Integer Programming

| LAURENCE A. WOLSEY |

A{Wile : Iqtersc:ence Pubhca
JQH:N WI&EY & SON S, ‘

e ettt e e

2t 2 m—T .

WigEYJNTERscmN
“SPRIES IN BISERETE %AmEMA'rwsm OPTIMIZATIDN

ARDVISERY Ebl‘roks

- o
I ¥
i1 {uék-&f{-/{
LA

57,74

we7

1q4azg

c, 2

' To Marguerite

5 g511594

This text is printed on acid-free paper.®

Copyright © 1998 by John Wiley & Sons, Inc. All rights reserved.
Published simultaneously in Canada. ’

-No part of this publication may be reproduced, stored in a retrieval
system or transmitted in any form or by any means, electronic,
mechanical, photocopying, recording, scanning or otherwise, except
as permitted under Sections 107 or 108 of the 1976 United States
Copyright Act, without either the prior written permission of the
Publisher, or authorization through payment of the appropriate
per-copy fee to the Copyright Clearance Center, 222 Rosewood
Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4744.
Requests to the Publisher for permission should be addressed to
the Permissions Department, John Wiley & Sons, Inc., 605 Third
Avenue, New York, NY 10158-0012, (212) 850-6011, fax (212)
850-6008, E-Mail: PERMREQ@WILEY.COM.

Library of Congress Catalogingfin-Publication Data:

Wolsey, Laurence A.
Integer programming / Laurence A. Wolsey
p. cm.— (Wiley-Interscience- series in discrete mathematics.
and optimization)
«Wiley-Interscience publica‘tion."
Includes bibliographical references and indexes.
ISBN 0-471-28366-5 (alk. paper)
1. Integer programming.” L Title. II Series/ -
. T57.74W67 1998 :
7 '519.77—dc21 - ' 98-7296

o Prmted in the United States of America General Library System
wosTe University of Wisconsin - Madison
I 728 State Street :

o Magison, Wi 53706-1494

)

S

Preface

Abbreviations and Notation

Formulations

1.1 Introduction

1.2 What Is an Integer Program?
1.3 Formulating IPs and BIPs
1.4 The Combinatorial Explosion
1.5 Mixed Integer Formulations
1.6 Alternative Formulations

1.7 Good and Ideal Formulations
1.8 Notes

1.9 Exercises

Optimality, Relaxation, ‘and Bounds

2.1

2.2

2.3
2.4
2.5

Optimality and Relaxation
Linear Programming Relaxations
Combinatorial Relaxations
Lagrangian Relaxation

Duality

Contents

xiii

xvii

i'.
i
i
i
|

H
!
i
11
{

viii

CONTENTS

2.6
2.7
2.8

3.1
3.2
3.3
3.4

3.5
3.6
3.7
3.8

Primal Bounds: Greedy and Local Search
Notes
Exercises

“Well-Solved Problems

Properties of Easy Problems

IPs with Totally Unimodular Matrices
Minimum Cost Network Flows
Special Minimum Cost Flows

3.4.1 Shortest Path

3.4.2 Maximum s -t Flow

Optimal Trees

Submodularity and Matroids*

Notes

Exercises

Matchings and Assignments

4.1
4.2
4.3
44
4.5

Augmenting Paths and Optimality
Bipartite Maximum Cardinality Matching
The Assignment Problem

Notes

Exercises

Dynamic Programming

5.1
5.2
5.3
5.4

5.5
5.6

Some Motivation: Shortest Paths
Uncapacitated Lot-Sizing

An Optimal Subtree of a Tree
Knapsack Problems

5.4.1 0-1 Knapsack

5.4.2 Integer Knapsack Problems
Notes

Exercises

Complexity and Problem Reductions

6.1

6.2

6.3
6.4

Complexity :

Decision Problems, and Classes NP and P
Polynomial Reduction and the Class NPC
Consequences of P = NP or P # NP

30
33
33

37
37
38
40
42
42
43

43

46
49
50

53

53
55
57
62
63

67
67

68

71
72
73
74

7

78

81
81
82
84
87

CONTENTS ix

6.5 Optimization and Separation 88
6.6 Notes 89
6.7 Exercises ’ : 89
Branch and Bound : 91
7.1 Divide and Conquer 91
7.2 Implicit Enumeration 92
7.3 Branch and Bound: An Example 95
7.4 LP-based Branch and Bound : 98
7.5 Using a Branch-and-Bound System 101

7.5.1 If All Else Fails 103
7.6 Preprocessing* 103
7.7 Notes 107
7.8 Exercises 108
Cutting Plane Algorithms v ‘ 113
8.1 Imtroduction 113
8.2 Some Simple Valid Inequalities 114
8.3 Valid Inequalities 117

8.3.1 Valid Inequalities for Linear Programs = 117
8.3.2 Valid Inequalities for Integer Programs 118

8.4 A Priori Addition of Constraints 121
8.5 Automatic Reformulation or Cutting Plane
Algorithms 123
8.6 Gomory’s Fractional Cutting Plane Algorithm 124
8.7 Mixed Integer Cuts : 127
8.7.1 The Basic Mixed Integer Inequality 127
8.7.2 The Mixed Integer Rounding (MIR) ’
Inequality 129
8.7.3 The Gomory Mixed Integer Cut* 129
8.8 Disjunctive Inequalities* 130
8.9 Notes , 133
8.10 Exercises . 134
Strong Valid Inequalities 139
9.1 Introduction 139
9.2 Strong Inequalities 140
" 9.2.1 Dominance 140

9.2.2 Polyhedra, Faces, and Facets 142

X

10

CONTENTS

0.2.3 Facet and Convex Hull Proofs*
9.3 0-1 Knapsack Inequalities

9.3.1 Cover Inequalities

0.3.2 Strengthening Cover Inequalities

9.3.3 Separation for Cover Inequalities
9.4 Mixed 0-1 Inequalities

9.4.1 Flow Cover Inequalities

9.4.2 Separation for Elow Cover Inequalities
9.5 The Optimal Subtour Problem

9.5.1 Separation for Generalized Subtour
Constraints

9.6 Branch-and-Cut
9.7 Notes
9.8 Exercises

Lagrangian Duality

10.1 Lagrangian Relaxation

10.2 The Strength of the Lagrangian Dual

10.3 Solving the Lagrangian Dual

10.4 Lagrangian Heuristics and Variable Fixing
10.5 Choosing a Lagrangian Dual

- 10.6 Notes

11

10.7 Exercises

Column Generation Algorithms -

11.1 Introduction

11.2 Dantzig-Wolfe Reformulation of an IP

11.3 Solving the Master Linear Program
11.3.1 STSP by Column Generation

11.3.2 Strength of the Linear Programming
Master

11.4 TP Column Generation for 0-11P

11.5 Implicit Partitioning/Packing Problems
11.6 Partitioning with Identical Subsets*
11.7 Notes ’

~ 11.8 Exercises

12

Heuristic Algorithms
12.1 Introduction

144

147
147
148
150
151
151
153
154

155
157
160
161

167
167
172

173

177
179
180
181

185
185

187 -

188

190

192

193
194

196
200

201

203
203

CONTENTS

12.2 Greedy and Local Search Revisited
12.3 Improved Local Search Heuristics
12.3.1 Tabu Search
12.3.2 Simulated Annealing
12.3.3 Genetic Algorithms
12.4 Worst-Case Analysis of Heuristics
12.5 MIP-based Heuristics
12.6 Notes ~
12.7 Exercises -

13 From Theory to Solutions
13.1 Introduction
13.2 Software for Solving Integer Programs
13.3 How Do We Find an Improved Formulation?
13.3.1 Uncapacitated Lot-Sizing
13.3.2 Capacitated Lot-Sizing
13.4 Fixed Charge Networks: Reformulations

13.4.1 The Single Source Fixed Charge Network
Flow Problem

13.4.2 The Directed Subtree Problem
13.5 Multi-Item Single Machine Lot-Sizing
13.6 A Multiplexer Assignment Problem
13.7 Notes
13.8 Exercises

References

Index

)
Xl

204
207
207
208
210
211
214
217
218

221
221
221
223
223
227
229

229
231
232
236
240
241

245

261

)

e i A ——————S————

Preface

Intended Audience

The book is addressed to undergraduates and graduates in operations re-
search, mathematics, engineering, and computer science. It should be suitable
for advanced undergraduate and Masters level programs. It is also aimed at
users of integer programming who wish to understand why some problems are
difficult to solve, how they can be reformulated so as to give better results,
and how mixed integer programming systems can be used more effectively.
The book is essentially self-contained, though some familiarity with linear
_programming is assumed, .and a few basic concepts from graph theory are
The book provides material for a one-semester course of 2-3 hours per
week.. :)

What and How

Integer Programming is about ways to solve optimization problems with dis-
crete or integer variables. Such variables are used to model indivisibilities,
and 0/1 variables are used to represent on/off decisions to buy, invest, hire,
and so on. Such problems arise in all walks of life, whether in developing train
or aircraft timetables, planning the work schedule of a production line or a
‘maintenance team, or planning nationally or regionally the daily or weekly
- production of electricity..

xiii

Xiv PREFACE

The last ten years have seen a remarkable advahce in our ability to solve
to near optimality difficult practical integer prograimns. This is due to a com-
bination of

i) Improved modeling

ii) Superior linear programming software

iii) Faster computers

iv) New cutting plane theory and algorithms

v) New heuristic methods

vi) Branch-and-cut and integer programming decomposition algorithms

Today many industrial users still build an integer programming model and
stop at the first integer feasible solution provided by their software. Unless
the problem is very easy, such solutions can be 5%, 10%, or 100% away from
optimal, resulting in losses running into mega-dollars. In many cases it is
now possible to obtain solutions that are proved to be optimal, or proven
within 0.1%, 1%, or 5% of optimal, in a reasonable amount of computer
time. There is, however, a cost: better models must be built, and either
specially tailored algorithms must be constructed, or better use must be made
of existing commercial software.

To make such gains, it is necessary to understand why some problems are
more difficult than others, why some formulations are better than others, how
effective different algorithms can be, and how integer programming software
can be best used. The aim of this book is to provide some such understanding.

Chapter 1 introduces the reader to various integer programmin problems
and their formulation, and introduces the important distinction between good
and bad formulations. Chapter 92 explains how it is possible to prove that
~ feasible solutions are optimal or close to optimal.

Chapters 3-5 study integer programs that are easy. The problems and

algorithms are interesting in their own right, but also because the algorithmic
ideas can often be adapted so as to provide good feasible solutions for more

difficult problems. In addition, these easy problems must often be solved
repeatedly as subproblems in algorithms for the more difficult problems. We
examine when linear programs automatically have integer solutions, which is
in particular the case for network flow problems. The greedy algorithm for
finding an optimal tree, the primal-dual algorithm for the assignment problem,

and a variety of dynamic programming algorithms are. presented, and their
running times examined.

PREFACE xv

" In Chapter 6 we informally address the question of the apparent difference
in difficulty between the problems presented in Chapters 3-5 that can be
solved rapidly, and the “difficult” problems treatéd in the rest of the book.

