Corso di Laurea in Fisica – UNITS ISTITUZIONI DI FISICA PER IL SISTEMA TERRA

LINEAR SYSTEMS

FABIO ROMANELLI

Department of Mathematics & Geosciences

University of Trieste

romanel@units.it

http://moodle2.units.it/course/view.php?id=887

Green's function (GF) is a basic solution to a linear differential equation, a building block that can be used to construct many useful solutions.

If one considers a linear differential equation written as:

L(x)u(x)=f(x)

where L(x) is a linear, self-adjoint differential operator, u(x) is the unknown function, and f(x) is a known nonhomogeneous term, the GF is a solution of:

$$L(x)u(x,s)=\delta(x-s)$$

$$G(x,s)$$

Why GF is important?

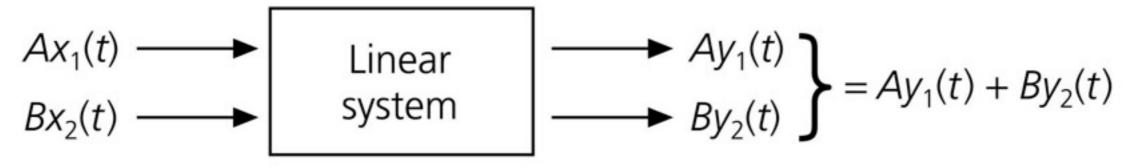
If such a function G can be found for the operator L, then if we multiply the second equation for the Green's function by f(s), and then perform an integration in the s variable, we obtain:

$$\int L(x)G(x,s)f(s)ds = \int \delta(x-s)f(s)ds = f(x) = Lu(x)$$
$$L\int G(x,s)f(s)ds = Lu(x)$$

$$u(x) = \int G(x,s)f(s)ds$$

Thus, we can obtain the function u(x) through knowledge of the Green's function, and the source term. This process has resulted from the linearity of the operator L.

Figure 6.3-1: Definition of a linear system.

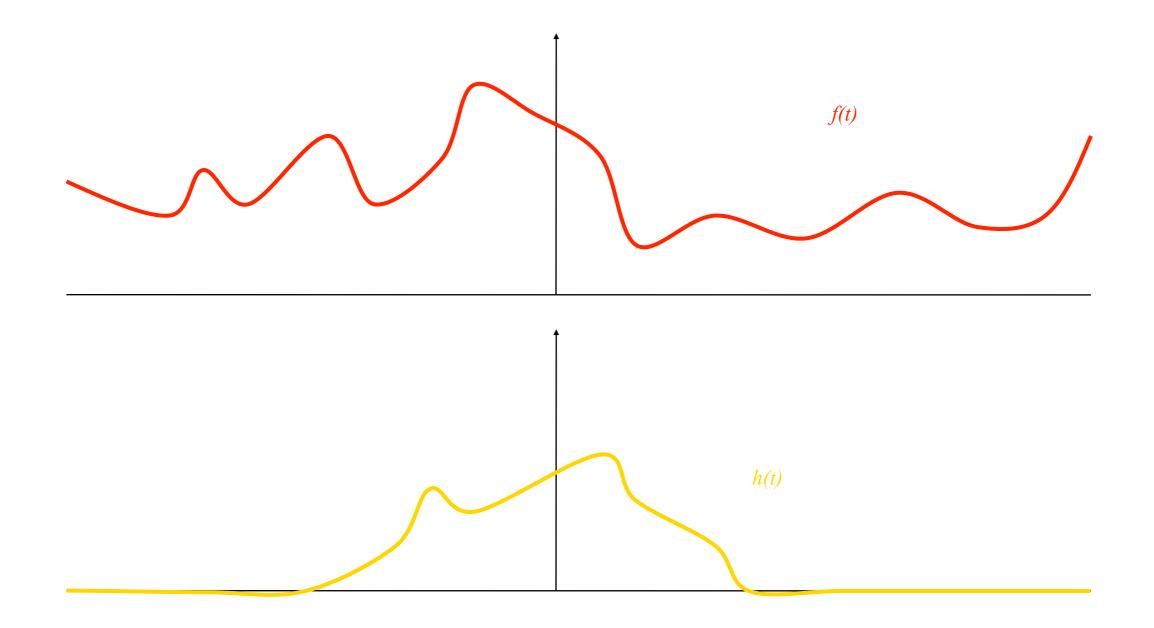


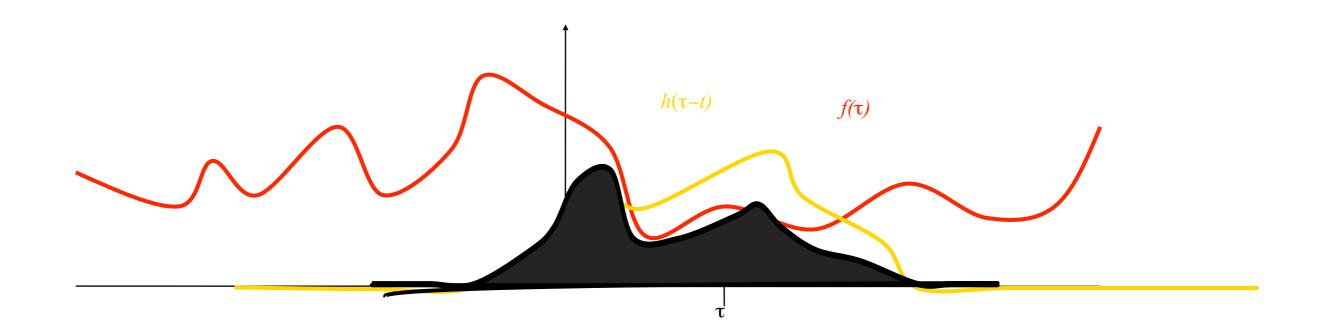
x(t) =
$$\int x(\tau)\delta(\tau - t)d\tau$$

 $\int x(\tau)h(\tau - t)d\tau$
x(t) * h(t) = y(t)

(remember GF definition)

