Intrinsic dimension and density profile of neural representations (2)

Diego Doimo and Aldo Glielmo

International School for Advanced Studies (SISSA), Trieste

Scuola Internazionale Superiore di Studi Avanzati

Understanding deep networks 2)

- 1) Intrinsic dimension
- 2) Probability density

[Ansuini et al., NeurlPS 2019]

[Doimo et al., NeurlPS 2020]

Density estimation: overview

Density estimation: kNN estimator

Density peaks estimation

- Compute density of each point (after computing ID)
- Find the peaks of the density
- Find the peak borders and saddle points
- Merge peaks according to a single hyper parameter Z

[Rodriguez and Laio, Science 2014] [D'Errico et al., Information Sciences 2021]

Density peaks estimation

- Compute density of each point (after computing ID)
- Find the peaks of the density
- Find the peak borders and saddle points
- Merge peaks according to a single hyper parameter Z
- Assign points to the different peaks

Tutorial1: Density peaks estimation

- Concepts that we will cover:
 - Estimation of the density profile
 - → kNN estimator
 - Estimation of statistically significant peaks of the density
 - → Clustering

https://colab.research.google.com/drive/ 1fTxE0GWb5BobZhL3j6G6Ra5hBj__c9X-?usp=sharing

Density peaks estimation in deep networks

Evolution of density peaks

• Concepts are learned in hierarchical order through at least two transitions

Tutorial2: Density peaks in deep CNNs

- What we will cover:
 - "forgetting" and "learning" as separate phases in deep CNNs
 - High level concepts are learned in early layers
 - Low level concepts are learned in a sharp "nucleation" transition near the end of the network

https://colab.research.google.com/drive/ 1fTxE0GWb5BobZhL3j6G6Ra5hBj__c9X-?usp=sharing

Hierarchical agglomeration

- Take highest density peak
- Merge it with the peak separated by the highest saddle point
- Repeat until there is only one peak left

[D'Errico et al., Information Sciences 2021]

Hierarchical structure in the output layer

- Take highest density peak
- Merge it with the peak separated by the highest saddle point
- Repeat until there is only one peak left

Semantic hierarchy in the last layer

Take home messages

Intrinsic dimension of hidden representations is always small and shows a characteristic **hunchback profile** which can be interpreted as characteristic of a "forgetting" and a "learning" phase

Representations in neural networks trained for complex classification tasks evolve through **nucleation-like events**, with probability peaks appear in an order that mirrors the semantic **hierarchy** of the dataset

The peaks of the last layer are organised in **complex** "mountain chains" resembling the semantic kinship of the categories

Interesting research directions (extra)

Practical

- Improve triplet loss schemes via a principled choice of "anchor" images (e.g., the saddle points)
- · Improve transfer learning schemes by educated guesses on network cuts
- Inform pruning schemes through the knowledge of "less important" layers

Theoretical/Exploratory

- Analyse the evolution of density profile during training
- Analyse the representations learned by different types of networks (not CNNs), for instance those used for Natural Language Processing

Neuroscience

• Use the analysis of the density profile as a tool to connect artificial networks with biological networks

Essential references:

- ID: Estimating the intrinsic dimension of datasets by a minimal neighborhood information
- ID in CNNs: Intrinsic dimension of data representations in deep neural networks
- Clustering: Automatic topography of high-dimensional data sets by non-parametric Density Peak clustering
- Clustering in CNNs: Hierarchical nucleation in deep neural networks

Code references:

- Supplementary Materials of "Hierarchical nucleation in deep neural networks", NeurlPS 2020
- Colab notebook https://colab.research.google.com/drive/
 IfTxE0GWb5BobZhL3j6G6Ra5hBj_c9X-?usp=sharing
- DULY Package https://duly.readthedocs.io/en/latest/index.html

If you have other questions or ideas:

- aglielmo@sissa.it
- ddoimo@sissa.it