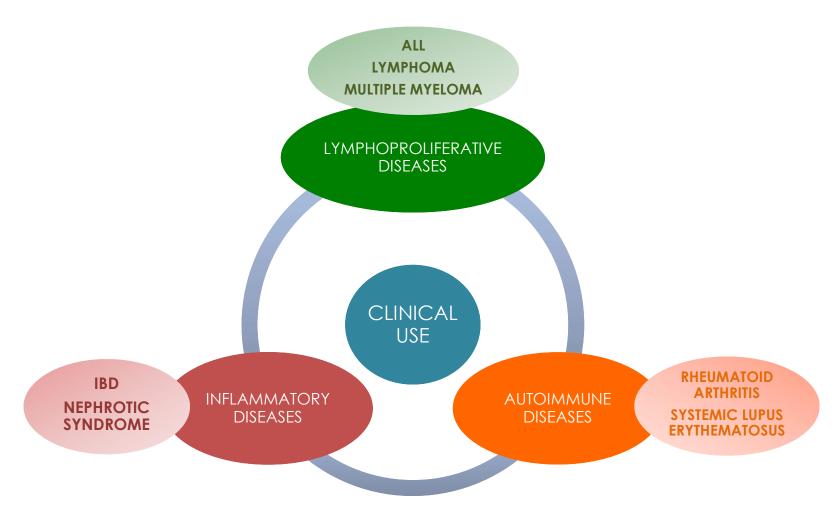
Pharmacoepigenetics of anti-TNF drugs in psoriasis

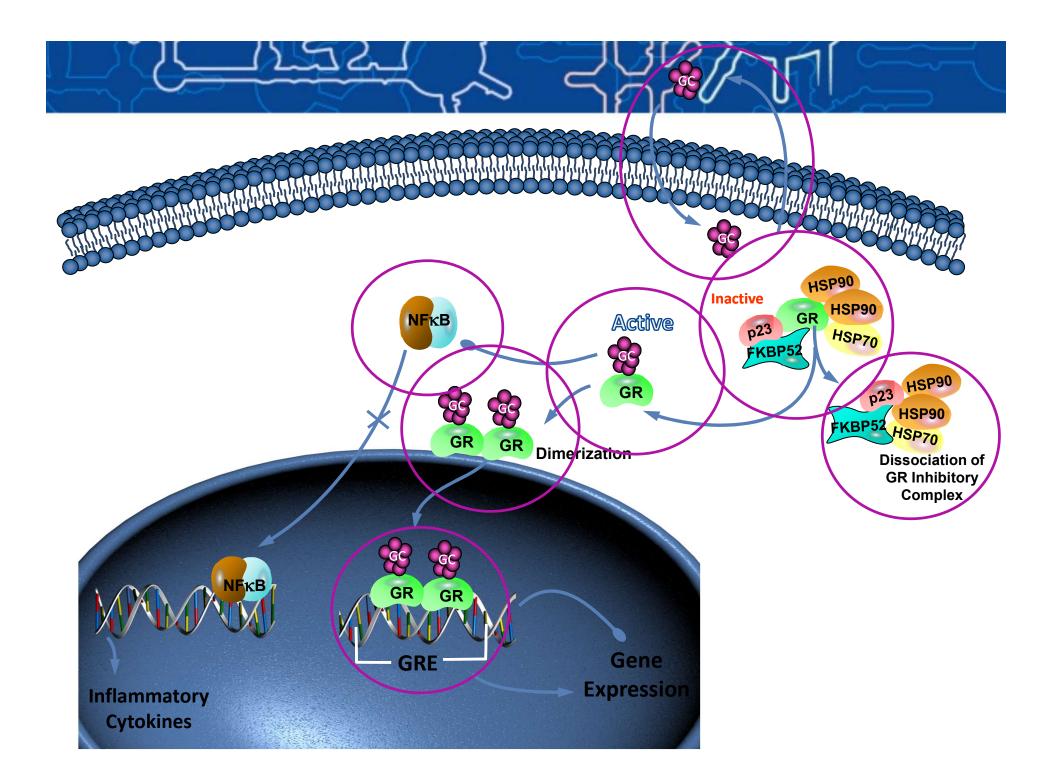
Variable	Number	Comparison	CpG site	CHR	Gene Name	CpG-site neighborhood	adj. p-value
Anti-TNF drug global response	70	ER (N=49) vs	cg18837178	5	NA	N_Shelf	0.003
	6	PR (N=21)	cg23132469	1	TAS1R2	Island	0.014
Adalimumab response	25	ER (N=21) vs PR (N=4)	cg05221720	6	COL9A1	N_Shore	0.0 <mark>4</mark> 9
Etanercept response	27	ER (N=16) vs PR (N=11)	-	2 2 2			
Infliximab response	18	ER (N=12) vs PR (N=6)	CpG site	CHR	Gene Name	CpG-site neighborhood	adj. p-value
Significa	int coi	relation	cg09141835	5	CBFA2T3	NA	0.001
between months methyla	n PAS and	I at 6 DNA	cg23446055	16	PRELID2	NA	0.002
Psoriasis A	Area and dex (PAS		cg03242666	17	PMP22	S_Shelf	0.026