$f(t) * h(t) = \int_{-\infty}^{\infty} f(\tau)h(t - \tau)d\tau$

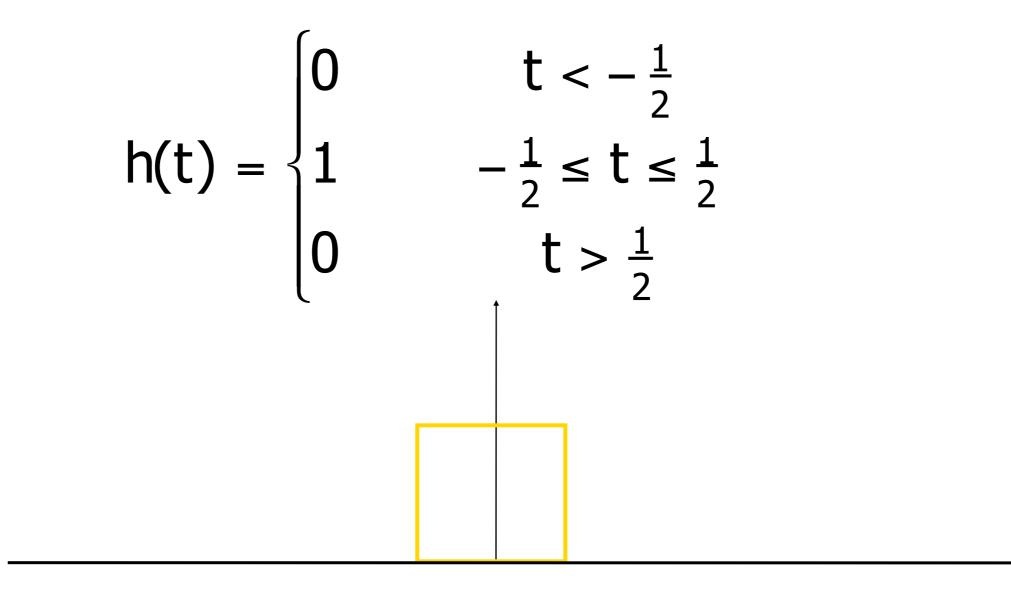


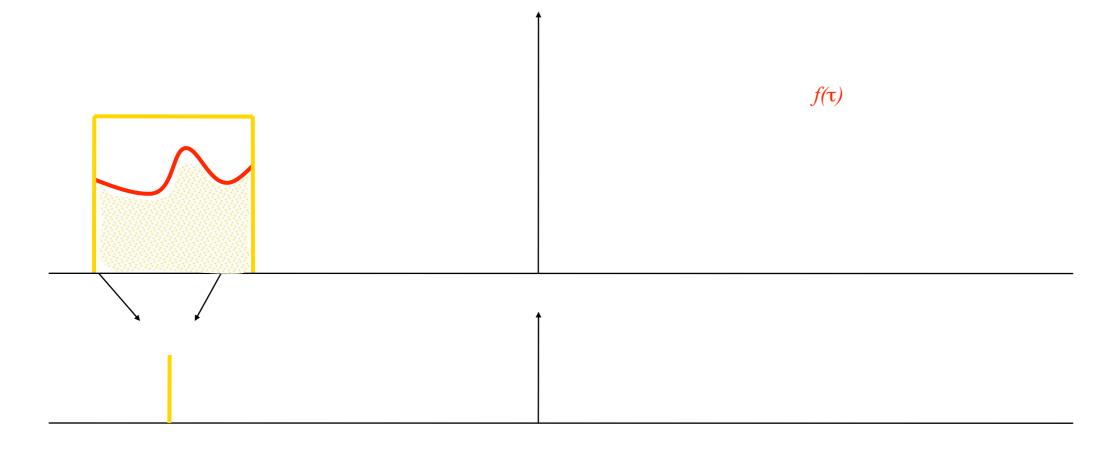


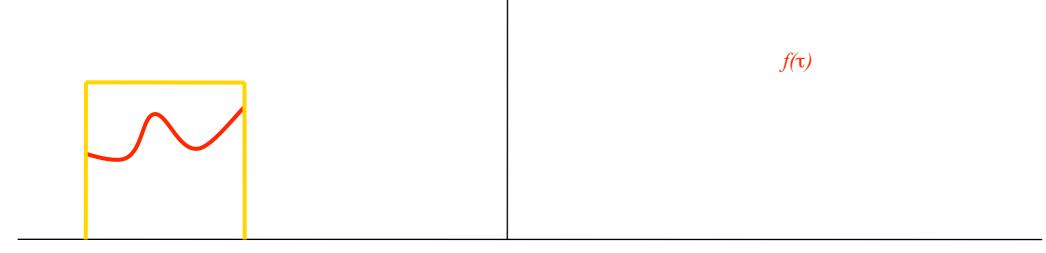
Fabio Romanelli

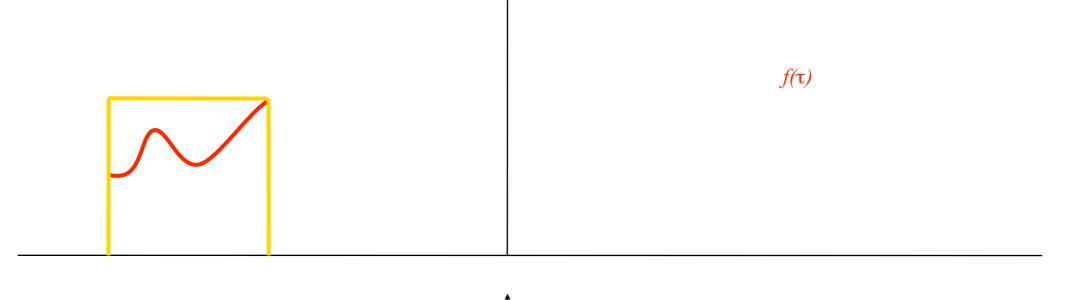
Linear Systems

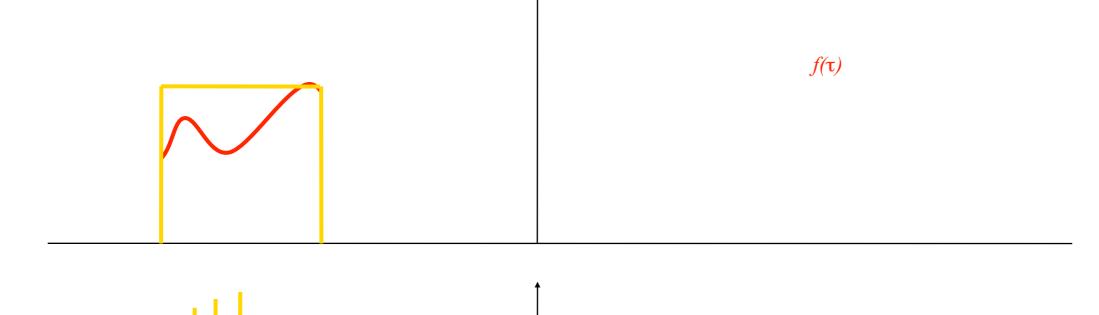
Consider the function (box filter):

