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The Wave Equation: Potentials

scalar potential

vector potential

displacement
P-wave speed

S-wave speed
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u = ∇Φ + ∇ × Ψ
∇ = (∂x,∂y,∂z )
u
Φ
Ψi
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On Waves Propagated along the Plane Surface of an Elastic
Solid. By Lord RAYLEIOH, D.O.L., F.R.S.

[Head November 12th, 1885.]

It is proposed to investigate the behaviour of waves upon the plane
free surface of an infinite homogeneous isotropic elastic solid, their
character being such that the disturbance is confined to a superficial
region, of thickness comparable with the wave-length. The case is
thus analogous to tliat of deep-water waves, only that the potential
energy here depends upon elastic resilience instead of upon gravity.*

Denoting the displacements by a, /3, y, and the dilatation by 0, we
have the usual equations

=z(X + fl)f+^a *° (1)'
in which e = ̂  + f.+ p. (2).

ax ay dz
If a, /i3, y all vary as eip\ equations (1) become

+/*V9+Pi>
la = 0, &C (3).

* The statical problem of the deformation of an elastic solid by a harmonic appli-
cation of pressure to its surface has been treated by Prof. G. Darwin, Phil. Mag.,
Dec, 1882. [Jan. 1886.—See also Camb. Math. Trip. Ex., Jan. 20, 1875, Ques-
tion IV.]
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Rayleigh Waves

SV  waves incident on a free surface: conversion and reflection

An evanescent P-wave 
propagates along the free 
surface decaying 
exponentially with depth.

The reflected post-critically 
reflected SV wave is totally 
reflected and phase-shifted. 
These two wave types can 
only exist together, they 
both satisfy the free 
surface boundary condition:

-> Surface waves



Apparent horizontal velocity
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In current terminology, kx is k!



Surface waves: Geometry

We are looking for plane waves traveling along one horizontal coordinate 
axis, so we can  - for example - set 

As we only require Ψy we set 
Ψy=Ψ from now on. Our trial 
solution is thus

And consider only wave motion in the x,z plane. Then
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Condition of existence

With that ansatz one has that, in order to desired solution 
exists, the coefficients

to obtain

have to express a decay along z, i.e.
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Surface waves: Boundary Conditions

Analogous to the problem of finding the reflection-
transmission coefficients we now have to satisfy the boundary 
conditions at the free surface (stress free)

In isotropic media we have 
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Rayleigh waves: solutions

This leads to the following relationship for c, 
the phase velocity: 

For simplicity we take a fixed relationship between P and shear-
wave velocity (Poisson’s medium): 

… to obtain 

… and the only root which fulfills the condition c<β is

(2− c2 /β2)2 = 4(1 − c2 /α2)1/2(1 − c2 /β2)1/2

c6

β6
− 8c4

β4
+ 56

3
c2

β2
− 16 = 0

α = 3 β

c ≅ 0.92 β



Displacement

Putting this value back into our solutions we 
finally obtain the displacement in the x-z 
plane for a plane harmonic surface wave 
propagating along direction x 

This development was first made by Lord Rayleigh in 1885.

It demonstrates that YES there are solutions to the wave 
equation propagating along a free surface!

 Some remarkable facts can be drawn from this particular form:
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ux = C(e−0.8475kz −0.5773e−0.3933kz)sink(x− ct)
uz = C(−0.8475e−0.8475kz + 1.4679e−0.3933kz)cosk(x− ct)



How does the particle motion look like? 

theoretical experimental

Particle Motion (1)



-the two components are out of phase by π/2

− for small values of z a particle describes an 
ellipse and the motion is retrograde

- at some depth z the motion is linear in z

- below that depth the motion is again elliptical 
but prograde

- the phase velocity is independent of k: there is 
no dispersion for a homogeneous half space

- Right Figure: radial and vertical motion for a 
source at the surface

theoretical

experimental

Transient solution to an impulsive vertical point 
force at the surface of a half space is called 
Lamb‘s problem (after Horace Lamb, 1904). 

