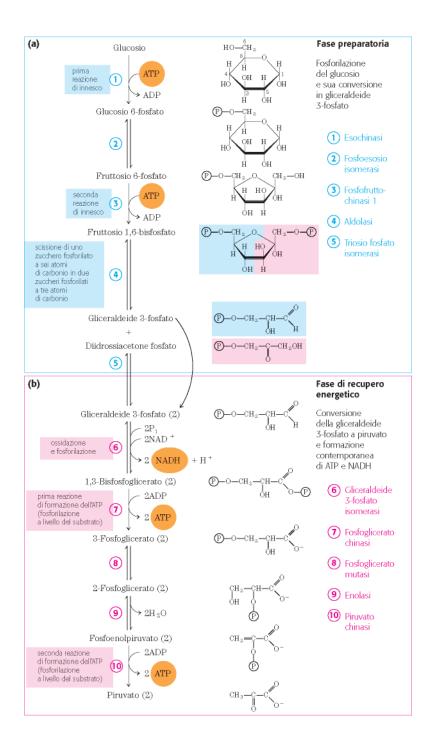

Cap.16

GLICOLISI

Glucosio + 2 ADP + 2 Pi + 2 NAD+ \longrightarrow 2 Piruvato + 2 ATP + 2 H₂O+ 2 NADH + 2H+

Via metabolica in 10 tappe (reazioni)


La glicolisi può essere divisa in 2 fasi

Fase preparatoria (5 reazioni)

Vengono %avestite+2 molecole ATP creando Intermedi fosforilati

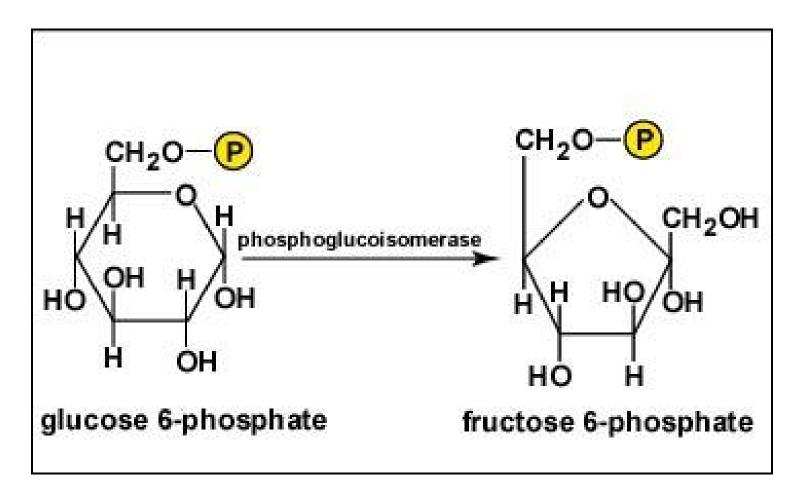
Fase di recupero energetico (5 reazioni)

Vengono prodotte 4 molecole ATP

Prima reazione: attivazione del glucosio

Legame fosfo-estere

Prima reazione di investimento: viene idrolizzata una molecola di ATP


Chinasi: enzimi che catalizzano reazioni di fosforilazione

Tutti gli intermedi della glicolisi sono fosforilati

Intermedio metabolico: prodotto di una delle reazioni che diventa substrato per la reazione successiva

Es: $A \rightarrow B \rightarrow C \rightarrow D$

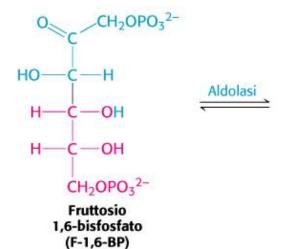
Seconda reazione: isomerizzazione del G-6P a F-6P

Aldoso

Chetoso (gruppo chetonico)

Terza reazione: fosforilazione del F-6P a F1,6 BP

Seconda reazione di investimento: viene idrolizzata una molecola di ATP


Sia il glucosio 6-fosfato che il fruttosio 6-fosfato possono essere intermedi di altre vie metaboliche.

