1 Introduction

- The notion of wave
- Basic wave phenomena
- Mathematical description of a traveling wave

1 Introduction

- The notion of wave
- Basic wave phenomena
- Mathematical description of a traveling wave

2 Water waves

- Surface waves on deep water
- Dispersion and the group velocity
- Capillary waves
- Shallow-water finite-amplitude waves

1 Introduction

- The notion of wave
- Basic wave phenomena
- Mathematical description of a traveling wave

2 Water waves

- Surface waves on deep water
- Dispersion and the group velocity
- Capillary waves
- Shallow-water finite-amplitude waves

3 Sound waves

- Introduction
- Acoustic wave equation
- The speed of sound
- Sub- and supersonic flow

1 Introduction

- The notion of wave
- Basic wave phenomena
- Mathematical description of a traveling wave

2 Water waves

- Surface waves on deep water
- Dispersion and the group velocity
- Capillary waves
- Shallow-water finite-amplitude waves

3 Sound waves

- Introduction
- Acoustic wave equation
- The speed of sound
- Sub- and supersonic flow

The notion of wave

What is a wave?

A **wave** is the **transport of a disturbance** (or energy, or piece of information) in space not associated with motion of the medium occupying this space as a whole. (Except that electromagnetic waves require no medium !!!)

- The transport is at **finite speed**.
- The shape or form of the **disturbance** is **arbitrary**.
- The disturbance moves with respect to the medium.

The notion of wave

What is a wave?

A **wave** is the **transport of a disturbance** (or energy, or piece of information) in space not associated with motion of the medium occupying this space as a whole. (Except that electromagnetic waves require no medium !!!)

- The transport is at **finite speed**.
- The shape or form of the **disturbance** is **arbitrary**.
- The disturbance moves with respect to the medium.

Two general classes of wave motion are distinguished:

Iongitudinal waves – the disturbance moves parallel to the direction of propagation. *Examples*: sound waves, compressional elastic waves (P-waves in geophysics);

The notion of wave

What is a wave?

A **wave** is the **transport of a disturbance** (or energy, or piece of information) in space not associated with motion of the medium occupying this space as a whole. (Except that electromagnetic waves require no medium !!!)

- The transport is at **finite speed**.
- The shape or form of the **disturbance** is **arbitrary**.
- The disturbance moves with respect to the medium.

Two general classes of wave motion are distinguished:

- Iongitudinal waves the disturbance moves parallel to the direction of propagation. *Examples*: sound waves, compressional elastic waves (P-waves in geophysics);
- 2 transverse waves the disturbance moves perpendicular to the direction of propagation. *Examples*: waves on a string or membrane, shear waves (S-waves in geophysics), water waves, electromagnetic waves.

Basic wave phenomena

- reflection change of wave direction from hitting a reflective surface,
- refraction change of wave direction from entering a new medium,
- diffraction wave circular spreading from entering a small hole (of the wavelength-comparable size), or wave bending around small obstacles,
- **interference** superposition of two waves that come into contact with each other,
- dispersion wave splitting up by frequency,
- rectilinear propagation the movement of light wave in a straight line.

Basic wave phenomena

- reflection change of wave direction from hitting a reflective surface,
- refraction change of wave direction from entering a new medium,
- diffraction wave circular spreading from entering a small hole (of the wavelength-comparable size), or wave bending around small obstacles,
- **interference** superposition of two waves that come into contact with each other,
- dispersion wave splitting up by frequency,
- rectilinear propagation the movement of light wave in a straight line.

Standing wave

A **standing wave**, also known as a **stationary wave**, is a wave that remains in a constant position. This phenomenon can occur:

- when the medium is moving in the opposite direction to the wave,
- (in a stationary medium:) as a result of interference between two waves travelling in opposite directions.

Traveling waves

Simple wave or **traveling wave**, sometimes also called *progressive* wave, is a disturbance that varies both with time t and distance x in the following way:

$$u(x,t) = A(x,t) \cos (kx - \omega t + \theta_0)$$

= $A(x,t) \sin (kx - \omega t + \underbrace{\theta_0 \pm \frac{\pi}{2}}_{\tilde{\theta}_0})$

where A is the **amplitude**, ω and k denote the **angular frequency** and **wavenumber**, and θ_0 (or $\tilde{\theta}_0$) is the initial **phase**.

Traveling waves

$$u(x,t) = A(x,t) \cos \left(kx - \omega t + \theta_0\right)$$

= $A(x,t) \sin \left(kx - \omega t + \underbrace{\theta_0 \pm \frac{\pi}{2}}_{\tilde{\theta}_0}\right)$

Amplitude A [e.g. m, Pa, V/m] – a measure of the maximum disturbance in the medium during one wave cycle (the maximum distance from the highest point of the crest to the equilibrium).
Phase θ = kx - ωt + θ₀ [rad], where θ₀ is the *initial* phase (shift), often ambiguously, called the phase.

- Period T [s] the time for one complete cycle for an oscillation of a wave.
- **Frequency** *f* [Hz] the number of periods per unit time.

Frequency and angular frequency

The frequency f [Hz] represents the number of periods per unit time

$$f = \frac{1}{T} \, .$$

The **angular frequency** ω [Hz] represents the frequency in terms of radians per second. It is related to the frequency by

$$\omega = \frac{2\pi}{T} = 2\pi f \,.$$

 Wavelength λ [m] – the distance between two sequential crests (or troughs).

Wavenumber and angular wavenumber

The **wavenumber** is the spatial analogue of frequency, that is, it is the measurement of the number of repeating units of a propagating wave (the number of times a wave has the same phase) per unit of space.

Application of a Fourier transformation on data as a function of time yields a **frequency spectrum**; application on data as a function of position yields a **wavenumber spectrum**.

The **angular wavenumber** $k\left[\frac{1}{m}\right]$, often misleadingly abbreviated as "wave-number", is defined as $k = \frac{2\pi}{\lambda}$.

There are two velocities that are associated with waves:

1 Phase velocity – the rate at which the wave propagates:

$$c = \frac{\omega}{k} = \lambda f \,.$$

There are two velocities that are associated with waves:

1 Phase velocity – the rate at which the wave propagates:

$$c = \frac{\omega}{k} = \lambda f.$$

Group velocity – the velocity at which variations in the shape of the wave's amplitude (known as the *modulation* or *envelope* of the wave) propagate through space:

$$c_{\mathsf{g}} = \frac{\mathrm{d}\omega}{\mathrm{d}k}$$
.