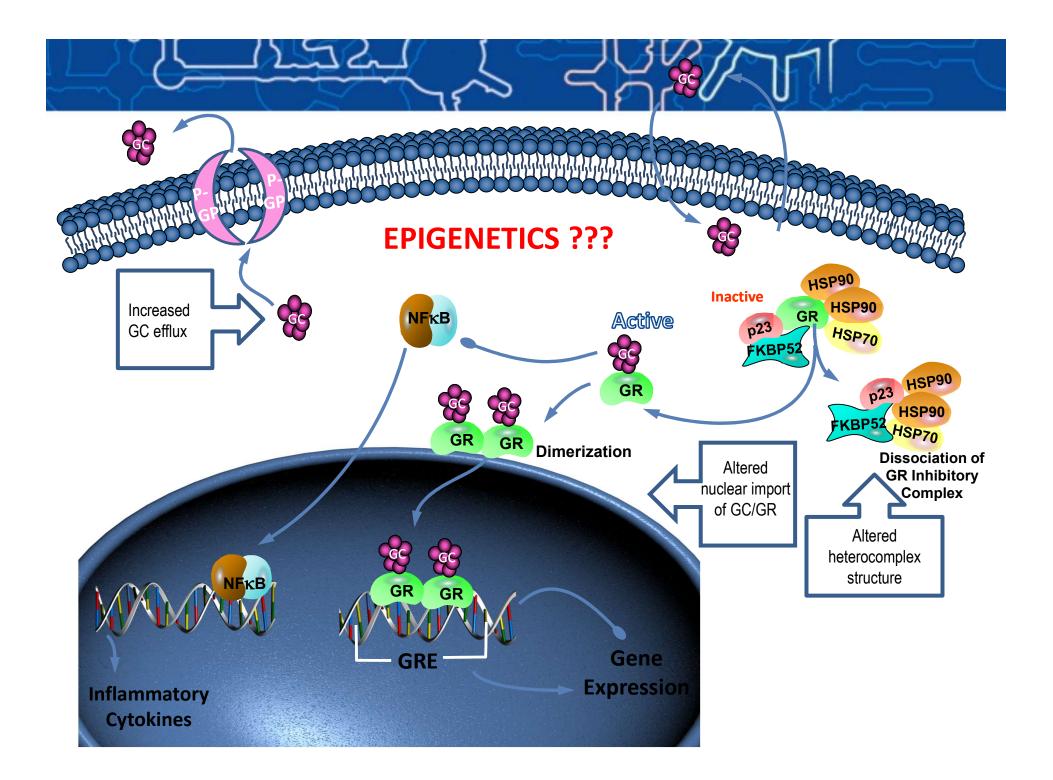
3 CpGs were hypermethylated in PR patients (N=4) with respect to ER patients to adalimumab (N=21)



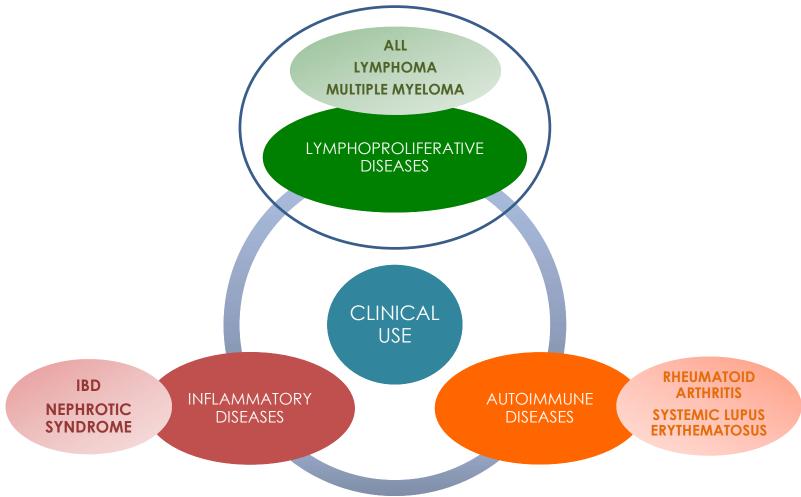
cg09141835 hypermethylated in patients with a poorer response to anti-TNF drugs.