Il fruttosio 1-6-difosfato è solamente intermedio della glicolisi. Questa reazione IMPEGNA lo zucchero nella glicolisi

REAZIONE IRREVERSIBILE

 $\Delta G^{o\theta} = -14.2 \text{ kJ/mol}$

Quarta reazione: scissione del chetoesoso per formare due triosi

Equna reazione di condensazione aldolica (condensazione di due carbonili) **inversa**

gliceraldeide: aldeide glicerica

0

Quinta reazione: isomerizzazione di DHP a GA3P

La trioso fosfato isomerasi tiene læquilibrio tra i due triosi MA la gliceraldeide viene presto consumata, spostando la reazione verso destra.

Sesta reazione della glicolisi reazione di ossidazione

(1,3-BPG)

Gliceraldeide-3-fosfato Deidrogenasi (GA-3P DH)

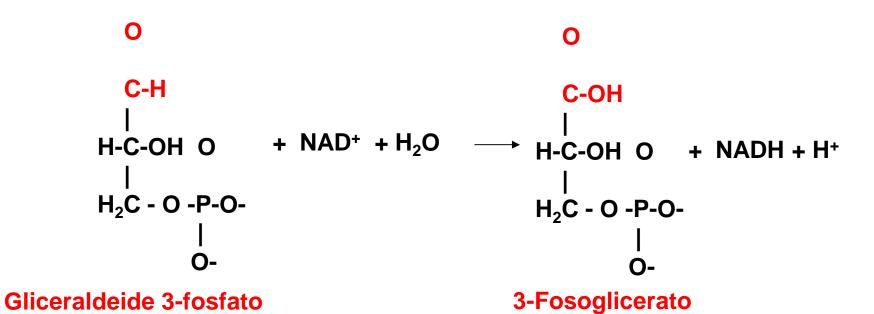
O OPO
$$_3^{2-}$$
H—C—OH + NAD+ + HPO $_4^{2-}$ — H—C—OH + NADH + H+

 $CH_2OPO_3^{2-}$

Gliceraldeide 3-fosfato
(GAP)

1,3-Bisfosfoglicerato
(1,3-BPG)

Nel CATABOLISMO la reazione più importante è lopssidazione. Qui si ossida uno aldeide ad acido.


La gliceraldeide 3P deidrogenasi è un ossido-reduttasi NAD dipendente. Equna reazione unica nel suo genere. Laccettore di idrogeni è il NAD+. Si forma unanidride fosforica, ID,3-bifosfoglicerato.

Può essere divisa in due semi-reazioni

<u>I semireazione</u>: è un Bossidazione

laldeide è ossidata ad acido carbossilico,

il NAD+ è ridotto a NADH + H+

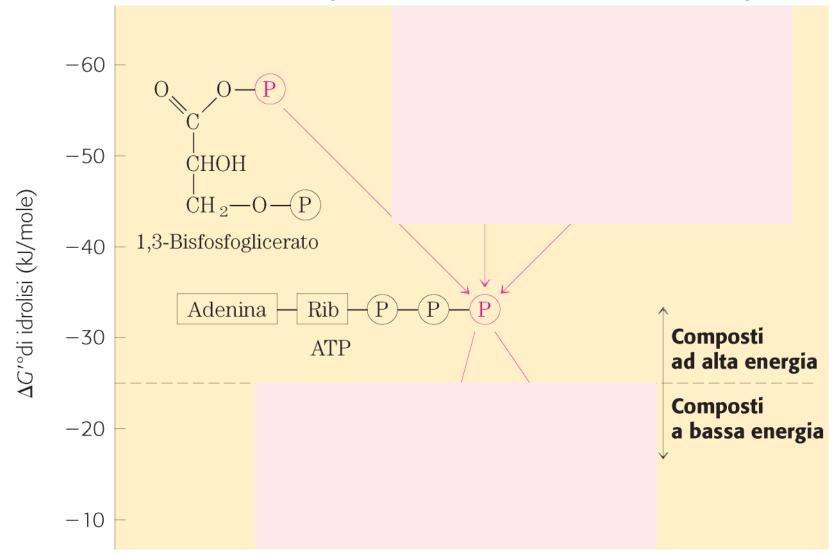
 \triangle GÐ= -43,1kJ/mole = -10kcal/mole Esoergonica in condizioni standard