This is (in most cases) the signal velocity of the waveform, that is, the **rate at which information or energy is transmitted** by the wave. However, if the wave is travelling through an absorptive medium, this does not always hold.

Introduction

- The notion of wave
- Basic wave phenomena
- Mathematical description of a traveling wave

2 Water waves

- Surface waves on deep water
- Dispersion and the group velocity
- Capillary waves
- Shallow-water finite-amplitude waves

3 Sound waves

- Introduction
- Acoustic wave equation
- The speed of sound
- Sub- and supersonic flow

- Consider two-dimensional water waves: u = [u(x, y, t), v(x, y, t), 0].
- Suppose that the flow is **irrotational**: $\frac{\partial v}{\partial x} \frac{\partial u}{\partial y} = 0$.
- Therefore, there exists a **velocity potential** $\phi(x, y, t)$ so that

$$u = \frac{\partial \phi}{\partial x}$$
, $v = \frac{\partial \phi}{\partial y}$.

The fluid is **incompressible**, so by the virtue of the incompressibility condition, $\nabla \cdot u = 0$, the velocity potential ϕ will satisfy Laplace's equation

$$\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} = 0 \,.$$

- Consider two-dimensional water waves: u = [u(x, y, t), v(x, y, t), 0].
- Suppose that the flow is **irrotational**: $\frac{\partial v}{\partial x} \frac{\partial u}{\partial y} = 0$.
- Therefore, there exists a **velocity potential** $\phi(x, y, t)$ so that

$$u = \frac{\partial \phi}{\partial x} , \qquad v = \frac{\partial \phi}{\partial y} .$$

The fluid is **incompressible**, so ϕ will satisfy **Laplace's equation**

$$\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} = 0 \,.$$

Free surface

The fluid motion arises from a deformation of the water surface. The equation of this free surface is denoted by $y = \eta(x, t)$.

Kinematic condition at the free surface:

Fluid particles on the surface must remain on the surface.

The kinematic condition entails that $F(x, y, t) = y - \eta(x, t)$ **remains constant** (in fact, zero) for any particular particle on the free surface which means that

$$\frac{\mathrm{D}F}{\mathrm{D}t} = \frac{\partial F}{\partial t} + (\mathbf{u} \cdot \nabla)F = 0 \quad \text{on} \quad y = \eta(x, t),$$

and this is equivalent to

$$\frac{\partial \eta}{\partial t} + u \frac{\partial \eta}{\partial x} = v$$
 on $y = \eta(x, t)$.

Pressure condition at the free surface

Pressure condition at the free surface:

The fluid is **inviscid** (by assumption), so the condition at the free surface is simply that the pressure there is equal to the atmospheric pressure p_0 :

 $p = p_0$ on $y = \eta(x, t)$.

Pressure condition at the free surface

Pressure condition at the free surface:

The fluid is **inviscid** (by assumption), so the condition at the free surface is simply that the pressure there is equal to the atmospheric pressure p_0 :

$$p = p_0$$
 on $y = \eta(x, t)$.

Bernoulli's equation for unsteady irrotational flow

If the flow is irrotational (so $u = \nabla \phi$ and $\nabla \times u = 0$), then, by integrating (over the space domain) the **Euler's momentum equation**:

$$\frac{\partial \nabla \phi}{\partial t} = -\nabla \left(\frac{p}{\varrho} + \frac{1}{2} \boldsymbol{u}^2 + \chi \right),$$

the Bernoulli's equation is obtained

$$\frac{\partial \phi}{\partial t} + \frac{p}{\varrho} + \frac{1}{2}u^2 + \chi = G(t) \,.$$

Here, χ is the gravity potential (in the present context $\chi = gy$ where g is the gravity acceleration) and G(t) is an arbitrary function of time alone (a constant of integration).

Pressure condition at the free surface

Pressure condition at the free surface:

The fluid is **inviscid** (by assumption), so the condition at the free surface is simply that the pressure there is equal to the atmospheric pressure p_0 :

$$p = p_0$$
 on $y = \eta(x, t)$.

Bernoulli's equation for unsteady irrotational flow

If the flow is irrotational (so $u = \nabla \phi$ and $\nabla \times u = 0$), then, by integrating (over the space domain) the **Euler's momentum equation**:

$$\frac{\partial \nabla \phi}{\partial t} = -\nabla \left(\frac{p}{\varrho} + \frac{1}{2} \boldsymbol{u}^2 + \chi \right),$$

the Bernoulli's equation is obtained

$$\frac{\partial \phi}{\partial t} + \frac{p}{\varrho} + \frac{1}{2}\boldsymbol{u}^2 + g\,\boldsymbol{y} = \boldsymbol{G}(t)\,.$$

Here, G(t) is an arbitrary function of time alone (a constant of integration).

Now, by choosing G(t) in a convenient manner, $G(t) = \frac{p_0}{\varrho}$, the **pressure condition** may be written as: $\partial \phi + \frac{1}{2}(2+2) + \dots + 2 = 2$

$$\frac{\partial \varphi}{\partial t} + \frac{1}{2}(u^2 + v^2) + g\eta = 0$$
 on $y = \eta(x, t)$.

ı

Surface waves on deep water

Small amplitude waves: the linearized surface conditions

Small-amplitude waves

The free surface displacement $\eta(x, t)$ and the fluid velocities u, v are small.

Linearization of the kinematic condition

$$\begin{split} v &= \frac{\partial \eta}{\partial t} + \underbrace{u}_{\text{small}} \frac{\partial \eta}{\partial x} &\to \quad v(x,\eta,t) = \frac{\partial \eta}{\partial t} \\ & \xrightarrow{\text{Taylor}}_{\text{series}} \quad v(x,0,t) + \underbrace{\eta}_{\text{small}} \frac{\partial v}{\partial y} (x,0,t) + \cdots = \frac{\partial \eta}{\partial t} \\ & \to \quad v(x,0,t) = \frac{\partial \eta}{\partial t} \quad \xrightarrow{v = \frac{\partial \phi}{\partial y}} \quad \left(\frac{\partial \phi}{\partial y} = \frac{\partial \eta}{\partial t} \quad \text{on } y = 0. \right) \end{split}$$

Linearization of the pressure condition

$$\frac{\partial \phi}{\partial t} + \underbrace{\frac{1}{2} (u^2 + v^2)}_{\text{small}} + g \eta = 0 \quad \rightarrow \quad \underbrace{ \frac{\partial \phi}{\partial t} + g \eta = 0 \quad \text{on } y = 0. }_{\text{small}}$$

Dispersion relation and travelling wave solution

A sinusoidal travelling wave solution

The free surface is of the form

$$\eta = A \, \cos(k \, x - \omega \, t) \,,$$

where A is the **amplitude** of the surface displacement, ω is the **circular frequency**, and k is the **circular wavenumber**.