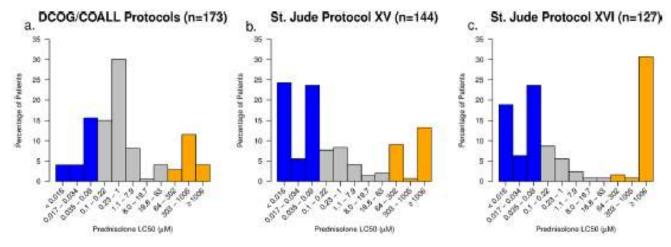

cg23446055 and cg03242666 tend to be hypomethylated in patients with a poorer response to anti-TNF drugs.



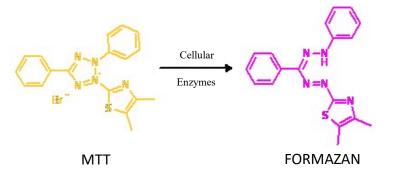

Pharmacoepigenetics of Glucocorticoids

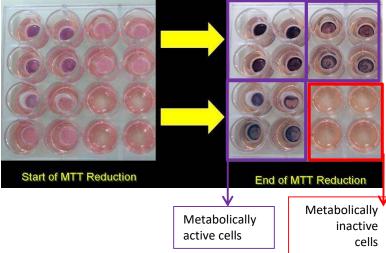
GLUCOCORTICOIDS

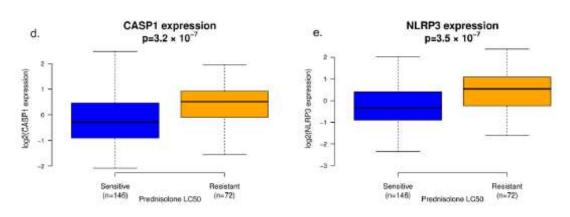




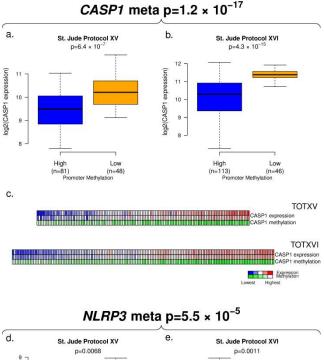
GLUCOCORTICOIDS

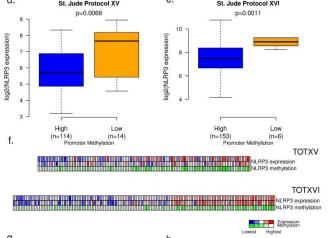


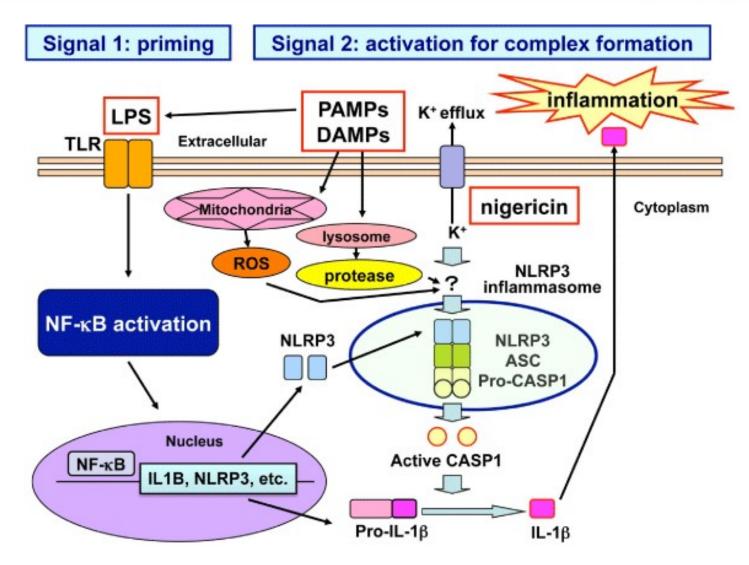

Steven W. Paugh et al., Nat Genet. 2015


Primary leukemia cells were obtained from 444 patients (B and T cell leukemia) with newly diagnosed acute lymphoblastic leukemia and analyzed for their sensitivity to prednisolone using the MTT assay. Distributions of measured LC50 values are shown for the three independent cohorts of patients; sensitive and resistant leukemias are highlighted in blue and orange, respectively.