Il semireazione: formazione di unanidride mista tra la la cido carbossilico e il fosfato inorganico

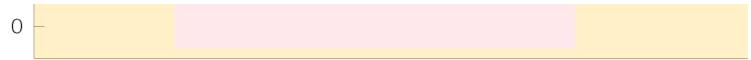
△GÐ= 49,3kJ/mole = 11,8kcal/mole Endoergonica in condizioni standard

 \triangle GĐ tot = \triangle GĐ ossidazione + \triangle GĐ fosforilazione = -43,1kJ/mol + 49,3 kJ/mol = 6,2 kJ/mol = 1,5 kcal/mol

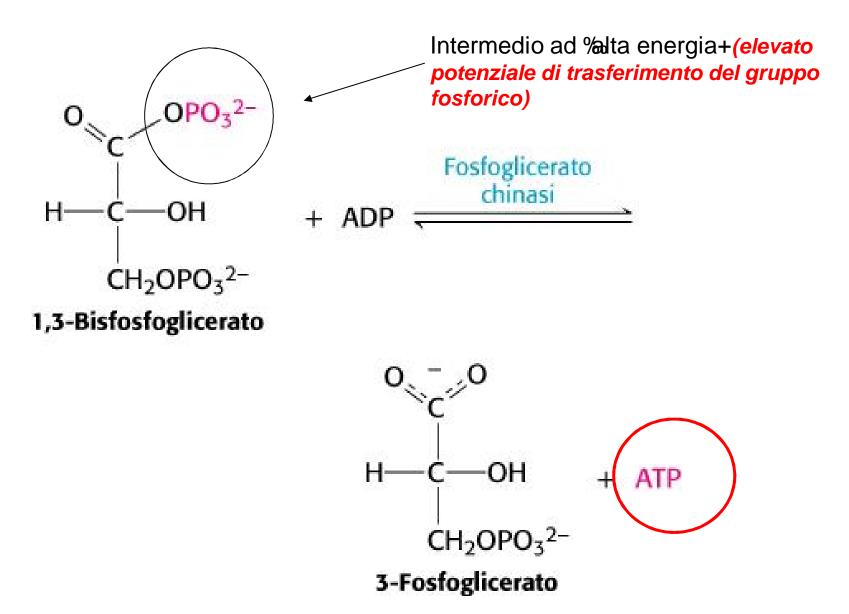
 $^{\sim}$ Da 1 molecola di glucosio si ottengono 2 molecole di gliceraldeide 3-fosfato Δ GĐ tot = 12,4kJ/mole = 3 kcal/mole


Questi valori di energia libera sono riferiti ad uno stato standard

$$\Delta G = \Delta G^{ol} + RT \ln \frac{[C][D]}{[A][B]}$$


Le concentrazioni intracellulari dei metaboliti non sono allo stato standard. ∆G= -1,29kJ/mol = -0,31kcal/mole

Con questa reazione si è formato 1,3-bisfoglicerato, metabolita fosforilato con un legame ad Í alta energia P