The fundamental branch-and-bound approach is presented in Chapter 7.
Certain features of commercial integer programming systems based on branch-
and-bound are discussed. In Chapters 8 and 9 we discuss valid inequalities
and cutting planes. The use of inequalities to improve formulations and obtain
tighter bounds is the area in which probably the most progress has been made
in the last ten years. We give examples of the cuts, and also the routines to
find cuts that are being added to the latest systems.

In Chapters 10 and 11 two important ways of decomposing integer pro-
grams are presented. The first is by Lagrangian relaxation and the second
by column generation. It is often very easy to implement a special-purpose
algorithm based on Lagrangian relaxation, and many applications are repor-
ted in the literature. Integer programming column generation, which is linear
programming based, is more recent, but several recent applications suggest
that its importance will grow. '

Whereas the emphasis in Chapters 7-11 is on obtaining “dual” bounds
(upper bounds on the optimal value of a maximization problem), the need to
find good feasible solutions that provide “primal” (lower) bounds is'addressed
in Chapter 12. We present the basic ideas of various modern local search
metaheuristics, introduce briefly the worst-case analysis of heuristics, and
also discuss how an integer programming system can be used heuristically to
find solutions of reasonable quality for highly intractible integer programs.
_Finally, in Chapter 13 we change emphasis. By looking at a couple of
applications and asking a series of typical questions, we try to give a better
idea of how theory and practice converge when confronted with the choice of
an appropriate algorithm, and the question of how to improve a formulation,
or how to use a commercial mixed integer programming system effectively.

In using the book for a one-semester course, the chapters can be taken in
order. In any case we suggest that the basics consisting of Chapters 1, 2, 3,
6, 7 should be studied in sequence. Chapter 4 is interesting for those who
have had little exposure to combinatorial optimization. Chapter 5 can be
postponed, and parts of Chapter 12 can be studied at any time after Chapter
9. There is also no difficulty in studying Chapter 10 before Chapters 8 and 9.
The longer Chapters 7, 8, 9-and 11 contain starred sections that are optional.
The instructor may wish to leave out some material from these chapters, or
- alternatively devote more time to them. Chapter 13 draws on material from
most of the book, but can be used as motivation much earlier.

Acknowledgments

1 am sincerely grateful to the many people who have contributed in some way
to the preparation of this book. Marko Loparic has voluntarily played the

xvi PREFACE

role of teaching assistant in the course for which this material was developed.
Michele Conforti, Cid de Souza, Eric Gourdin and Abilio Lucena have all
used parts of it in the classroom and provided feedback. John Beasley, Marc
Pirlot, Yves Pochet, James Tebboth and Frangois Vanderbeck have criticized
one or more chapters in detail, and Jan-Karel Lenstra has both encouraged
and provided rapid feedback when requested. Finishing always takes longer
than expected, and I am grateful to my colleagues and doctoral students at
Core for their patience when they have tried to interest me in other more
pressing matters, to the Computer Science Department of the University of
Utrecht for allowing me to finish off the book in congenial and interesting
surroundings, and to Esprit program 20118, MEMIPS, for support during
. part of the 1997-98 academic year. Sincere thanks go to Fabienne Henry for
her secretarial help over many years, and for her work in producing the final
manuscript.

Scientifically I am deeply indebted to the many researchers with whom 1
have had the good fortune and pleasure to collaborate. Working with George
Nemhauser for many years has, I hope, taught me a little about writing.
His earlier book on integer programming with R. Garfinkel provided an out-
standing model for an undergraduate textbook. Yves Pochet is a considerate
and stimulating colleague, and together with Bob Daniel, who has always
been ready to provide a “practical problem per day,” they provide a constant
reminder that integer programming is challenging both theoretically and prac-
tically. However, the bias and faults that remain are entirely my own. '

Abbreviations
and Notation

BIP: Binary or Zero-One Integer Problem
B™: {0,1}" the set of n-dimensional 0,1 vectors
C-G: Chvital-Gomory
~.CLS: Capacitated Lot-Sizing Problem
conv(S): The convex hull of S
COP: Combinatorial Optimization Problem
‘D: Dual Problem
DP: Dynamic Programming
- e;: The j** unit vector
e5: The characteristic vector of S
E(S): All edges with both endpoints in the node set S
FCNF: Fixed Charge Network Flow Problem
GAP: Generalized Assignment Problem
GSEC: Generalized Subtour Elimination Constraint
GUB: Generalized Upper Bound
IKP: Integer Knapsack Problem
IP: Integer Programming Problem
IPM: Integer Programming Master Problem
LD: Lagrangian Dual Problem
Ihs: left-hand side :
- LP: abbreviation for “linear programming”

xvii

xviii ABBREVIATIONS AND NOTATION

LP: A specific or general Linear Programming Problem
LPM: Linear Programming Master Problem
L(X): Length of the input of a problem instance X
M: A large positive number
. MIP: Mixed Integer Programming Problem
MIR: Mixed Integer Rounding
N:; Generic set {1,2,---,n}
NP: Class of NP problems
N'PC: Class of NP-complete problems
P: Generic Problem Class, or Polyhedron
P: Class of polynomially solvable problems
P(N): Set of subsets of N
rhs: right-hand side
RLPM: Restricted Linear Programming Master Problem
R™: The n-dimensional real numbers
R7%: The n-dimensional nonnegative real numbers
S: Feasible region of IP, or subset of N
SOS: Special Ordered Set
STSP: Symmetric Traveling Salesman Problem
TSP: (Asymmetric) Traveling Salesman Problem
TU: Totally Unimodular
UFL: Uncapacitated Facility Location Problem
ULS: Uncapacitated Lot-Sizing Problem
vV~ (i): Node set {keV: (k,i) € A}
V+(i): Node set {k € V:(i,k) € A}
X Feasible region of IP, or & problem instance
(z)*: The maximum of zand 0
Z%: The n-dimensional nonnegative integers
6~ (S): All arcs going from a node not in S to a node in S
5+(S): All arcs going from a node in S to a node not in S
5(S) or 8(S,V \ S): All edges with one endpoint in § and the other in V'\'S
5(i) or 6({i}): The set of edges incident to node 1
1: The vector (1,1,.-., 1) '
0: The vector (0,0,.-- ,0)

e ——

e — e

Integer Programming

Formulatz’ons

1.1 INTRODUCTION

A wide variety of practical problems can be formulated and solved using in-
tegér programming. We start by describing briefly a few such problems.

1. Train Scheduling

Certain train schedules repeat every hour. For each line, the travel times
between stations are known, and the time spent in a’station must lie within
a given time interval. Two trains traveling on the same line must for obvious
reasons be separated by at least a given number of minutes. To make a con-
nection between trains A and B at a particular station, the difference between
the arrival time of A and the departure time of B must be sufficiently long to
allow passengers to change, but sufficiently short so that the waiting time is
not excessive. The problem is to find a feasible schedule.

2. Airline Crew Scheduling

Given the schedule of flights for a particular aircraft type, one problem is
to design weekly schedules for the crews. Each day a crew must be assigned
a duty period consisting of a set of one or more linking flights satisfying nu-
merous constraints such as limited total flying time, minimum rests between
flights, and so on. Then putting together the duty periods, weekly schedules
or pairings are constructed which must satisfy further constraints on overnight
rests, flying time, returning the crew to its starting point, and so on. The
objective is to minimize the amount paid to the crews, which is a function of
~ flying time, length of the duty periods and pairings, a guaranteed minimum

1

2 FORMULATIONS
number of flying hours, and so forth.

3. Production Planning ;

A multinational company holds a monthly planning meeting in which a
three-month production and shipping plan is drawn up based on their latest
estimates of potentialvsales. The plan covers 200-400 products produced in
5 different factories with shipments to 50 sales areas. Solutions must be gen-
erated on the spot, so only about 15 minutes’ computation time is available.
For each product there is a minimum production quantity, and production
is in batches — multiples of some fixed amount. The goal is to maximize
contribution. ‘

4. Electricity Generation Planning

A universal problem is the unit commitment problem of developing an
hourly schedule spanning a day or a week so as to decide which generators
will be producing and at what levels. Constraints to be satisfied include sat-
isfaction of estimated hourly or half-hourly demand, reserve constraints to
ensure that the capacity of the active generators is sufficent should there be
a sudden peak in demand, and ramping constraints to ensure that the rate
of ¢hange of the output of a generator is not excessive. Generators have min-
imum on- and off-times, and their start-up costs are 2 nonlinear function of
the time they have been idle.

5. Telecommunications
A typical problem given the explosion of demand in this area concerns the

installation of new capacity so as to satisfy a predicted demand for data/voice -

transmission. Given estimates of the requirements between different centers,
the existing capacity, and the costs of installing new capacity which is only
available in discrete amounts, the problem is to minimize cost taking into
account the possibility of failure of a line or a center due to a breakdown or
accident. ’

6. Buses for the Handicapped (or Dial-a-Ride) '

In several major cities a service is available whereby handicapped sub-
scribers can call in several hours beforehand with a request to be taken from
A to B at a certain time, with special facilities such as space for a wheel chair
if necessary. The short-term problem is to schedule the fleet of specialized

mini-buses so as to satisfy a maximum number of requests. One long-term
problem is to decide the optimal size of the fleet.

7. Ground Holding of Aircraft

Given several airports, a list of flights, and the capacity of the airports
in each period, which is a function of the weather conditions and forecasts,
the problem is to decide which planes to delay and by how long, taking into
account the numbers of passengers, connecting flights, the expected time until

T ——————

WHAT IS AN INTEGER PROGRAM? 3

conditions improve, and so on, with the objective of minimizing aircraft costs
and passenger inconvenience.

8. Cutting Problems

Whether cutting lengths of paper from rolls, plastic from large rectangular
sheets, or patterns to make clothes, the problem is in each case to follow pre-
cisely determined cutting rules, satisfy demand, and minimize waste.

"Other recent application areas include problems in molecular biology, stat-
istics, and VLSIL.

This book tries to provide some of the understanding and tools necessary
for tackling such problems.

1.2 WHAT IS AN INTEGER PROGRAM?
Suppose that we have a linear program

max{cz : Az < b,z > 0}

where A is an m by n matrix, ¢ an n-dimensional row vector, b an
m-~dimensional column vector, and T an n-dimensional column vector of vari-
ables or unknowns. Now we add in the restriction that certain variables must
take integer values.

If some but not all variables are integer, we have a
(Linear) Mixed Integer Program, written as

maxcz + hy
(MIP) ‘ Az + Gy<b
z > 0,y >0 and integer

where A is again m by n, G is m by p, h is a p row-vector, and y is a p
column-vector of integer variables.

If all variables are integer, we have a
(Linear) Integer Program, written as

max cT
(IP) Ar < b
z > 0 and integer,

and if all variables are restricted to 0-1 values, we have a
0-1 or Binary Integer Program

_ max cz
(BIP) . Az
T

m IA

b
{0,1}~.