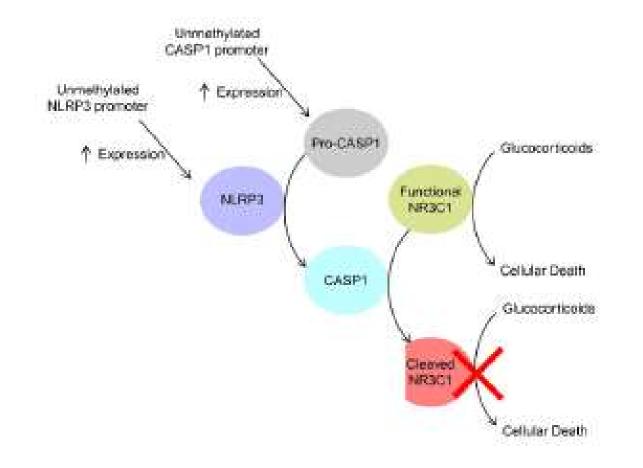
The MTT assay is a colorimetric test for measuring the activity of cellular enzymes:

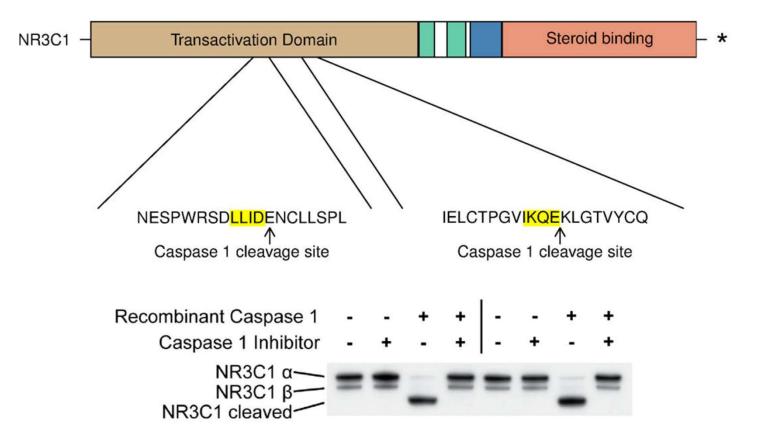






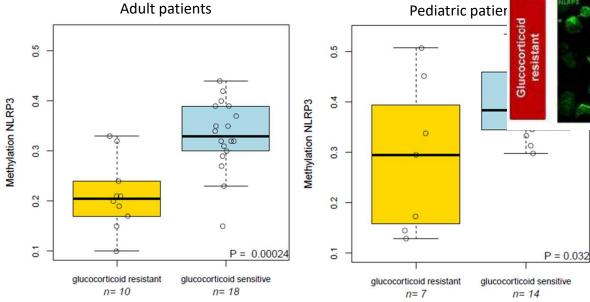
CASP1 (panel D) and *NLRP3* (panel E) expression was significantly higher in glucocorticoid resistant leukemia cells. DNA methylation analysis show significantly lower levels of CASP1 and NLRP3 methylation in leukemia cells with higher expression of CASP1 and NLRP3.

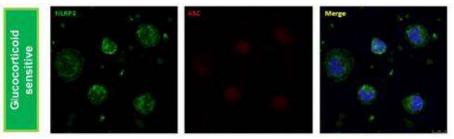


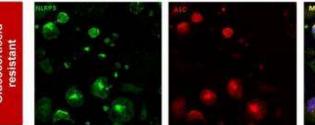


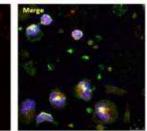


CASP1 increases resistance to glucocorticoids

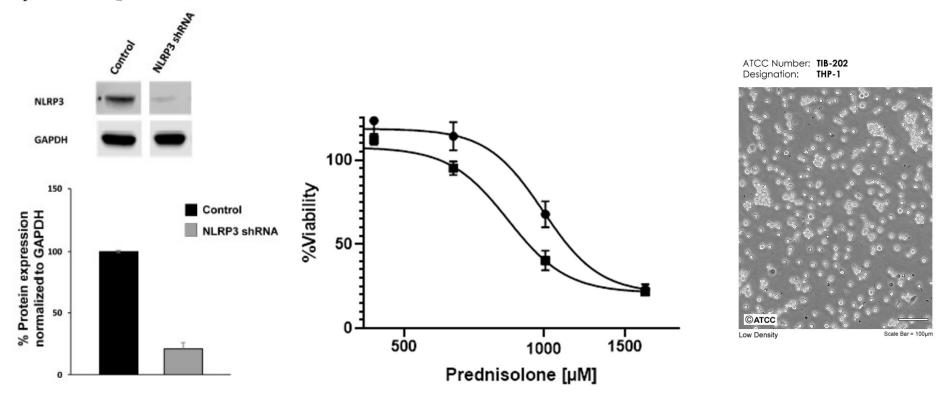

Steven W. Paugh et al., Nat Genet. 2015




> Clin Transl Sci. 2020 Dec 31. doi: 10.1111/cts.12961. Online ahead of print.