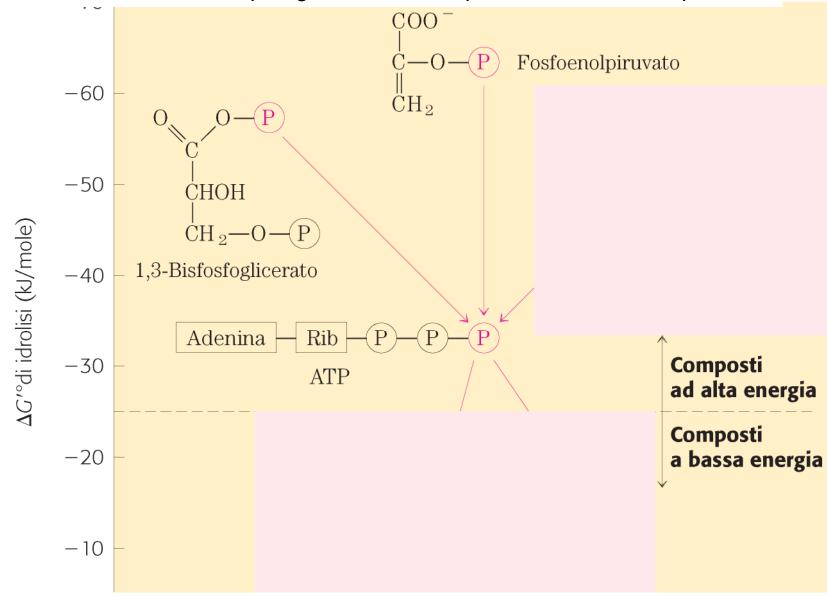

 Δ **GĐ = - 49,3 kJ/mole** è lænergia liberata dalladrolisi del 1,3- Bisfosfoglicerato

 Δ **GĐ = 30,5 kJ/mole** è lænergia RICHIESTA per sintetizzare ATP da ADP e Pi

Settima reazione: trasferimento del fosfato allEADP

Fosforilazione a livello del substrato

Dal composto 1,3 bifosfoglicerato si recupera, attraverso la sintesi di una molecola di ATP, lænergia precedentemente investita (2x).


Ottava reazione: isomerizzazione del 3PG

La **fosfoglicero mutasi è una fosfotransferasi** intramolecolare: sposta il fosforile dalla posizione 3 alla posizione 2. Eqancora un legame fosfo-estere.

Nona reazione: deidratazione del 2PG

Con una **deidratazione** (k da deidrogenazione), catalizzata **dallanolasi**, si ottiene un doppio legame nel fosfoenolpiruvato (legame di enol-estere, cioè un OH legato ad un C con doppio legame).

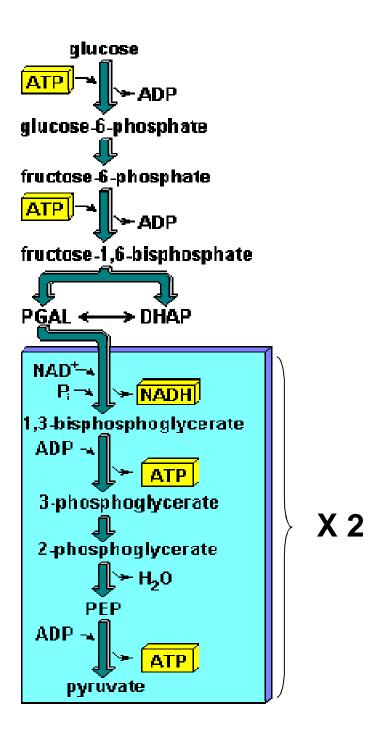
 Δ **GĐ** = -61,9 **kJ/mole** è lænergia liberata dallædrolisi del Fosfoenolpiruvato

Ltenergia liberata dalledrolisi del Fosfoenolpiruvato è sufficiente per la sintesi di una molecola di ATP

