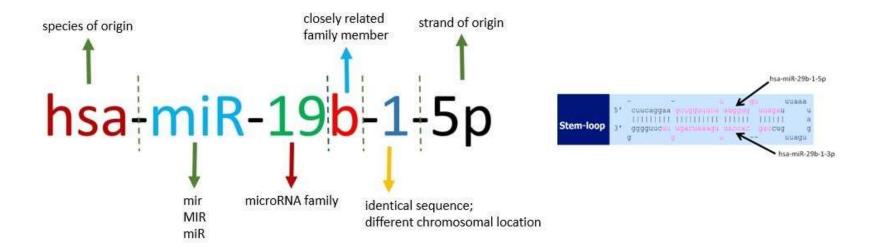

# Pharmacoepigenetics: an element of personalized therapy?

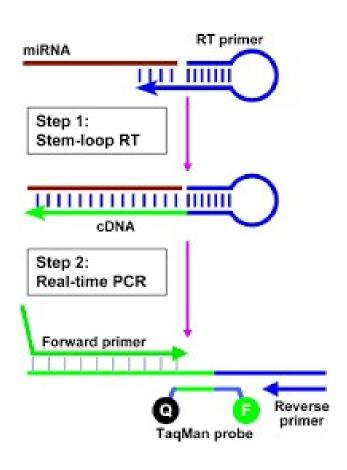
# RNA non codificante

Non-coding RNA is an RNA that functions without being translated to a protein.



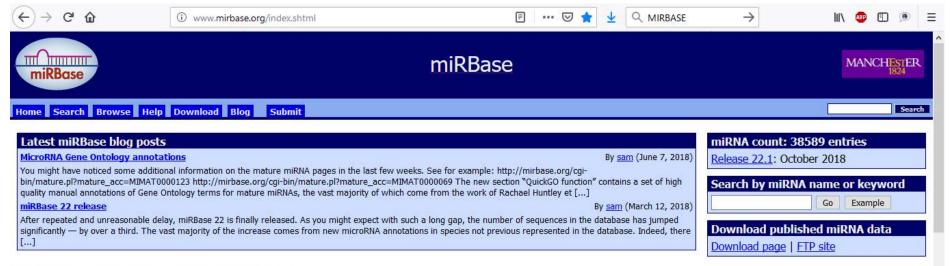

# micro-RNA




Cancer Gene Therapy (2008) 15, 341-355

### Nomenclature of microRNA




- According to standard nomenclature system, name of any MicroRNA is written as mir-123.
- miR = MicroRNA (mature form).
- mir = Precursor MicroRNA.
- Number indicates order of discovery.
- Annotated with an additional lower case letter e.g.miR-123a & miR-123b, if deference in only one or two nucleotides.

### microRNA detection methods



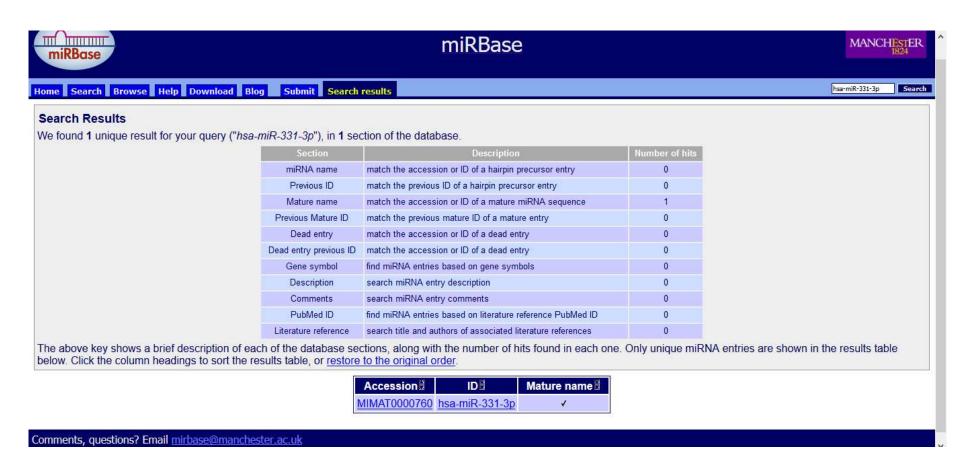
- qRT-PCR;
- TaqMan miRNA array;
- Microarray;
- NGS.

# microRNA database http://www.mirbase.org/



#### miRBase: the microRNA database

miRBase provides the following services:


- The miRBase database is a searchable database of published miRNA sequences and annotation. Each entry in the miRBase Sequence database represents a predicted hairpin portion of a miRNA transcript (termed mir in the database), with information on the location and sequence of the mature miRNA sequence (termed mir). Both hairpin and mature sequences are available for searching and browsing, and entries can also be retrieved by name, keyword, references and annotation. All sequence and annotation data are also available for download.
- The miRBase Registry provides miRNA gene hunters with unique names for novel miRNA genes prior to publication of results. Visit the help pages for more information about the naming service.

To receive email notification of data updates and feature changes please subscribe to the <u>miRBase announcements mailing list</u>. Any queries about the website or naming service should be directed at <u>mirbase@manchester.ac.uk</u>.

miRBase is managed by the Griffiths-Jones lab at the Faculty of Biology, Medicine and Health, University of Manchester with funding from the BBSRC. miRBase was previously hosted and



# microRNA database http://www.mirbase.org/







# microRNA database http://mirdb.org/



**Target Search** 

Target Mining

**Custom Prediction** 

**FuncMir Collection** 

**Data Download** 

**Statistics** 

Help | FAQ

Comments

Citation | Policy

Choose one of the following search options:

| Search by miRNA nan   | ne |       |    |       |
|-----------------------|----|-------|----|-------|
| Human 🗸               | Go | Clear |    |       |
| Search by gene target |    |       |    |       |
| Human V Gene Symbol   | ~  |       | Go | Clear |

miRDB is an online database for miRNA target prediction and functional annotations. All the targets in miRDB were predicted by a bioinformatics tool, MirTarget, which was developed by analyzing thousands of miRNA-target interactions from high-throughput sequencing experiments. Common features associated with miRNA target binding have been identified and used to predict miRNA targets with machine learning methods. miRDB hosts predicted miRNA targets in five species: human, mouse, rat, dog and chicken. As a recent update, users may provide their own sequences for customized target prediction. In addition, through combined computational analyses and literature mining, functionally active miRNAs in humans and mice were identified. These miRNAs, as well as associated functional annotations, are presented in the FuncMir Collection in miRDB.

#### References:

- Nathan Wong and Xiaowei Wang (2015) miRDB: an online resource for microRNA target prediction and functional annotations. <u>Nucleic Acids Research</u>.
   43(D1):D146-152.
- Xiaowei Wang (2016) Improving microRNA target prediction by modeling with unambiguously identified microRNA-target pairs from CLIP-Ligation studies.
   Bioinformatics, 32(9):1316-1322.

# microRNA database http://mirdb.org/



#### There are 411 predicted targets for hsa-miR-331-3p in miRDB.

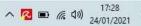
| Target<br>Detail | Target<br>Rank | Target<br>Score | miRNA Name     | Gene Symbol | Gene Description                                         |
|------------------|----------------|-----------------|----------------|-------------|----------------------------------------------------------|
| <u>Details</u>   | 1              | 99              | hsa-miR-331-3p | NRP2        | neuropilin 2                                             |
| <u>Details</u>   | 2              | 96              | hsa-miR-331-3p | PTPN2       | protein tyrosine phosphatase, non-receptor type 2        |
| <u>Details</u>   | 3              | 96              | hsa-miR-331-3p | ZBTB2       | zinc finger and BTB domain containing 2                  |
| <u>Details</u>   | 4              | 96              | hsa-miR-331-3p | PHLPP1      | PH domain and leucine rich repeat protein phosphatase 1  |
| <u>Details</u>   | 5              | 94              | hsa-miR-331-3p | CPSF2       | cleavage and polyadenylation specific factor 2           |
| Details          | 6              | 94              | hsa-miR-331-3p | ZNF652      | zinc finger protein 652                                  |
| Details          | 7              | 93              | hsa-miR-331-3p | DCLRE1B     | DNA cross-link repair 1B                                 |
| <u>Details</u>   | 8              | 93              | hsa-miR-331-3p | TSPAN18     | tetraspanin 18                                           |
| Details          | 9              | 92              | hsa-miR-331-3p | SLAMF9      | SLAM family member 9                                     |
| <u>Details</u>   | 10             | 92              | hsa-miR-331-3p | SEMA7A      | semaphorin 7A (John Milton Hagen blood group)            |
| <u>Details</u>   | 11             | 92              | hsa-miR-331-3p | BAIAP2      | BAI1 associated protein 2                                |
| <u>Details</u>   | 12             | 91              | hsa-miR-331-3p | CNTNAP4     | contactin associated protein like 4                      |
| Details          | 13             | 90              | hsa-miR-331-3p | FBLN7       | fibulin 7                                                |
| Details          | 14             | 90              | hsa-miR-331-3p | CDC42EP4    | CDC42 effector protein 4                                 |
| <u>Details</u>   | 15             | 90              | hsa-miR-331-3p | ARHGEF37    | Rho guanine nucleotide exchange factor 37                |
| <u>Details</u>   | 16             | 90              | hsa-miR-331-3p | XPO7        | exportin 7                                               |
| <u>Details</u>   | 17             | 88              | hsa-miR-331-3p | DUSP5       | dual specificity phosphatase 5                           |
| <u>Details</u>   | 18             | 88              | hsa-miR-331-3p | APBA1       | amyloid beta precursor protein binding family A member 1 |
| <u>Details</u>   | 19             | 88              | hsa-miR-331-3p | UBL3        | ubiquitin like 3                                         |
| <u>Details</u>   | 20             | 87              | hsa-miR-331-3p | TGFBR1      | transforming growth factor beta receptor 1               |
| <u>Details</u>   | 21             | 87              | hsa-miR-331-3p | ZMYM4       | zinc finger MYM-type containing 4                        |
| Details          | 22             | 87              | hsa-miR-331-3p | SARM1       | sterile alpha and TIR motif containing 1                 |

Scrivi qui per eseguire la ricerca






















### microRNA database

### http://mirtarbase.mbc.nctu.edu.tw/php/index.php

Search... Search Example

### miRTarBase

# Home

Search

Browse

Statistics

Help

Download

Contact Us

# miRTarBase: the experimentally validated microRNA-target interactions database

As a database, miRTarBase has accumulated more than three hundred and sixty thousand miRNA-target interactions (MTIs), which are collected by manually surveying pertinent literature after NLP of the text systematically to filter research articles related to functional studies of miRNAs. Generally, the collected MTIs are validated experimentally by reporter assay, western blot, microarray and next-generation sequencing experiments. While containing the largest amount of validated MTIs, the miRTarBase provides the most updated collection by comparing with other similar, previously developed databases.