Surface waves on deep water Dispersion relation and travelling wave solution

A sinusoidal travelling wave solution

The free surface is of the form

$$\eta = A \, \cos(k \, x - \omega \, t) \,,$$

where A is the **amplitude** of the surface displacement, ω is the **circular frequency**, and k is the **circular wavenumber**.

The corresponding velocity potential is

$$\phi = q(y)\,\sin(k\,x - \omega\,t)\,.$$

- It satisfies the Laplace's equation, $\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} = 0.$
- Therefore, q(y) must satisfy $q'' k^2 q = 0$, the general solution of which is

$$q = C \exp(ky) + D \exp(-ky).$$

■ For deep water waves D = 0 (if k > 0 which may be assumed without loss of generality) in order that the velocity be bounded as y → -∞.

Surface waves on deep water Dispersion relation and travelling wave solution

A sinusoidal travelling wave solution

The free surface is of the form

$$\eta = A \, \cos(k \, x - \omega \, t) \,,$$

where A is the **amplitude** of the surface displacement, ω is the **circular frequency**, and k is the **circular wavenumber**.

■ The corresponding velocity potential (for deep water waves) is

$$\phi = C \exp(ky) \sin(kx - \omega t).$$

Surface waves on deep water Dispersion relation and travelling wave solution

A sinusoidal travelling wave solution

The free surface is of the form

$$\eta = A \, \cos(k \, x - \omega \, t) \,,$$

where A is the **amplitude** of the surface displacement, ω is the **circular frequency**, and k is the **circular wavenumber**.

The corresponding velocity potential (for deep water waves) is

$$\phi = C \exp(ky) \sin(kx - \omega t).$$

Now, the (linearized) free surface conditions yield what follows:
the kinematic condition (^{∂φ}/_{∂y} = ^{∂η}/_{∂t} on y = 0):

$$C k = A \omega \quad \rightarrow \quad \left(\phi = \frac{A \omega}{k} \exp(k y) \sin(k x - \omega t) \right),$$

Surface waves on deep water Particle paths

The fluid velocity components:

$$u = A \omega \exp(ky) \cos(kx - \omega t), \qquad v = A \omega \exp(ky) \sin(kx - \omega t).$$

Surface waves on deep water Particle paths

The fluid velocity components:

$$u = A \omega \exp(ky) \cos(kx - \omega t), \qquad v = A \omega \exp(ky) \sin(kx - \omega t).$$

Particle paths

Any particle departs only a **small amount** (X, Y) **from its mean position** (x, y). Therefore, its position as a function of time may be found by integrating $u = \frac{dX}{dt}$ and $v = \frac{dY}{dt}$; whence:

$$X(t) = -A \exp(ky) \sin(kx - \omega t), \quad Y(t) = A \exp(ky) \cos(kx - \omega t).$$

Surface waves on deep water Particle paths

The fluid velocity components:

$$u = A \omega \exp(ky) \cos(kx - \omega t), \qquad v = A \omega \exp(ky) \sin(kx - \omega t).$$

Particle paths

Any particle departs only a **small amount** (*X*, *Y*) **from its mean position** (*x*, *y*). Therefore, its position as a function of time may be found by integrating $u = \frac{dX}{dt}$ and $v = \frac{dY}{dt}$; whence:

$$X(t) = -A \exp(ky) \sin(kx - \omega t), \quad Y(t) = A \exp(ky) \cos(kx - \omega t).$$

Particle paths are circular.

- The radius of the path circles, $A \exp(ky)$, decrease exponentially with depth. So do the fluid velocities.
- Virtually all the energy of a surface water wave is contained within half a wavelength below the surface.

Particle paths

- Particle paths are circular.
- The radius of the path circles, $A \exp(ky)$, decrease exponentially with depth. So do the fluid velocities.
- Virtually all the energy of a surface water wave is contained within half a wavelength below the surface.

Surface waves on deep water Effects of finite depth

Effects of finite depth

If the **fluid is bonded below** by a rigid plane y = -h, so that

$$v = \frac{\partial \phi}{\partial y} = 0$$
 at $y = -h$,

the dispersion relation and the phase speed are as follows:

$$\omega^2 = g k \tanh(k h), \qquad c^2 = \frac{g}{k} \tanh(k h).$$

Surface waves on deep water Effects of finite depth

Effects of finite depth

If the **fluid is bonded below** by a rigid plane y = -h, so that

$$v = \frac{\partial \phi}{\partial y} = 0$$
 at $y = -h$,

the dispersion relation and the phase speed are as follows:

$$\omega^2 = g k \tanh(k h), \qquad c^2 = \frac{g}{k} \tanh(k h).$$

There are two limit cases:

Surface waves on deep water Effects of finite depth

Effects of finite depth

If the fluid is bonded below by a rigid plane y = -h, the dispersion relation and the phase speed are as follows:

$$\omega^2 = g k \tanh(k h), \qquad c^2 = rac{g}{k} \tanh(k h).$$

Dispersion and the group velocity

Dispersion of waves

Dispersion of waves is the phenomenon that the **phase velocity of a** wave depends on its frequency.

Dispersion and the group velocity

Dispersion of waves

Dispersion of waves is the phenomenon that the **phase velocity of a** wave depends on its frequency.

There are generally two sources of dispersion:

- the material dispersion comes from a frequency-dependent response of a material to waves
- the waveguide dispersion occurs when the speed of a wave in a waveguide depends on its frequency for geometric reasons, independent of any frequency-dependence of the materials from which it is constructed.
Dispersion of waves

Dispersion of waves is the phenomenon that the **phase velocity of a** wave depends on its frequency.

There are generally two sources of dispersion:

- the material dispersion comes from a frequency-dependent response of a material to waves
- the waveguide dispersion occurs when the speed of a wave in a waveguide depends on its frequency for geometric reasons, independent of any frequency-dependence of the materials from which it is constructed.

Dispersion relation

$$\widetilde{(\omega = \omega(k))} = c(k) k, \qquad c = c(k) = rac{\omega(k)}{k}.$$

If $\omega(k)$ is a **linear** function of *k* then *c* is **constant** and the medium is **non-dispersive**.

Dispersion of waves

Dispersion of waves is the phenomenon that the **phase velocity of a** wave depends on its frequency.