Lamb’s Problem and Rayleigh waves



Data Example 

theoretical experimental



Dispersion relation
In physics, the dispersion relation is the relation between the energy of a 
system and its corresponding momentum. For example, for massive particles 
in free space, the dispersion relation can easily be calculated from the 
definition of kinetic energy:

For electromagnetic waves, the energy is proportional to the frequency 
of the wave and the momentum to the wavenumber. In this case, 
Maxwell's equations tell us that the dispersion relation for vacuum is 
linear: ω=ck. 

The name "dispersion relation" originally comes from optics. It is 
possible to make the effective speed of light dependent on wavelength by 
making light pass through a material which has a non-constant index of 
refraction, or by using light in a non-uniform medium such as a waveguide. 
In this case, the waveform will spread over time, such that a narrow pulse 
will become an extended pulse, i.e. be dispersed.
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Dispersion relation
In classical mechanics, the Hamilton’s principle the perturbation scheme 
applied to an averaged Lagrangian for an harmonic wave field gives a 
characteristic equation: Δ(ω,ki)=0

Longitudinal wave in a rod
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Effect of dispersion...



Dispersion examples

Discrete systems: lattices

Stiff systems: rods and thin plates

Boundary waves: plates and rods
Discontinuity interfaces are intrinsic in their 
propagation since they allow to store energy 
(not like body waves)!



5

Monatomic 1D lattice

Let us examine the simplest periodic system within the context of harmonic approximation

(F = dU/du =  Cu) - a one-dimensional crystal lattice, which is a sequence of masses m

connected with springs of force constant C and separation a.

Mass MThe collective motion of these springs will 

correspond to solutions of a wave equation.

Note: by construction we can see that 3 types 

of wave motion are possible,

2 transverse, 1 longitudinal (or compressional)

How does the system appear with a longitudinal wave?:

The force exerted on the n-th atom in the

lattice is given by

Fn = Fn+1,n – Fn-1,n = C[(un+1 – un) – (un – un-1)].

Applying Newton’s second law to the motion

of the n-th atom we obtain

   u  - un+1 n

   un+1    un+2 un-1    un

F
n+1

F
n-1

2

1 12
(2 )n

n n n n

d u
M F C u u u

dt
! "

# # " " "

Note that we neglected hereby the interaction of the n-th atom with all but its nearest neighbors. 

A similar equation should be written for each atom in the lattice, resulting in N coupled differential 

equations, which should be solved simultaneously (N - total number of atoms in the lattice). In 

addition the boundary conditions applied to end atoms in the lattice should be taken into account.
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Monatomic 1D lattice - continued

Now let us attempt a solution of the form:                      ,

where xn is the equilibrium position of the n-th atom so that xn= na. This equation represents

a traveling wave, in which all atoms oscillate with the same frequency ! and the same

amplitude A and have a wavevector k. Now substituting the guess solution into the equation

and canceling the common quantities (the amplitude and the time-dependent factor) we obtain

This equation can be further simplified by canceling the common factor eikna , which leads to

We find thus the dispersion relation

for the frequency:

which is the relationship between the

frequency of vibrations and the

wavevector k. The dispersion relation

has a number of important properties.
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Dispersion in lattices
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Monatomic 1D lattice – continued

Phase and group velocity. The phase velocity is defined by

and the group velocity by

The physical distinction between the two velocities is that vp is the velocity of propagation

of the plane wave, whereas the vg is the velocity of the propagation of the wave packet.

The latter is the velocity for the propagation of energy in the medium. For the particular

dispersion relation the group velocity is given by

Apparently, the group velocity is zero at the edge of the zone where k = ± !/a. Here the

wave is standing and therefore the transmission velocity for the energy is zero.

Long wavelength limit. The long wavelength limit implies that "#>> a. In this limit ka << 1.