Hypomethylation of NLRP3 gene promoter discriminates glucocorticoid-resistant from glucocorticoid-sensitive idiopathic nephrotic syndrome patients

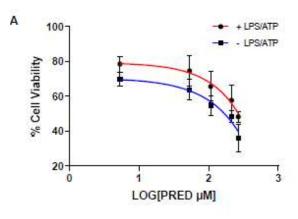
Marianna Lucafò ¹, Simona Granata ², Erik J Bonten ³, Robert McCorkle ³, Gabriele Stocco ⁴, Chiara Caletti ², Davide Selvestrel ⁴, Alessio Cozzarolo ⁴, Chan Zou ³, Eva Cuzzoni ⁴, Andrea Pasini ⁵, Giovanni Montini ⁶, Giovanni Gambaro ², Giuliana Decorti ¹, William Evans ³ Gianluigi Zaza ²

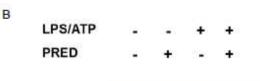

Confocal microscopy was used to confirm that NLRP3 was significantly more abundant in PBMC from GC-resistant compared to GC-sensitive patients.

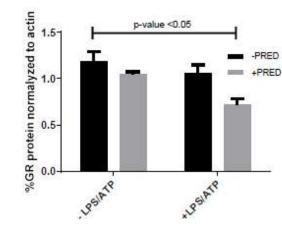
NLRP3 promoter methylation resulted significantly reduced in GC-resistant compared to GC-sensitive in both adult (p=0.00024) and pediatric patients (p=0.032).

> Clin Transl Sci. 2020 Dec 31. doi: 10.1111/cts.12961. Online ahead of print.

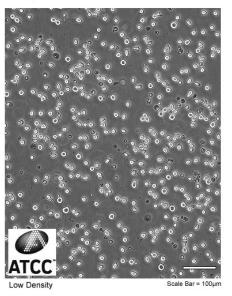
Hypomethylation of NLRP3 gene promoter discriminates glucocorticoid-resistant from glucocorticoid-sensitive idiopathic nephrotic syndrome patients

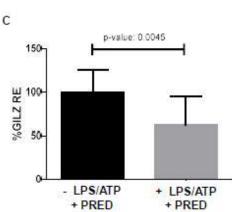



NLRP3 was knocked down in human THP-1 monocyte cells. The shRNAs targeting NLRP3 caused significant knockdown of the encoded protein (79.3%). The knockdown of NLRP3 significantly increased sensitivity to glucocorticoids (p<0.0001), decreasing the PRED LC50 from 998.9 to 833 μ M.

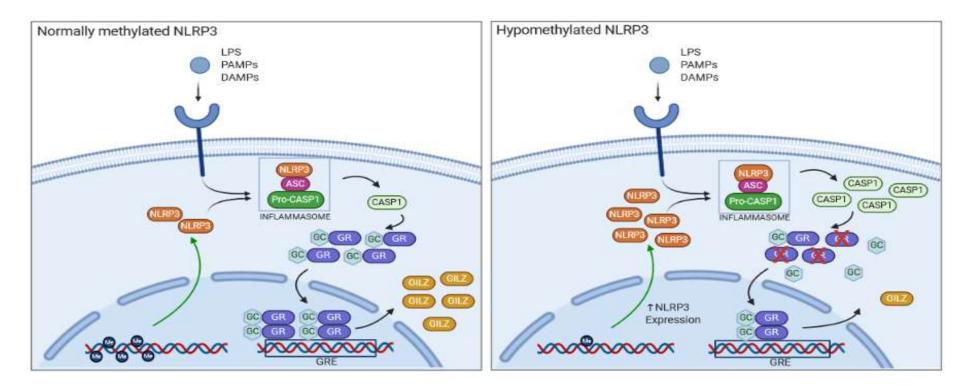

> Clin Transl Sci. 2020 Dec 31. doi: 10.1111/cts.12961. Online ahead of print.

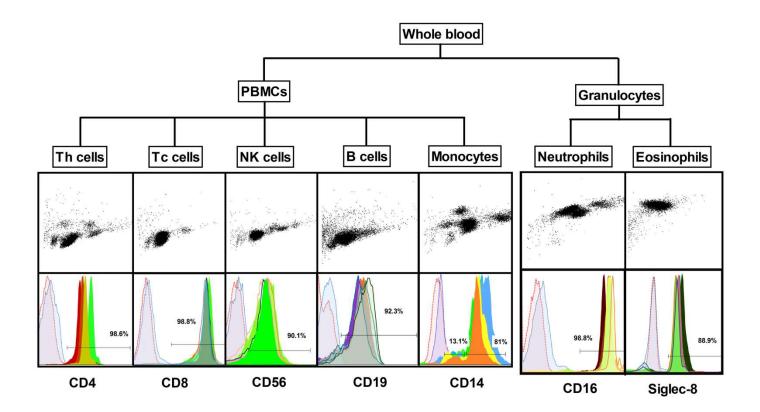
Hypomethylation of NLRP3 gene promoter discriminates glucocorticoid-resistant from glucocorticoid-sensitive idiopathic nephrotic syndrome patients