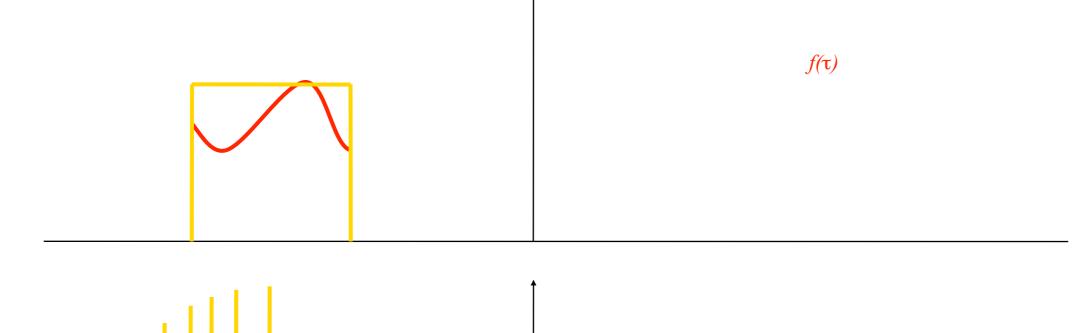


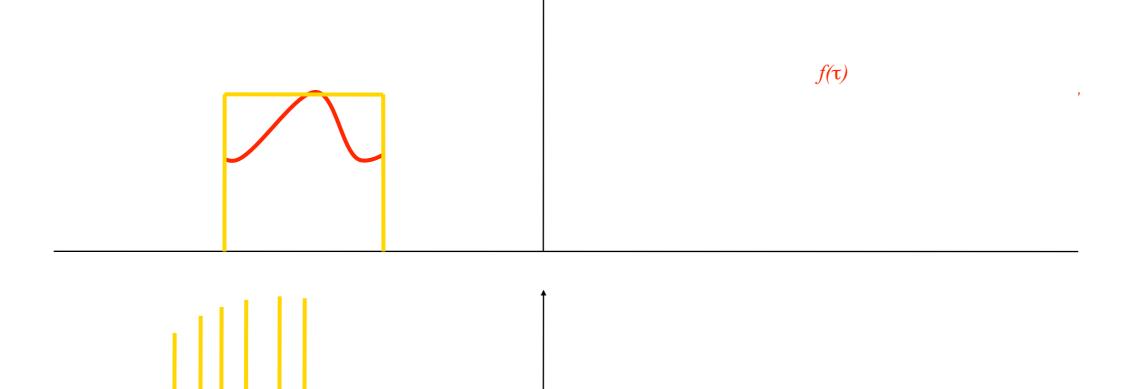




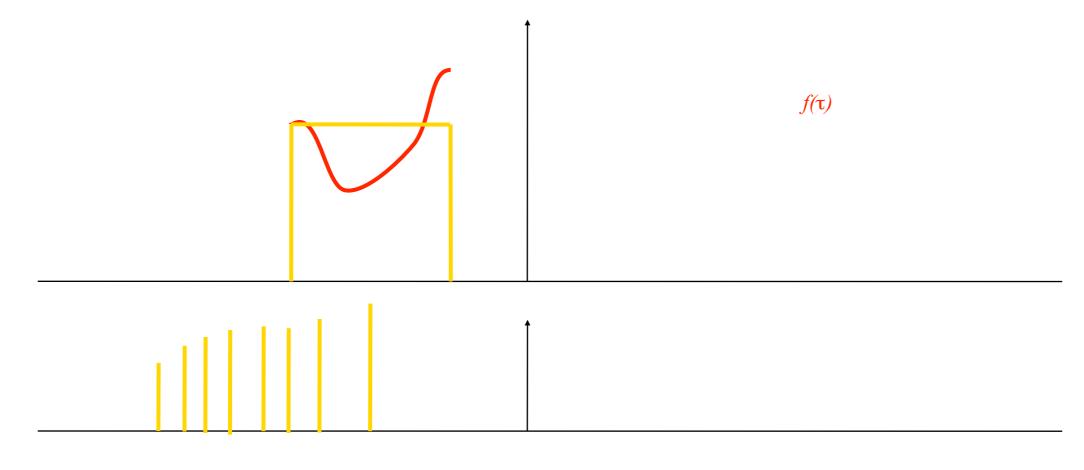


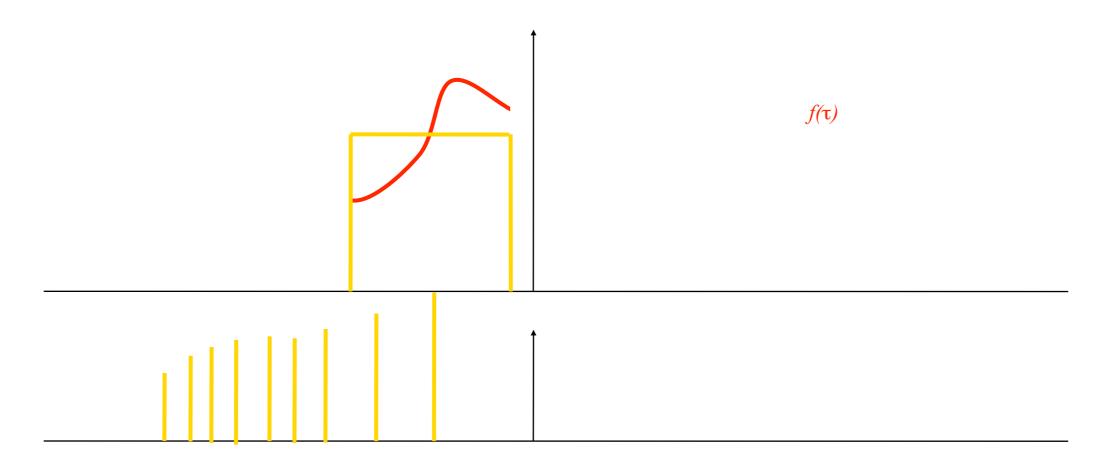


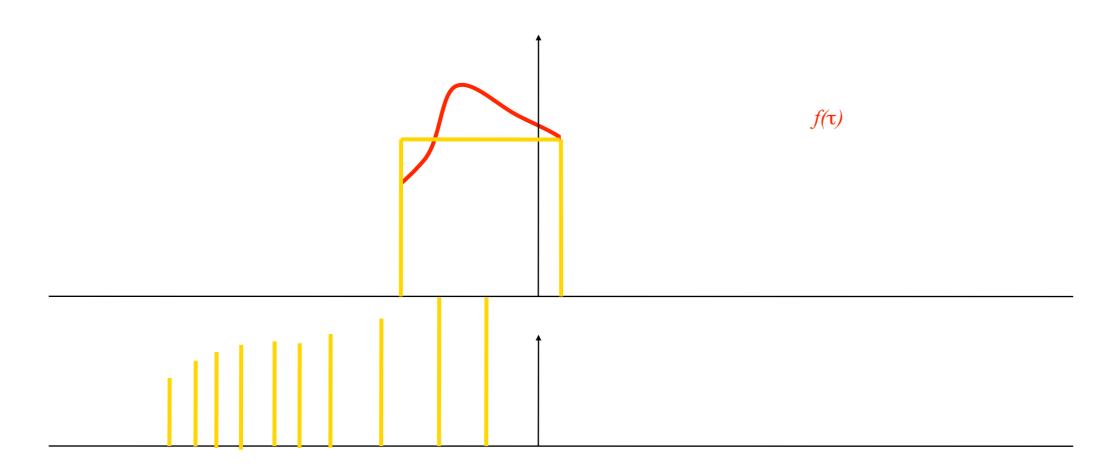


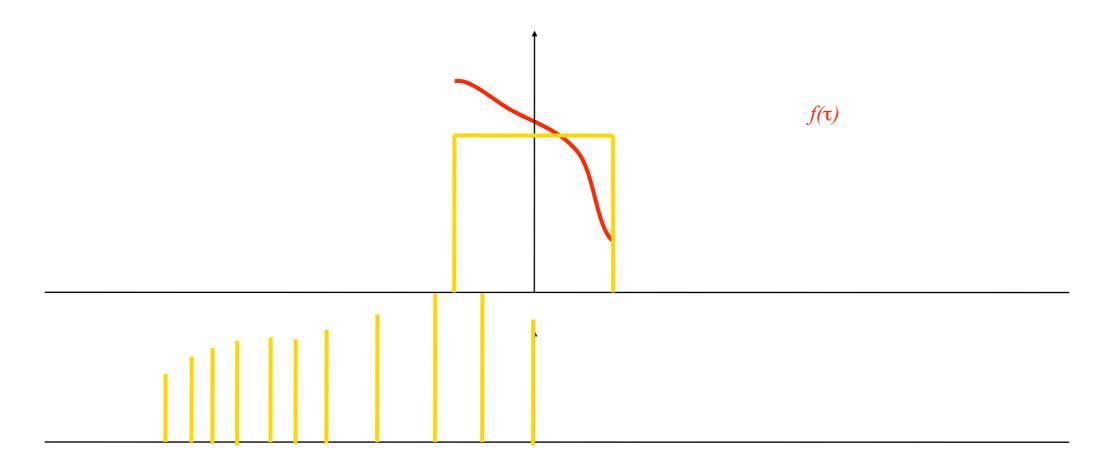


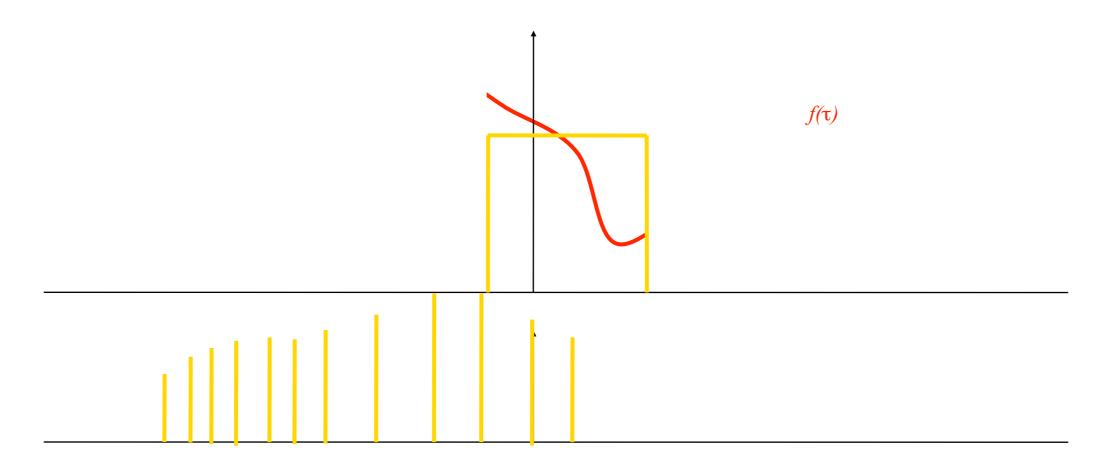


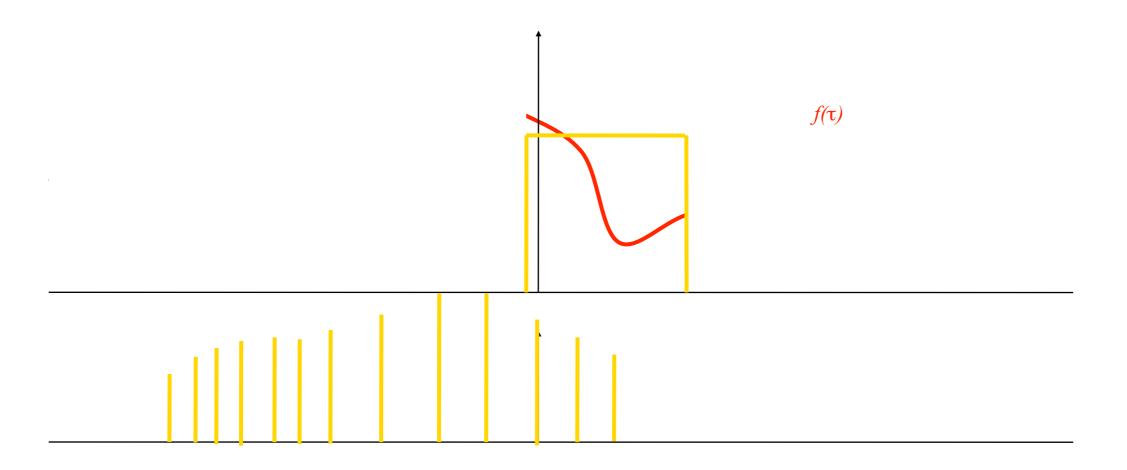


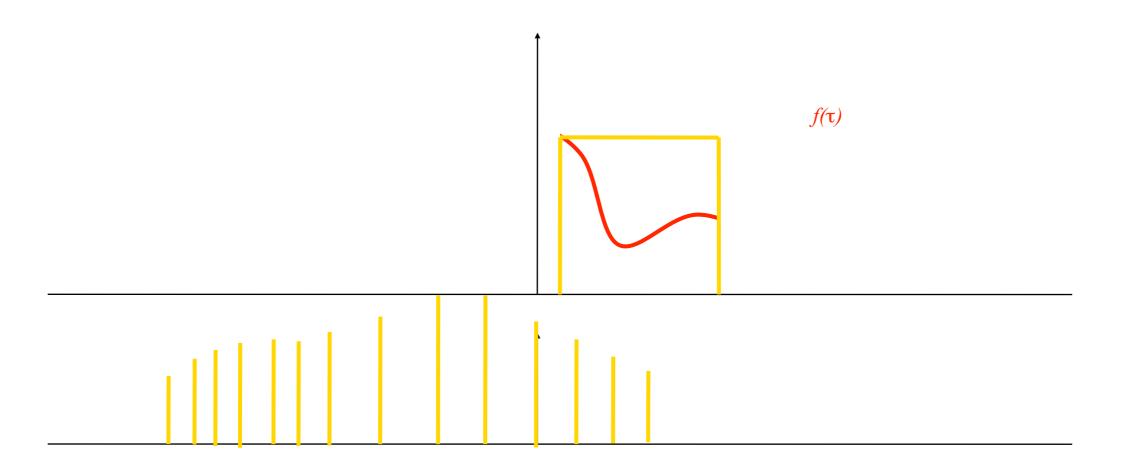


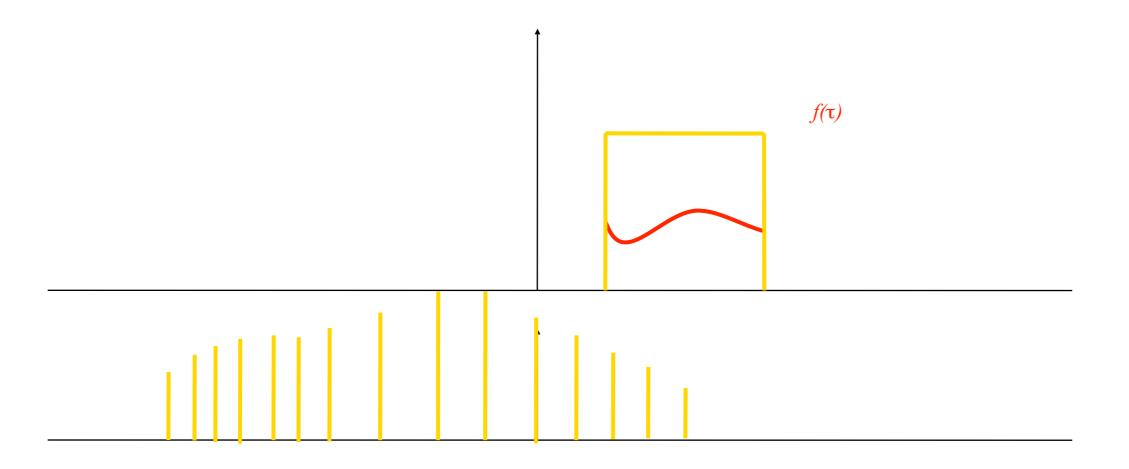


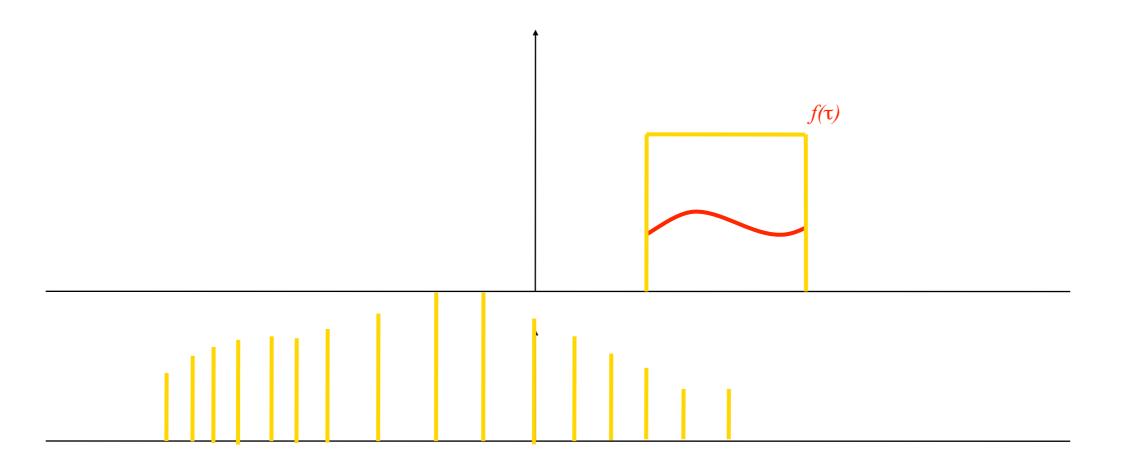


