Università di Trieste - Facoltà d'Ingegneria.

Singolarità e residui.

Prof. Franco Obersnel

(i è l'unità immaginaria, $|z|, \bar{z}, \Re e\,z$ e $\Im m\,z$ indicano rispettivamente il modulo, il coniugato, la parte reale e la parte immaginaria del numero complesso z, per cui $z = \Re e z + i \Im m z$, $\bar{z} = \Re e z - i \Im m z$, |z| = $\sqrt{(\Re e \, z)^2 + (\Im m \, z)^2}$

Esercizio 1 Si determinino i punti singolari isolati delle funzioni seguenti e si stabilisca se sono eliminabili, poli o essenziali.

a)
$$\operatorname{tg}\left(\frac{1}{z}\right)$$
; b) $\frac{1}{\operatorname{senh}\left(\frac{1}{z}\right)}$; c) $\frac{\operatorname{sen}z}{(\pi-z)^2}$; d) $\frac{e^z-1}{z^2\operatorname{sen}(z^2)}$;

e) $\frac{1}{z} \int_0^z e^{-t^2} dt$ (indichiamo con $\int_0^z e^{-t^2} dt$ il prolungamento analitico della funzione di variabile reale $h(x) = \int_0^x e^{-t^2} dt$.

Esercizio 2 Sia $f(z) = \frac{g(z)}{h(z)}$ ($g \in h$ analitiche) e supponiamo che h abbia uno zero semplice in z_0 e che $g(z_0) \neq 0$. Si provi che $Res(f, z_0) = \frac{g(z_0)}{h'(z_0)}$

Esercizio 3 Si classifichino le singolarità delle seguenti funzioni e si calcoli il residuo relativo.

a)
$$\frac{e^{\frac{1}{z}}}{z}$$
; b) $\operatorname{senh}(\frac{1}{z})$; c) $\frac{z \cos z}{\sin z}$; d) $\frac{e^z}{z^2 - 5z + 6}$; e) $\frac{z + 1}{(z^2 + 4)^2}$; f) $\frac{e^{i\pi z}}{16 - z^4}$.

Esercizio 4 Siano f e g funzioni con una singolarit isolata in z_0 . Si provi che $Res(f+g,z_0)=$ $Res(f,z_0) + Res(g,z_0).$

Esercizio 5 Sia f una funzione con un polo semplice in z_0 e residuo $Res(f,z_0)=R$. Si provi che la funzione $g(z) = f(z) - \frac{R}{z-z_0}$ presenta in z_0 una singolarità eliminabile.

Esercizio 6 Sia f una funzione con un polo semplice in $z_0 \neq 0$ e residuo $Res(f, z_0) = R$. Si consideri la funzione $g(z) = zf(z^2)$. Si provi che $Res(g, \sqrt{z_0}) = \frac{R}{2}$.

- 1. a) $z = \frac{2}{(2k+1)\pi}$, $k \in \mathbb{Z}$, poli semplici; 0 non è isolato. b) $z = \frac{1}{ik\pi}$, $k \in \mathbb{Z} \setminus \{0\}$, poli semplici; 0 non è isolato. c) $z = \pi$ polo semplice. d) $z = \pm \sqrt{k\pi}$, con $k \in \mathbb{N}^+$, poli semplici; $z = \pm i\sqrt{-k\pi}$, con $-k \in \mathbb{N}^+$, poli semplici; z = 0 polo triplo. e) z = 0 singolarità eliminabile.
 - 2. $Res(f, z_0) = \lim_{z \to z_0} g(z) \cdot \frac{z z_0}{h(z) h(z_0)}$.
- 3. a) z = 0 essenziale; Res(f, 0) = 1. b) z = 0 essenziale; Res(f, 0) = 1. c) z = 0 eliminabile; $Res(f,0)=0; \ z=k\pi, \ k\in \mathbb{Z}\setminus\{0\}, \ \text{poli semplici}, \ Res(f,k\pi)=k\pi. \ d) \ z=2 \ e \ z=3 \ \text{poli semplici}$ con residui $-e^2$ e e^3 , rispettivamente. e) z=-2i,2i poli doppi con residui $\frac{i}{32}$ e $-\frac{i}{32}$, rispettivamente. f) z=-2,2,2i poli semplici con residui $\frac{1}{32},\frac{-1}{32},\frac{e^{2\pi}}{32}i$ e $-\frac{e^{-2\pi}}{32}i$, rispettivamente.
 - 4. Immediata dalla linearità dell'integrale.
 - 5. Sviluppando in serie di Laurent si ha subito $f(z) = \frac{R}{z-z_0} + g(z)$.
 - 6. $f(z) = \frac{R}{z z_0} + \Phi(z)$, con Φ analitica. $g(z) = \frac{Rz}{z^2 z_0} + z\Phi(z^2) = \frac{R}{2}\frac{z}{\sqrt{z_0}}\left(\frac{1}{z \sqrt{z_0}} \frac{1}{z + \sqrt{z_0}}\right) + z\Phi(z^2)$.