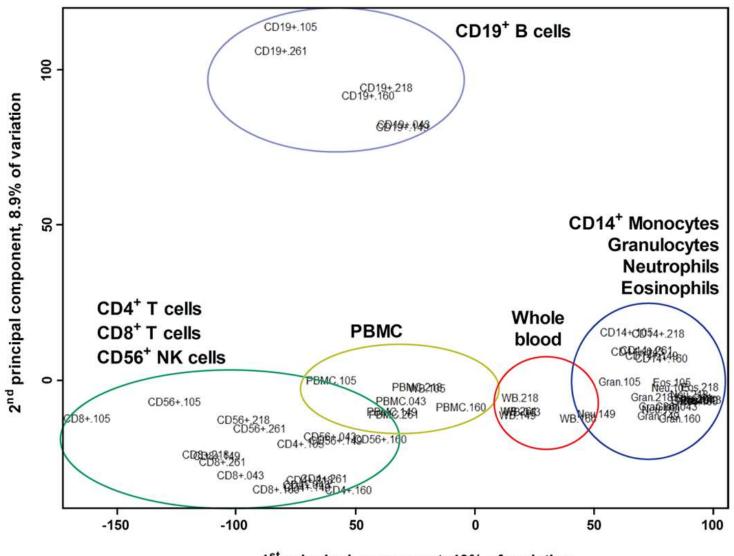
ATCC Number: CRL-1593.2 ™ Designation: U-937


NLRP3 inflammasome activation significantly increased resistance to GC on U937 cells (p=0.027). Consistent with this finding, the levels of glucocorticoid receptor diminished significantly after the activation of the NLRP3 inflammasome (p<0.05). The ability of GC to induce GILZ expression was markedly lower after activation of the NLRP3 inflammasome compared to the cells without NLRP3 activation (p=0.0045), results consistent with reduced GC transcriptional effect after NLRP3 activation.

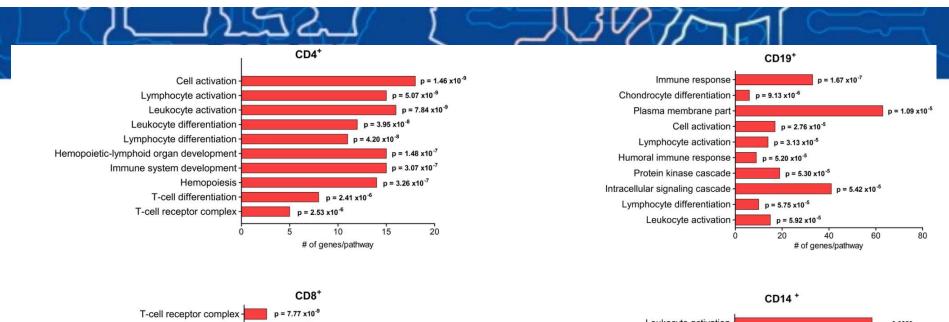


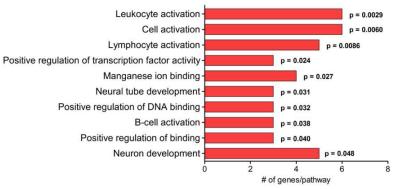
> Clin Transl Sci. 2020 Dec 31. doi: 10.1111/cts.12961. Online ahead of print.

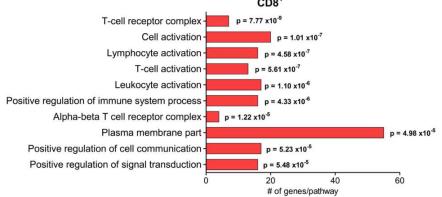
Hypomethylation of NLRP3 gene promoter discriminates glucocorticoid-resistant from glucocorticoid-sensitive idiopathic nephrotic syndrome patients

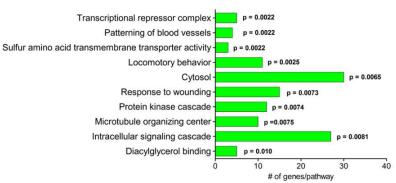

PLoS One. 2012;7(7):e41381. doi: 10.1371/journal.pone.0041381. Epub 2012 Jul 25.

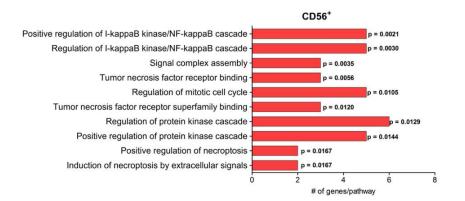
Differential DNA methylation in purified human blood cells: implications for cell lineage and studies on disease susceptibility.