#### Major improvments

| Features                                      | miRTarBase 6.0 | miRTarBase 7.0 |  |
|-----------------------------------------------|----------------|----------------|--|
| Release date                                  | 2015/09/15     | 2017/09/15     |  |
| Known miRNA entry                             | miRBase v20    | miRBase v21    |  |
| Known Gene entry                              | Entrez 2015    | Entrez 2017    |  |
| Species                                       | 18             | 23             |  |
| Curated articles                              | 4,966          | 8,510          |  |
| miRNAs                                        | 3,786          | 4,076          |  |
| Target genes                                  | 22,563         | 23,054         |  |
| CLIP-seq datasets                             | 138            | 231            |  |
| Curated miRNA-target interactions             | 366,181        | 422,517        |  |
| Text-mining technique to prescreen literature | NLP            | Enhanced NLP   |  |
| _ 4 44 44 444 4 4444                          |                | 14.            |  |

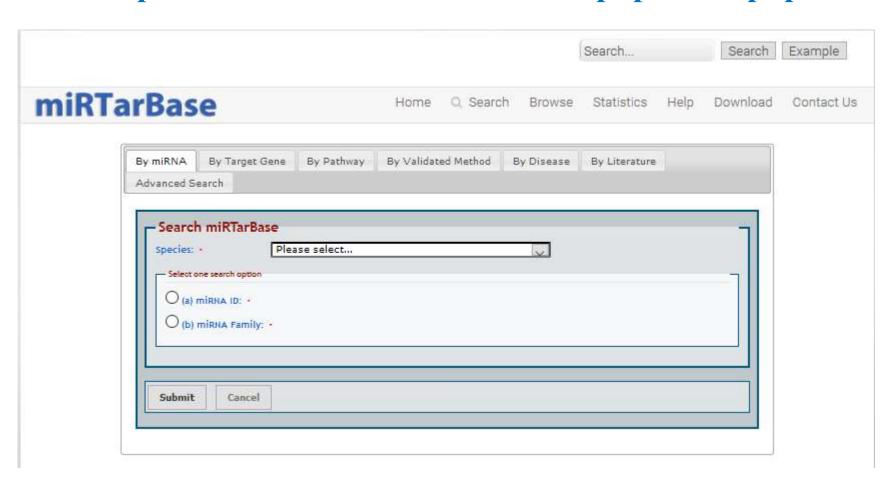
#### Current curation

Release 7.0: Sept. 15, 2017

Number of articles: 8,510

Number of species: 23

Number of target genes: 23,054


Number of miRNAs: 4,076

Number of miRNA-target interactions: 422,517

#### MicroRNA resources from ISBLAB

miRTar - An integrated web server for

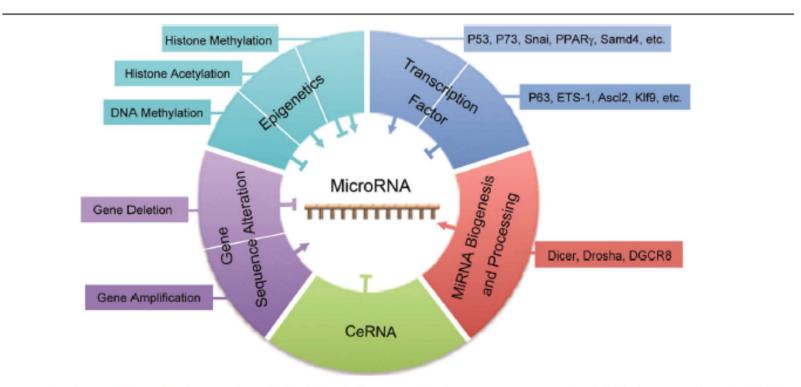
# microRNA database http://mirtarbase.mbc.nctu.edu.tw/php/index.php



### microRNA database

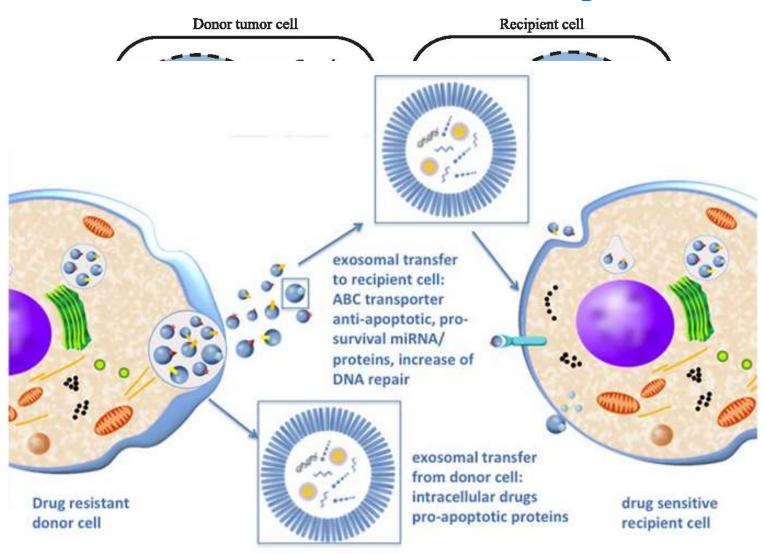
# http://mirtarbase.mbc.nctu.edu.tw/php/index.php

Page of 15 Prev 1 2 15 Next Prev 1 1 2 15 N


|            |                    |                     |                    |         |                | V              | alidati     | ion m      | ethod | is     |       |     |             |
|------------|--------------------|---------------------|--------------------|---------|----------------|----------------|-------------|------------|-------|--------|-------|-----|-------------|
|            |                    |                     |                    |         |                | Stron<br>viden |             | 1          |       | stron  | g     |     |             |
| ID∉⊫       | Species<br>(miRNA) | Species<br>(Target) | miRNA              | Target  | Reporter assay | Western blot   | <b>qPCR</b> | Microarray | NGS   | pSILAC | Other | Sum | # of papers |
| MIRT002222 | Rattus norvegicus  | Rattus norvegicus   | mo-<br>miR-331-3p  | Fgf16   |                |                |             | ~          |       |        | ~     | 2   | 10          |
| MIRT005805 | Homo sapiens       | Homo sapiens        | hsa-<br>miR-331-3p | ERBB2   | ~              | ~              | ~           | ~          |       |        | ~     | 5   | 5           |
| MIRT006364 | Homo sapiens       | Homo sapiens        | hsa-<br>miR-331-3p | FHIT    | ~              |                |             |            |       |        |       | ï   | 1           |
| MIRT006506 | Homo sapiens       | Homo sapiens        | hsa-<br>miR-331-3p | E2F1    | ~              | ~              |             |            |       |        |       | 2   | 1           |
| MIRT006887 | Homo sapiens       | Homo sapiens        | hsa-<br>miR-331-3p | DOHH    | ~              | ~              | ~           |            | ~     |        |       | 4   | 2           |
| MIRT019230 | Homo sapiens       | Homo sapiens        | hsa-<br>miR-331-3p | WDR60   |                |                |             |            | •     |        |       | í   | 1           |
| MIRT019231 | Homo sapiens       | Homo sapiens        | hsa-<br>miR-331-3p | RNF7    |                |                |             |            | ~     |        |       | 1   | 1           |
| MIRT019232 | Homo sapiens       | Homo sapiens        | hsa-<br>miR-331-3p | ARL8A   |                |                |             |            | ~     |        |       | 1   | 1           |
| LUCTOLOGIC |                    | Maria action        | 12.2               | THISPES |                |                |             |            |       |        |       |     |             |

# MicroRNAs in the Control of Drug Metabolism and Transport

Some P450 drug-metabolizing enzymes and ABC transporters shown to be targeted by noncoding miRNAs


|              |        | MicroRNA                    | Reference                                             |
|--------------|--------|-----------------------------|-------------------------------------------------------|
| Enzymes      | CYP1B1 | miR-27b                     | Tsuchiya et al., 2006                                 |
|              | CYP2E1 | miR-378                     | Mohri et al., 2010                                    |
|              | CYP3A4 | miR-27b, mmu-miR-298        | Pan et al., 2009a                                     |
| Transporters | ABCB1  | miR-451                     | Kovalchuk et al., 2008                                |
| 31-31-31     |        | miR-27a                     | Zhu et al., 2008                                      |
|              | ABCG2  | miR-520h                    | Liao et al., 2008; Wang et al., 2010; Li et al., 2011 |
|              |        | miR-519c                    | To et al., 2008; To et al., 2009; Li et al., 2011     |
|              |        | miR-328                     | Pan et al., 2009b; Li et al., 2011                    |
|              | ABCC1  | miR-134                     | Guo et al., 2010                                      |
|              |        | miR-326                     | Liang et al., 2010                                    |
|              |        | miR-199a, miR-199b, miR-296 | Borel et al., 2012                                    |
|              |        | miR-1291                    | Pan et al., 2013                                      |
|              | ABCC2  | miR-379                     | Haenisch et al., 2011                                 |
|              | ABCC3  | miR-9-3p                    | Jeon et al., 2011                                     |
|              | ABCC4  | miR-125a, miR-125b          | Borel et al., 2012                                    |
|              | ABCC5  | miR-101, miR-125a, Let-7a   | Borel et al., 2012                                    |
|              |        | miR-128                     | Zhu et al., 2011                                      |
|              | ABCC6  | miR-9-3p                    | Jeon et al., 2011                                     |