4 FORMULATIONS

‘Another type of problem that we wish to study is a “combinatorial op-
timization problem.” Here typically we are given a finite set N = {1,...,n},
weights c; for each j € N, and a set F of feasible subsets of N. The problem
of finding a minimum weight feasible subset is a :
Combinatorial Optimization Problem
(COP) éngig{z ¢cj: S € F)

j€S

In the next section we will see various examples of IPs and COPs, and
also see that often a COP can be formulated as an IP or BIP.

Given that integer programs look very much like linear programs, it is
not surprising that linear programming theory and practice is fundamental
in understanding and solving integer programs. However, the first idea that -
springs to mind, namely “rounding”, is often insufficient, as the following ex-
ample shows.

Example 1.1 Consider the integer program:
max 1.00z; + 0.64z2
50z + 31z < 250
. 3z — 219 _>_ -4
z1,72 > 0 and integer.

(376/193,950/193)

Fig. 1.1 Rounding the LP

As we see from Figure 1.1, the linear programming solution (376/193, 950/ 193)
is a long way from the optimal integer solution (5,0).]

For BIPs the situation is often even worse. The linear programming solu-
tion may well be (0.5,...,0.5), giving no information whatsoever. ‘What is
more, it is typically very difficult just to answer the question whether there
exists a feasible 0-1 solution.

FORMULATING IPS AND BIPS 5
1.3 FORMULATING IPS AND BIPS

As in linear programming, translating a problem description into a formula-

tion should be done systematically, and a clear distinction should be made
between the data of the problem instance, and the variables (or unknowns)
used in the model. ’

(i) Define what appéér to be the necessary variables.

(ii) Use these variables to define a set of constraints so that the feasible points
correspond to the feasible solutions of the problem.

(iii) Use these variables to define the objective function.

If difficulties arise, define an additional or alternative set of variables and
.iterate.) . .

Defining variables and constraints may not always be as easy as in linear
programming. Especially for COPs, we are often interested in choosing a
~ subset § C N. For this we typically make use of the incidence vector of S,
which is the n-dimensional 0-1 vector z5 such that =§ = 1if j € S, and
z§ = 0 otherwise. '

Below we formulate four well-known integer programming problems.

The Assignment Problem

There are n people available to carry out n jobs. Each person is assigned to
carry out exactly one job. Some individuals are better suited to particular
jobs than others, so there is an estimated cost ¢;; if person i is assigned to
job j. The problem is to find a minimum cost assignment.

Definition of the variables.
;5 =1 if person i does job j, and z;; =0 otherwise.

Definition of the constraints.
Each person i does one job:

n
inj =1lfori=1,...,n.
Jj=1 .
Each job j is done by one person:

n
Z.’::ij:lforj:l,...,n.

i=1
The variables are 0-1:
zi;€{0,1} fori=1,...,n,j=1,...,n

6 FORMULATIONS

Definition of the objective function.
The cost of the assignment is minimized:

n n
minz Z CijTij-

i=1 j=1
The 0-1 Knapsack Problem

There is a budget b available for investment in projects during the coming year
and n projects are under consideration, where a; is the outlay for project I
and ¢; is its expected return. The goal is to choose a set of projects so that
the budget is not exceeded and the expected return is maximized.

Definition of the variables.
z;=11if project j is selected, and z; =0 otherwise.

" Definition of the constraints.
The budget cannot be exceeded:

n -
Zajzj <b.

=1
The variables are 0-1:
z; € {0,1} forj=1,...,0

Definition of the objective function.
The expected return is maximized:

n
max E CiTj-

j=1

The Set Covering Problem.

Given a certain number of regions, the problem is to decide where to install a

set of emergency service centers. For each possible center the cost of installing

a service center, and which regions it can service are known. For instance, if

the centers are fire stations, & station can service those regions for which a

fire engine is guaranteed to arrive on the scene of a fire within 8 minutes. The

goal is to choose a minimum cost set of service centers so that each region is
~ covered.

First we can formulate it as a more abstract COP. Let M = {,...,m}
be the set of regions, and N ={1,... ,n} the set of potential centers. Let
S; € M be the regions that can be serviced by a center at j € N, and ¢;j its
installation cost. We obtain the problem:

TI%I}DV{Z cj: UjeTS?' .= M}
jJET

FORMULATING IPS AND BIPS 7

» Now we formulate it as a BIP. To facilitate the description, we first con-
struct a 0-1 incidence matriz A such that a;; = 1ifi € S, and a;; =0
otherwise. Note that this is nothing but processing of the data.

‘Definition of the variables.
z; = 1 if center j is selected, and z; = 0 otherwise.

Definition of the constraints.
At least one center must service region i:

Za,_,:z:_., >1lfori=1,.
j=1

The variables are 0-1:
z;€{0,1} forj=1,...,n

Definition of the objective function.
The total cost is minimized:

n
min Z CiTj.
—~
The Traveling Salesman Problem (TSP)

This is perhaps the most notorious problem in Operations Research because
it is so easy to explain, and so tempting to try and solve. A salesman must
visit each of n cities exactly once and then return to his starting point. The
time taken to travel from city i to city j is ¢;;. Find the order in which he
should make his tour so as to finish as quickly as possible.

This problem arises in a multitude of forms: a truck driver has a list of
. clients he must visit on a given day, or a machine must place modules on
printed circuit boards, or a stacker crane must pick up and depose crates.
Now we formulate it as a BIP.

Definition of the variables.
z;; = 1 if the salesman goes dlrectly from town i to town j, and x4 = 0
otherwise. (z; is not defined for i = 1 L)

Definition of the constraints.
He leaves town i exactly once:

Z Tij=1 fori=1,...,n.
Jii#i
He arrives at town j exactly once:

Z a:ij:l forj=1,...,n.
$i#E]

8 FQRMULATIONS :

@

Fig. 1.2 Subtours

So far these are precisely the constraints of the assignment problem. A solu-
tion to the assignment problem might give a solution of the form shown in
Figure 1.2 (i.e., a set of disconnected subtours). To eliminate these solutions,
we need more constraints that guarantee connectivity by imposing that the
salesman must pass from one set of cities to another, so-called cut-set con-
straints:

YN wyz1for SCN,S#¢.

i€S j¢S
An alternative is to replace these constraints by subtour elimination con-
straints:
S Y wsIS|-1for SCN,2< 15| <n—1.
i€S jES
The variables are 0-1:

z;; € {0,1} fori=1,...,mj=1,...,mi#J

Definition of the objective function.
The total travel time is minimized:

n n
min Z Z CijTij-

- =1 =1

1.4 THE COMBINATORIAL EXPLOSION

The four problems we have looked at so far are all combinatorial in the sense
that the optimal solution is some subset of a finite set. Thus in principle these
problems can be solved by ‘enumeration . To see for what size of problem in-
stances this is a feasible approach, we need to count the number of possible
solutions.

The Assignment Problem. There is a one-to-one correspondence between as-
signments and permutations of {1,...,n}. Thus there are n! solutions to

MIXED INTEGER FORMULATIONS 9

compare.

The Knapsack and Covering Problems. In both cases the number of subsets is
2". For the knapsack problem with b= 3°7_, a;/2, at least half of the subsets
are feasible, and thus there are at least 2"~ feasible subsets.

The Traveling Salesman Problem. Starting at city 1, the salesman has n — 1
choices. For the next choice n — 2 cities are possible, and so on. Thus there
are (n —1)! feasible tours.

In Table 1.1 we show how rapidly certain functions grow. Thus a TSP -
with n = 101 has approximately 9.33 x 10'7 tours.

n logn n% n? on n!

10 3.32 3.16 10° 1.02x 10° 3.6 x 10°
100 6.64 10.00 10* 1.27%10%° 9.33 x 1057
1000 9.97 31.62 108 1.07x10%01 4.02 x 102567

Table 1.1 Some typical functions.

The conclusion to be drawn is that using complete enumeration we can only
hope to solve such problems for very small values of n. Therefore we have to
devise some more intelligent algorithms, otherwise the reader can throw this
‘book out of the window.

1.5 MIXED INTEGER FORMULATIONS

Modeling Fixed Costs

Suppose we wish to model a typical nonlinear fixed charge cost function:
hz)=f+pzif 0<z <Cand h(z)=0if z=0

with f >0 and.p >0 (seé Figure 1.3).

h{x)

f

x

1] c

Fig. 1.3 Fixed cost function

10 FORMULATIONS

Definition of an additional variable.
y=1 if:c>0andy=00therwise.’

Definition of the constraints and objective function. '
We replace h(z) by fy + pz, and add the constraints z < Cy,y € {0,1}.

Note that this is not a completely satisfactory formulation, because al-
though the costs are correct when = > 0, it is possible to have the solution
z = 0,y = 1. However, as the objective is minimization, this will typically
not arise in an optimal solution.

Uncapacitated Facility Location (UFL)

Given a set of potential depots N ={1,...,n} andaset M ={1,... ,m} of
clients, suppose there is a fixed cost f; associated with the use of depot J,
and a transportation cost Cij if all of client i’s order is delivered from depot j.
The problem is to decide which depots to open, and which depot serves each
client so as to minimize the sum of the fixed and transportation costs. Note
that this problem is similar to the covering problem, except for the -addition
of the variable transportation costs.

Definition of the variables. v

We introduce a fixed cost or depot opening variable y; = 1 if depot 4 is used,
and y; = 0 otherwise. :

x;; is the fraction of the demand of client 4 satisfied from depot j.

Definition of the constraints.
Satisfaction of the demand of client i

n
Somy=1fori=1,..m
—
To represent the link between the ;; and the yj variables, we note that
S iem Tid < m, and use the fixed cost formulation above to obtain:

Zmij < my; for j eN,y; € {0,1} for j € N,zi; >0fori€ M,jeN.
iEM : .

Definition of the objective function.
The objective is ZjeN hjv(mlj,...,:vmj) where hj(:v;j,...,:cmj) = f; +
S iem Cii%is i S ien Tij > 0,50 We obtain

min 2 z CijTij + Z ijjv'

i€eM JjEN JEN

MIXED INTEGER FORMULATIONS 11
Uncapacitated Lot-Sizing (ULS)

The problem is to decide on a production plan for an n-period horizon for a
single product. The basic model can be viewed as having data:

fi is the fixed cost of producing in period t.
p; is the unit production cost in period t.
hy is the unit storage cost in period t.

dy is the demand in period t.

We use the natural (or obvious) variables:

z; is the amount produced in period t:
s, is the stock at the end of period t.
y=1Iif production occurs int,and =0 otherwise.

To handle the fixed costs, we observe that a priori no upper bound is given
on z;. Thus we either must use a very large value C = M, or calculate an
upper bound based on the problem data.

For constraints and objective we obtain:

n n n
minz PTy + Z hist Z Jiye
t=1

t=1 t=1

+

= dt+stfort=l,...,n
Tz, < My fort=1,...,m
> 0,y € {0,1} fort=1,...,7.