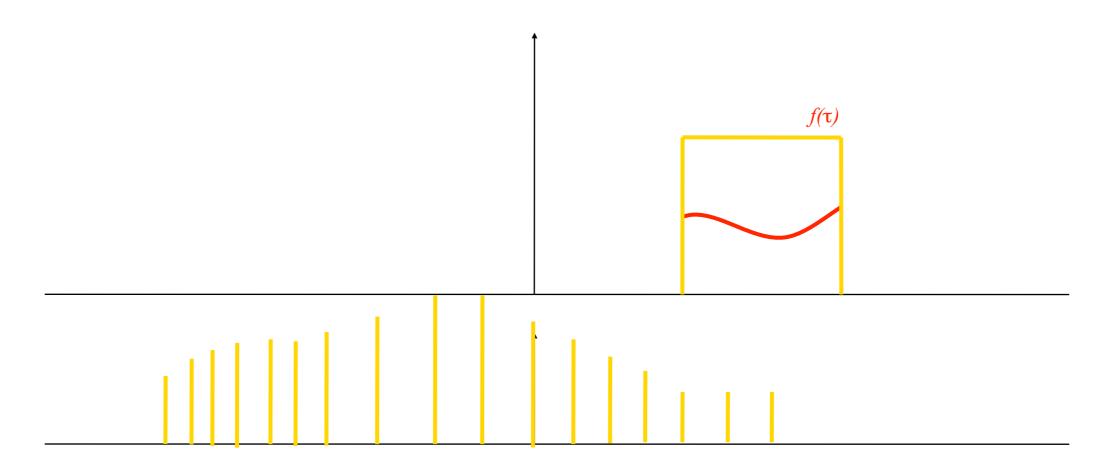


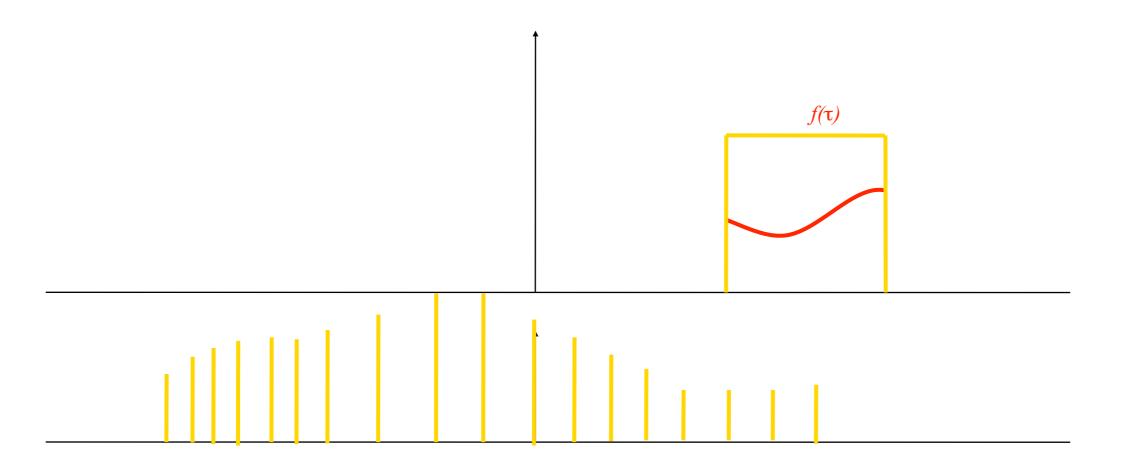


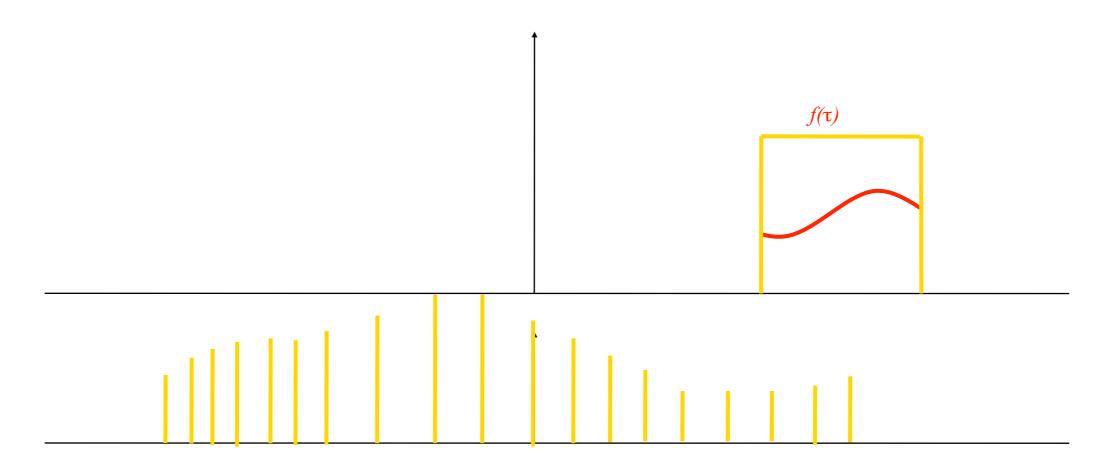


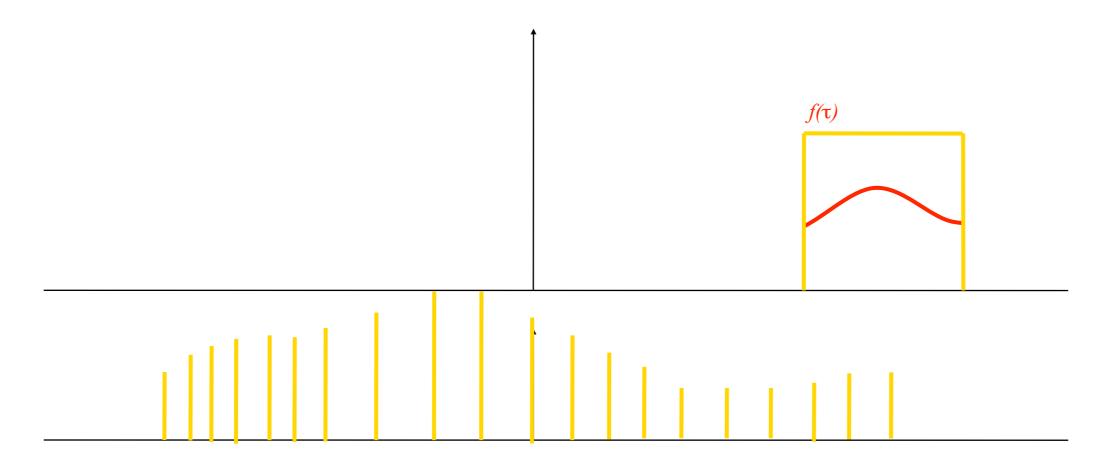


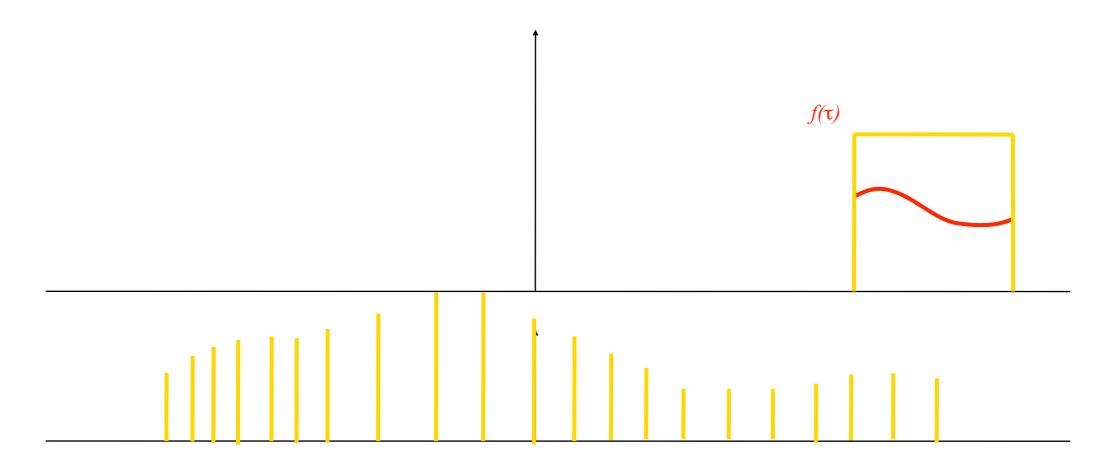


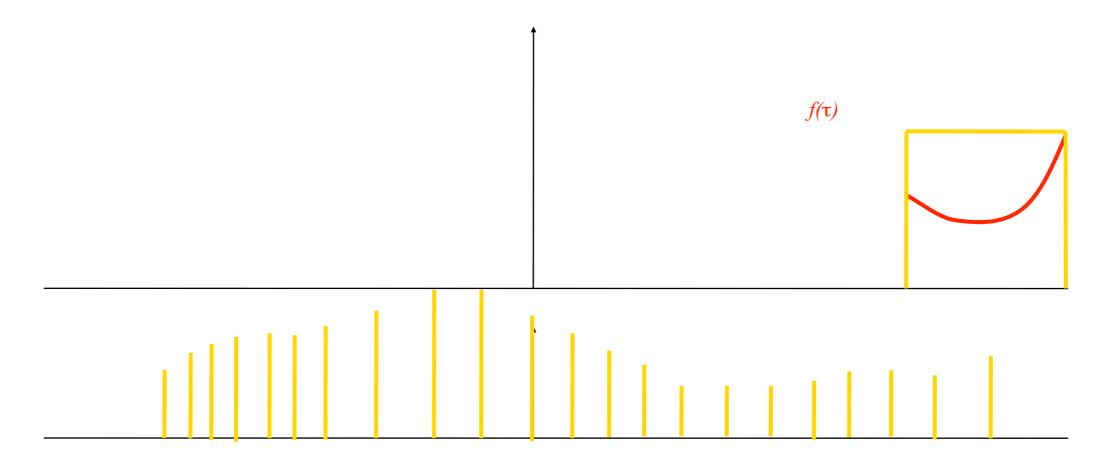








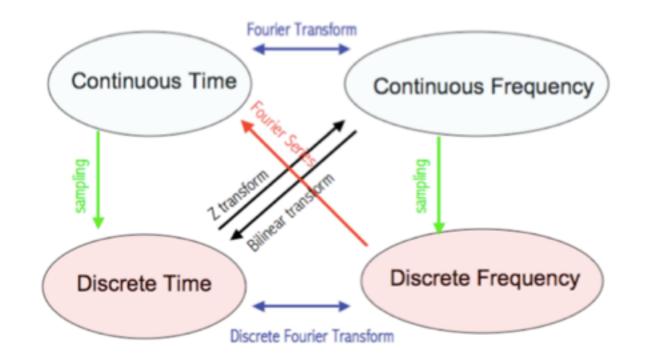




This particular convolution smooths out some of the high frequencies in f(t).



Various spaces and transforms