We can then expand the sine in ‘$#‘ and obtain for the positive frequencies:

We see that the frequency of vibration is proportional to the wavevector. This is

equivalent to the statement that velocity is independent of frequency. In this case:

This is the velocity of sound for the one dimensional lattice which is

consistent with the expression we obtained earlier for elastic waves.
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Acoustic and optical modes

Monoatomic chain 
acoustic longitudinal mode

Monoatomic chain 
acoustic transverse mode

Diatomic chain 
acoustic transverse mode

Diatomic chain 
optical transverse mode



Dispersion examples

Discrete systems: lattices

Stiff systems: rods and thin plates

Boundary waves: plates and rods
Discontinuity interfaces are intrinsic in their 
propagation since they allow to store energy 
(not like body waves)!



Stiffness...

How "stiff" or "flexible" is a material? It depends on whether we pull on 
it, twist it, bend it, or simply compress it. In the simplest case the material 
is characterized by two independent "stiffness constants" and that 
different combinations of these constants determine the response to a pull, 
twist, bend, or pressure.

k

w
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Bending

For y = 0 as the neutral axis, assuming strain linear in y, 

y
compression

tension

( )

⋅=

=

2

1
)()(

)()(

y

y

xxx

ykdyyw

ydyywF σ

Since this must = 0, we find that 

the y = 0 axis must be at the 

centroid of the cross-section in the 

y-direction.

Now compute the moment (torque) for this case:
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The moment that is generated 

elastically by this kind of bending is 

proportional to the areal moment of 

inertia around the neutral axis!

Bending
Again, for arbitrary coordinates, neutral 

axis is such that

=
dyyw

dyyyw
y
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Areal moment of inertia about the neutral axis is then just

−= dyywyyI )()(
2
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4

4
a
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π

=

I-beams are stiff in flexure because their area is concentrated far 

from their neutral axis!

Euler-Bernoulli equation
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Stiffness...
Stiffness in a vibrating string introduces a restoring force proportional to the 

bending angle of the string and the usual stiffness term added to the wave equation 
for the ideal string. Stiff-string models are commonly used in piano synthesis and 
they have to be included in tuning of piano strings due to inharmonic effects.
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SH Waves in plates: Geometry

Repeated reflection in the layer allow interference between incident and reflected SH 
waves: SH reverberations can be totally trapped.

The condition of interference of multiply reflected waves at the rigid boundaries is:

Examples: Sound waves in a duct; SH (P-SV) waves in a plate; TEM modes

cosθ
0
= n λ

2(2h)
= n π

(2h)k

kcosθ
0
(2h) = k

z
(2h) = k

x
r
β
(2h) = nπ



SH waves: trapping 
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k = kx = ω
c

;    ωηβ = kz = ω
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uy = Aexp[i(ωt + ωηβz −kx)] + B exp[i(ωt − ωηβz −kx)]
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uy = Aexp[i(ωt + krβz −kx)] + B exp[i(ωt −krβz −kx)]

The formal derivation is very similar to the derivation of the Rayleigh waves. The 
conditions to be fulfilled are: free surface conditions
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SH waves: eigenvalues...

that leads to:   

� 

krβ2h = nπ with n=0,1,2,... 
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EM waveguide animations

http://people.seas.harvard.edu/~jones/ap216/lectures/ls_1/ls1_u8/ls1_unit_8.html

http://people.seas.harvard.edu/~jones/ap216/lectures/ls_1/ls1_u8/ls1_unit_8.html
http://people.seas.harvard.edu/~jones/ap216/lectures/ls_1/ls1_u8/ls1_unit_8.html


Acoustic waveguides...

SOFAR channel (Sound Fixing And Ranging channel)

Sound speed as a function of depth at a 
position north of Hawaii in the Pacific 
Ocean derived from the 2005 World Ocean 
Atlas. The SOFAR channel axis is at ca. 
750-m depth.