St-1+ Tt

s0=0,5t,Tt

If we impose that sn = 0, then we can tighten the variable upper bound
constraints to T < (T, di)ye. Note also that by substituting st = :=1 Ti—
St_, di, the objective function can be rewritten as PIAREEIE D DA 7 K
where ¢, = pi + he + ... +hn and the constant K = DI he(Tiey di)-

Discrete Alternatives or Disjunctions

Suppose z € R™ satisfies 0 < 7 < u, and either alz < by or a’x < be
(see Figure 14) We introduce binary variables i for i = 1;2. Then if
M > max{a‘z —b;: 0 <z<u}fori= 1,2, we take as constraints:
' @iz —b; < M1 —y) fori=1,2
1 +v2 = 1,01 € {0,1} for i=1,2
0<z <

Nowify1 =1,z satisfies alz < by whereas a2z < by is inactive, and conversely
ifyz =1 '

Such disjunctions arise naturally in scheduling problems. Suppose that
two jobs must be processed on the same machine and cannot be processed

. 12 FORMULATIONS

X3

Fig. 1.4 Either/or constraints

simultaneously. If p; are the processing times, and the variables t; the start
times for i = 1,2, then either job 1 precedes job 2 and so t2 2 t1 + P, OF job
2 comes first and t; > t2 + p2-

1.6 ALTERNATIVE FORMULATIONS

In the two previous sections we have formulated a small number of integer
programs for which it is not too difficult to verify that the formulations are
correct. Here and in the next section we examine alternative formulations
and try to understand why some might be better than others. First we make
precise what we mean by a formulation. :

Definition 1.1 A subset of R™ described by a finite set of linear constraints
P = {z € R*: Az < b} is a polyhedron.

Definition 1.2 A polyhedron P C R™? is a formulation for a set X C
Z"™ x RP if and only if X = PN (Z™ x RP). :

Note that this definition is restrictive. For example we saw in modeling fixed
costs in the previous section that we did not model the set X = {(0,0),(z,1)
for 0 <z < C}, but the set X U {(0,1)}.

Example 1.2 In Figure 1.5 we show two different formulations for the set:

X = {(L,1),(2,1), (3,1), (1,2), (2:2), (3,2), 2, 3)}- .

Note that it would not be easy to write a formulation for the set X \ {2,2}
without introducing many more variables, see Exercise 1.2

Equivalent Formulations for a 0-1 Knapsack Set.

‘Consider the set of points X =
{(0,0,0,0), (1,0,0;0), (0,1,0,0),(0,0,1,0),(0,0,0, 1),0,1,0,1),(0,0, i, 1)}.

ALTERNATIVE FORMULATIONS

3

1d

o o o
: Vg s
Fig. 1.5- Two different formulations of an IP

Check that the three polyhedra below are formuiations for X.
Pi={z€R*:0<z<1,83z; + 6172+ 4973+ 2074 100},
P2={.1;6R4:0$a:$1,4x1+3:c2+2m3+1x454},

Py = {12 € RY: 4z +3zp +273 F+lzy <4

1z, +lz2 +lzs <1
1z, +1lzy <1
0<z <1}

An Equivalent Formulation for UFL

For fixed j, consider the constraints:

Z(Eij <my;, Y5 € {0,1},0 < Tij <lforie M.
iEM

13

Logically these constraints express the condition: if any z;; > 0, then y; =

"1, or stated a little differently: for each i, if z;; > 0, then y; = L.
immediately suggests a different set of constraints:

0<zy; Sy,'v for i € M,y; € {0,1}.

This leads to the alternative formulation:

min Y7, Y0y i + L= fi¥i
i1 @iy =1for i€ M
zi;<yjforie M,jeN
xijZOforieM,jeN,ij{oal} for jeN.

This

(1.1)
(1.2)
(1.3)
(1.4)

14 FORMULATIONS

In the two examples we have just examined, the variables have been the
same in each formulation, and we have essentially modified or added con-
straints. Another possible approach is to add or choose different variables, in
which case we talk of ertended formulations.

An Extended Formulation for ULS

What variables, other than production and stock levels, might be useful in
describing an optimal solution of the lot-sizing problem? Suppose we would
like to know when the items being produced now will actually be used to
satisfy demand. Following the same steps as before, this leads to:

Definition of the variables.
w;s is the amount produced in period i to satisfy demand in period ¢
y¢ = 1 if production occurs in period t (as above), and y; = 0 otherwise.

Definition of the constraints. v
Satisfaction of demand in period t:

twu =d; for all t.
i=1
Variable upper-bound constraints:
wi < dgy; for all 4,4 < ¢
The variables are mixed:
wy > 0 for all 4,t,4 <ty € {0,1} for all £.
Definition of the objective function.

n n n
min > Y cwi + Y frye-
t=1

i=1 t=i

Note that here we are again using modified costs with ¢, the production cost
in period t and zero storage costs. It is optional whether we choose to define
the old variables in terms of the new by adding defining equalities: :

n
= _S_ Wit.

t=1

1.7 GOOD AND IDEAL FORMULATIONS

In Figure 1.5 we show two different formulations of the same problem. We
have-glso seen two possible formulations for the uncapacitated facility location

GOOD AND IDEAL FORMULATIONS 15

problem. Geometrically we can see that there must be an infinite number of
formulations, so how can we choose between them?

The geometry again helps us to find an answer. Look at Figure 1.6 in
which we have repeated the two formulations shown in Figure 1.5, and added
a third one Ps. ‘Formulation P is ideal, because now if we solve a linear
program over P, the optimal solution is at an extreme point. In this ideal
case each extreme point is integer and so the IP is solved.

4 d

30

2 (

Fig. 1.6 The ideal formulation

We can now formalize this idea.

Definition 1.3 Given a set X C R™, the convez .hull of X, denoted conv(X),
is defined as: conv(X) = {z : ¢ = PN Nzt Y = 1L,a 2 0 for
i=1,...,t over all finite subsets {z!,...,2*} of X}.

Proposition 1.1 conv(X) is a polyhedron.
Proposition 1.2 The estreme points of conv(X) all lie in X.

Because of these two results, we can replace the IP: {maxczT: z € X} by the
equivalent linear program: {maxcz:z € conw(X)}. This ideal reduction to a
linear program also holds for unbounded integer sets X={z:Ar<bz20
and integer}, and mixed integer sets X ={(z,y): Az +Gy<bz =2 0,y=0
and integer} with 4,G, b rational. However, whether X is bounded or not,

“this is in general only a theoretical solution, because in most cases there is
such an enormous (exponential) number of inequalities needed to describe
conv(X), and there is no simple characterization for them.

So we might rather ask the question: Given two formulations Py and P2
for X, when can we say that one is better than the other? Because the ideal
solution conv(X) has the property that X C conv(X) C P for all formulations
P, this suggests the following definition. ’

16 FORMULATIONS

Definition 1.4 Given aset X C R, and two formulations Py and P; for
X, P, is a better formulation than P, if P, C P;.

In the next chapter we will see that this turns out to be a useful defini-
tion, and a very important idea for the development of effective formulations.

For the moment we examine some of our formulations in the light of these
definitions.

Equivalent Formulations for a Knapsack Set

Looking again at the set X = .
{(0,0,0,0),(1,0,0,0),(0,1,0,0), (0,0,1,0),(0,0,0,1),(0,1,0,1), (0, 0,1,1)}
and the three formulations,

Pi={zeR':0<r<1,81 + 61z, + 4973 + 2024 < 100},
P2={.‘BGR“:0_<_ISI,4:E1+3$2+2:113+1:D434},

Pa={z€ R4 . 4z +3x2 4+2r3 +lzg < 4

1z, +lz2 +1lz3 <1
1z, +1lzy <1
0<z <1},

it is easily seen that Ps C P2 C P, and it can be checked that P3 =conv(X),
and P; is thus an ideal formulation.

Formulations for UFL

Let P, be the formulation given in Section 1.4 with a single constraint

>z <my;
, . €M
for each j, and P, be the formulation given in Section 1.5 with the m con-
straints

zy; <yjforieM

for each j. Note that if a point (z,y) satisfies the constraints z;; < y; for
i € M, then summing over i € M shows that it also satisfies the constraints
iz < my;. Thus P; C P;. To show that P» C Py, we need to find a
point in Py that is not in P,. Suppose for simplicity that n divides m, that
is, m = kn with k > 2 and integer. Then a point in which each depot serves
k clients, z;; = 1 for i'= k(j-1) +1,.., kG- +ki=L....,m T = 0
otherwise, and y; = k/mfor j=1,...,n lies in P; \ P.

The two formulations that we have seen for the lot-sizing problem ULS
have different variables, so it is not immediately obvious how they can be
compared. We now examine this question briefly.

GOOD AND IDEAL FORMULATIONS 17

Formally, assuﬁling for simplicity that all the variables are integer, we have
a first formulation ’ A
min{cz : € PN 2"}

with PC R*,and a second extenc'ied formulation
min{cz : (z,w) € QN (2" x RP)}
with Q C R" x R*.

Definition 1.5 Given a polyhedron Q C (R™x RP), the projection of Q onto
the subspace R™, denoted projzQ, is defined as:

proj:Q ={z € R*: (z,w) € Q for some w € RP}.
Thus proj-Q C R" is the formulation obtained from Q in the space R" of the
original z variables, and it allows us to compare Q with other formulations
PCR" '

Comparing Formulations for ULS

We can now compare the formulation Pi:

sgo1+x = ditsgfort=1...,n
, ¢ < My fort=1,...,n
so = 0,58, Tt > 0,0<y <1for all ¢,

and P = proj,,,,sz, where Q- takes the form:

t
Zw“ = dyforallt

i=1

Wit < dty,‘ for all i, t,i < t
n .
T = Zwu for all i
t=i
wip = 0 for all i,t withi <t
0 < y<lforalt.

It can be shown that P d&;cribes the convex hull of solutions to the problem,
and is thus an ideal formulation. It is easily seen that Pz C Pp. For instance
the point z¢ = dt, Yt = dy/M for all ¢ is an extreme point of Py that is not in
Ps. . ’

18 FORMULATIONS
1.8 NOTES
Introduction

Much of the material in this book except for the last three or four chapters
is treated in greater detail and at a-more advanced level in [NemWol88]. An
even more advanced theoretical treatment of integer programming is given
in [Sch86]. Other recent books include [ParRar88], [SalMat89] and [Sie96].
For the related topic of combinatorial optimization, an undergraduate text is
[PapStig2], and the recent graduate-level book [CooCunetal97] is recommen-
ded.

An important source of references and surveys -are the annotated bibli-
ographies of [OheLenRin85) and [DelAMafMar97]. The journals publishing
articles on integer programming cover a wide spectrum from theory to appli-
cations. The more theoretical include Mathematical Programming, Mathem-
atics of Operations Research, the SIAM Journal on Discrete Mathematics, the
SIAM Journal on Optimization and Discrete Applied Mathematics, while Op-
erations Research, the European Journal of Operations Research, Networks,

Management Science, and so on, contain more integer programming applica-

tions. For a survey of integer programming, see [NemWol89).

For those unfamiliar with linear programming , [Dan63] is the ultimate
classic, and the book [Chv83] is exceptional. Recently many books treating in-
terior point as well as simplex methods have appeared, including
[RooTerVia97] and [Vdbei96]. For graph theory the books [Ber73] and

[BonMur76] are classics. For network flows [ForFul62] and [Law76] remain -

remarkably stimulating, while [AhuMagOr193] is very comprehensive and up-
to-date.