Signal type	Continuous time	Discrete time	Transform Domain
Finite duration	Laplace	z	Continuous complex frequency (s-plane)
Finite duration	Fourier	Discrete-time Fourier (DTFT)	Continuous real frequency
Periodic	Fourier Series	Discrete Fourier Series (DFS)	Discrete real frequency

Figure 6.3-1: Definition of a linear system.

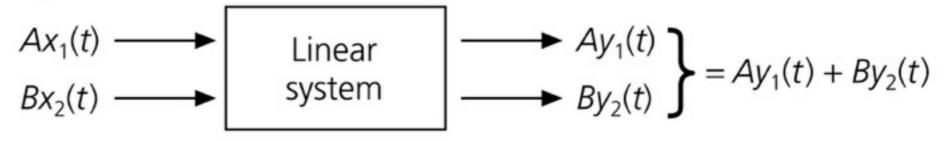
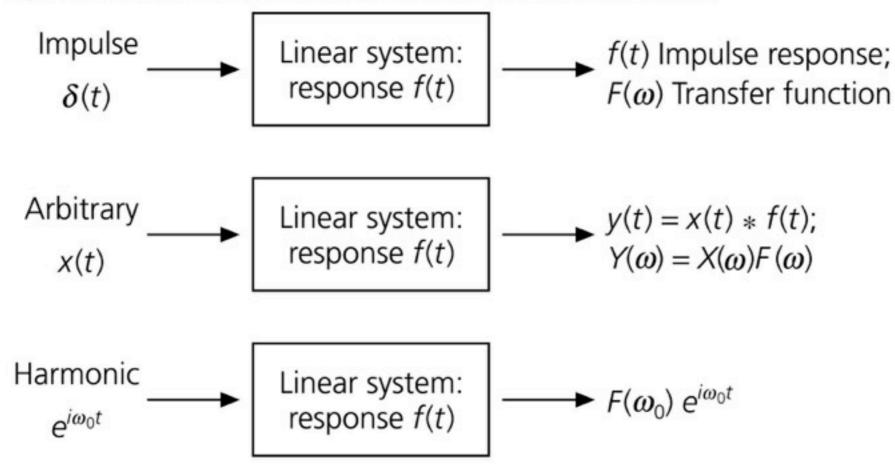
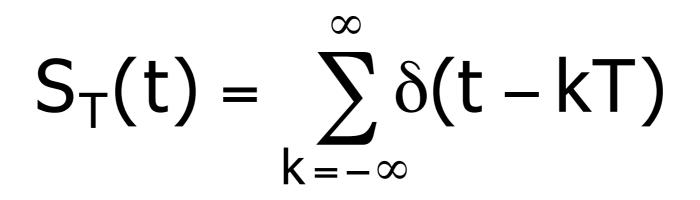


