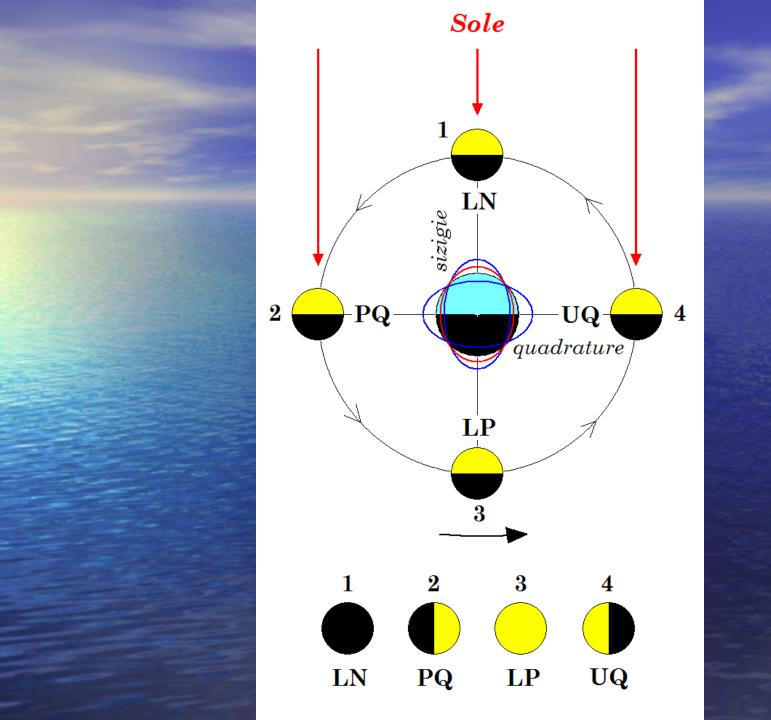
Harmonic Analysis and the Prediction of Tides

"THE SUBJECT on which I have to speak this evening is the tides, and at the outset I feel in a curiously difficult position. If I were asked to tell what I mean by the Tides I should feel it exceedingly difficult to answer the question. The tides have something to do with motion of the sea."

Lord Kelvin, 1882



Tidal Potential Periods

 $V = \frac{GMr^2}{4R^3} \begin{bmatrix} (3\sin^2\varphi_p - 1)(3\sin^2\delta - 1) \\ +3\sin 2\varphi_p \sin 2\delta\cos\tau \\ +3\cos^2\varphi_p \cos^2\delta\cos 2\tau \end{bmatrix}$

Lunar Tidal Potential - periods near 14 days, 24 hours, and 12 hours Solar Tidal Potential - periods near 180 days, 24 hours, and 12 hours Doodson (1922) - Fourier Series Expansion using 6 frequencies

Doodson's Frequencies

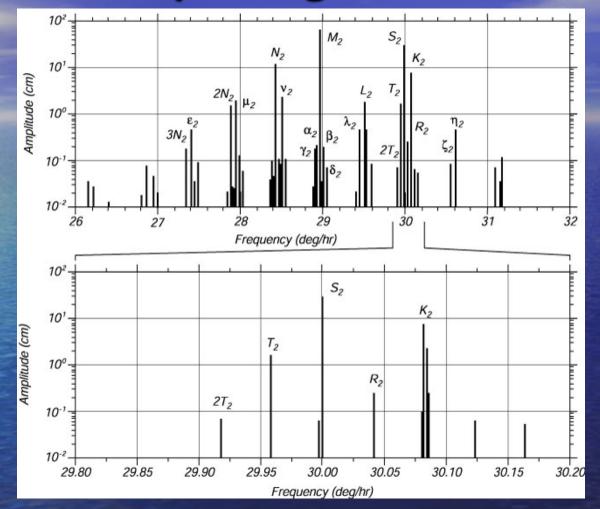
	Frequency (°/hour)		Period	Source
f ₁	14.49205211	1	lunar day	Local mean lunar time
f ₂	0.54901653	1	month	Moon's mean longitude
f ₃	0.04106864	1	year	Sun's mean longitude
f ₄	>0.00464184	8.847	years	Longitude of Moon's perigee
f ₅	-0.00220641	18.613	years	Longitude of Moon's ascending node
f ₆	0.00000196	20,940	years	Longitude of sun's perigee