In the notes at the end of each chapter, we will cite only selected references:
a few of the important original sources, and also some recent surveys and
articles that can be used for further reading.

Notes for the Chapter

The importance of formulations in integer programming has only become
fully apparent in the last twenty years. The book [Wil78] is partly devoted
to this topic, but is now a little dated. Certain special classes of problems
that are often tackled as integer programs have had books dedicated to them:
knapsack problems [MarTot90], traveling salesman problems [Lawetal85], loc-
ation problems [MirFra90], network flows [AhuMagOrl93], network models
[Balletal95a) and network routing [Balletal95b], and production and invent-
ory [GraRinZip93). For scheduling problems the recent survey [QueSch94]
contains a variety of integer programming formulations.

EXERCISES 19

1.9 EXERCISES
1. Suppose that you are interestféd in choosing a set of investments {1,...,7}
using 0-1 variables. Model the following constraints:

(i) You cannot invest in all of them.
(ii) You must choose at least/ one of them.
(iii) Investment 1 cannot be’ chosen if investment 3 is chosen.
(iv) Investment 4 can be cHosen only if investment 2 is also chosen.
(v) You must choose eithef both investments 1 and 5 or neither.
_(vi) You must choose eithier at least one of the investments 1,2,3, or at least
two investments from 2,4,5,6. , ’

9. Formulate the following as mixed integer programs:

@ u= min{z1, 22}, assuming that 0 < z; < C for j =1,2
(i) v = |z1 — 22| with 0 Sz < C,forj=12
(iii) the set X \ {z*} where X = {z € Z": Az < b} and z* eX.

3. Modeling disjunctions.

(i) Extend the formulation of discrete alternatives of Section 1.4 to the union
of two polyhedra P, = {z € R": Akz < b%,0 < z < u} for k = 1,2 where
max;, max;{afz —bf:0 <z <u} < M.

(ii) Show that an extended formulation for Py'U Pz is

r=21422
Akzk < by for k=1,2
0< zF <uyk fork=1,2
y+y?=1
2* e R*,yF € Bt for k=1,2.

4. Show that

X = {zx € B*: 9Tz + 32x2 + 2573 + 2074 < 139}
={a:eB4:2:z:1+a;2+$3+:c4_<_3}
={zeB' iz +12+73<2
T+ T2 +Ts£2
Ty + T3+ T4 <2}

5. John Dupont is attending a summer school where he must take four courses
per day. Each course lasts an hour, but because of the large number of stu-
dents, each course is repeated several times per day by different teachers.
Section 1 of course k denoted (4, k) meets at the hour t;;, where courses start
on the hour between 10 a.m. and 7 p.m. John'’s preferences for when he takes
courses are influenced by the reputation of the teacher, and also the time of

20 FORMULATIONS

day. Let p; be his preference for section (3, k). Unfortunately, due to con-
flicts, John cannot always choose the sections he prefers.

(i) Formulate an integer program to choose a feasible course schedule that
maximizes the sum of John’s preferences.

(it) Modify the formulation, so that John never has more than two consecutive
hours of classes without a break.

(iii) Modify the formulation, so that John chooses a schedule in which he
starts his day as late as possible.

6. Prove that the set of feasible solutions to the formulation of the traveling
salesman problem in Section 1.2 is precisely the set of incidence vectors of
tours.

7. The QED Company must draw up a production program for the next
nine weeks. Jobs last several weeks and once started must be carried out
without interruption. During each week a certain number of skilled workers
are required to work full-time on the job. Thus if job i lasts p; weeks, liu
workers are required in week u foru=1,...,ps. The total number of workers
available in week t is L. Typical job data (¢,ps, b1, -+, lip;) is shown below.

Job Length Weekl Week2 Week3 Week4 -
3 1 - ’

T N =
O W N N
[SN N) RPN
[JURE S I
N ot

2
4
4
3

(i) Formulate the problem of finding a feasible schedule as an IP.

(ii) Formulate when the objective is to minimize the maximum number of
workers used during any of the nine weeks.

(iii) Job 1 must start at least two weeks before job 3. Formulate.

(iv) Job 4 must start not later than one week after job 5. Formulate.

(v) Jobs 1 and 2 both need the same machine, and cannot be carried out
simultaneously. Formulate.

8. Show that the uncapacitated facility location problem of Section 1.5 with
aset N = {1,...,n} of depots can be written as the COP

min{e(S) + 15}

j€S

where ¢(S) = Y1, minjes cij-

EXERCISES 21

9. Show that the covering problem of Section 1.3 can be written as the COP

min{3 f; 1 v(8) = o))
= jes

where v(S) = s min{Y e i) 1}

10. A set of n jobs must be carried out on a single machine that can do only
one job at a time. Each job j takes p; hours to complete. Given job weights
wj for j =1,..,m, in what order should the jobs be carried out so as to
minimize the weighted sum of their start times? Formulate this scheduling
problem as a mixed integer program.

11. Using a mixed integer programmirig system, solve an instance of the
uncapacitated facility location problem, where f; is the cost of opening depot
j, and ¢;; is the cost of satisfying all client-i’s demand from depot j, with
f<(4,3,4,4,7) and

—

N 00 W N O o
[y

cCoUo kg

_‘.

(cij) =

OOU\ANCDQOO')
sEroro
— 00 00 H DN

12. The symmetric traveling salesman problem is'a TSP in which ¢;; = ¢ji
for all (i,5) € A. Consider an instance on the graph shown in Figure 1.7,
where the missing edges have a very high cost. Solve with a mixed integer
programming system. -

Fig. 1.7 TSP instance

13. Formulate and solve an instance of the lot-sizing problem over 6 periods,
with demands (6,7,4,6,3, 8), unit production costs (3,4, 3,4,4,5), unit stor-
age costs (1,1,1,1,1,1), set-up costs (12,15,30,23,19,45), and a maximum
production capacity of 10 items per period.

14. Formulate and solve the proBlem of placing N queens onan N by N
chessboard such that no two queens share any row, column, or diagonal.

22 FORMULATIONS

15. (Projection). Let Q = {(z,y) € R} x RY : Az + Gy < b}. Use Farkas’
Lemma to show that : '

projy(Q) = {y € R% : v‘(b—-Gy) >0fort=1,...,T}

where {v*}7_, are the extreme rays of V = {v € RT : vA > 0}.
Show that if proj,(Q) # 0,

max{ez + hy : (z,y) € Q} = max{ min u'(b—Gy)+hy:y€ projy(Q)}

where {u®}S_, are the extreme points of U = {u € RT : uA > c}.

R

Optimality, Relazation,
| - and Bounds

2.1 OPTIMALITY AND RELAXATION

Given an IP or COP
z=max{c(z):z€X C Z"}

how is it possible to prove that a given point z* is optimal? Put differently, we
are looking for some optimality conditions that will provide stopping criteria
in an algorithm for IP.

The “naive” but nonetheless important reply is that we need to find a lower
bound z < z and an upper bound Z 2 z such that z = Z = z. Practically, this
means that any algorithm will find a decreasing sequence

H>H>..>522
of upper bounds, and an increasing sequence

g_1_<£2_<»...<53$z,
of lower bounds, and stop when

Zs— 2t <€

where ¢ is some suitably chosen small nonnegative value (see Figure 2.1). Thus
we need to find ways of deriving such upper and lower bounds.

23

24 OPTIMALITY, RELAXATION, AND BOUNDS

Fig. 2.1 Bounds for IP

Primal Bounds

Every feasible solution z* € X provides a lower bound z = ¢(z*) < z. This is
essentially the only way we know to obtain lower bounds. For some IP prob-
lems, finding feasible solutions is easy, and the real question is how to find
good solutions. For instance in the traveling saleman problem, if the salesman
is allowed to travel between any pair of cities, any permutation of the cities
leads to a feasible tour, and it suffices to evaluate the length of the tour to
have a primal bound on z. Some simple ways to find feasible solutions and
then improve them are discussed later in this chapter. For other IPs, finding
feasible solutions may be very difficult (as difficult as the IP itself). This

' topic is raised again when we discuss complexity in Chapter 6, and heuristics
to find primal bounds are treated in more detail in Chapter 12.

Dual Bounds

Finding upper bounds for a maximization problem (or lower bounds for a
minimization problem) presents a different challenge. These are called dual
bounds in contrast to the primal bounds for reasons that should become obvi-
ous in Section 2.5. The most important approach is by “relaxation,” the idea
being to replace a “difficult” max(min) I P by a simpler optimization problem
whose optimal value is at least as large (small) as z.

For the “relaxed” problem to have this property, there are two obvious
possibilities:

(i) Enlarge the set of feasible solutions so that one optimizes over a larger set,
or .

(ii) Replace the max(min) objective function by a function that has the same
or a larger (smaller) value everywhere. :

Definition 2.1 A problem (RP) z = max{f(z) : ¢ € T C R"} is a relazo-
tion of (IP) z = max{c(z) : 2 € X C R"} if :

LINEAR PROGRAMMING RELAXATIONS 25

(i) X €T, and
(ii) f(z) = c(z) for all z € X.

Proposition 2.1 If RP is a relazation of 1P, 2R >z

Proof. If z* is an optimal solution of IP,z* € X C Tand z = c(z*) < flz*).
As z* €T, f(z*) is a lower bound on 2R, and so z < f(z*) < 2F. .

The question then arises of how to construct interesting relaxations. One
of the most useful and natural ones is the linear programming relaxation.

2.2 LINEAR PROGRAMMING REL'AXATIO.NS

Definition 2.2 For the integer pfog:am max{cz:z € PN zr} with formula-
tion P={z € R} : Az < b}, the linear programming relazation is the linear
program zF = max{cz : z € P}.

As PN Z™ C P and the objective function is unchanged, this is clearly a

relaxation. .

Example 2.1 Consider the integer program

z=max 4zr; — 22
‘ Tzy — 2Z2 < 14
, T2 < 3
2:1:1 - 21‘2 _<_ 3
T € Z3.

To obtain a primal (lower) bound, observe that (2,1) is a feasible solution, so
we have the lower bound z > 7. To obtain a dual (upper) bound, consider
the linear programming relaxation. The optimal solution is z* = (279, 3) with
value zLF = 5.-,9. Thus we obtain an upper bound z < %9. Observing that the
optimal value must be integer, we can round down to the nearest integer and

so obtain z < 8. .

Note that the definition of better formulations is intimately related to that of
linear programming relaxations. In particular better formulations give tighter
(dual) bounds. -

Proposition 2.2 Suppose Py, P, are two formulations for the integer pro-

- gram max{cr : T € X C Z™} with P, a better formulation than Py i.e.
P, C P IfzF¥ = max{cz:z € P;} fori = 1,2 are the values of the

associated linear programming relazations, then z{“P < z%P for all c.

Relaxations do not just give dual bounds. They sometimes allow us to prove
optimality. ’

2% » OPTIMALITY, RELAXATION, AND BOUNDS

Proposition 2.3 (i) If a relazation RP is infeasible, the original problem IP
is infeasible.