Decima reazione: trasferimento del fosfato da PEP a ADP

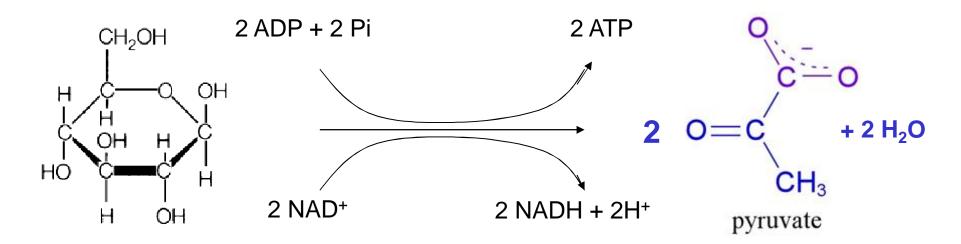
Fosfoenolpiruvato

Piruvato


Seconda fosforilazione dellEADP a livello del substrato

1a fase

- -2 molecole di ATP sono idrolizzate per innescare la catena di reazioni
- 5 reazioni: glucosio (6C) \rightarrow 2 x GA-3P (3C)


2a fase

- -5 reazioni: 2 x $GA-3P \rightarrow 2$ x piruvato.
- sono prodotte quattro molecole di ATP e due di NADH

Stechiometria e bilancio energetico della glicolisi

I reagenti della glicolisi sono NAD+, ADP, Glucosio e P_i. I prodotti della glicolisi sono NADH, ATP e Piruvato.

Variazioni di energia libera nella glicolisi

$$\Delta G = \Delta G^{ol} + RT \ln \frac{[C][D]}{[A][B]}$$

Table 14-1. ΔG° and ΔG for the Reactions of Glycolysis in Heart

Reaction	Enzyme	$\Delta G^{\circ\prime}$ $(kJ \cdot mol^{-1})$	ΔG $(kJ \cdot mol^{-1})$
1	Hexokinase	-20.9	-27.2
2	PGI	+2.2	-1.4
3	PFK	-17.2	-25.9
4	Aldolase	+22.8	-5.9
5	TIM	+7.9	+4.4
6+7	GAPDH + PGK	-16.7	-1.1
8	PGM	+4.7	-0.6
9	Enolase	-3.2	-2.4
10	PK	-23.0	-13.9

^{*}Calculated from data in Newsholme, E.A. and Start, C., Regulation in Metabolism, p. 97, Viley (1973).

 Σ =-74 kJ mol⁻¹

Energia derivante dal glucosio nella glicolisi

$$\Sigma \Delta G^{oq}$$
 -74 kJ mol⁻¹

Energia derivante dal glucosio nellossidazione completa (fosforilazione ossidativa)

$$C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O$$

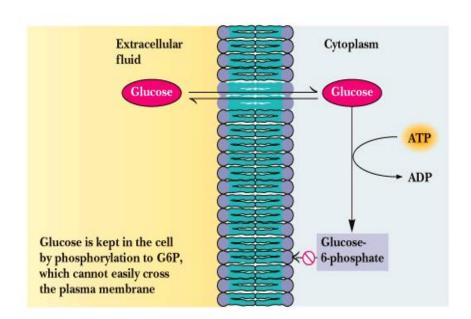
-2850 kJ mol⁻¹

La trasformazione di glucosio in piruvato permette di estrarre solo il 2% dellænergia ottenibile con læssidazione completa del glucosio

Regolazione della glicolisi

Regolazione delle reazioni irreversibili

Nelle vie metaboliche gli enzimi che catalizzano le reazioni irreversibili sono i siti di controllo della via stessa.


Reazione irreversibile:

- **∽**∆G fortemente negativo
- reagenti e prodotti di una reazione NON sono i prodotti e i reagenti della Í reazione inversal

I reazione irreversibile della glicolisi : FOSFORILAZIONE DEL GLUCOSIO

Alle concentrazioni cellulari il ∆G della reazione è molto negativo

□ la reazione è irreversibile

Il glucosio viene trasportato attraverso la membrana plasmatica da una proteina che <u>NON</u> riconosce il glucosio 6-fosfato (né altre forme fosforilate)

In conseguenza della fosforilazione il glucosio è INTRAPPOLATO all**E**nterno della cellula