### Deregulated expression of microRNAs



The mechanisms of deregulated expression of microRNAs. Different mechanisms can promote or/and inhibit the expression of miRNA

### Exosomes-derived microRNA and drug resistance



miR-binding Protein

#### cerebrospinal fluid

PCNSL miR-19, miR-21, miR-92a [33]

Glioblastoma miR-21 [34]

#### pleural effusion

Lung cancer miR-198 [35]

Lung cancer miR-22, miR-134, miR-185 [36]

Malignant pleural mesothelioma

let-7a, miR-125a-5p, miR-320, miR-484 [37]

#### ascites

Ovarian cancer mIR-21, miR-23b, miR-29a [38]

Serosa-invasive gastric cancer miR-21, miR-1225-5p [39]

#### vaginal discharge

Cervical cancer miR-21, miR-146a [40]

#### urine

Ovarian cancer miR-30-5p [41]

Bladder cancer miR-106b [42]

Bladder cancer miR-99a, miR-125b [43]

Bladder cancer miR-155, miR-21, miR-125b, miR-451 [44]

Prostate cancer miR-484, miR-1825 [45]

#### saliva

Oral cancer miR-125a, miR-200a [46]

Esophageal cancer miR-10b-3p, miR-21, miR-144, miR-451 [47]

Pancreatic cancer miR-940, miR-3679-5p [48]

#### breast milk

miR-335-3p, miR-26a-2-3p, miR-181d [49]

#### blood (serum/plasma)

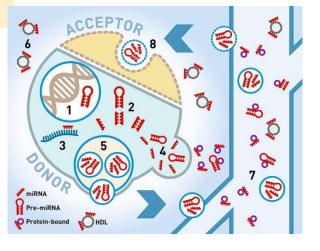
Ovarian cancer miR-21, miR-141, miR-200a, miR-200b, miR-200c, miR-203, miR-205, miR-214 [50]

Gastric cancer miR-1, miR-20a, miR-27a, miR-34, miR-423-5p [51]

Malignant melanoma miR-221 [52]

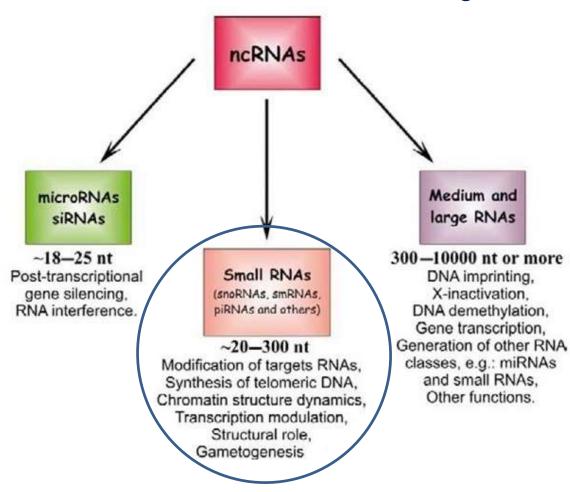
Cervical cancer miR-218 [53]

Thyroid cancer let-7e, miR-151-5p, and miR-222 [54]


Renal cell cancer miR-378, miR-451 [55]

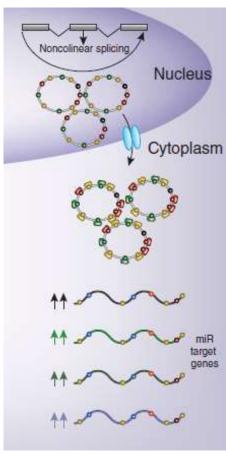
Colorectal cancer miR-7, miR-93, miR-409-3p [56]

Breast cancer miR-148-3p, miR-652-3p [57]

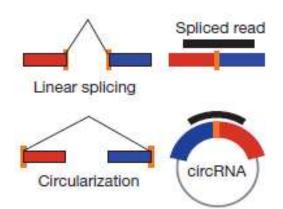

NSCLC miR-21, miR-148a, miR-148b, miR-152 [58]

# **Circulating** microRNA




# RNA non codificante

Non-coding RNA is an RNA that functions without being translated to a protein.

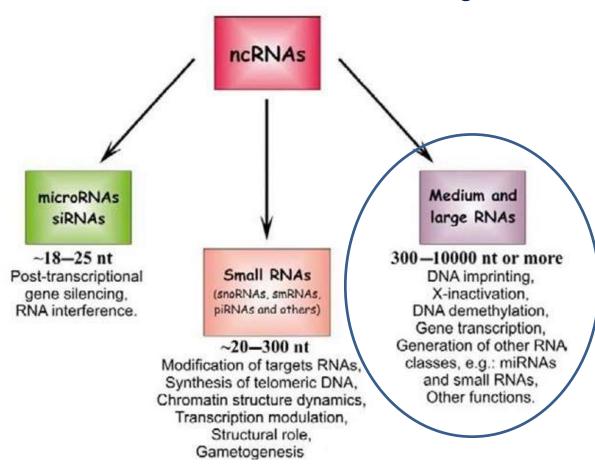


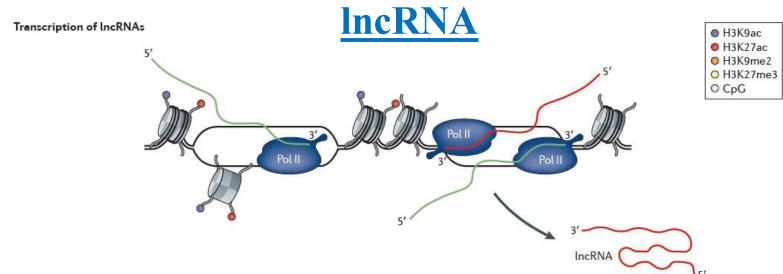

# **circRNAs**

- Covalently circularized RNA loops
- Stable in cells and long in half-lives
- Multiple miRNA binding sites as miRNA sponges

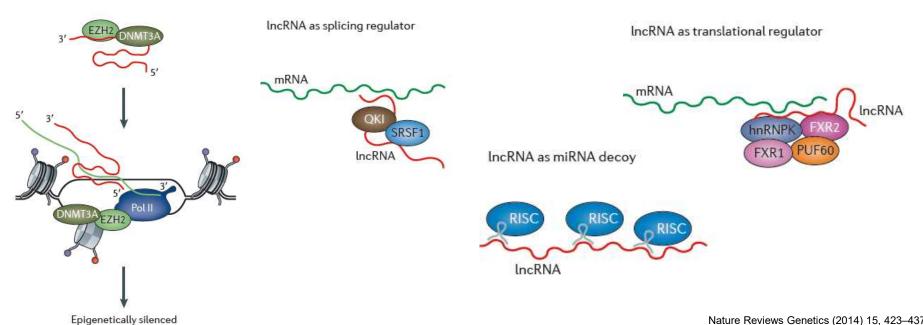


Nature Structural & Molecular Biology (2013), 20:5, 541-3





Nature (2013) 495, 333-343




# What is non-coding RNA?

Non-coding RNA is an RNA that functions without being translated to a protein.





#### Nuclear and cytoplasmic functional lncRNAs

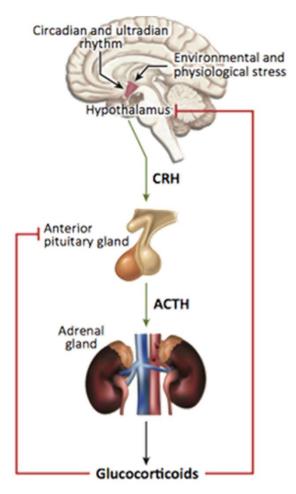


# **IncRNA**

Mechanism of

#### LncRNAs and drugs affecting their expression in cancers

| LncRNA    | Cancer                                    | Drug                                                |
|-----------|-------------------------------------------|-----------------------------------------------------|
| UCAI      | Bladder                                   | 7                                                   |
| Linc-ROR  | Hepatocellular carcinoma                  | Sorafenib and doxorubicin                           |
| XIST      | Ovarian, breast                           | Cisplatin, abexinostat                              |
| MALAT-1   | Pancreas                                  | Gemcitabine                                         |
| URHC      | Hepatocellular carcinoma                  | PD98059                                             |
| HOTAIR    | Lung                                      | Cisplatin                                           |
| PCGEM1    | Prostate                                  | Doxorubicin                                         |
| GAS5      | Lung                                      | Gentinib                                            |
| AK126698  | Lung                                      | Cisplatin                                           |
| ERIC      | Bone osteosarcoma                         | Etoposide                                           |
| PANDA     | Breast                                    | Doxorubicin                                         |
| PDAM      | Oligodendroglial                          | Cisplatin                                           |
| HOTTIP    | Pancreas                                  | Gemcitabine                                         |
| $\nu RNA$ |                                           | Mitoxantrone                                        |
| H19       | Hepatocellular carcinoma cells            | Paclitaxel, doxorubicin, etoposide, and vincristine |
| MRUL      | Gastric                                   | Doxorubicin and vincristine                         |
| ARA       | Breast, hepatocellular<br>carcinoma cells | Doxorubicin                                         |
| PVT1      | Pancreas, gastric cancer                  | Gemcitabine, paclitaxel                             |
| BCAR4     | Breast                                    | Tamoxifen                                           |