Dispersion relation

$$\overline{\left(\omega = \omega(k)\right)} = c(k) k$$
, $c = c(k) = \frac{\omega(k)}{k}$

If $\omega(k)$ is a **linear** function of *k* then *c* is **constant** and the medium is **non-dispersive**.

Dispersion relation

$$\overline{\left(\omega=\omega(k)
ight)}=c(k)\,k\,,\qquad c=c(k)=rac{\omega(k)}{k}\,.$$

If $\omega(k)$ is a **linear** function of *k* then *c* is **constant** and the medium is **non-dispersive**.

▶ deep water waves: $ω = \sqrt{gk}$, $c = \sqrt{\frac{g}{k}}$.
 ▶ finite depth waves: $ω = \sqrt{gk \tanh(kh)}$, $c = \sqrt{\frac{g}{k} \tanh(kh)}$.
 ▶ shallow water waves: $ω = \sqrt{gh}k$, $c = \sqrt{gh} \rightarrow \text{ non-dispersive!}$

Group and phase velocity

$$c_{g} = \frac{\mathrm{d}\omega}{\mathrm{d}k}$$
, $c = \frac{\omega}{k}$.

- In **dispersive systems** both velocities are different and frequency-dependent (i.e., wavenumber-dependent): $c_g = c_g(k)$ and c = c(k).
- In **non-dispersive systems** they are equal and constant: $c_g = c$.

Important properties of the group velocity:

1 At this velocity the isolated **wave packet** travels as *a whole*.

Discussion for a wave packet: for k in the neighbourhood of k_0

$$\omega(k) \approx \omega(k) + (k - k_0) \, c_{\rm g} \,, \quad {\rm where} \; \left. c_{\rm g} = \frac{{\rm d}\omega}{{\rm d}k} \; \right|_{k=k_0},$$

and $\omega(k) = 0$ outside the neighbourhood; the Fourier integral equals

$$\eta(x,t) = \operatorname{Re}\left[\int_{-\infty}^{\infty} a(k) \exp\left(i \left(k \, x - \omega \, t\right)\right) \mathrm{d}k\right] \quad \leftarrow \text{(for a general disturbance)}$$

$$\approx \operatorname{Re}\left[\underbrace{\exp\left(\mathrm{i}\left(k_{0}\,x-\omega(k_{0})\,t\right)\right)}_{-\infty}\int_{-\infty}^{\infty}\underbrace{a\,(\mathrm{kn}\,\operatorname{sp}\left(\mathrm{i}\,(k-k_{0})\,(x-c_{g}\,t)\right)}_{a\,(k)}\,\mathrm{d}k\right].$$

Important properties of the group velocity:

- 1 At this velocity the isolated **wave packet** travels as *a whole*.
- 2 The energy is transported at the group velocity (by waves of a given wavelength).

Important properties of the group velocity:

- 1 At this velocity the isolated **wave packet** travels as *a whole*.
- 2 The energy is transported at the group velocity.
- 3 One must travel at the group velocity to see the waves of the same wavelength.

A slowly varying wavetrain can be written as

$$\eta(x,t) = \operatorname{Re}\left[A(x,t) \exp\left(\mathrm{i}\,\theta(x,t)\right)\right],$$

where the **phase function** $\theta(x, t)$ describes the oscillatory aspect of the wave, while A(x, t) describes the gradual modulation of its amplitude. The *local* wavenumber and frequency are defined by

$$k = rac{\partial heta}{\partial x} \;, \quad \omega = - \; rac{\partial heta}{\partial t} \;.$$

For purely sinusoidal wave $\theta = kx - \omega t$, where k and ω are constants.

Important properties of the group velocity:

- 1 At this velocity the isolated **wave packet** travels as *a whole*.
- 2 The energy is transported at the group velocity.
- 3 One must travel at the group velocity to see the waves of the same wavelength.

The local wavenumber and frequency are defined by

$$k = \frac{\partial \theta}{\partial x} , \quad \omega = -\frac{\partial \theta}{\partial t}$$

For purely sinusoidal wave $\theta = kx - \omega t$, where k and ω are constants. In general, k and ω are functions of x and t. It follows immediately that

$$\frac{\partial k}{\partial t} + \frac{\partial \omega}{\partial x} = 0 \quad \longrightarrow \quad \frac{\partial k}{\partial t} + \frac{\mathrm{d}\omega}{\mathrm{d}k} \ \frac{\partial k}{\partial x} = \frac{\partial k}{\partial t} + c_{g}(k) \ \frac{\partial k}{\partial x} = 0$$

which means that k(x, t) is constant for an observer moving with the velocity $c_g(k)$.

Surface tension

A surface tension force $T \lfloor \frac{N}{m} \rfloor$ is a force per unit length, directed tangentially to the surface, acting on a line drawn parallel to the wavecrests.

Surface tension

A surface tension force $T \lfloor \frac{N}{m} \rfloor$ is a force per unit length, directed tangentially to the surface, acting on a line drawn parallel to the wavecrests.

- The vertical component of surface tension force equals $T \frac{\partial \eta}{\partial s}$, where *s* denotes the distance along the surface.
- For small wave amplitudes $\delta s \approx \delta x$, and then $T \frac{\partial \eta}{\partial s} \approx T \frac{\partial \eta}{\partial x}$.

Surface tension

A surface tension force $T \lfloor \frac{N}{m} \rfloor$ is a force per unit length, directed tangentially to the surface, acting on a line drawn parallel to the wavecrests.

- The vertical component of surface tension force equals $T \frac{\partial \eta}{\partial s}$, where *s* denotes the distance along the surface.
- For small wave amplitudes $\delta s \approx \delta x$, and then $T \frac{\partial \eta}{\partial s} \approx T \frac{\partial \eta}{\partial x}$.

• A small portion of surface of length δx will experience surface tension at both ends, so the **net upward force** on it will be

$$T \left. \frac{\partial \eta}{\partial x} \right|_{x+\delta x} - T \left. \frac{\partial \eta}{\partial x} \right|_{x} = T \left. \frac{\partial^{2} \eta}{\partial x^{2}} \, \delta x \right.$$

Therefore, an upward force **per unit area of surface** is $T \frac{\partial^2 \eta}{\partial x^2}$

Local equilibrium at the free surface

The net upward force per unit area of surface, $T \frac{\partial^2 \eta}{\partial x^2}$, must be balanced by the difference between the atmospheric pressure p_0 and the pressure p in the fluid just below the surface:

$$p_0 - p = T \frac{\partial^2 \eta}{\partial x^2}$$
 on $y = \eta(x, t)$.