Il reazione irreversibile della glicolisi :

FOSFORILAZIONE DEL FRUTTOSIO 6-FOSFATO

PFK: Fosfofruttochinasi

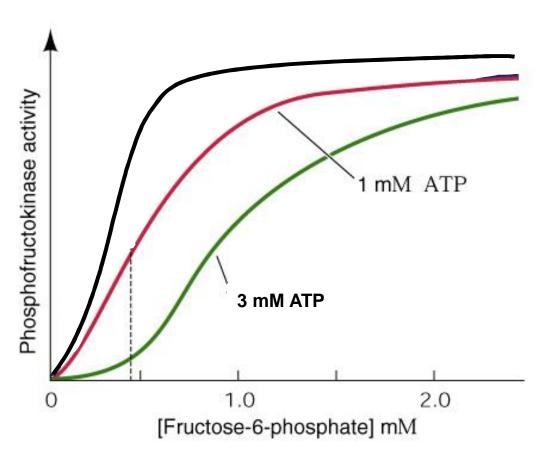
Il tasso di glicolisi nei mammiferi è controllato principalmente a livello della PFK.

Mentre il glucosio 6-fosfato e il fruttosio 6-fosfato possono essere intermedi di altre vie metaboliche, il fruttosio 1-6-difosfato è solamente intermedio della glicolisi. Questa reazione IMPEGNA lo zucchero nella glicolisi

PFK è importantissimo in quanto catalizza una reazione esoergonica irreversibile che permette al glucosio di entrare nella via glicolitica (escludendolo da altre vie)

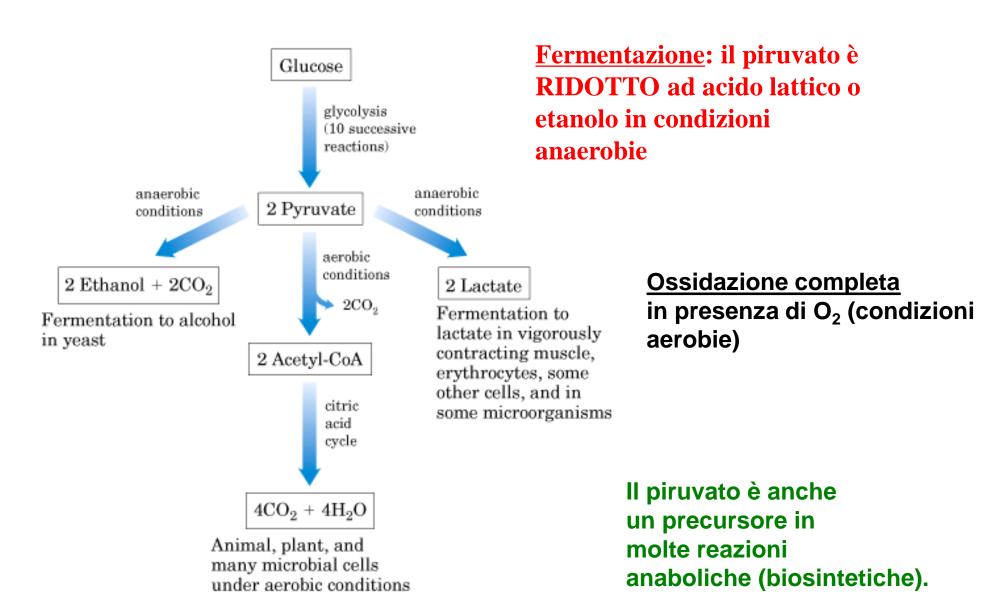
Fosfofruttochinasi (PFK)

Enzima tetramerico con diversi modulatori allosterici


Tra questi, IEATP, importante INIBITORE ALLOSTERICO

- (a)
- " PFK aumenta lattività quando lo stato energetico è basso
- " PFK diminuisce lattività quando lo stato energetico è alto

La cinetica dellattività in funzione della concentrazione di substrato è sigmoide


Enzima allosterico

allaumentare di [ATP] aumenta la Km

After data from Mansour, T.E. and Ahlfors, C.E., J. Biol. Chem. 243, 2523-2533 (1968). Copyright 1999 John Wiley and Sons, Inc. All rights reserved.