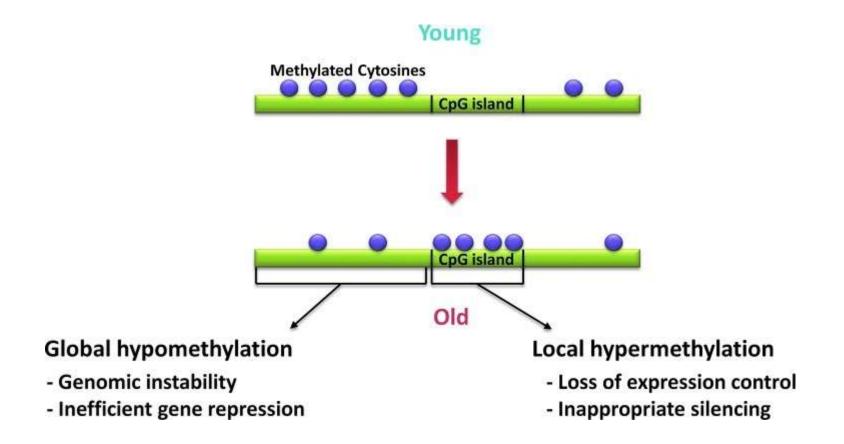

Reinius LE¹, Acevedo N, Joerink M, Pershagen G, Dahlén SE, Greco D, Söderhäll C, Scheynius A, Kere J.

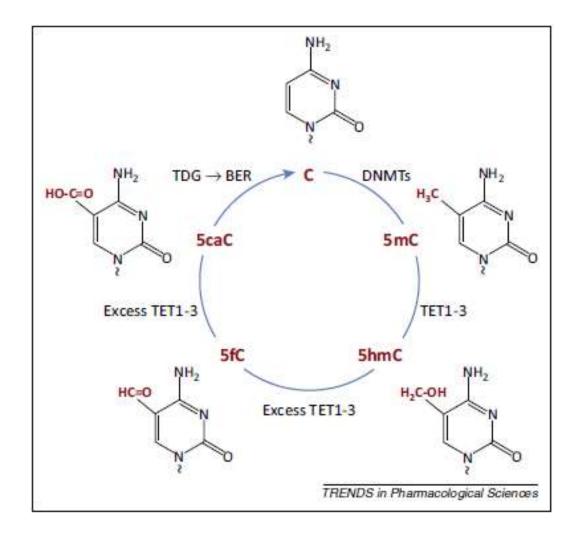


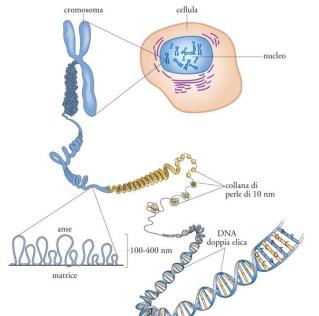

3

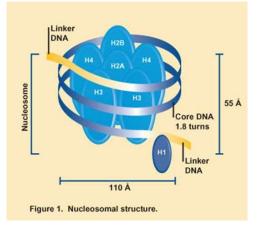

1st principal component, 43% of variation



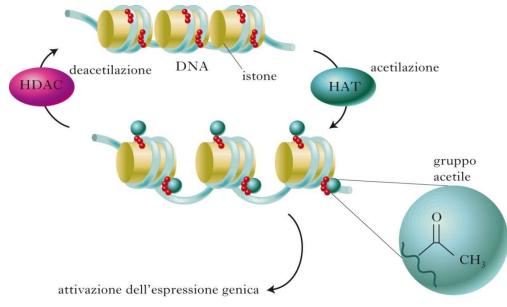

Eosinophils


DNA methylation dynamics in aging

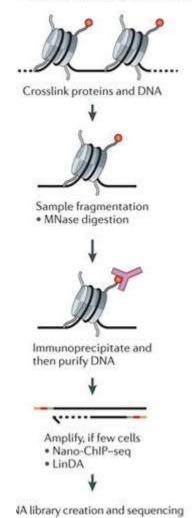

Schematic representation of the changes in the methylome during aging. Purple circles are indicative of methylated CpG dinucleotides. Aging is often marked by the establishment of global hypomethylation and regions of CpG island hypermethylation.