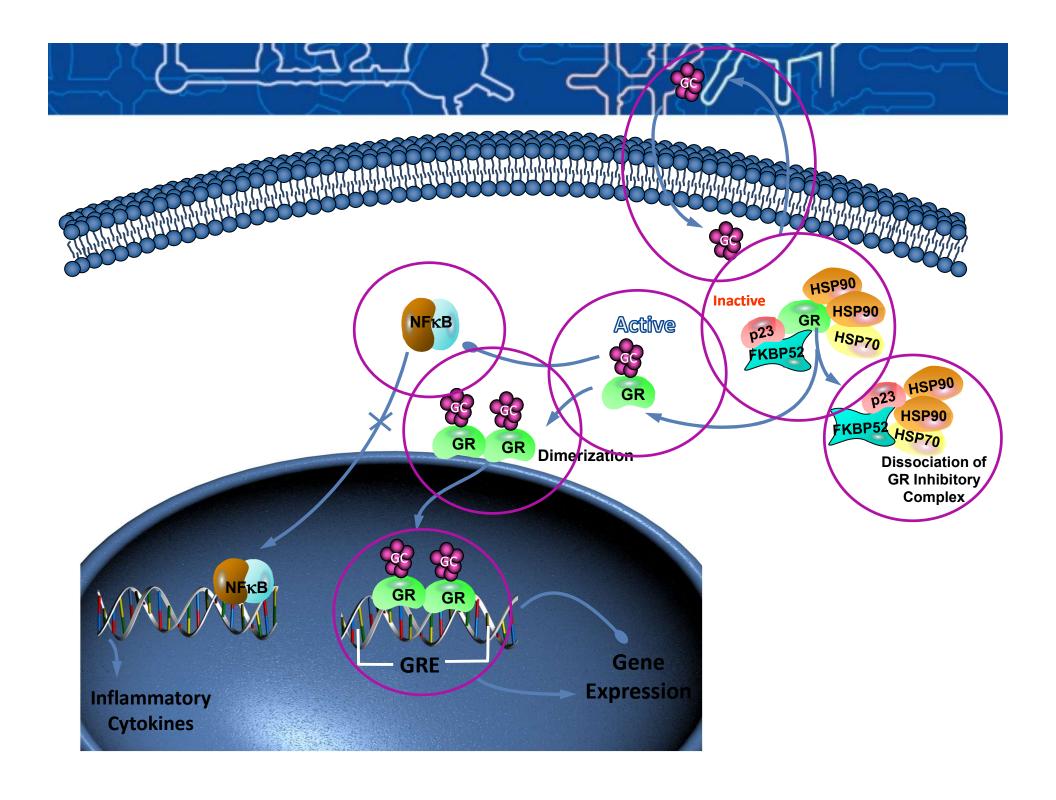

Epithelial to mesenchymal transitions (EMT) drug resistance LncRNA in cancer UCA1, XIST CSC miRNA MALAT-1, linc-ROR MALAT-1, HOTTIP **EMT** DNA repair Apoptosis URHC, HOTAIR, PCGEM, GAS5, AK126698, ERIC, and and autophagy PANDA, PDAM, HOTTIP cell cycle Drug H19 efflux Drug MRUL metabolism Mutation of miRNA drug targets DNA H19 methylation

Cancer Stem Cells (CSC)

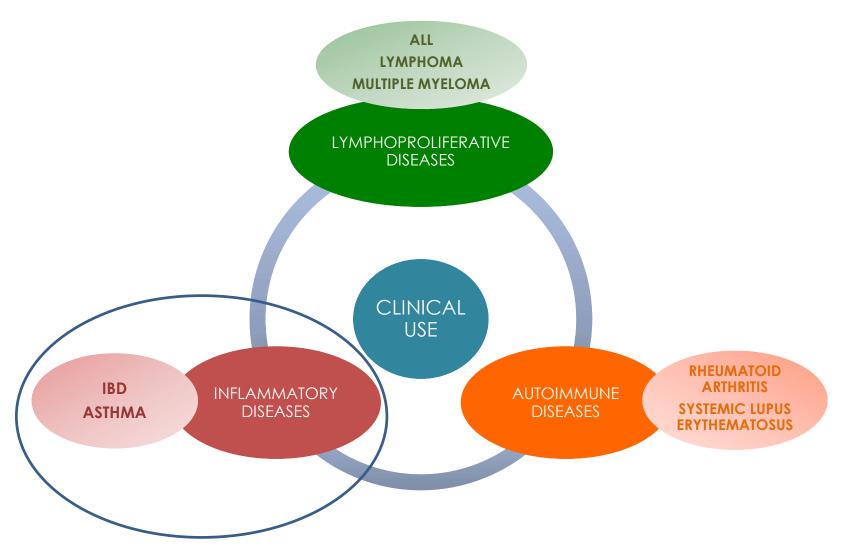
Urothelial Carcinoma-Associated 1 (UCA1)

Metastasis-Associated Lung Adenocarcinoma Transcript 1 (MALAT-1)

# Pharmacoepigenetics of Glucocorticoids




(Kadmiel & Cidlowski, 2013)

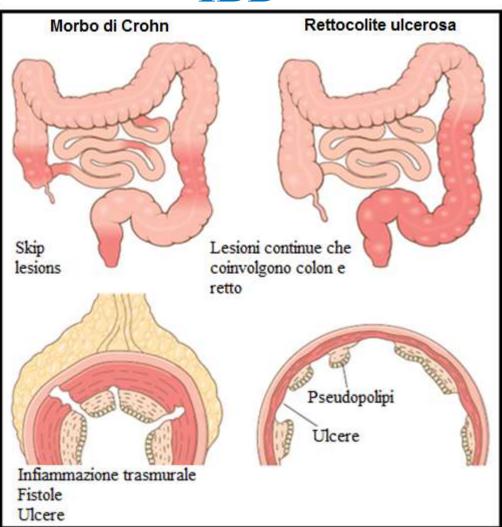

$$\begin{array}{c} O \\ C - CH_2OH \\ CH_3 \\ \hline \\ CH_3 \\ CH_3 \\ \hline \\ CH_3 \\ CH_3 \\ \hline \\ CH_3 \\ \hline \\ CH_3 \\ CH_3 \\ \hline \\ CH_3 \\ \hline \\ CH_3 \\$$

**DEXAMETHASONE** 

**BETAMETHASONE** 



# **GLUCOCORTICOIDS**




# **IBD**

Infiammaz



- Due princi
- Morbo di (
- Rettocolite



e

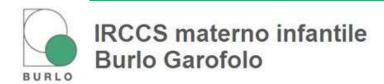


# EPIGENETIC PREDICTORS OF GLUCOCORTICOID RESPONSE IN CHILDREN WITH IBD

The research project was supported by Italian Ministry of Health, No. 44/GR-2010-2300447

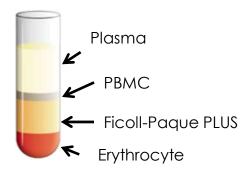
DIAGNOSIS (T0)

30 DAYS OF TREATMENT WITH GC (T4)


**AFTER 1 YEAR** 








Correlation between miRNAs expression and the clinical response to GC therapy





# CANDIDATE PREDICTORS OF GLUCOCORTICOID RESPONSE IN CHILDREN WITH IBD



Article

High-Throughput Sequencing of microRNAs in Glucocorticoid Sensitive Paediatric Inflammatory Bowel Disease Patients

Sara De Iudicibus <sup>1,†</sup>, Marianna Lucafò <sup>2,†</sup>, Nicola Vitulo <sup>3</sup>, Stefano Martelossi <sup>1</sup>, Rosanna Zimbello <sup>4</sup>, Fabio De Pascale <sup>4</sup>, Claudio Forcato <sup>4</sup>, Samuele Naviglio <sup>5</sup>, Alessia Di Silvestre <sup>5</sup>, Marco Gerdol <sup>6</sup>, Gabriele Stocco <sup>6</sup>, Giorgio Valle <sup>4</sup>, Alessandro Ventura <sup>1,2</sup>, Matteo Bramuzzo <sup>1,\*</sup> and Giuliana Decorti <sup>1,2</sup>

T4 vs T0 Table 1. Differentially expressed miRNAs.

| Upregulated miRNAs       | FC   | FDR<br>Corrected P-Value | Downregulated miRNAs | FC    | FDR<br>Corrected p-Value |
|--------------------------|------|--------------------------|----------------------|-------|--------------------------|
| hsa-miR-451a * [13]      | 4.16 | $1.66 \times 10^{-6}$    |                      |       |                          |
| hsa-miR-144-3p * [14,15] | 4.44 | $1.04 \times 10^{-5}$    |                      |       |                          |
| hsa-miR-96-5p * [13,14]  | 2.96 | $6.38 \times 10^{-3}$    |                      |       |                          |
| hsa-miR-29b-3p * [13]    | 2.89 | 0.026                    |                      |       |                          |
| hsa-miR-142-3p * [14]    | 2.21 | 0.026                    |                      |       |                          |
| hsa-miR-873-5p           | 3.36 | 0.026                    |                      |       |                          |
| hsa-miR-29c-3p * [16,17] | 3.37 | 0.037                    |                      |       |                          |
| hsa-miR-29a-3p * [13]    | 2.72 | 0.041                    | hsa-miR-7109-3p      | -4.62 | 0.044                    |
| hsa-miR-363-3p           | 2.31 | 0.041                    | hsa-miR-654-5p       | -2.27 | 0.049                    |
| hsa-miR-141-3p           | 2.59 | 0.041                    |                      |       |                          |
| hsa-miR-548ak            | 3.11 | 0.042                    |                      |       |                          |
| hsa-let-7g-3p+ [18]      | 2.44 | 0.042                    |                      |       |                          |
| hsa-miR-4772-5p          | 2.70 | 0.047                    |                      |       |                          |
| hsa-miR-106a-3p          | 3.52 | 0.047                    |                      |       |                          |
| hsa-miR-31-3p            | 3.36 | 0.049                    |                      |       |                          |
| hsa-miR-146b-5p * [19]   | 2.27 | 0.049                    |                      |       |                          |

Fold changes (FC) for each miRNA regulated by glucocorticoids (GCs); \* Linked to GC regulation in the literature. FDR, False Discovery Rate.