Il destino del piruvatoÅ

Che funzione hanno le fermentazioni?

(GA-3P DH)

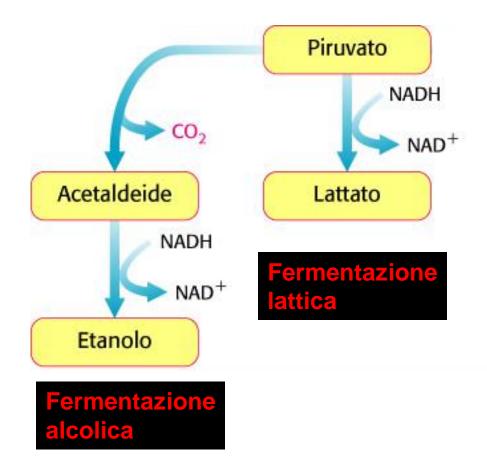
H—C—OH + NAD+ + HPO₄²⁻
$$\longrightarrow$$

CH₂OPO₃²⁻

Gliceraldeide 3-fosfato
(GAP)

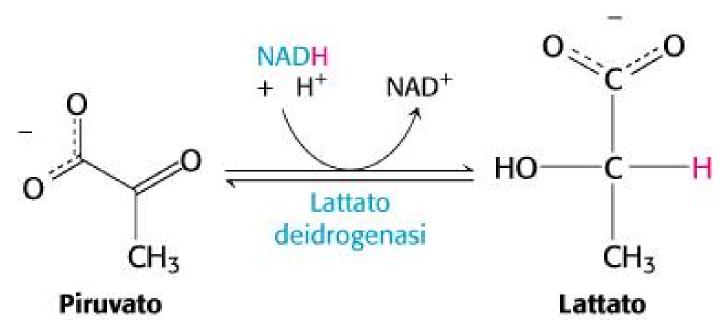
OPO₃²⁻

H—C—OH + NADH + H+


 $CH_2OPO_3^{2-}$

1,3-Bisfosfoglicerato
(1,3-BPG)

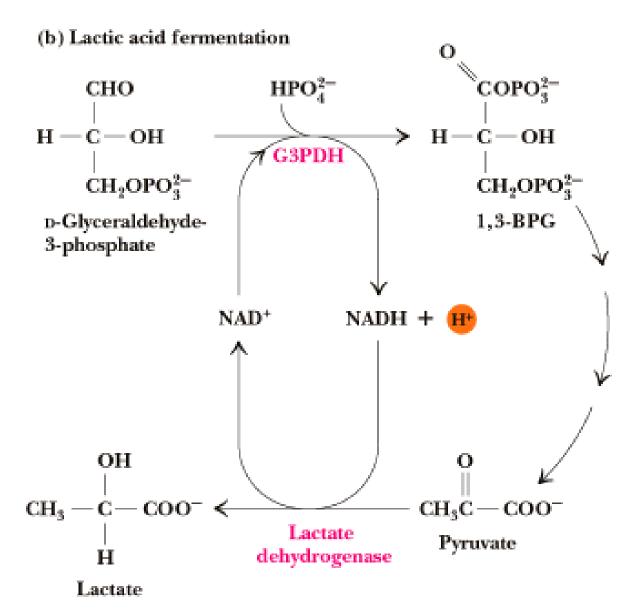
La conversione di glucosio in piruvato ha consumato 2 molecole di NAD+ (reazione catalizzata dalla G 3-P DH)


Se il coenzima non venisse nuovamente ossidato, la glicolisi si arresterebbe.

Fermentazioni

In assenza di ossigeno e negli organismi anaerobi le fermentazioni sono INDISPENSABILI per rigenerare il NAD⁺.