Cytosine modification cycle


MODIFICAZIONE DELLA CROMATINA (acetilazione e/o metilazione degli istoni)

Modifiche covalenti a carico degli istoni


- Acetilazione (influenza la condensazione della cromatina), fosforilazione, monoubiquitinazione.
 Sono modifiche reversibili
- Metilazione; è parzialmente reversibile e pare ci sia corrispondenza tra metilazione degli istoni e del DNA

MODIFICAZIONI ISTONICHE: metodologie

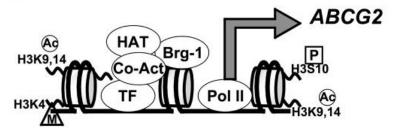
Histone modification ChIP-seq

Histone ChIP-Seq:

- -Reagente che instaura legami crociati proteine-DNA (formaldeide)
- -Estrazione cromatina
- -Rottura meccanica del DNA
- -Uso di anticorpi contro istoni acetilati
- -Rottura legami istoni-DNA
- -Sequenziamento DNA: la sequenza rivela quali regioni del genoma erano associate a istoni acetilati

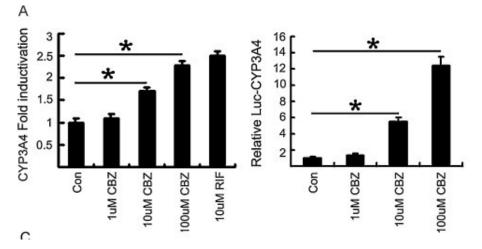
MARCATORI EPIGENETICI ASSOCIATI AI GENI ADME

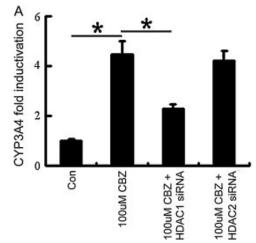
	ADH1B	CYP3A7	ADH1C	CYP27B1
	ALDH1A2	CYP7B1	CYP19A1	CYP2A13
	ALDH1A3	DPYD	CYP1A1	CYP2E1
Phase I enzymes	CYP17A1	FM03	CYP1A2	СУРЗА4
	CYP26C1	GPX1	CYP1B1	DHRS4L2
	CYP39A1	GPX3	CYP24A1	SULF1
	СҮРЗА5	GPX7	CYP26A1	
	GSTM1	GSTA1	GSTM2	
	GSTM5	GSTA2	GSTP1	
	SULT1A1	GSTT2	NAT1	
Phase II enzymes	SULT1C2	NNMT	UGT1A1	
Contract of Second Second	UGT1A6	SULT2B1		
	UGT2B15	UGT2811		
	UGT2B28	UGT2B7		
	ABCB4	SLC22A8	ABCA1	SLC5A8
	ABCC6	SLC26A4	ABCB1	SLCO2A1
Transporters	SLC22A18AS	SLC29A1	ABCG2	
	SLC22A1	SLCO1B3	SLC19A1	
	SLC22A3	SLCO1C1	SLC22A2	
	SLC22A6	SLC5A5	SLC2A5	
	CAT	CFTR		
	HNF1A	MPO		
Modifiers	PXR	PPARA		
	RARB	PPARG		
		SOD2		
		SOD3		
		TREND	S in Pharmacol	naicel Scienc


Green denotes genes regulated by DNA methylation; blue denotes genes modulated by histones modifications; orange denotes genes influenced by both mechanisms

MARCATORI EPIGENETICI ASSOCIATI AI GENI ADME

Histone Modifications at the ABCG2 Promoter following Treatment with Histone Deacetylase Inhibitor Mirror Those in Multidrug-Resistant Cells

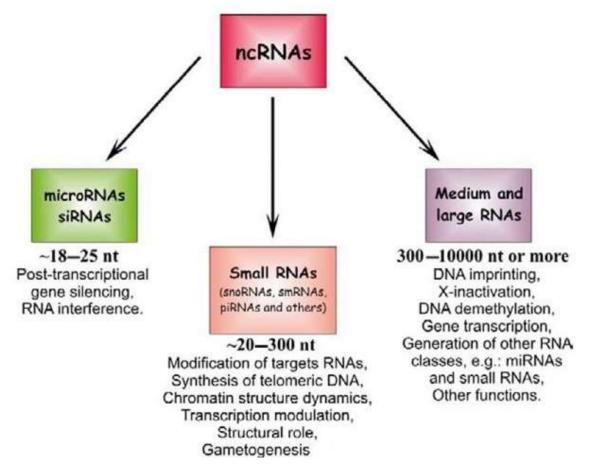

Kenneth K.W. To, Orsolya Polgar, Lyn M. Huff, Kuniaki Morisaki, and Susan E. Bates



Histone deacetylase 1 is required for Carbamazepine-induced CYP3A4 expression

Yin Wu^{a,1}, Xiaopeng Shi^{a,1}, Yonghong Liu^b, Xianzhi Zhang^c, Jinwen Wang^a, Xiaoxing Luo^{d,**}, Aidong Wen^{a,*}

CBZ induced CYP3A4 expression. Real time results of CBZ-induced CYP3A4 in HepG2 cells. Luciferase reporter assay of the expression of CYP3A4 promoter in CBZ treated cells (C).



RNA non codificante

Non-coding RNA is an RNA that functions without being translated to a protein.