Local equilibrium at the free surface

The net upward force per unit area of surface, $T \frac{\partial^2 \eta}{\partial x^2}$, must be balanced by the difference between the atmospheric pressure p_0 and the pressure p in the fluid just below the surface:

$$p_0 - p = T \frac{\partial^2 \eta}{\partial x^2}$$
 on $y = \eta(x, t)$.

This **pressure condition** at the free surface takes into consideration the **effects of surface tension**. The kinematic condition remains the same: fluid particles cannot leave the surface.

Linearized free surface conditions (with surface tension effects)

For small amplitude waves:

$$\frac{\partial \phi}{\partial y} = \frac{\partial \eta}{\partial t}$$
, $\frac{\partial \phi}{\partial t} + g \eta = \frac{T}{\varrho} \frac{\partial^2 \eta}{\partial x^2}$ on $y = 0$.

Linearized free surface conditions (with surface tension effects)

For small amplitude waves:

$$\frac{\partial \phi}{\partial y} = \frac{\partial \eta}{\partial t} , \qquad \frac{\partial \phi}{\partial t} + g \eta = \frac{T}{\varrho} \frac{\partial^2 \eta}{\partial x^2} \qquad \text{on } y = 0.$$

A sinusoidal travelling wave solution $\eta = A \cos(kx - \omega t)$ leads now to a new dispersion relation

$$\left(\omega^2 = g\,k + \frac{T\,k^3}{\varrho}\right)$$

As a consequence, the **phase** and **group velocities** include now the surface tension effect:

$$c = \frac{\omega}{k} = \sqrt{\frac{g}{k} + \frac{Tk}{\varrho}}, \qquad c_{g} = \frac{\mathrm{d}\omega}{\mathrm{d}k} = \frac{g + 3Tk^{2}/\varrho}{2\sqrt{gk + Tk^{3}/\varrho}}$$

Surface tension importance parameter

The relative importance of surface tension and gravitational forces in a fluid is measured by the following parameter

$$eta=rac{T\,k^2}{arrho\,g}\,.$$
 (The so-called *Bond number* $=rac{arrho\,g\,L^2}{T};$ it equals $rac{4\pi^2}{eta}$ if $L=\lambda.$)

Now, the dispersion relation, as well as the phase and group velocities can be written as

$$\omega^2 = g k \left(1 + \beta\right), \qquad c = \sqrt{\frac{g}{k}(1 + \beta)}, \qquad c_g = \frac{g \left(1 + 3\beta\right)}{2\sqrt{g k \left(1 + \beta\right)}}.$$

Surface tension importance parameter

$$\beta = \frac{T \, k^2}{\varrho \, g}$$

$$\omega^2 = g k \left(1 + \beta\right), \qquad c = \sqrt{\frac{g}{k}(1 + \beta)}, \qquad c_{g} = \frac{g \left(1 + 3\beta\right)}{2\sqrt{g k \left(1 + \beta\right)}}$$

Depending on the parameter β , two extreme cases are distinguished: **1** $\beta \ll 1$: the effects of surface tension are negligible – the waves are **gravity waves** for which

$$\omega^2 = g k$$
, $c = \sqrt{\frac{g}{k}} = \sqrt{\frac{g \lambda}{2\pi}}$, $c_g = \frac{c}{2}$.

Surface tension importance parameter

$$\beta = \frac{T \, k^2}{\varrho \, g}$$

$$\omega^2 = g k (1 + \beta), \qquad c = \sqrt{\frac{g}{k} (1 + \beta)}, \qquad c_g = \frac{g (1 + 3\beta)}{2\sqrt{g k (1 + \beta)}}$$

Depending on the parameter β , two extreme cases are distinguished: **1** $\beta \ll 1$: the effects of surface tension are negligible – the waves are **gravity waves** for which

$$\omega^2 = g \, k \,, \qquad c = \sqrt{rac{g}{k}} = \sqrt{rac{g \, \lambda}{2\pi}} \,, \qquad c_{\mathsf{g}} = rac{c}{2} \,.$$

2 $\beta \gg 1$: the waves are essentially **capillary waves** for which

$$\omega^2 = g \, k \, \beta = \frac{T \, k^3}{\varrho}, \quad c = \sqrt{\frac{g}{k}\beta} = \sqrt{\frac{T \, k}{\varrho}} = \sqrt{\frac{2\pi \, T}{\varrho \, \lambda}}, \quad c \mathbf{g} = \frac{g \, 3\beta}{2\sqrt{g \, k \, \beta}} = \frac{3}{2} c \, .$$

CAPILLARY WAVES:

GRAVITY WAVES:

short waves travel faster,

long waves travel faster,

CAPILLARY WAVES:

- short waves travel faster,
- the group velocity exceeds the phase velocity, *c*g > *c*,

GRAVITY WAVES:

- long waves travel faster,
- the group velocity is less than the phase velocity, cg < c,</p>

CAPILLARY WAVES:

- short waves travel faster,
- the group velocity exceeds the phase velocity, *c*g > *c*,
- the crests move backward through a wave packet as it moves along as a whole.

GRAVITY WAVES:

- long waves travel faster,
- the group velocity is less than the phase velocity, cg < c,</p>
- the wavecrests move faster than a wave packet.

CAPILLARY WAVES:

- short waves travel faster,
- the group velocity exceeds the phase velocity, *c*g > *c*,
- the crests move backward through a wave packet as it moves along as a whole.

GRAVITY WAVES:

- long waves travel faster,
- the group velocity is less than the phase velocity, cg < c,</p>
- the wavecrests move faster than a wave packet.

wave patterns

The **capillary effects** predominate when **raindrops** fall on a pond, and as short waves travel faster the **wavelength decreases with radius** at any particular time. The effects of gravity predominate when a large stone is dropped into a pond, and as long waves travel faster the wavelength increases with radius at any particular time.

Capillary-gravity waves

For $\beta \approx 1$ both effects (the surface tension and gravity) are significant and the waves are **capillary-gravity waves**.

Example: Uniform flow past a submerged obstacle

- U < c_{min} there are no steady waves generated by the obstacle;
 U > c_{min} there are two values of λ (λ₁ > λ₂) for which c = U: λ₁ – the larger value represents a gravity wave:
 - the corresponding group velocity is less than c.
 - the energy of this relatively long-wavelength disturbance is carried downstream of the obstacle.

λ_2 – the smaller value represents a capillary wave:

- the corresponding group velocity is greater than *c*,
- the energy of this relatively short-wavelength disturbance is carried upstream of the obstacle, where it is rather quickly dissipated by viscous effects, on account of the short wavelength (in fact, each wave-crest is at rest, but relative to still water it is travelling upstream with speed U).