# EPIGENETIC PREDICTORS OF GLUCOCORTICOID RESPONSE IN CHILDREN WITH IBD

Validation of Selected Differentially Expressed miRNAs by qRT-PCR

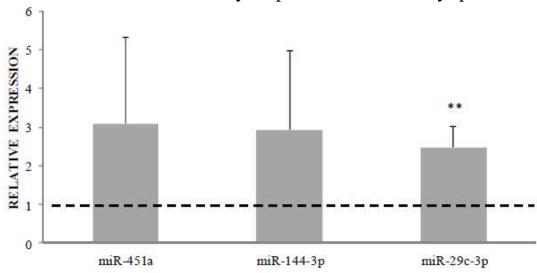



Figure 2. Relative expression of miR-451a, miR-144-3p, and miR-29c-3p (calculated as  $2^{-\Delta\Delta Ct}$  T4 vs. T0). Values > 1 (dotted line) indicate upregulation, values < 1 indicate downregulation. Parametric *t*-test  $\Delta C_t$  T0 vs. T4, \*\* p < 0.01.

| miRNA       | pGRE             | Start     | End       | Strand | Chrom | Expression |
|-------------|------------------|-----------|-----------|--------|-------|------------|
| hsa-miR-363 | GTGATAATGTGTGCTT | 133303695 | 133303710 |        | chrX  | Up         |
| hsa-miR-96  | AGGACAAAGAGTCCTC | 129416083 | 129416098 | 20     | chr7  | Up         |
| hsa-miR-142 | CTCACCTTCAGTTCTG | 58331606  | 58331621  | +      | Chr17 | Up         |
| hsa-miR-142 | CTGTCAGTCTGTCCTC | 58332656  | 58332671  | _      | Chr17 | Up         |

# CANDIDATE PREDICTORS OF GLUCOCORTICOID **RESPONSE IN CHILDREN WITH IBD**

| T0 PRvsPS       |      |                 |         |  |  |
|-----------------|------|-----------------|---------|--|--|
| UP              | FC   | DOWN            | FC      |  |  |
| hsa-miR-1180-3p | 7,96 | hsa-miR-100-5p  | 43,95   |  |  |
| hsa-miR-3591-3p | 11,2 | hsa-miR-1227-5p | 2093,27 |  |  |
|                 |      | hsa-miR-1255a   | 45,07   |  |  |
|                 |      | hsa-miR-1271-5p | 17,98   |  |  |
|                 |      | hsa-miR-24-2-5p | 15      |  |  |
|                 |      | hsa-miR-25-5p   | 19,44   |  |  |
|                 |      | hsa-miR-3065-5p | 22,25   |  |  |
|                 |      | hsa-miR-31-3p   | 25,65   |  |  |
|                 |      | hsa-miR-3196    | 38,62   |  |  |
|                 |      | hsa-miR-3656    | 19,63   |  |  |
|                 |      | hsa-miR-3960    | 150,33  |  |  |
|                 |      | hsa-miR-4443    | 47,81   |  |  |
|                 |      | hsa-miR-4772-3p | 20,55   |  |  |
|                 |      | hsa-miR-5586-3p | 17,04   |  |  |
|                 |      | hsa-miR-6075    | 4465,59 |  |  |
|                 |      | hsa-miR-6087    | 25,93   |  |  |
|                 |      | hsa-miR-618     | 26,38   |  |  |
|                 |      | hsa-miR-876-5p  | 19,32   |  |  |



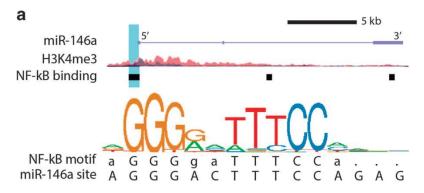


OPEN MiR-1180 promotes apoptotic resistance to human hepatocellular carcinoma via activation of NF-κB signaling pathway

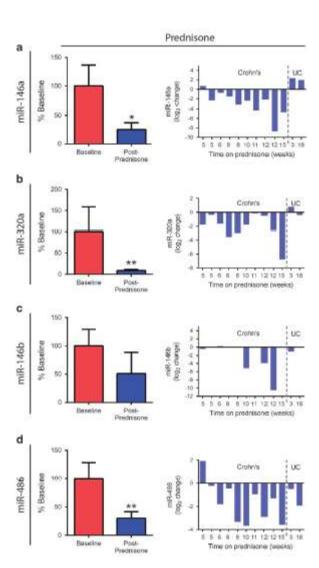
Received: 08 July 2015 Accepted: 03 February 2016 Published: 01 March 2016

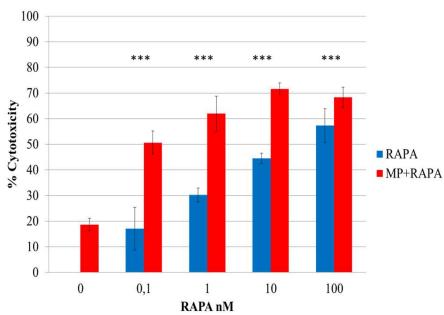
Guosheng Tan<sup>1,\*</sup>, Linwei Wu<sup>2,\*</sup>, Jinfu Tan<sup>3</sup>, Bing Zhang<sup>4</sup>, William Chi-shing Tai<sup>5,6</sup>, Shiqiu Xiong<sup>7</sup>, Wei Chen1, Jianyong Yang1 & Heping Li1,8

| T4 PRvsPS       |      |                 |         |  |  |
|-----------------|------|-----------------|---------|--|--|
| UP              | FC   | DOWN            | FC      |  |  |
| hsa-miR-1180-3p | 6,48 | hsa-miR-1197    | 10,19   |  |  |
| hsa-miR-4732-5p | 5    | hsa-miR-1227-5p | 434,07  |  |  |
|                 |      | hsa-miR-154-3p  | 10,26   |  |  |
|                 |      | hsa-miR-4443    | 64,78   |  |  |
|                 |      | hsa-miR-4523    | 11,82   |  |  |
|                 |      | hsa-miR-6075    | 1561,21 |  |  |
|                 |      | hsa-miR-6087    | 20,31   |  |  |
|                 |      | hsa-miR-876-5p  | 25,93   |  |  |


# CANDIDATE PREDICTORS OF GLUCOCORTICOID RESPONSE IN CHILDREN WITH IBD

Clin Transl Gastroenterol. 2016 Sep 15;7(9):e192. doi: 10.1038/ctg.2016.49.


Identification of Pathway-Specific Serum Biomarkers of Response to Glucocorticoid and Infliximab Treatment in Children with Inflammatory Bowel Disease.


Heier CR1, Fiorillo AA1, Chaisson E2, Gordish-Dressman H1.3, Hathout Y1.3, Damsker JM1.4, Hoffman EP1.3.4, Conklin LS1.2.

#### Bioinformatic analysis of gene regulation pathways



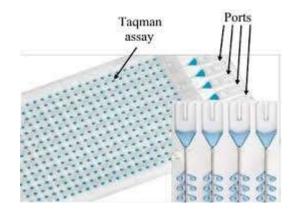
| Molecular<br>marker | Expression<br>Regulated by | Source    | Drug<br>changed | Up or<br>Down |
|---------------------|----------------------------|-----------|-----------------|---------------|
| miR-146a            | NF-ĸB                      | Wang 2012 | Both            | Down          |
| miR-146b            | NF-ĸB                      | Wang 2012 | Both            | Down          |
| miR-320a            | NF-κB and GR               | Wang 2012 | Both            | Down          |
| miR-486             | GR                         | Wang 2012 | Prednisone      | Down          |





**Fig. 1** Cells were exposed for 72 h to MP at 20  $\mu$ g/ml and/or different concentrations of RAPA, and cell proliferation was evaluated by MTT assay. Two-way ANOVA (P<0.0001) and Bonferroni post-test \*\*\* p-value<0.001.