 $f = n_1 f_1 + n_2 f_2 + n_3 f_3 + n_4 f_4 + n_5 f_5 + n_6 f_6$

The Tidal Constituents

Tidal Species	Name	<i>n</i> 1	<i>n</i> ₂	<i>n</i> ₃	n ₄	n ₅	Equilibrium Amplitude* (<i>m</i>)	Period (hr)
Semidiurnal	<i>n</i> ₁ = 2							
Principal lunar	<i>M</i> ₂	2	0	0	0	0	0.242334	12.4206
Principal solar	<i>S</i> ₂	2	2	-2	0	0	0.112841	12.0000
Lunar elliptic	N ₂	2	-1	0	1	0	0.046398	12.6584
Lunisolar	<i>K</i> ₂	2	2	0	0	0	0.030704	11.9673
Diurnal	<i>n</i> ₁ = 1							
Lunisolar	K_1	1	1	0	0	0	0.141565	23.9344
Principal lunar	<i>O</i> ₁	1	-1	0	0	0	0.100514	25.8194
Principal solar	<i>P</i> ₁	1	1	-2	0	0	0.046843	24.0659
Elliptic lunar	>Q1	1	-2	0	1	0	0.019256	26.8684
Long Period	<i>n</i> ₁ = 0							
Fortnightly	M _f	0	2	0	0	0	0.041742	327.85
Monthly	M _m	0	1	0	-1	0	0.022026	661.31
Semiannual	S _{sa}	0	0	2	0	0	0.019446	4383.05

Constituent Splitting



Doodson's expansion:399 constituents,

100 are long period, 160 are daily, 115 are twice per day, and 14 are thrice per day. Most have very small amplitudes. Sir George Darwin named the largest tides.

How to Obtain Constituents

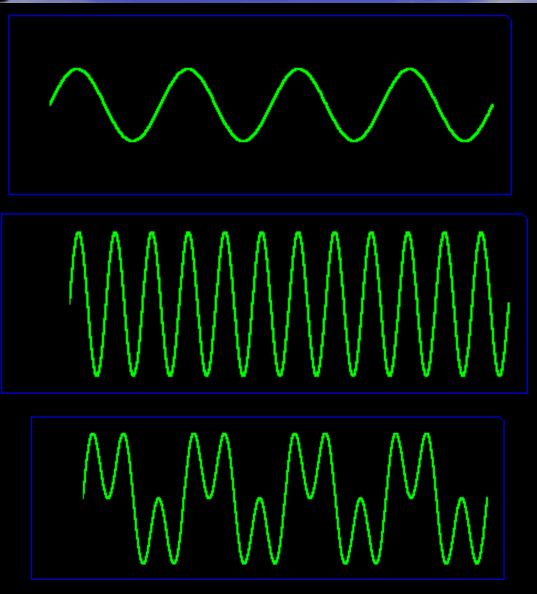
Fourier (Spectral) Analysis
Harmonic Analysis

Fourier Analysis ... In the beginning ...

- 1742 d'Alembert solved wave equation
- 1749 Leonhard Euler plucked string
- 1753 Daniel Bernoulli solutions are superpositions of harmonics
- 1807 Joseph Fourier solved heat equation Problems – lead to modern analysis!

$$y(x,t) = \sum_{k=1}^{\infty} a_k \sin \frac{k\pi x}{L} \cos \frac{k\pi ct}{L}$$
$$y(x,0) = \sum_{k=1}^{\infty} a_k \sin \frac{k\pi x}{L}$$

Adding Sine Waves

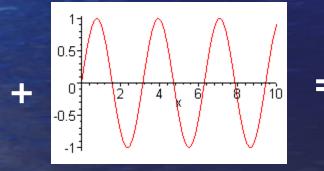


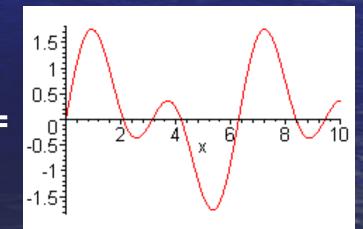
Spectral Theory
Fourier Series

Sum of Sinusoidal Functions

Fourier Analysis

Spectrum Analysis
Harmonic Analysis





Fourier Series

Fourier Series

<u>Eigenfunctions:</u>

$$L := 2\pi \quad c(x,n) := \cos\left(\frac{n \cdot \pi \cdot x}{L}\right) \quad s(x,n) := \sin\left(\frac{n \cdot \pi \cdot x}{L}\right)$$

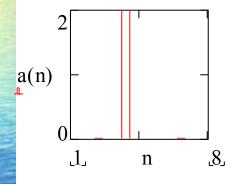
Function: $f(x) := \sin(x) + 2\cos(2x) \quad x := 0, .1..L$
Fourier Coefficients:
 $N := 8 \quad n := 1..N$
 $a_0 := \frac{1}{2L} \cdot \int_{-L}^{L} f(x) \, dx$
 $a(n) := \frac{1}{L} \cdot \int_{-L}^{L} f(x) \cdot c(x,n) \, dx$
 $b(n) := \frac{1}{L} \cdot \int_{-L}^{L} f(x) \cdot s(x,n) \, dx$