Figure 3.3-29: Seismic section before and after deconvolution.



A Sampling Function or Impulse Train is defined by:





The Fourier Transform of the Sampling Function is itself a sampling function.

The sample spacing is the inverse.

$S_{T}(t) \Leftrightarrow S_{\frac{1}{T}}(\omega)$

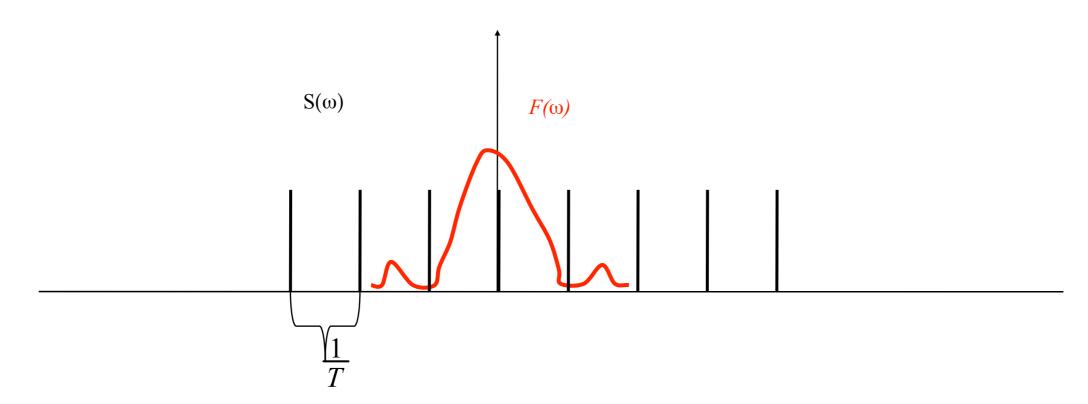
The convolution theorem states that convolution in the spatial domain is equivalent to multiplication in the frequency domain, and viceversa.