(i) Let z* be an optimal solution of RP. If z* € X and f(z*) = c(z*), then
z* is an optimal solution of IP.

Proof. (i) As RP is infeasible, T' = ¢ and thus X = ¢.
(i) Asz* € X,z > ¢(z*) = f(z") = 2R Asz < 2B, we obtain ¢(z*) = z = z&.
. -

Example 2.2 The linear programming relaxation of the integer program:

max 7zy + 4x2 + 53 + 214
3z, + 320 + 473 +214 < 6
ze B!

has optimal solution * = (1,1,0,0). Asz*is integral, it solves the integer
program. s .

2.3 COMBINATORIAL RELAXATIONS

Whenever the relaxed problem is a combinatorial optimization problem, we
speak of a combinatorial relazation. In many cases, such as (i)-(iii) below, the
relaxation is an easy problem that can be solved rapidly. Some of the prob-
lems arising in this way are studied in Chapters 3 and 4. Here we illustrate
with four examples.

(i) The Traveling Salesman Problem. We saw in formulating the traveling
salesman problem with digraph D = (V, A) and arc weights c;; for (i,j) € A
that the (Hamiltonian or salesman) tours are precisely the assignments (or
permutations) containing no subtours. Thus

2TSP = min{ Z cij : T forms a tour} >
T (L))ET
ASS _ i . i
z = :f"lglﬁ{ Z ¢ij : T forms a assignment}.
(4,4)€ET

(ii) A closely related problem is the Symmetric Traveling Salesman Prob-
lem (STSP) specified by a graph G = (V, E) and edge weights c. fore € E.
The problem is to find an undirected tour of minimum weight. An interesting

relaxation of this problem is obtained by observing that

a) Every tour consists of two edges adjacent to node 1, and a path through
nodes {2,...,n}.

O —

LAGRANGIAN RELAXATION 27
b) A path is a special case of a tree.

Definition 2.3 A I-tree is a subgraph consisting of two edges adjacent to
node 1, plus the edges of a tree on nodes {2,... ,n}.

Clearly every tour is a 1-tree, and thus

STSP _ 11 .
z —,n};l%{;ce . T forms a tour} >
€

l—tree H
z = min ce : T forms a 1-tree}.

(iii) The Quadratic 0-1 Problem is the problem:

n
max{ Z qiTiT5 — Zp,-:cj,w #0,z € B"}.

i,ji1<i<i<n - j=1

Replacing all terms ¢;;T:T; with g;; < 0 by 0 gives a relaxation

n
2 = max{ Z max{g;;, 0}zix; — ij:z:j,a: #0,z € B"}.
i,j:1<i<isn . =1

“In Chapter 9, it will be shown how this relaxation can be solved as a series of
maximum flow problems.

(iv). The Knapsack Problem. A relaxation of the set X = {z € Z%} :
Y i1 0;x; < b} is the set

‘ X'={z €2} Yjalelz; < [0}
where |a] is the largest integer less than or equal to a.

24 LAGRANGIAN RELAXATION

Suppose we are given an integer program (IP) in the form z = max{cz :
Ar < bz € X C 2Z*}. 1If the problem is too difficult to solve directly,
one possiblity is just to drop the constraints Az < b. Clearly the resulting
problem: z’ = max{cz : z € X} is a relaxation of IP. In the asymmetric
traveling salesman problem above, the assignment problem is obtained by
dropping the subtour constraints. An important extension of this idea, dealt
‘with in much greater detail in Chapter 10, is not just to drop complicating
constraints, but then to add them into the objective function with Lagrange
multipliers (dual variables).

Proposition 2.4 Let z(u) = max{cz + u(b— Az) : z € X}. Then z(u) > 2z
" for allu > 0. :

28 OPTIMALITY, RELAXATION, AND BOUNDS

Proof. Let z* be optimal for IP. As z* is feasible in IP, z* € X. Again by
feasibility Az* < b, and thus as u > 0, cz* < cx* +u(b— Az*) < z(u) where
the last inequality is by definition of z(u). L]

2.5 DUALITY

For linear programs duality provides a standard way to obtain upper bounds.
It is therefore natural to ask whether it is possible to find duals for integer
programs. The important property of a dual is that the value of any feasible
solution provides an upper bound on the objective value z. This suggests the
following definition. ’ '

Definition 2.4 The two problems
(IP) z = max{c(z) : z € X}

(D) w = min{w(u) : u € U}

form a (weak)-dual pair if c(z) < w(u) forall z € X and all u € U. When
z =w, they form a strong-dual pair.

The advantage of a dual problem as opposed to a relaxation is that any dual
feasible solution provides an upper bound on z, whereas a relaxation of IP
must be solved to optimality to provide such a bound. Do such dual problems
exist?

Not surprisingly, a linear programming relaxation immediately leads to a
weak: dual.

Proposition 2.5 The integer program z = max{cz : Az < b,z € Z%} and
the linear program wiP = min{ub : ud > c,u € RT} form a weak dual pair.

By analogy with Proposition 2.3, dual problems sometimes allow us to prove -
optimality.

Proposition 2.6 Suppose that IP and D are a weak-dual pair.

(i) If D is unbounded, IP is infeasible.

(ii) If 2* € X and u* € U satisfy c(z*) = w(u*), then z* is optimal for IP
and u* is optimal for D.

We now present another example of a dual pair of problems.
A Matching Dual
Given a graph G = (V, E), a matching M C E is a set of disjoint edges. A

covering by nodes is a set R C V of nodes such that every edge has at least
one endpoint in R. :

DUALITY 29

Fig. 2.2 Matching and cover by nodes

A graph on eight nodes is shown in Figure 2.2. The edges (1,2), (3, 4),(5,6),
and (7,8) form a matching and the nodes {2,3,6,8} a cover by nodes.

Proposition 2.7 The problem of finding a mazimum cardinality matching:

ﬁxgaé{lMl : M is a matching }

and the problem of finding a minimum cardinality covering by nodes:

fnin {|R| : R is a covering by nodes }

form a weak-dual pair.

Proof. If M is a matching with M = {(i1,51)» e (ikyJk)}, then the 2k nodes
{31, 41, - - » 3k, Ji } aTE distinct, and any covering by nodes R must contain at
least one node from each pair {is,Js} for s = 1,...,k. Therefore |R| 2 k =
|M]. , .

We can also establish this result using linear programming duality.

Definition 2.5 The node-edge incidence matriz of a graph G = (V,E) is an
n = |[V| by m = |E| 0-1 matrix A with aj. = 1 if node j is an endpoint of
edge e, and aje =0 otherwise.

The maximum cardinality matching problem can now be formulated as the
integer program:
z=max{lz: Az < 1,z € ZT}

and- the minimum cardinality covering by nodes problem as:

w=min{ly:yA =2 Ly € Z%}.

30 OPTIMALITY, RELAXATION, AND BOUNDS

Let zLP and wZf be the values of their corresponding linear programming
relaxations. Then z < zLP = wPP < w, and the duality is again established.

Example 2.3 It is easily seen that there is not a strong duality between the
two problems. Consider the graph shown in Figure 2.3.

Fig. 2.3 Weak duality for matching

First observe that z = 1 and w = 2. What is more, e, = Te, = Te, = 1/2 s
feasible for the first LP relaxation, and y; = y2 = y3 = 1/2 is feasible for the
second LP relaxation, so 2/ = wlF = 3/2.]

Later we will see that strong duality holds for this pair of problems when the
graph G is bipartite.

.

2.6 PRIMAL BOUNDS: GREEDY AND LOCAL SEARCH

Now we briefly consider how to obtain primal bounds. The idea of a greedy
heuristic is to construct a solution from scratch (the empty set), choosing at
each step the item bringing the “best” immediate reward. We present two
examples. :

Example 2.4 The 0-1 Knapsack Problem. Consider the instance:

max 12z, + 8z3 + 17z3 + 11z4 + 625 + 2z6 + 227
4xy + 3x2 + Tx3 + 5x4 + 325 + 226 + 327 < 9
o z€ B,

Noting that the variables are ordered so that 7:7; > ﬁi—f‘; forj=1,...,n—1,
a greedy solution is: ’

(i) As & is maximum and there is enough space (9 units) available, fix z; = 1.
(ii) In the remaining problem, as & is maximum and there is enough space
(5=9-4) units available, fix 2o = 1.

(iii) As each item 3,4,5 in that order requires more space than the 2 =5-3
units available, set z3 = z4 = z5 = 0.

(iv)As £& is maximum in the remaining problem, and there is enough space
(2 units) available, fix zg = 1.

(v) Set z7 = 0 as no further space is available.

" Therefore the greedy solution is z¢ = (1,1,0,0,0,1,0) with value 2¢ =
cz® =22. : .

PRIMAL BOUNDS: GREEDY AND LOCAL SEARCH 31

Example 2.5 The Symmetric Traveling Saleman Problem. Consider an in-
stance with distance matrix: '

8§ 12 11
10 32
29 18 6
- 24 3

| =N
—
©

(ce) =

Greedy examines the edges in order of nondecreasing length.

The cheapest edge is e1 = (1,3) with ce, = 2. Select the edge by setting
Zey, = 1. ,

The next cheapest edge remaining is ez = (4, 6) with c., = 3. As edges €1
and ep can appear together in a tour, set Te, = 10

Set T, = 1 where e3 = (3,6) and ¢, = 6. :

Set z., = 0 where e4 = (2, 3) as node 3 already has degree 2, and all three
edges (1, 3), (3,6), (2,3) cannot be in a tour.

Set T, = 0 where e5 = (1,4) as edge (1,4) forms a subtour with the edges
already chosen.

Set o, = 1 where eg = (1,2) and ceg = 9.

Continue as above, choosing -edges (2,5) with length 10 and (4,5) with
length 24 to complete the tour. : .

The greedy tour is (1,3,6,4,5,2, 1) with length 3, CeTe = 54. .

Once an initial feasible solution, called the incumbent, has been found,
it is natural to try and improve the solution. The idea of a local search
heuristic is to define a neighborhood of solutions close to the incumbent.
Then the best solution in the neighborhood is found. If it is better than
the incumbent, it replaces it, and the procedure is repeated. ‘Otherwise the
incumbent is “locally optimal” with respect to the neighborhood, and the
heuristic terminates. Again we present two examples.

Example 2.6 Uncapacitated Facility Location. Consider an instance with
m = 6 clients and n = 4 depots, and costs as shown below:

and f; = (21,16,11,24).

— RO W
-
R O R e

32 OPTIMALITY, RELAXATION, AND BOUNDS

* Note that if N = {1,2,3,4} denotes the set of depots, and S C N the set of
open depots, the associated cost is .

) 6
o(S) = angc,, +y fi
=1’ jes.

Thus if S° = {1,2} is the initial incumbent, ¢(8%) = (2+1+2+9+7+3)+
21 + 16 = 61. .