Cancer Chemotherapy and Pharmacology (2020) 86:361–374 https://doi.org/10.1007/s00280-020-04122-z

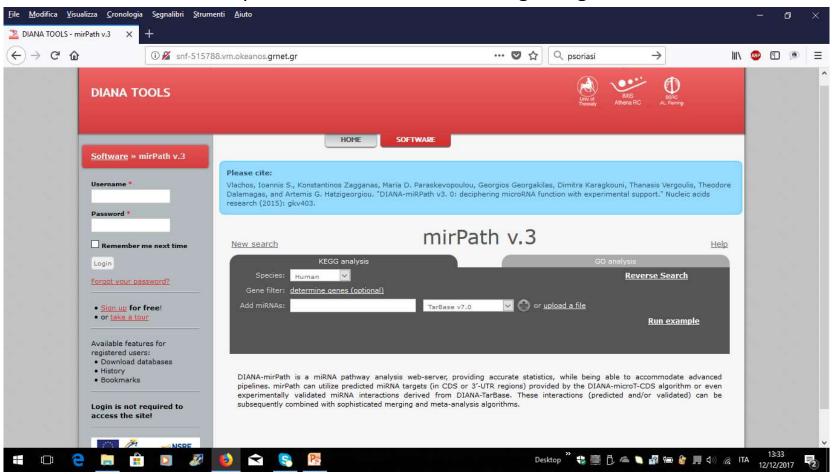

ORIGINAL ARTICLE

miR-331-3p is involved in glucocorticoid resistance reversion by rapamycin through suppression of the MAPK signaling pathway

Marianna Lucafò¹ · Daria Sicari².³ · Andrea Chicco⁴ · Debora Curci⁵ · Arianna Bellazzo⁶ · Alessia Di Silvestre⁵ · Chiara Pegolo⁶ · Robert Autry⁵ · Erika Cecchin $^8$  · Sara De Iudicibus¹ · Licio Collavin $^6$  · William Evans $^7$  · Giuliana Decorti $^{1,4}$  $^{\circ}$  · Gabriele Stocco $^6$ 

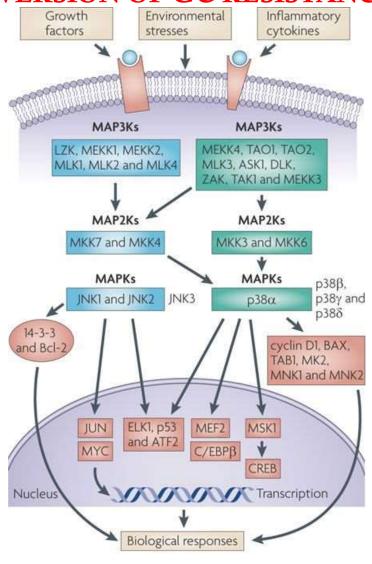
#### Differentially expressed miRNAs.

The expression analysis identified 70, 99 and 96 miRNAs that were differentially expressed after treatment with MP, RAPA and MP+RAPA, respectively.

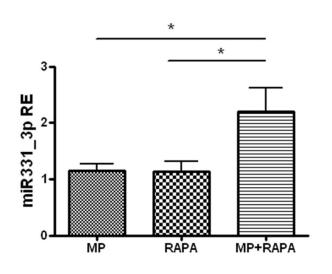


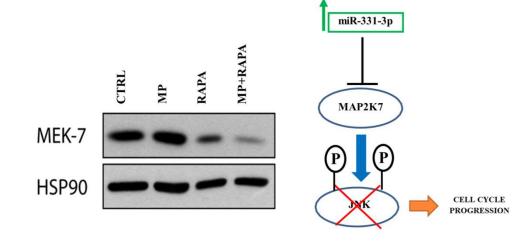

TaqMan® Array MicroRNA Cards

miRNA up e downregolati selettivamente dai diversi trattamenti farmacologici

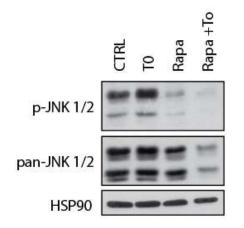

|         | UP              | <b>DOWN</b>     |
|---------|-----------------|-----------------|
| MP      | hsa-miR-200b-3p | hsa-miR-181c-5p |
|         |                 | hsa-miR-192-5p  |
|         |                 | hsa-miR-324-3p  |
|         |                 | hsa-miR-361-5p  |
|         |                 | hsa-miR-455-5p  |
|         |                 | hsa-miR-576-3p  |
| RAPA    | hsa-miR-140-3p  | hsa-miR-142-5p  |
|         | hsa-miR-26b-5p  | hsa-miR-365a-3p |
|         | hsa-miR-28-5p   | hsa-miR-455-3p  |
|         | hsa-miR-324-5p  | hsa-miR-501-5p  |
|         | hsa-miR-454-3p  |                 |
| MP+RAPA | hsa-miR-30b-5p  | hsa-miR-19a-3p  |
|         | hsa-miR-30c-5p  | hsa-miR-886-3p  |
|         | hsa-miR-331-3p  | hsa-miR-886-5p  |
|         | hsa-miR-345-5p  |                 |
|         | hsa-miR-744-5p  |                 |

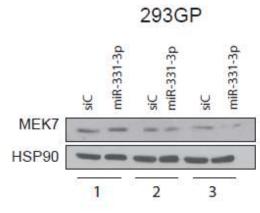
**DIANA miRPath v.2.0**: investigating the combinatorial effect of microRNAs in pathways http://snf-515788.vm.okeanos.grnet.gr/

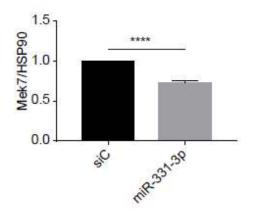




|                                        |                | UPRE            | GULATI | ED miRNA       | As   |       |                |      |               |
|----------------------------------------|----------------|-----------------|--------|----------------|------|-------|----------------|------|---------------|
| Pathways                               | MP             |                 |        | RAPA           |      |       | MP+RAPA        |      |               |
|                                        | p-Value        | Gene            | miRNA  | p-Value        | Gene | miRNA | p-Value        | Gene | miRNA         |
| ECM-receptor interaction               | 5.067 e-<br>27 | 26              | 14     | 1.611 e-<br>27 | 30   | 20    | 1.674 e-<br>21 | 36   | 21            |
| Biotin metabolism                      | 7.131 e-5      | 2               | 2      | 0.0009         | 2    | 3     | 0.002          | 2    | 3             |
| Vitamin B6 metabolism                  | 0.00057        | 4               | 4      | 0.0294         | 3    | 3     | 0.0416         | 3    | 4             |
| PI3K-Akt signaling pathway             | 0.00687        | 96              | 29     | 0.0009         | 124  | 44    | 0.0025         | 130  | 48            |
| p53 signaling pathway                  | 0.0086         | 24              | 18     | 0.0071         | 30   | 27    | 0.00271        | 33   | 31            |
| Protein digestion and absorption       | 0.02           | 31              | 15     | -              | _    | _     | -              | =    | -             |
| Ras signaling pathway                  | 0.0201         | 64              | 26     | 0.003          | 85   | 39    | 0.027          | 83   | 42            |
| Glycosaminoglycan<br>biosynthesis      | 0.025          | 6               | 5      | -              |      | _     | 0.0065         | 11   | 11            |
| Tight junction                         | 0.028          | 41              | 21     |                | -    | -     | -              | .=1  | 29 <b>-</b> 2 |
| Estrogen signaling pathway             | 0.0291         | 29              | 16     | _              | _    | _     | _              | _    | _             |
| Neurotrophin signaling pathway         | 0.042          | 36              | 22     | 0.0294         | 47   | 31    | 0.0053         | 53   | 34            |
| Fatty acid biosynthesis                | 121            | 7.2             | _      | 1.898 e-<br>13 | 4    | 4     | 3.734 e-<br>12 | 4    | 5             |
| Prion diseases                         | -              | -               | -      | 5.169          | 9    | 12    | -              | -    | -             |
| Bacterial invasion of epithelial cells | -              | y. <del>-</del> | -2     | 0.0052         | 34   | 28    | -              |      | 1.5           |
| Ubiquitin mediated proteolysis         | _              | _               |        | 0.0071         | 55   | 33    | 0.0146         | 57   | 37            |
| MAPK signaling pathway                 | -              | -               | - 5    | -              | -    | -     | 0.00576        | 98   | 41            |
| Proteoglycans in cancer                | 0.019          | 74              | 39     | -              | -    | -     | -              | -    | -             |

| DOWNREGULATED miRNAs                |           |      |       |                |      |       |                |      |       |  |
|-------------------------------------|-----------|------|-------|----------------|------|-------|----------------|------|-------|--|
| Pathways                            | MP        |      |       | RAPA           |      |       | MP+RAPA        |      |       |  |
|                                     | p-Value   | Gene | miRNA | p-Value        | Gene | miRNA | p-Value        | Gene | miRNA |  |
| Fatty acid biosynthesis             | 3.31 e-26 | 4    | 3     | 1.123 e-<br>23 | 3    | 2     | 7.532 e-<br>21 | 3    | 1     |  |
| Fatty acid metabolism               | 2.069 e-8 | 11   | 9     | 0.00064        | 9    | 8     | 0.007          | 9    | 6     |  |
| Proteoglycans in cancer             | 3.569 e-5 | 40   | 16    | 0.00074        | 37   | 20    | 0.0019         | 35   | 15    |  |
| Thyroid hormone signaling pathway   | 0.0015    | 20   | 15    | _              | _    | _     | _              | _    | _     |  |
| Path regulat pluripot of stem cells | 0.005     | 30   | 15    | 0.03099        | 30   | 20    | -              | _    | _     |  |
| Thyroid hormone synthesis           | 0.0075    | 12   | 8     | _              | _    |       | _              | -    |       |  |
| Glycosphingolipid<br>biosynthesis   | 0.0106    | 5    | 3     | 0.0248         | 6    | 7     | _              | -    |       |  |
| N-Glycan biosynthesis               | 0.0314    | 10   | 9     | 0.0248         | 12   | 9     | 0.03           | 10   | 8     |  |
| PI3K-Akt signaling pathway          |           | _    | -     | 0.0248         | 67   | 22    | _              | -    | 48    |  |
| Acute myeloid leukemia              | _         | -    | _     | 0.0309         | 15   | 14    | -              | _    | -     |  |
| ErbB signaling pathway              | 20        | -    | _     | -              |      |       | 0.014          | 22   | 14    |  |