 $f(t) * g(t) \Leftrightarrow F(\omega)G(\omega)$ $f(t)g(t) \Leftrightarrow F(\omega) * G(\omega)$

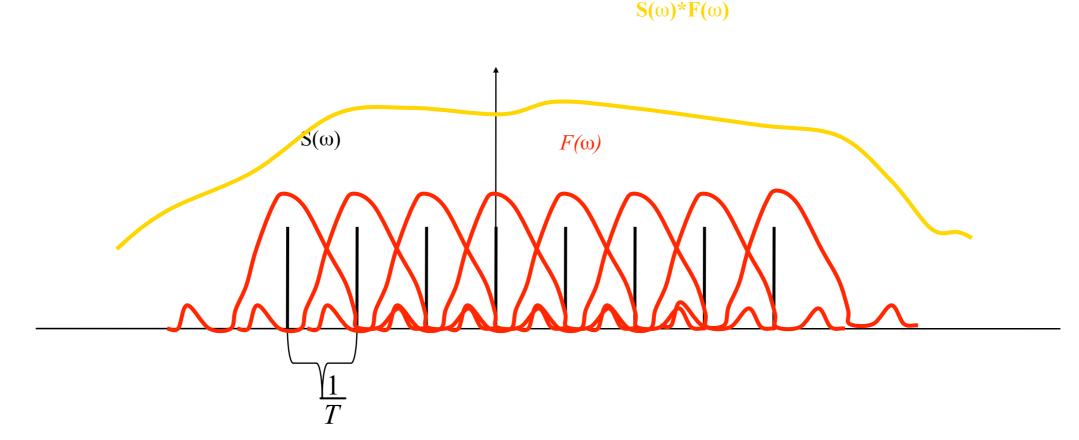
This powerful theorem can illustrate the problems with our point sampling and provide guidance on avoiding aliasing.



What does this look like in the Fourier domain?



In Fourier domain we would convolve



What this says, is that any frequencies greater than a certain amount will appear intermixed with other frequencies.

In particular, the higher frequencies for the copy at 1/T intermix with the low frequencies centered at the origin.

Note, that the sampling process introduces frequencies out to infinity.

- We have also lost the function f(t), and now have only the discrete samples.
- This brings us to our next powerful theory.

The Shannon Sampling Theorem A band-limited signal f(t), with a cutoff frequency of λ , that is sampled with a sampling spacing of T may be perfectly reconstructed from the discrete values f[nT] by convolution with the sinc(t) function, provided: 1

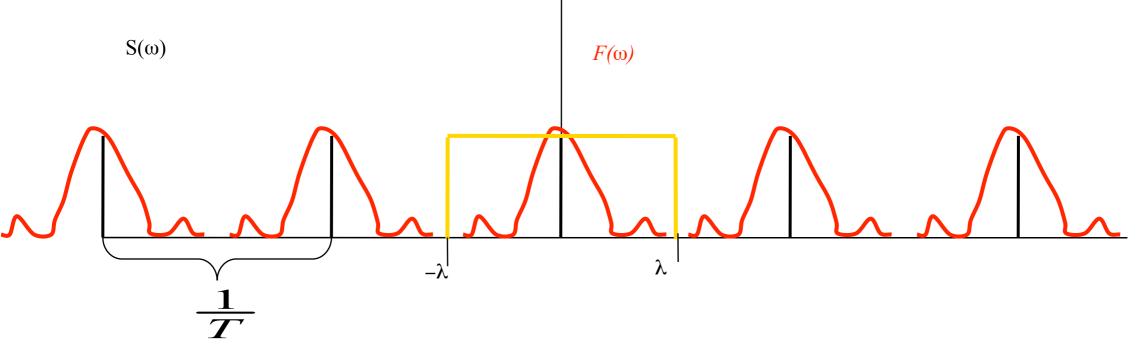
$$\lambda < \frac{1}{2T}$$

Why is this?

- Moreover the timit will ensure that the copies of $F(\omega)$ do not overlap in the frequency domain.
- I can completely reconstruct or determine f(t) from F(ω) using the Inverse Fourier Transform.

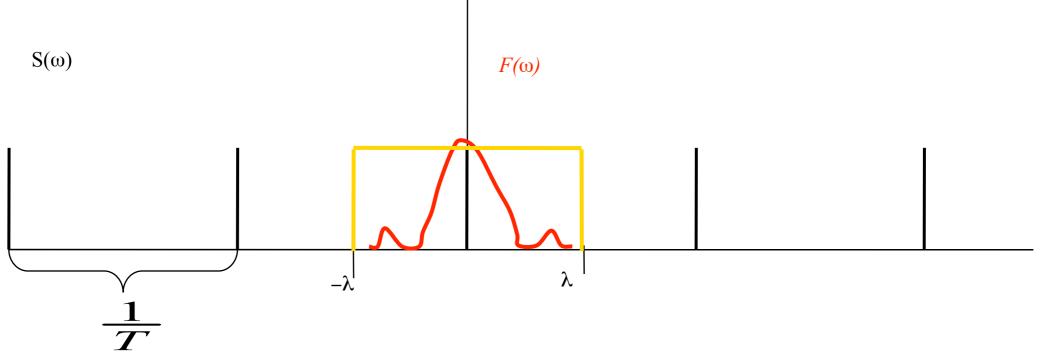
In order to do this, I need to remove all of the shifted copies of $F(\omega)$ first.

This is done by simply multiplying $F(\omega)$ by a box function of width 2λ .

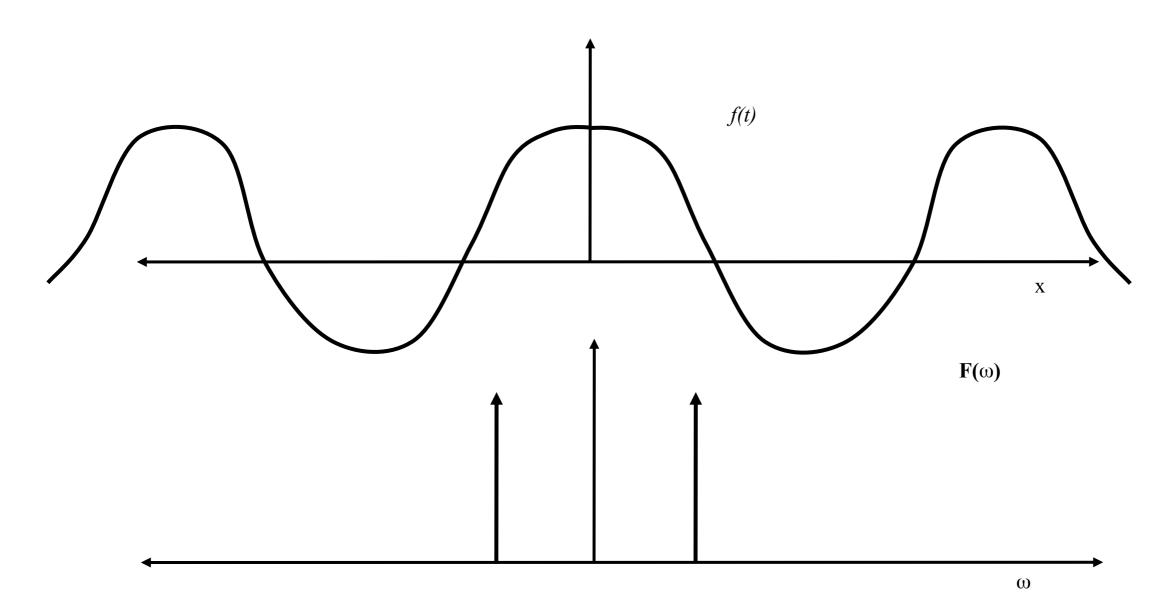


In order to do this, I need to remove all of the shifted copies of $F(\omega)$ first.