Now we need to define a neighborhood of S. One possibility is to consider
as neighbors all sets obtained from S by the addition or removal of a single
element:

Q) ={TCN:T=5U{j}forj¢SorT=5\{i} fori eS8}

Thus Q(S°) = {{1},{2},{1,2,3}, {1,2,4}} with costs c(1) = 63,¢(2) = 66,
¢(123) = 60, c(124) = 84.
The new incumbent is S! = {123} with ¢(S?) = 60, and
Q(Sl) = {{1’ 2}1 {17 3}’ {2’ 3}) {lv 2,3, 4}}
The new incumbent is $? = {23} with ¢(S?) = 42, and
'Q(Sz) = {{2}7 {3}, {17‘213}7 {2v3’ 4}} : :
The new incumbent is $% = {3} with ¢(S3) = 31, and
Q(Ss) = {{11 3}1 {2, 3}) {3v 4}’ ¢}‘

There is no improvement, so S = {3} is a locally optimal solution. .

Example 2.7 The Graph Equipartition Problem..Given a graph G=(V,E)
and n =| V |, the problem is to find a subset of nodes S C V' with | S|= 1%,
for which the number of edges in the cutset §(S,V \ S) is minimized, where
5(S,V\S)={(5,j)€eE:i€S,jeV\S}

Again we need to define a neighborhood. As the feasible sets S are all of
the same size, one possibility is to consider as neighbors all sets obtained by
replacing one element in S by one element not in S:

Q) ={TcV:T\S|=|S\T|=1}

We consider an instance on 6 nodes with edges {(1,4),(1,6),(2,3),(2,5),
(2,6),(3,4),(3,5), (4,6)}. '

Starting with S° = {1,2,3}, c(S°)=| (6(S° V' \ 8°) |=6 as §(S°, V\ §°) =
{(14), (16), (25), (26), (34), (35)}.

Here Q(S°) = {(124), (125), (126), (134), (135), (136), (234), (235), (236)}
with ¢(T) = 6,5,4,4,5,6,5,2,5 respectively.

The new incumbent is § = {235} with c(S?) = 2.

Q(S*) does not contain a better solution, and so S! is locally optimal. =

Other ways to generate primal feasible solutions are investigated in Chapter 12.

NOTES 33
2.7 NOTES

- 2.1 The concept of a relaxation, and the complementary idea of a restriction
are formalized in [GeoMar72]. :

2.2 Linear programming relaxations have been present ever since combinator-
ial problems were first formulated as linear integer programs [DanFulJoh54],
[Dan57]. '

2.3 The assignment relaxation for the traveling salesman problem was already
used in [Litetal63], and the 1-tree relaxation was introduced in [HelKar70].

2.4 Chapter 10 is on Lagrangian relaxation. Other relaxations studied include
group or modular relaxations [Gom65] and Ch. IL.3 in [NemWol88], and sur-
rogate relaxations [Glo68].

2.5 A strong duality for the general matching problem appears in the classic
paper [Edm65b], which has had a major influence on the development of com-
binatorial optimization. Several of the most beautiful results in this field are
strong duality theorems; see [CooCunetal97]. For integer programs a general
superadditive duality theory was developed in the seventies based on the work
of [Gom69] and [GomJoh72]. See Ch. IL.1 in [NemWol88].

2.6 The greedy and local exchange heuristics are formalized in Chapter 12,
and other heuristic approaches are presented.)

. 2.8 EXERCISES

1. Find a maximum cardinality matching in the graph of Figure 2.4 by in-
spection. Give a proof that the solution found is optimal.

Fig. 2.4 Matching instance

34 OPTIMALITY, RELAXATION, AND BOUNDS

2. A stable set is a set of nodes U C V such that there are no edges between
any two nodes of U. A cligue is a set of nodes U C V such that thereis an
edge between every pair of nodes in U. Show that the problem of finding a
maximum cardinality stable set is dual to the problem of finding a minimum
cover of the #dE66 by cliques. Use this observation to find bounds on the
maximum siZe’5fa stable set in the graph shown in Figure 2.5.

Fig. 25 Stable set instance

3. Find primal and dual bounds for the integer knapsack problem:

z = max42z; + 26z, + 35z3 + Tlz4 + 53x5
14z, + 10z + 12x3 + 2524 + 2025 < 69
zeZ3.

4. Consider the 0-1 integer program:
n .
(P) max{c:z::Za;,-:q‘:bi fori=1,...,m,z € B*},
Jj=1
and the 0-1 equality knapsack problem
n m m
(P2) max{cz : Z(z Ui045)T; = Z‘uibg,a: € B"},
j=1 i=1" i=1
where u € R™. Show thaf. P; is a relaxation of P;.

5. Consider the equality integer knapsack problem:

5
(> ez 7 2 5 5 19 8 5
(P]) m1n{j=] CiTj - Zl'l - gl’z + '2'33 - E.’&; + E’-’cs = §,.’B € Z+}

EXERCISES 35

(i) Show that the problem

5

3 1 1 7 1 2

(P2) min{ E cjTj Zz1+§mz+§z3+ﬁz4+§z5 =ztw,z €Zlwe zL}
j=1

is a relaxation of P1.
(ii) Show that the problem

5
. 3 1 1 7 1 2
(Ps) mm{z ¢iT; : 7% + =Ty + T3 + T4+ FTs 235.3€ R%}

p 372712

is a relaxation of Pz.

6. Consider a directed graph D = (V, A) with arc lengths c. > 0 for e € A.
Taking two distinct nodes s, € V, consider the problem of finding a shortest
path from s to t. Show that

: max{m; : m; —m < ¢y for e = (,j)eA,me RLY'tzr, =0}
is a strong dual problem.

7. A}Sply a greedy heuristic to the instance of the uncapacitated facility loc-
ation problem in Section 2.6.

8. Define greedy and local search heuristics for the maximum cardinality
stable set problem discussed in Exercise 2.2. ’

'9. Formulate the maximum cardinality matching problem of Figure 2.4 as an

integer program and solve its linear programming relaxation. Find a max-
imum weight matching with the weights shown. Check that the linear pro-
gramming relaxation is again integral.

|
i
|
{
!

o

Well-Solved Problems

31 PROPER'fIES OF EASY PROBLEMS

Here we plan to study some integer and combinatorial optimization problems
that are “well-solved” in the sense that an “efficient” algorithm is known for
solving all instances of the problem. Clearly an’instance with 1000 variables
or data values ranging up to 102 can be expected to take longer than an
instance with 10 variables and integer data never exceeding 100. So we need
to define what we mean by efficient.

For the moment we will be very imprecise and say that an algorithm on
a graph G = (V, E) with n nodes and m edges.is efficient if, in the worst,
case, the algorithm requires 0(m?) elementary calculations (such as additions,
divisions, comparisons, etc) for some integer p, where we assume that m > n.

In considering the COP max{cz : z € X C R"}, it is not just of interest
to find a dual problem, but also to consider a related problem, called the
separation problem . ’

Definition 3.1 The Separation Problem associated with COP is the problem:
Given z* € R™, is z* € conv(X)? If not, find an inequality 7z < 7o satisfied
by all points in X, but violated by the point z*.

Now, in examining a problem to see if it has an efficient algorithm, we will
see that the following four properties often go together:

(i) Efficient Optimization Property: For a given class of optimization problems

(P) max{cz : z € X C R"}, there exists an efficient (polynomial) algorithm.

37

38 WELL-SOLVED PROBLEMS

(i) Strong Dual Property: For the given problem class, there exists a strong
dual problem (D) min{w(u) : u € U} allowing us to obtain optimality condi-
tions that can be quickly verified:

z* € X is optimal in P if and only if there exists u* € U with cz* = w(u*).

(iii) Efficient Separation Property: There exists an efficient algorithm for the
separation problem associated with the problem class.

. (iv) Ezplicit Convez Hull Property: A compact description of the convex hull
conv(X) is known, which in principle allows us to replace every instance by
the linear program: max{cz : z € conv(X)}-

Note that if a problem has the Explicit Convex Hull Property, then the
dual of the linear program max{cz : z € conv(X)} suggests that the Strong
Dual Property should hold, and also using the description of conv(X), there
is some likelihood that the Efficient Separation Property holds. So some ties
between the four properties are not surprising. The precise relationship will
be discussed later. In the next sections we examine several classes of problems
for which we will see that typically all four properties hold. -

3.2 IPS WITH TOTALLY UNIMODULAR MATRICES

A natural starting point in sdlving integer programs :
(IP) ' max{cz : Az < b,z € Z}}

with integral data (A,b) is to ask when one will be lucky, and the linear
programming relaxation (LP) max{cz: Az < bz € R7 } will have an optimal
solution that. is integral. ' :

From linear programming theory, we know that basic feasible solutions
take the form: z = (£B,ZN) = (B~'b,0) where B is an m X m nonsingular
submatrix of (4,I) and I isanm xm identity matrix.

Observation 3.1 (Sufficient Condition) If the optimal basis B has det(B) =
+1, then the linear programming relaxation solves IP.

Proof. From Cramer’s rule, B-! = B*/det(B) where B* is the adjoint
matrix. The entries of B* are all products of terms of B. Thus B* is an
integral matrix, and as det(B) = %1, B-! is also integral. Thus B~'b is
integral for all integral b. a

The next step is to ask when one will always be lucky. When do all bases or
all optimal bases satisfy det(B) = +1?7

' Definition 3.2. A matrix A is totally unimodular (TU) if every square sub-
matrix of A has determinant +1, -1 or 0.

IPS WITH TOTALLY UNIMODULAR MATRICES 39

0
1
1

Table 3.1 Matrices that are not TI} .

- -
O =

1 -1 -1 0

-0 O
OO O - -
oo ~=O
O == O
OO = O

Table 3.2 Matrices that are TU

First we consider whether such matrices exist and how we can recognize them.
Some simple observations follow directly from the definition.

Observation 3.2 If A is TU, a;; € {+1,-1,0} for all 4, j.

Observation 3.3 The matrices in Table 3.1 are not TU. The matrices in
Table 3.2 are TU. ' :

Proposition 3.1 A matriz A is TU if and only if
(i) the transpose matriz AT is TU if and only if
(it) the matriz (A,I) is TU.

There is a simple and{,important sﬁﬁicient condition for total unimodularity,
that can be used to show that the first matrix in Table 3.2 is TU.

Proposition 3.2 (Sufficient Condition). A matriz A is TU if

(i) aij € {+1,—-1,0} for all i, j. .

(i) Each column contains at most two nonzero coefficients Cimy laiil £2).
(iii) There exists a partition (My, M) of the set M of rows such that each
column j containing two nonzero coefficients satisfies ;e pr, Gi5 — Diem, %is
=0.

Proof. Assume that A is not TU, and let B be the smallest square submatrix
of A for which det(A) ¢ {0,1,~1}. B cannot contain a column with a single
nonzero entry, as otherwise B would not be minimal. So B contains two
nonzero entries in each column. Now by condition (iii), adding the rows in
M, and subtracting the rows in M, gives the zero vector, and so det(B) =0,
and we have a contradiction. : =

'Note that condition (iii) means that if the nonzeros are in rows i and k, and
if a;; = —akj, then {i,k} € M or {i,k} € Mz, whereas if a;j = akj, i € Ma

40 WELL-SOLVED PROBLEMS

and k € M,, or vice versa. This leads to a simple algorithm to test whether
the conditions of Proposition 3.2 hold. In the next section we will see an
important class of matrices arising from network flow problems that satisfy
this sufficient condition. ’

Now returning to IP, it is clear that when A is TU, the linear programming
relaxation solves I P. In some sense the converse holds.