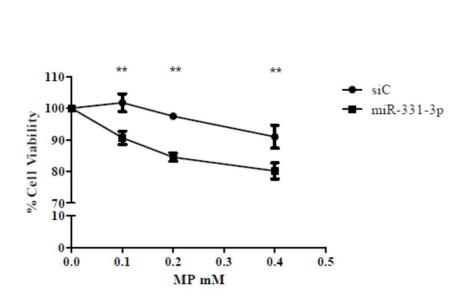


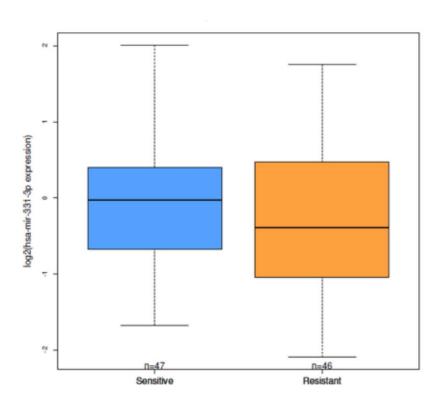


# DIFFERENTIAL EXPRESSION OF miRNAs IN RAPAMYCIN-INDUCED REVERSION OF GC RESISTANCE





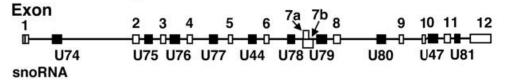

Validation of MAP2K7 as a target of miR-331-3p

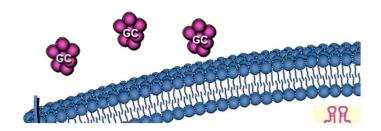





GC resistance reversion by RAPA through suppression of the JNK protein

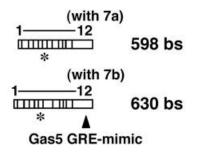

# DIFFERENTIAL EXPRESSION OF miRNAs IN RAPAMYCIN-INDUCED REVERSION OF GC RESISTANCE



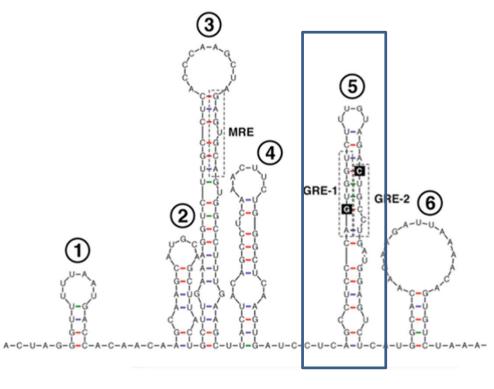



# **Growth arrest-specific 5 (GAS5)**

#### Human Gas5 gene

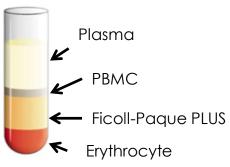




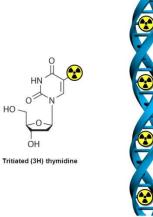


#### **Human Gas5 ncRNAs**

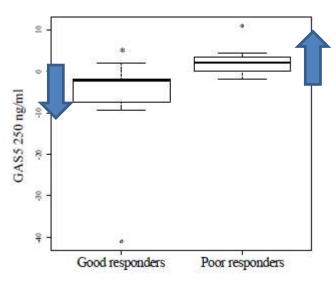
Gas5a

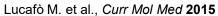
Gas5b

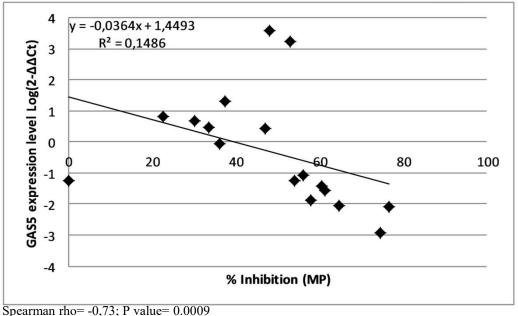



(Kino et al., Sci Signal. 2010)

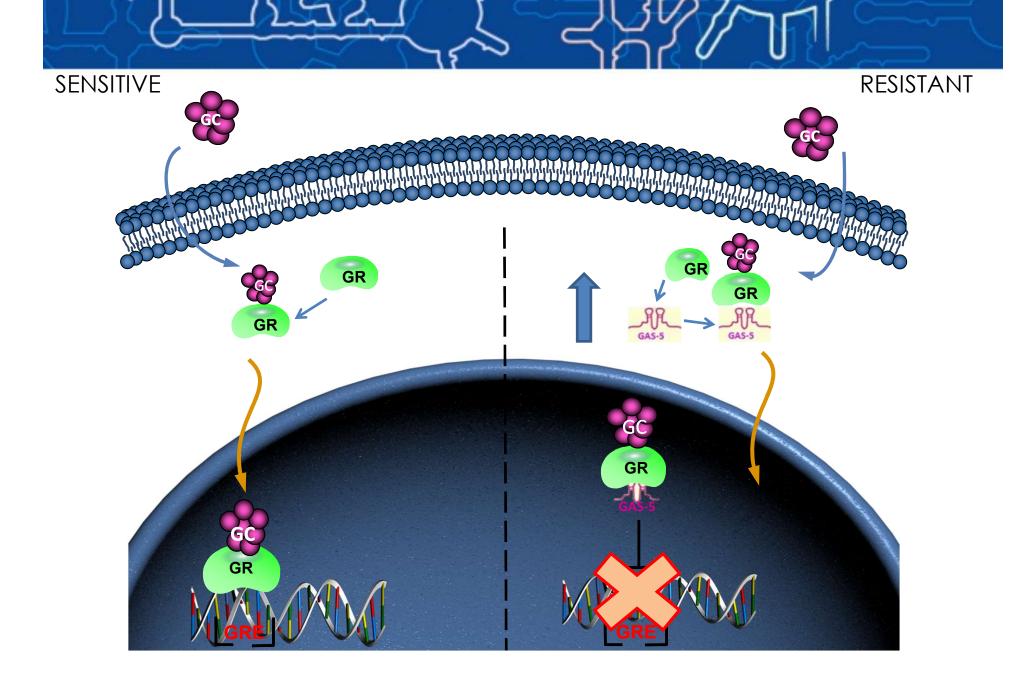




# ROLE OF GAS5 IN GC RESPONSE

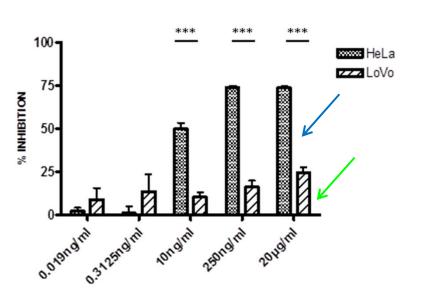

Samples from blood donors

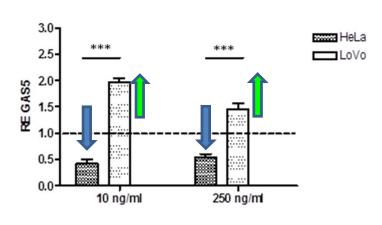


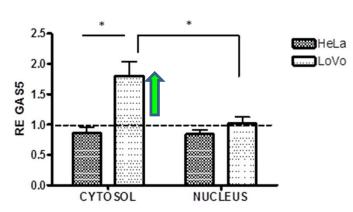

Pharmacodynamic test: inhibition of in vitro proliferation by the test of incorporation of [<sup>3</sup>H]-thymidine.