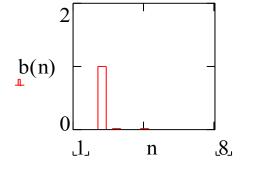
Reconstruction

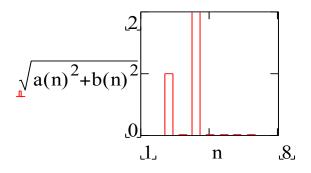
Fourier Expansion

$$F(x) := a_0 + \sum_n (a(n) \cdot c(x, n) + b(n) \cdot s(x, n))$$

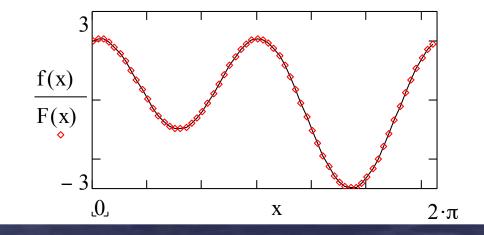
Power Spectrum







Comparison between f(x) and F(x)



Analog Signals

Analog Signals Continuous in time and frequency Infinite time and frequency domains Described by Fourier Transform Real Signals Sampled at discrete times Finite length records Leads to discrete frequencies on finite interval Described by Discrete Fourier Transform

Harmonic Analysis

Consider a set of data consisting of *N* values at equally spaced times,
We seek the best approximation using *M* given frequencies.
The unknown parameters in this case are the A's and B's.

 $y(t) = A_0 + \sum_{k=1}^{M} \left[A_k \cos(2\pi f_k t) + B_k \sin(2\pi f_k t) \right]$

Linear Regression

Minimize

$$e^{2} = \sum_{n=1}^{N} \left[y(t_{n}) - (A_{0} + \sum_{k=1}^{M} \left[A_{k} \cos(2\pi f_{k}t_{n}) + B_{k} \sin(2\pi f_{k}t_{n}) \right] \right]$$

Normal Equations

 $0 = \frac{\partial e^2}{\partial A_q} = 2\sum_{n=1}^{N} [y(t_n) - (A_0 + \sum_{k=1}^{M} [A_k \cos(2\pi f_k \frac{n}{N}) + B_k \sin(2\pi f_k \frac{n}{N})])](-\cos(2\pi f_q \frac{n}{N})), q = 1, \text{K}, M$

$$0 = \frac{\partial e^2}{\partial B_q} = 2\sum_{n=1}^{N} \left[y(t_n) - (A_0 + \sum_{k=1}^{M} \left[A_k \cos(2\pi f_k \frac{n}{N}) + B_k \sin(2\pi f_k \frac{n}{N}) \right] \right] (-\sin(2\pi f_q \frac{n}{N})), k = 1, \text{K}, M$$

System of Equations – *DZ=Y*

$$Y = \begin{pmatrix} \overline{y} \\ Cy \\ Sy \end{pmatrix}, \quad Z = \begin{pmatrix} A \\ B \end{pmatrix}, \quad y = \begin{pmatrix} y(t_1) \\ M \\ y(t_N) \end{pmatrix}$$

$$\begin{split} \left(CC^{T}\right)_{qk} &= \left(\sum_{n=1}^{N} \cos(2\pi f_{k}t_{n})\cos(2\pi f_{q}t_{n})\right) \\ \left(CS^{T}\right)_{qk} &= \left(\sum_{n=1}^{N} \sin(2\pi f_{k}t_{n})\cos(2\pi f_{q}t_{n})\right) \\ \left(SS^{T}\right)_{qk} &= \left(\sum_{n=1}^{N} \sin(2\pi f_{k}t_{n})\sin(2\pi f_{q}t_{n})\right). \end{split}$$

$$\begin{split} c_{q} &= \sum_{n=1}^{N} C_{qn}, \quad s_{q} = \sum_{n=1}^{N} S_{qn} \\ S_{qn} &= \sin(2\pi f_{k}t_{n}), q = 1, \text{K} , M, n = 1, \text{K} , N \\ C_{qn} &= \cos(2\pi f_{k}t_{n}), q = 1, \text{K} , M, n = 1, \text{K} , N \end{split}$$

 $D = \begin{pmatrix} N & c^T & s^T \\ c & CC & CS \\ s & CS & SS \end{pmatrix}$