Assumptions:

- The amplitudes of waves are finite, that is, not (infinitesimally) small compared with the depth; therefore, the linearized theory does not apply.
- A typical value h_0 of depth h(x, t) is much smaller than a typical horizontal length scale *L* of the wave, that is: $h_0 \ll L$. This is the basis of the so-called **shallow-water approximation**.

▶ The full (nonlinear) 2-D equations are:

$$\frac{\mathrm{D}u}{\mathrm{D}t} = -\frac{1}{\varrho} \frac{\partial p}{\partial x} , \qquad \frac{\mathrm{D}v}{\mathrm{D}t} = -\frac{1}{\varrho} \frac{\partial p}{\partial y} - g , \qquad \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0 .$$

▶ In the shallow-water approximation (when $h_0 \ll L$) the vertical component of acceleration can be neglected in comparison with the gravitational acceleration:

$$\frac{\mathrm{D}v}{\mathrm{D}t} \ll g \quad \to \quad 0 = -\frac{1}{\varrho} \frac{\partial p}{\partial y} - g \quad \to \quad \frac{\partial p}{\partial y} = \varrho g \,.$$

Integrating and applying the condition $p = p_0$ at y = h(x, t) gives

$$p(x, y, t) = p_0 - \varrho g [y - h(x, t)].$$

▶ In the shallow-water approximation (when $h_0 \ll L$) the vertical component of acceleration can be neglected and then

$$p(x, y, t) = p_0 - \varrho g \left[y - h(x, t) \right].$$

This is used for the equation for the horizontal component of acceleration:

$$\frac{\mathrm{D}u}{\mathrm{D}t} = -g \; \frac{\partial h}{\partial x} \quad \xrightarrow{\frac{\partial u}{\partial y} = 0} \quad \left(\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = -g \; \frac{\partial h}{\partial x} \right)$$

where u = u(x, t) and h = h(x, t).

and using the **kinematic condition at the free surface** – fluid particles on the surface must remain on it, so the vertical component of velocity v equals the rate of change of the depth h when moving with the horizontal velocity u:

$$v = \frac{\partial h}{\partial t} + u \frac{\partial h}{\partial x}$$
 at $y = h(x, t) \rightarrow \left(\frac{\partial h}{\partial t} + u \frac{\partial h}{\partial x} + h \frac{\partial u}{\partial x} = 0\right).$

Shallow-water equations

Nonlinear equations for the horizontal component of velocity u = u(x, t) and the depth h = h(x, t) of finite-amplitude waves on shallow water:

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + g \frac{\partial h}{\partial x} = 0, \qquad \frac{\partial h}{\partial t} + u \frac{\partial h}{\partial x} + h \frac{\partial u}{\partial x} = 0.$$

(The vertical component of velocity is $v(x, y, t) = -\frac{\partial u}{\partial x} y$.) On introducing the new variable $c(x, t) = \sqrt{gh}$ and then adding and subtracting the two equations the form suited to treatment by the *method of characteristics* is obtained

$$\left[\frac{\partial}{\partial t} + (u+c)\frac{\partial}{\partial x}\right](u+2c) = 0, \qquad \left[\frac{\partial}{\partial t} + (u-c)\frac{\partial}{\partial x}\right](u-2c) = 0.$$

Shallow-water equations

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + g \frac{\partial h}{\partial x} = 0, \qquad \frac{\partial h}{\partial t} + u \frac{\partial h}{\partial x} + h \frac{\partial u}{\partial x} = 0.$$

On introducing the new variable $c(x, t) = \sqrt{gh}$ the form suited to treatment by the *method of characteristics* is obtained

$$\left[\frac{\partial}{\partial t} + (u+c)\frac{\partial}{\partial x}\right](u+2c) = 0, \qquad \left[\frac{\partial}{\partial t} + (u-c)\frac{\partial}{\partial x}\right](u-2c) = 0.$$

Let x = x(s), t = t(s) be a **characteristic curve** defined parametrically (*s* is the parameter) in the *x*-*t* plane and starting at some point (x_0 , t_0). In fact, two such (families of) characteristic curves are defined such that:

$$\frac{\mathrm{d}t}{\mathrm{d}s} = 1$$
, $\frac{\mathrm{d}x}{\mathrm{d}s} = u \pm c$.

This (with +) is used for the first and (with -) for the second equation:

$$\left[\frac{\mathrm{d}t}{\mathrm{d}s}\frac{\partial}{\partial t} + \frac{\mathrm{d}x}{\mathrm{d}s}\frac{\partial}{\partial x}\right](u\pm 2c) = 0 \quad \xrightarrow{\text{the chain rule}} \quad \left(\frac{\mathrm{d}}{\mathrm{d}s}\left(u\pm 2c\right) = 0\right).$$

Shallow-water equations

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + g \frac{\partial h}{\partial x} = 0, \qquad \frac{\partial h}{\partial t} + u \frac{\partial h}{\partial x} + h \frac{\partial u}{\partial x} = 0$$

On introducing the new variable $c(x, t) = \sqrt{gh}$ the form suited to treatment by the *method of characteristics* is obtained

$$\left[\frac{\partial}{\partial t} + (u+c)\frac{\partial}{\partial x}\right](u+2c) = 0, \qquad \left[\frac{\partial}{\partial t} + (u-c)\frac{\partial}{\partial x}\right](u-2c) = 0.$$

Let x = x(s) = x(t), t = t(s) = s be a **characteristic curve** such that:

$$\frac{\mathrm{d}x}{\mathrm{d}t} = u \pm c \,.$$

$$\left[\frac{\partial}{\partial t} + \frac{\mathrm{d}x}{\mathrm{d}t} \frac{\partial}{\partial x} \right] (u \pm 2c) = 0 \quad \xrightarrow{\text{the chain rule}} \quad \underbrace{\left(\frac{\mathrm{d}}{\mathrm{d}t} \left(u \pm 2c \right) = 0 \right)}_{\mathrm{d}t}.$$

General property: $u \pm 2c$ is constant along 'positive'/'negative' characteristic curves defined by $\frac{dx}{dt} = u \pm c$.