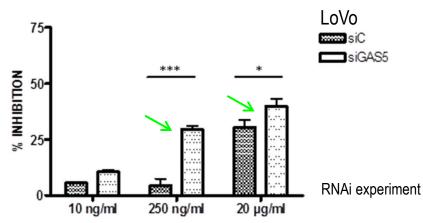




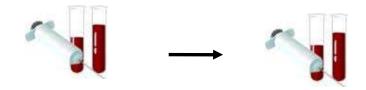


Lucafò M. et al., Clin and Exp Pharm and Phys 2016

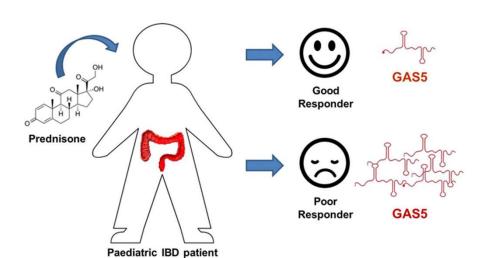


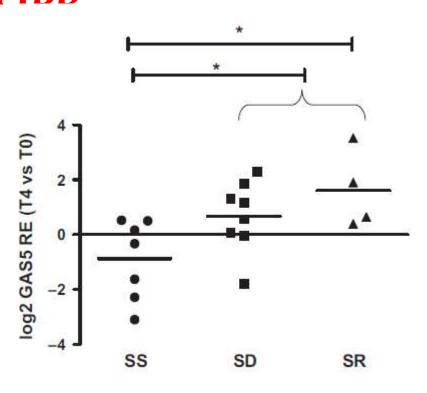

# ROLE OF GAS5 IN GC RESPONSE



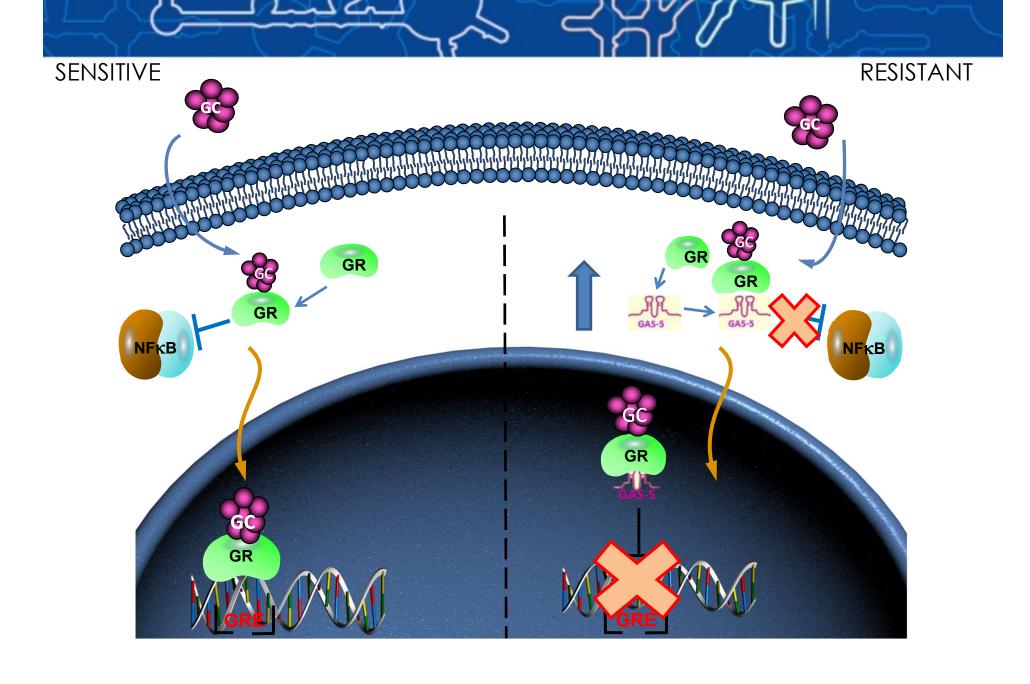




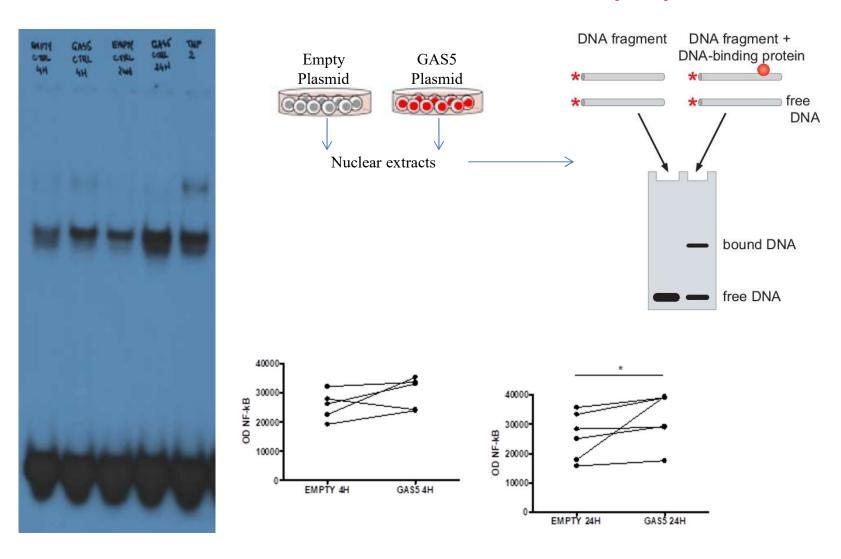





# ROLE OF GAS5 IN GC RESPONSE IN CHILDREN WITH IBD

DIAGNOSIS (T0)

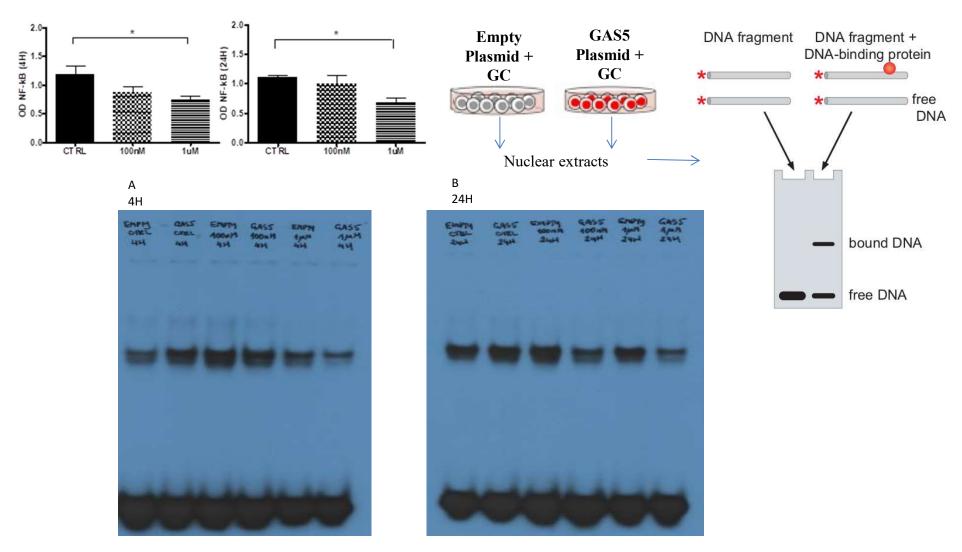

30 DAYS OF
TREATMENT WITH
GC (T4)



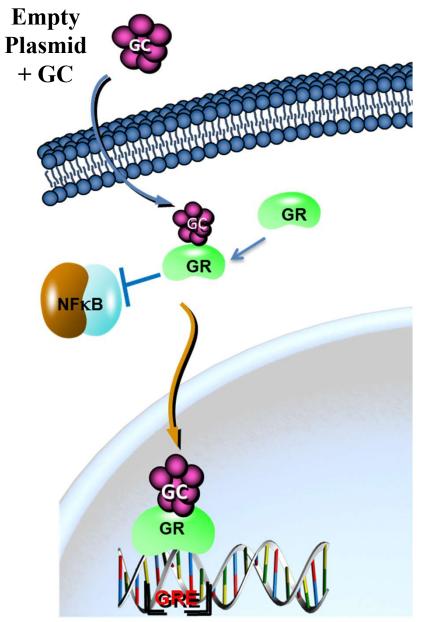


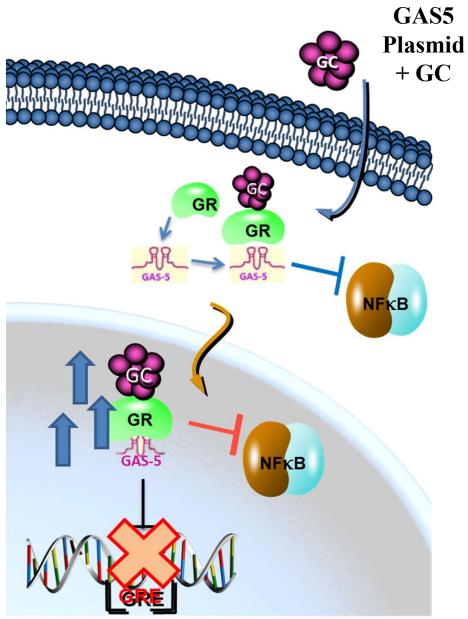



Lucafò M. et al., Basic & Clinical Pharmacology & Toxicology 2017

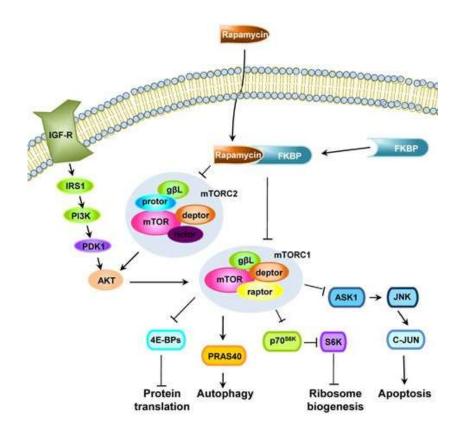


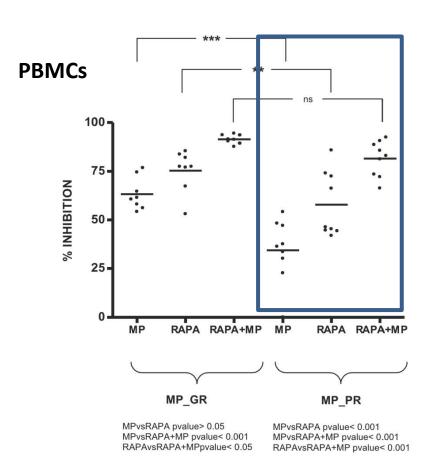

## ROLE OF GAS5 on NF-kB activity by EMSA





NF-kB EMSA analyses in HeLa cells transfected with empty pcDNA3.1 (EMPTY CTRL) and pcDNA3.1\_GAS5 (GAS5 CTRL), after 4 (lanes 1, 2) and 24 h (lanes 3, 4) from transfection or treated with TNF- $\alpha$  (lane 5).

## ROLE OF GAS5 on NF-kB activity by EMSA





NF-kB EMSA analyses in HeLa cells transfected with empty pcDNA3.1 (EMPTY) and pcDNA3.1\_GAS5 (GAS5), treated with DEXA 100 nM (lanes A and B 3, 4) and 1 µM (lanes A and B 5, 6) and untreated (CTRL; lanes A and B 1, 2) after 4 (A) or 24 h (B).





#### DIFFERENTIAL EXPRESSION OF GAS5 IN RAPAMYCIN-INDUCED REVERSION OF GC RESISTANCE





Lucafò M. et al., Clin and Exp Pharm and Phys 2016