This is done by simply multiplying $F(\omega)$ by a box function of width 2λ .



Consider the function $f(t) = cos(2\pi t)$.

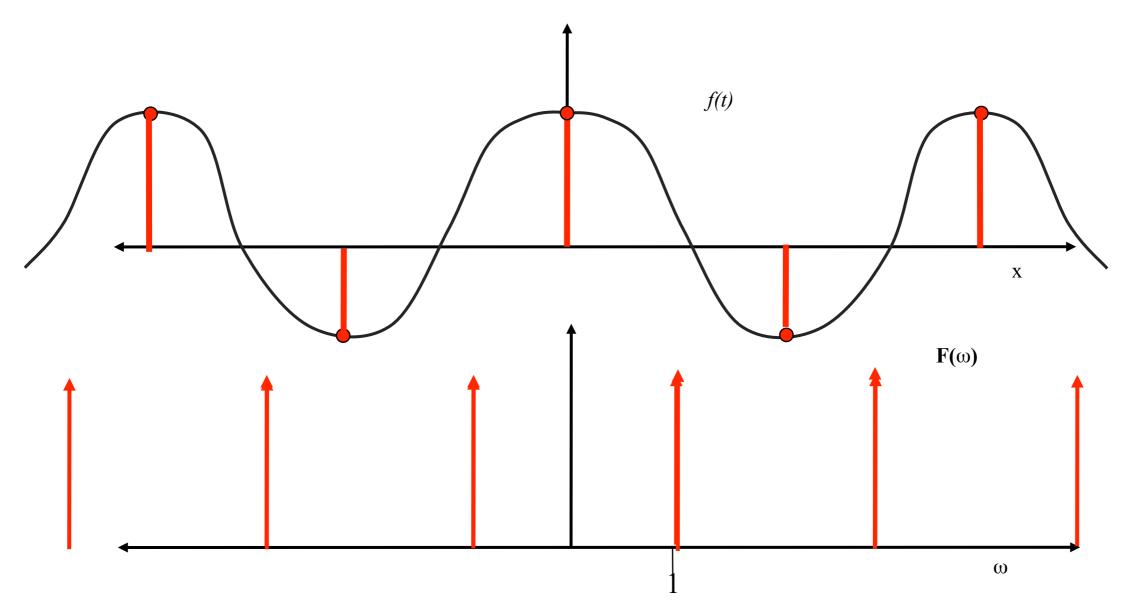


So, given f[nT] and an assumption that f(t) does not have frequencies greater than 1/2T, we can write the formula:

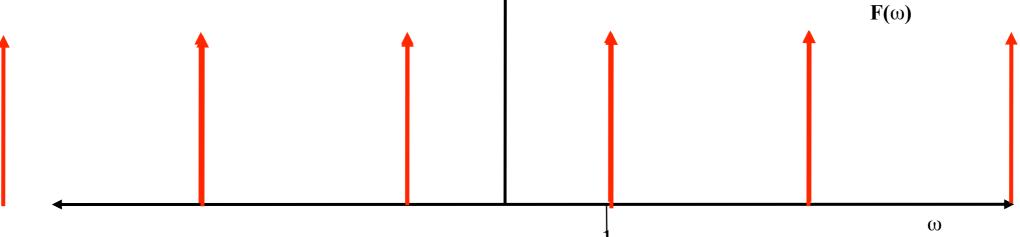
 $f[nT] = f(t) S_{T}(t) \Leftrightarrow F(\omega)^{*} S_{T}(\omega)$ $F(\omega) = (F(\omega)^{*} S_{T}(\omega)) Box_{1/2T}(\omega)$ $f(t) = f[nT]^{*} sinc(t)$

f(t) = f[nT] * sinc(t)

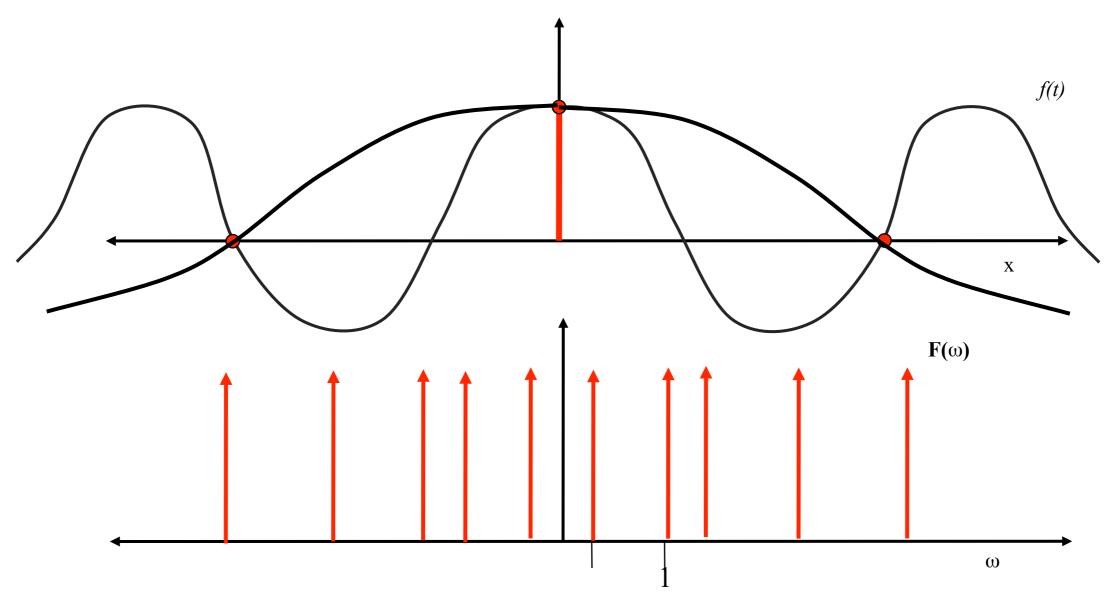
Mow sample it at T=1/2



Problem: The amplitude is now wrong or undefined. Mote however, that there is one and only one cosine with a frequency less than or equal to 1 that goes through the sample pts. **F**(ω)

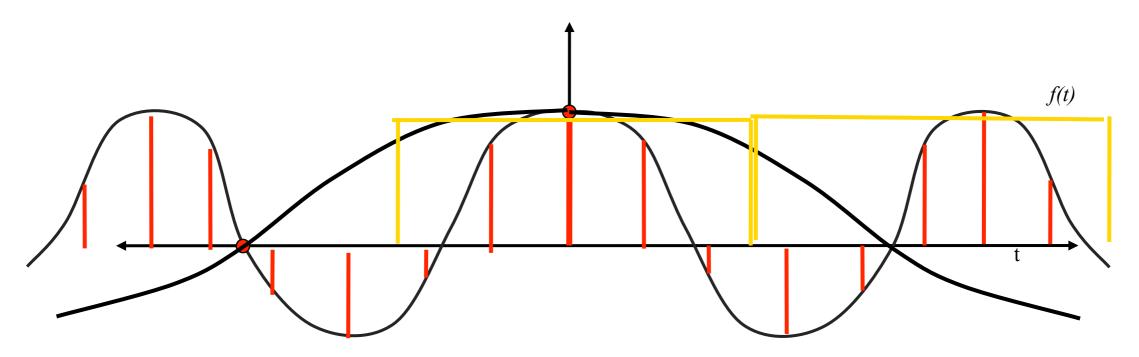


What if we sample at T=2/3?



Linear Systems

Supersampling increases the sampling rate, and then integrates or convolves with a box filter, which is finally followed by the output sampling function.



The problem:

- The signal is not band-limited.
- Uniform sampling can pick-up higher frequency patterns and represent them as low-frequency patterns.