Shallow-water equations

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + g \frac{\partial h}{\partial x} = 0, \qquad \frac{\partial h}{\partial t} + u \frac{\partial h}{\partial x} + h \frac{\partial u}{\partial x} = 0.$$

On introducing the new variable $c(x, t) = \sqrt{gh}$ the form suited to treatment by the *method of characteristics* is obtained

$$\left[\frac{\partial}{\partial t} + (u+c)\frac{\partial}{\partial x}\right](u+2c) = 0, \qquad \left[\frac{\partial}{\partial t} + (u-c)\frac{\partial}{\partial x}\right](u-2c) = 0.$$

General property: $u \pm 2c$ is constant along 'positive'/'negative' characteristic curves defined by $\frac{dx}{dt} = u \pm c$.

Within the framework of the theory of finite-amplitude waves on shallow water the following problems can be solved:

- the dam-break flow,
- the formation of a bore,
- the hydraulic jump.

Outline

Introduction

- The notion of wave
- Basic wave phenomena
- Mathematical description of a traveling wave

2 Water waves

- Surface waves on deep water
- Dispersion and the group velocity
- Capillary waves
- Shallow-water finite-amplitude waves

3 Sound waves

- Introduction
- Acoustic wave equation
- The speed of sound
- Sub- and supersonic flow

Sound waves: introduction

Sound waves propagate due to the **compressibility** of a medium $(\nabla \cdot \boldsymbol{u} \neq 0)$. Depending on frequency one can distinguish:

- infrasound waves below 20 Hz,
- acoustic waves from 20 Hz to 20 kHz,
- ultrasound waves above 20 kHz.

Acoustics deals with vibrations and waves in compressible continua in the **audible frequency range**, that is, from 20 Hz (16 Hz) to 20 000 Hz.

Types of waves in compressible continua:

- an inviscid compressible fluid (only) longitudinal waves,
- an infinite isotropic solid longitudinal and shear waves,
- an **anisotropic solid** wave propagation is more complex.

Assumptions:

- Gravitational forces can be neglected so that the equilibrium (undisturbed-state) pressure and density take on uniform values, *p*₀ and *ρ*₀, throughout the fluid.
- Dissipative effects, that is viscosity and heat conduction, are neglected.
- The medium (fluid) is homogeneous, isotropic, and perfectly elastic.

Assumptions:

- Gravitational forces can be neglected so that the equilibrium (undisturbed-state) pressure and density take on uniform values, *p*₀ and *ρ*₀, throughout the fluid.
- Dissipative effects, that is viscosity and heat conduction, are neglected.
- The medium (fluid) is homogeneous, isotropic, and perfectly elastic.

Small-amplitudes assumption

Particle velocity is small, and there are only very small perturbations (fluctuations) to the equilibrium pressure and density:

u - small, $p = p_0 + \tilde{p}$ ($\tilde{p} - \text{small}$), $\varrho = \varrho_0 + \tilde{\varrho}$ ($\tilde{\varrho} - \text{small}$).

The pressure fluctuations field \tilde{p} is called the **acoustic pressure**.

Small-amplitudes assumption

Particle velocity is small, and there are only very small perturbations (fluctuations) to the equilibrium pressure and density:

$$u - \text{small}$$
, $p = p_0 + \tilde{p}$ ($\tilde{p} - \text{small}$), $\varrho = \varrho_0 + \tilde{\varrho}$ ($\tilde{\varrho} - \text{small}$).

The pressure fluctuations field \tilde{p} is called the **acoustic pressure**.

Momentum equation (Euler's equation):

$$\varrho\left(\frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{u} \cdot \nabla \boldsymbol{u}\right) = -\nabla p \quad \xrightarrow{\text{linearization}} \quad \varrho_0 \quad \frac{\partial \boldsymbol{u}}{\partial t} = -\nabla p \quad .$$

Notice that $\nabla p = \nabla (p_0 + \tilde{p}) = \nabla \tilde{p}$.

Continuity equation:

$$\frac{\partial \varrho}{\partial t} + \nabla \cdot (\varrho \, \boldsymbol{u}) = 0 \quad \xrightarrow{\text{linearization}} \quad \frac{\partial \tilde{\varrho}}{\partial t} + \varrho_0 \, \nabla \cdot \boldsymbol{u} = 0 \,.$$

Momentum equation (Euler's equation):

$$\varrho \left(\begin{array}{c} \frac{\partial \pmb{u}}{\partial t} + \pmb{u} \cdot \nabla \pmb{u} \end{array} \right) = -\nabla p \quad \xrightarrow{\text{linearization}} \quad \varrho_0 \ \frac{\partial \pmb{u}}{\partial t} = -\nabla p \ .$$

Notice that $\nabla p = \nabla (p_0 + \tilde{p}) = \nabla \tilde{p}$.

Continuity equation:

$$\frac{\partial \varrho}{\partial t} + \nabla \cdot (\varrho \, \pmb{u}) = 0 \quad \xrightarrow{\text{linearization}} \quad \frac{\partial \tilde{\varrho}}{\partial t} + \varrho_0 \, \nabla \cdot \pmb{u} = 0 \,.$$

Using divergence operation for the linearized momentum equation and time-differentiation for the linearized continuity equation yields:

$$\frac{\partial^2 \tilde{\varrho}}{\partial t^2} - \triangle p = 0 \,.$$
Acoustic wave equation

Momentum equation (Euler's equation):

$$\varrho \left(\begin{array}{c} \frac{\partial \pmb{u}}{\partial t} + \pmb{u} \cdot \nabla \pmb{u} \end{array} \right) = -\nabla p \quad \xrightarrow{\text{linearization}} \quad \varrho_0 \ \frac{\partial \pmb{u}}{\partial t} = -\nabla p \ .$$

Notice that $\nabla p = \nabla (p_0 + \tilde{p}) = \nabla \tilde{p}$.

Continuity equation:

$$\frac{\partial \varrho}{\partial t} + \nabla \cdot (\varrho \, \pmb{u}) = 0 \quad \xrightarrow{\text{linearization}} \quad \frac{\partial \tilde{\varrho}}{\partial t} + \varrho_0 \, \nabla \cdot \pmb{u} = 0 \,.$$

Using divergence operation for the linearized momentum equation and time-differentiation for the linearized continuity equation yields:

$$\frac{\partial^2 \tilde{\varrho}}{\partial t^2} - \triangle p = 0 \,.$$

Constitutive relation:

$$p = p(\tilde{\varrho}) \quad \rightarrow \quad \frac{\partial p}{\partial t} = \frac{\partial p}{\partial \tilde{\varrho}} \frac{\partial \tilde{\varrho}}{\partial t} \quad \rightarrow \quad \frac{\partial^2 \tilde{\varrho}}{\partial t^2} = \frac{1}{c_0^2} \frac{\partial^2 p}{\partial t^2} \quad \text{where } c_0^2 = \frac{\partial p}{\partial \tilde{\varrho}}$$