FERMENTAZIONE LATTICA



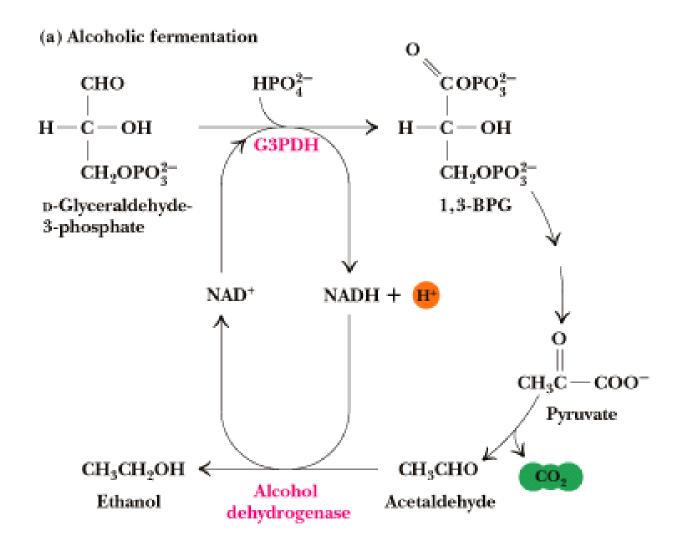
" il piruvato è ridotto a lattato.

LEOssidazione di NADH a NAD+ permette di continuare produzione di ATP nella 2a fase della glicolisi (via anaerobica).

Nei mammiferi è la via caratteristica dei globuli rossi e del muscolo in forte contrazione.

Tipica dei microrganismi ANAEROBI come alcuni LIEVITI (yogurt) e alcuni BATTERI (carie dentale, botulinoÅ)

Fermentazione alcolica


La fermentazione alcolica è la trasformazione degli zuccheri del mosto in alcol etilico, anidride carbonica ed altri componenti secondari ad opera di funghi unicellulari appartenenti per lo più al genere *Saccharomyces*.

Piruvato

Responsabile delle bollicine nel mosto e nel vino.

Responsabile della lievitazione

Acetaldeide

Funzioni tessuto-specifiche della glicolisi negli animali

" Globuli rossi

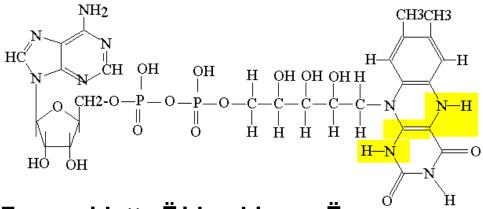
. Esclusivamente per energia

" Muscoli scheletrici

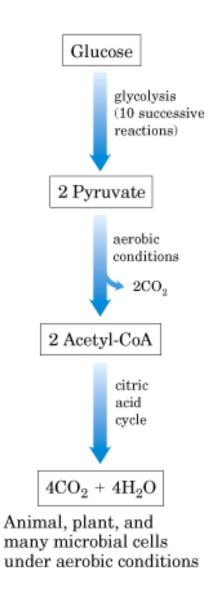
. Fonte di energia, soprattutto durante lo sforzo intenso

" Tessuto adiposo

- . Fonte di glicerolo-P per la sintesi di trigliceridi
- . Fonte di acetil-CoA per la sintesi di acidi grassi


" Fegato

- . Fonte di energia
- . Fonte di glicerolo-P per la sintesi di trigliceridi
- . Fonte di acetil-CoA per la sintesi di acidi grassi


Ossidazione completa del piruvato

In condizioni aerobie (presenza di mitocondri):

 □ Il piruvato è decarbossilato ad Acetil-CoA, che entra nel ciclo di Krebs dove è ulteriormente ossidato fino a CO2, con ulteriore produzione di NADH e FADH2

Forma ridotta Ë idrochinone Ë FADH2