Waves in plates

In low frequency plate waves, there are two distinct type of harmonic motion. These are 
called symmetric or extensional waves and antisymmetric or flexural waves.

c ! c "# $
"%!&'f … frequency 

(rad/sec)

2h

If one looks for solutions of the form

( ! f y# $exp ik x ) ct# $* +

, ! g y# $exp ik x ) ct# $* +

Lamb (Plate) Waves
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Lamb (Plate) Waves

then solutions of the following two types are found:
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Lamb waves
Lamb waves are waves of plane strain that occur in a free plate, and the traction force must 
vanish on the upper and lower surface of the plate. In a free plate, a line source along y axis 
and all wave vectors must lie in the x-z plane. This requirement implies that response of the 
plate will be independent of the in-plane coordinate normal to the propagation direction.



Love Waves: Geometry

In an elastic half-space no SH type surface waves exist. Why? 
Because there is total reflection and no interaction between an evanescent P wave and a 
phase shifted SV wave as in the case of Rayleigh waves. What happens if we have a layer 
over a half space (Love, 1911) ?

Repeated reflection in a layer over a half space.
Interference between incident, reflected and transmitted SH waves. 
When the layer velocity is smaller than the halfspace velocity, then there is a critical 
angle beyond which SH reverberations will be totally trapped.



Wavefields visualization



We describe a method to invert surface wave group or phase velocity 
measurements to estimate 2-D models of the distribution and 
strength of velocity variations.
Using ray theory, the forward problem for surface wave tomography 
consists of predicting a frequency dependent travel time tR/L(ω). For 
both Rayleigh (R) and Love (L) waves from a set of 2-D phase or 
group velocity maps, c(r, ω):

Surface Wave Tomography

Where r=[θ,φ] is the surface position vector, θ and φ are colatitude 
and longitude, and ray specifies the path.
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RAYLEIGH WAVE 35s
Larson, E.W.F. and G. Ekström, Global Models of Surface Wave Group Velocity, 

Pure Appl. Geophys. 158 (8), 1377-1400, 2001. 

Global scale



RAYLEIGH WAVE 50s
Larson, E.W.F. and G. Ekström, Global Models of Surface Wave Group Velocity, 

Pure Appl. Geophys. 158 (8), 1377-1400, 2001. 



RAYLEIGH WAVE 100s
Larson, E.W.F. and G. Ekström, Global Models of Surface Wave Group Velocity, 

Pure Appl. Geophys. 158 (8), 1377-1400, 2001. 



The reliability of the group velocity maps across large regions 
degrades sharply below 15 s and above 150-200 s for Rayleigh waves 
and 100-125 s for Love waves. Surface waves maps at and below 30 s 
period are particularly important because they provide significant 
constraints on crustal thickness by helping to resolve Moho depth 
from the average shear velocity of the crust. Although there have 
been numerous studies of surface wave dispersion that have 
produced measurements of group and/or phase velocities between 10 
and 40 s period, these studies have typically been confined to areas 
of about 15° or less in lateral extent.

Phase and group velocity maps provide constraints on the shear 
velocity structure of the crust and uppermost mantle. Accurate high-
resolution group velocity maps, in particular, are useful in monitoring 
clandestine nuclear tests.



Measurements of group velocities are much less sensitive to source 
effects than phase velocities because they derive from 
measurements of the wave packet envelopes rather than the 
constituent phases. This is particularly true at shorter periods and 
longer ranges. Group velocity sensitivity is compressed nearer to the 
surface than the related phase velocities, which should provide 
further help in resolving crustal from mantle structures. 



Surface waves
Condition of existence:

Discontinuity (boundary waves, undispersed: Rayleigh, Stoneley)

Waveguide (interferential & dispersed: Love & Rayleigh)

T (s) f (Hz) λ (km) c (km/s) d (km) application

0.02-0.1 10-50 0.002-0.05 0.1-0.5 0.02
engineering, 
geophysics

0.2-1 1-5 0.15-1.50 0.1-1.5 0.2
upper 

sediments

5-10 0.1-0.2 7-30 2-3 5
sedimentary 

basins

10-35 0.03-0.1 30-100 3.0-3.5 40
crust           

35-350 0.005-0.03 200-1000 4-5 300
upper 
mantle