Acoustic wave equation

Using divergence operation for the linearized momentum equation and time-differentiation for the linearized continuity equation yields:

$$\frac{\partial^2 \tilde{\varrho}}{\partial t^2} - \triangle p = 0 \,.$$

Constitutive relation:

$$p = p(\tilde{\varrho}) \quad \rightarrow \quad \frac{\partial p}{\partial t} = \frac{\partial p}{\partial \tilde{\varrho}} \frac{\partial \tilde{\varrho}}{\partial t} \quad \rightarrow \quad \frac{\partial^2 \tilde{\varrho}}{\partial t^2} = \frac{1}{c_0^2} \frac{\partial^2 p}{\partial t^2} \quad \text{where } c_0^2 = \frac{\partial p}{\partial \tilde{\varrho}}.$$

Wave equation for the pressure field

$$\fbox{1}{ \displaystyle rac{1}{c_0^2} \, rac{\partial^2 p}{\partial t^2} - riangle p = 0 }$$
 where $c_0 = \sqrt{rac{\partial p}{\partial ilde{arrho}}}$

is the **acoustic wave velocity** (or the **speed of sound**). Notice that the acoustic pressure \tilde{p} can be used here instead of p. Moreover, the wave equation for the density-fluctuation field $\tilde{\varrho}$ (or for the compression field $\tilde{\varrho}/\varrho_0$), for the velocity potential ϕ , and for the velocity field u can be derived analogously.

The speed of sound

Inviscid isotropic elastic liquid. The pressure in an inviscid liquid depends on the volume dilatation $tr \epsilon$:

 $p = -K \operatorname{tr} \varepsilon$,

where K is the bulk modulus. Now,

$$\frac{\partial p}{\partial t} = -K \operatorname{tr} \frac{\partial \varepsilon}{\partial t} = -K \nabla \cdot \boldsymbol{u} \quad \xrightarrow{\nabla \cdot \boldsymbol{u} = -\frac{1}{\varrho_0} \frac{\partial \tilde{\varrho}}{\partial t}}{\operatorname{Lin. Cont. Eq.}} \quad \frac{\partial p}{\partial t} = \frac{K}{\varrho_0} \frac{\partial \tilde{\varrho}}{\partial t}$$

which means that the speed of sound $c_0 = \sqrt{\partial p / \partial \tilde{\varrho}}$ is given by the well-known formula:

$$c_0 = \sqrt{\frac{K}{\varrho_0}}.$$

The speed of sound

Inviscid isotropic elastic liquid. The speed of sound is given by the well-known formula:

$$\left(c_0 = \sqrt{\frac{K}{\varrho_0}}\right).$$

Perfect gas. The determination of speed of sound in a perfect gas is complicated and requires the use of thermodynamic considerations. The final result is

$$c_0 = \sqrt{\gamma \frac{p_0}{\varrho_0}} = \sqrt{\gamma R T_0},$$

where γ denotes the ratio of specific heats ($\gamma = 1.4$ for air), *R* is the universal gas constant, and T_0 is the (isothermal) temperature.

► For air at 20°C and normal atmospheric pressure: $c_0 = 343 \frac{\text{m}}{\text{s}}$.

A steady, unseparated, **compressible flow** past a thin airfoil may be written in the from

$$u = U + \frac{\partial \phi}{\partial x}$$
, $v = \frac{\partial \phi}{\partial y}$,

where the **velocity potential** ϕ for the small disturbance to the uniform flow U satisfies

$$(1-M^2) \frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} = 0, \quad \text{where} \quad \left(M = \frac{U}{c_0}\right)$$

is the **Mach number** defined as the ratio of the speed of free stream to the speed of sound.

A steady, unseparated, **compressible flow** past a thin airfoil may be written in the from

$$u = U + \frac{\partial \phi}{\partial x}$$
, $v = \frac{\partial \phi}{\partial y}$,

where the **velocity potential** ϕ for the small disturbance to the uniform flow U satisfies

$$(1-M^2) \frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} = 0$$
, where $M = \frac{U}{c_0}$

is the **Mach number** defined as the ratio of the speed of free stream to the speed of sound.

▶ If $M^2 \ll 1$ that gives the Laplace equation which is the result that arises for **incompressible theory** (i.e., using $\nabla \cdot u = 0$).

A steady, unseparated, **compressible flow** past a thin airfoil may be written in the from

$$u = U + \frac{\partial \phi}{\partial x}$$
, $v = \frac{\partial \phi}{\partial y}$,

where the **velocity potential** ϕ for the small disturbance to the uniform flow U satisfies

$$(1-M^2) \frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} = 0$$
, where $M = \frac{U}{c_0}$

is the **Mach number** defined as the ratio of the speed of free stream to the speed of sound.

▶ If $M^2 \ll 1$ that gives the Laplace equation which is the result that arises for **incompressible theory** (i.e., using $\nabla \cdot u = 0$).

Otherwise, three cases can be distinguished:

- 1 M < 1 the subsonic flow
- 2 M > 1 the supersonic flow
- 3 $M \approx 1$ the sound barrier

1 M < 1 – the subsonic flow:

there is some disturbance to the oncoming flow at all distances from the wing (even though it is very small when the distance is large);

• the drag is zero (inviscid theory) and the lift = $\frac{\text{lift}_{\text{incompressible}}}{\sqrt{1-M^2}}$

- 1 M < 1 the subsonic flow
- 2 M > 1 the supersonic flow:
 - there is no disturbance to the oncoming stream except between the Mach lines extending from the ends of the airfoil and making the angle α = arcsin (¹/_M) with the uniform stream;
 - the drag is not zero it arises because of the sound wave energy which the wing radiates to infinity between the Mach lines.

1 M < 1 – the subsonic flow:

there is some disturbance to the oncoming flow at all distances from the wing (even though it is very small when the distance is large);

• the drag is zero (inviscid theory) and the lift = $\frac{\text{lift}_{\text{incompressible}}}{\sqrt{1-M^2}}$.

- **2** M > 1 the supersonic flow:
 - there is no disturbance to the oncoming stream except between the Mach lines extending from the ends of the airfoil and making the angle α = arcsin (¹/_M) with the uniform stream;
 - the drag is not zero it arises because of the sound wave energy which the wing radiates to infinity between the Mach lines.
- 3 $M \approx 1$ the sound barrier:
 - sub- and supersonic theory is not valid;
 - nonetheless, it indicates that the wing is subject to a destructive effect of exceptionally large aerodynamic forces.