
Lecture 10

Geostrophy & Thermal wind

10.1 f and β planes

These are planes that are tangent to the earth (taken to be spherical) at a
point of interest. The z axis is perpendicular to the plane (anti-parallel to
gravity), the x-axis points toward the east, and the y axis points toward the
north. The projection of the rotation vector along the z axis has magnitude
f = 2Ω sin θ, where Ω is the rotation rate of the earth, and θ is the latitude.

NEED A GOOD PICTURE HERE
If the basin is small compared to the radius of the earth, and if it is away

from the equator, the we consider f , the Coriolis frequency to be constant, in
which case the plane is called the f -plane. On the other hand, if the domain
considered is large (for instance the North Atlantic), or near the equator, the
effect of changing rotation is included in a linear fashion: f = f0 +βy, where
f0 is the Coriolis frequency at the center of the plane, and β is the rate of
change of f with y. Note that on the equator, f = 0, so rotation only acts
through β.

10.2 Geostrophy

The mass conservation equation is:
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= 0 (10.1)
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The linearized time-dependent momentum equations, in the hydrostatic limit
are:

ρ
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(10.2)
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0 = −∂p

∂z
− ρg (10.4)

where Av is the vertical eddy diffusivity (the turbulent equivalent to the
kinematic viscosity), and the lateral friction terms have been ignored on the
grounds of the thinness of the ocean. So we have a system of four equations
in four unknowns.

The geostrophic balance comes about when we look at steady flow with
no friction:

−fv = −1

ρ

∂p
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(10.5)

fu = −1

ρ
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(10.6)

∂p

∂z
= −ρg (10.7)

In meteorology, where pressure observations are available in near real time
from around the globe, this is extremely useful. Once the pressure field is
mapped, the direction of the geostrophic flow is known, since it must be along
lines of constant pressure: In Fig. 10.1, a high pressure cell is illustrated, In
three dimensions, the pressure is a dome, locate where the letter H is. The
plots on the top and the left side show the pressure as a function of x and y
through the center of the high. Note that ∂p/∂x is zero at x = 0 for all y, so
v = 0 along the y axis, and for the same reason, u = 0 along the x axis: the
flow is circular, and clockwise around the high in the northern hemisphere
(opposite in the southern hemisphere where, since the latitude is negative, f
is negative as well).

10.3 Thermal wind

In the ocean the situation is more difficult, because, even with altimeters
carried on satellites, it is difficult to measure the height of the sea level. For
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Figure 10.1: Circulation is clockwise around a High.

many years oceanographers had to be content with observations of density
profiles (ρ(z)) at various locations in the ocean. For instance Fig. 10.2 shows
a sketch of a map of density in an x, , z section taken off Jacksonville Florida,
and proceeding toward North Africa might look like: Since the observations
are in terms of density, it is useful to take the vertical derivative of equa-
tions 10.5 and 10.6, and substitute density for pressure using the hydrostatic
equation ??:

−f
∂v

∂z
= g

∂ρ

∂x
(10.8)

f
∂u

∂z
= g

∂ρ

∂y
(10.9)

These are called the Thermal wind equations (because they were first derived
in a meteorological explanation for desert winds). They relate the vertical
gradients of velocity to horizontal gradients in density, that are given by
sections. If, in addition, it is assumed that the velocity is known at some
depth (often it is simply assumed to be zero, in which case the depth is
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Figure 10.2: Circulation is clockwise around a High.

called the “level of no motion”), then given the thermal wind relations, the
horizontal velocities can be estimated by integrating up from the depth where
the velocity is known.

So for the section illustrated in Fig.10.1, the v velocity (positive into the
page) increases rapidly with z on the left side of the plot, where the density
decreases with x, leading to large meridional (to the north) velocities off the
coast of Florida. This is of course the Gulf stream. Further off shore, where
line of constant density are flat, so that ∂ρ/∂x = 0, the meridional velocity is
zero, and further offshore, over the central Atlantic, surface water are weakly
toward the south.
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Figure 10.3: In the x− z plane lines of constant density are falling, meaning
that at some depth z, the density is decreasing with increasing x, or that
∂ρ/∂x < 0. According to equation 10.8, the v velocity must therefore increase
with z (∂v/∂z > 0) from the level of no motion. The result is a northward
currents at the surface.
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