Proposition 3.3 The linear program max{cz : Az < bz € R}} has an
integral optimal solution for all integer vectors b for which it has a finite
optimal value if and only if A is totally unimodular.

On the question of efficient algorithms, we have essentially proved that for
the IP: max{cz : Az < b,z € Z}} with A totally unimodular:

(a) The Strong Dual Property holds: the linear program (D) : min{ub : uA >
¢,u > 0} is a strong dual.

(b) The Explicit Convex Hull Property holds: the convex hull of the set of
feasible solutions conv(X) = {Az < b,z > 0} is known.

(c) The Efficient Separation Property holds: the separation problem is easy
as it suffices to check if Az* < band z* > 0.

Given that these three properties hold, we have suggested that the Effi-
cient Optimization Property should also hold, so there should be an efficient
algorithm for IP. This turns out to be true, but it is a nontrivial result bey-
ond the scope of this text. This is in turn related to the fact that efficient
algorithms to recognize whether a matrix A is TU are also nontrivial.

3.3 MINIMUM COST NETWORK FLOWS

Here we consider an important class of problems with many applications lying
at the frontier between linear and integer programming.

Given a digraph D = (V,A) with arc capacities hi; for all (3,5) € A4,
demands b; (positive inflows or negative outflows) at each node ¢ € V, and
unit flow costs c;; for all (4,5) € A, the minimum cost network flow problem
is to find a feasible flow that satisfies all the demands at minimum cost. This
has the formulation: '

min z CijTij (3.1)
) (i,5)eA
Z' Tik — Z T =biforieV : (3.2)
keV+(i) kev- (i)
0 <z < h,’j for (’L,J) €A (33)

where z;; denotes the flow in arc (4,5), V*(i) = {k : (i, k) € A} and V@)=
{k: (ki) € A}. .

il

MINIMUM COST NETWORK FLOWS 41

It is evident that for the problem to be feasible the total sum of all the
demands must be zero (i.e., Y ;ey b =0).

Example 3.1 The digraph in Figure 3.1 leads to the following set of balance

" Fig. 3.1 Digraph for minimum cost network flow

equations:

T12 Ti4 T23 T3l T3z T3z T3 T45 Ts1 Ts3 Tes

1 1 0 -1 0 0 0 0 -1 0 0 = 3
-1. 0 1 0 -1 0 0 0 0 0 0 = 0
0 0o -1 1 1 1 1 0 0 -1 0 = 0
0 -1 0 0 0 0 0 1 0. 0 0 = -2
0 0 0 0 0 -1 0 -1 1 1 -1 = 4
0 0 0 0 0 0 -1 0 0o O 1 = -5
The .additional constraints are the bound constraints: 0 < zi; < hij. "

Proposition 3.4 The constraint mdtn'x A arising in a minimum cost net-
work flow problem is totally unimodular.

Proof. The matrix A is of the form (? where C comes from the flow

conservation constraints, and T from the upper bound constraints. Therefore
it suffices to show that C is TU. The sufficient conditions of Proposition 3.2
are satisfied with M; = M and M = ¢. f , .

Corollary In a minimum cost network flow problem, if the demands {b;}
and the capacities {hi;} are integral,

(i) Each extreme point is integral. :

{ii) The constraints (3.2)-(3.3) describe the convex hull of the integral feasible
flows. . : .

42 WELL-SOLVED PROBLEMS
3.4 SPECIAL MIN!MUM'COST FLOWS

 The Shortest Path Problem. Given a digraph D = (V, 4), two distin-
guished nodes's,t € V, and nonnegative arc costs ¢i; for (4,5) € A, finda |
minimum cost s — ¢ path.

The Max Flow Problem. Given a digraph D = (V, A), two distinguished
nodes s,t € V, and nonnegative capacities h;; for (i, j) € A, find a maximum
flow from s to t. i '

Both these problems are special cases of the minimum cost network flow prob-
lem so we can use total unimodularity to analyze them. However, the reader
has probably already seen combinatorial polynomial algorithms for these two ;'
problems in a course on network flows.
What are the associated dual problems?

3.4.1 Shortest Path
Observe first that the shortest path problem can be formulated as:

z = min Z CijTij (3.4)
(1.5)€A
Z Tik — Z zi = lfori=s (3.5)
kEVH(i) keV-G) ,

Z Tik — Z i = OforieV\{st} (3.6)
kEV+(3) keV-(5) ‘ -
3 ak- Y, @m = -lferi=t @7 |
KEVH(3) kEV=(3)
Tsj >0 for ('&,]) € A v ' (3.8) s
z e Z\A (69) |

where z;; = 1 if arc (4,7) is‘in the minimum cost (shortest) s — ¢ path.

Theorem 3.5 z is the length of a shortest s—t path if and only if there exist
values m; fori €V such that Ty = 0,m = z, and 7; — m; < cij for (3,5) € A

Proof. The linear programming dual of (3.4)~(3.8) is precisely

- wlP = maxm; — 7,
m; —m; < ¢ for (1,5) € A

. ‘Replacing m; by mj +a forall je V does not change the dual, so we can fix |
7s = 0 without loss of generalty. As the primal matrix is totally unimodular,
strong duality holds and the claim follows. : .

e

OPTIMAL TREES 43

We note that one particular dual solution is obtained by taking ; to be the
cost of a shortest path from s to i

3.4.2 Maximum s —t Flow

Adding a backward arc from t to s, the maximum s — t flow problem can be
formulated as:

max Tts ,
Ekevw) Tik = Lkev- (i) Thi = OforieV

0< Tij < hij for (’L,j) e A.

The dual is: '
min) jyea hijWii
u; — uj +wj; = 0 for (i,j) €A
w-u 21 Wy2o

From total unimodularity, an optimal solution is integer. Also as the dual is

unchanged if we replace u; by uj + ¢ for all j € V, we can set us = 0. Given
such a solution, let X = {j € V : u; <0tand X =V\X = {jeV:u; 21}

Now
Z hijwi; > z hijwij 2 Z hij
(i,j)€A (i,j)€Ai€X,jEX (i,j)EAEX jEX

asw,-jZuj—uizlfor(i,j)eAwithieXandj‘eX" :

However, this lower bound Z(i, feAiexX,jeX hij is attained by the solution
uj =0forj€ X, u;=1forje X,wi; =1 for (i,j) € A with i € X and
j € X, and wy; = 0 otherwise. So there is an optimal 0-1 solution.

We see that s € X,t € X, {(i,5) rwi; = 1} is the set of arcs of the s —t
cut (X,V \ X), and we obtain the standard result that the maximum value
of an s — t flow equals the minimum capacity of an s —¢ cut.

Theorem 3.6 A strong dual to the maz s —t flow problem is the minimum
s —t cut problem: ' :

min{ Y. hgiseXcV\{#}
(i,j)eA:iGX,jiX

3.5 OPTIMAL TREES

Definition 3.3 Given a graph G = (V, E), a forestis a subgraph G’ = (V, E')
containing no cycles. :

Definition 3.4 Given a graph G = (V,E), a treeis 2 subgraph G’ = (V, E')

_that is a forest and is connected (contains a path between every pair of nodes

of V).

44 WELL-SOLVED PROBLEMS

Some well*known consequences of these definitions are listed below:

Proposition 3.7 A graph G = (V, E) is a tree if and only if

(i) it is a forest containing ezactly n — 1 edges, if and only if

(i) it is an edge-minimal connected graph spanning V, if and only if

(i) it contains @ unique path between every pair of nodes of V, if and only if
() the addition of an edge not in E creates a unique cycle.

The Maximum Weight Forest (Tree) Problem. Given a graph G = -
(V, E) and edge weights c, for e € E, find a maximum weight subgraph that
is a forest (tree). '

This problem arisés naturally in many telecommunications and computer net-
work applications where it is necessary that there is at least one path between
each pair of nodes. When one wishes to minimize installation costs, the op-
timal solution is clearly a minimum weight tree.

Remember from the previous chapter that the idea of a greedy algorithmis
to take the best element and run. It is very shortsighted. It just chooses one
after the other whichever element gives the maximum profit and still givesa
feasible solution. For a graph G = (V,E), we let n = V| and m = |\E|. |

Greedy Algorithm for a Maximum ‘Weight Tree

Initialization. Set E® = E,T° = ¢. Order the edges by nonincreasing weight
1> > ... > Cm, where ¢ is the cost of edge e;. ;
Tteration t. If T*~1 U {e;} contains no cycle, set T* = T*=1U {e;}. Otherwise
Tt — _Tt-l. :

Set Et = E*=1\ {e;}. If | T* |=n — 1, stop with T* is optimal. If t = m,
stop with no feasible solution.

To obtain a maximum weight forest, it suffices to modify the greedy al- |
gorithm to stop as soon as ¢t41 < 0. . ,
Example 3.2 Consider the graph shown in Figure 3.2 with the weights on
the edges as shown.

i

. Fig. 3.2 Graph for optimal weight tree

We consider the edges in the order:

OPTIMAL TREES 45

e1 ez e3’ e4 es e er
Ce 12 10 9 9 9 - 8 6
+ + + + +
€g €9 €10 €11 €12 €13 €14

2,6) (1,2) (2,5 (47 (23) (24 459)
6 5 5 4 3 .3 27
: .

The algorithm chooses the edges marked with a + and rejects the others. For
example, the first edge rejected is es = (5,6) because it forms a cycle with
€0, €3, and e4, which have already been selected. .

Theorem 3.8 The greedy algorithm terminates with an optimal weight tree.

Proof. Suppose for simplicity that all the edge weights are different. Let
T = {g1,..-,9n—1} be the edges chosen by the greedy algorithm with ¢, >
ve.>Cgy Let F= {fi,-.-yfn=1} be the edges of an optimal solution with
Cfy > e > Cfpyg:

If the solutions are the same, the result is proved. So suppose the two
solutions differ with g1 = f1,...,gk—1 = fr—1 but gk # fi-

(i) We observe that cg, > cy, because the greedy algorithm chooses gi and not
f and neither edge creates a cycle with {g1,...,gk-1}. Also by construction
Cf1>-..>Cfn_“a-nd80gk¢F. S

(i) Now consider the edge set F'U {gx}. As F is a tree, it follows from
Proposition 3.7 that F'U {gx} contains exactly one cycle C. Note however
that the set of edges {f1,- -, fk-1, 9k} = {91, ., gk—1, 9k} forms part of the
tree T and thus does not contain a cycle.. Therefore one of the other edges
f#.: - fn—1 must be in the cycle C. Suppose f* is one such edge.

(iii) As C contains a unique cycle and f* is in this cycle, I’ = FU{gx} \ {f*}
is cycle free. As it has n —1 edges, it is a tree.)

(iv) Finally, as ¢, > ¢y, and ¢f, 2 ¢+, the weight of 7" exceeds that of F.
(v) As F is an optimal tree, we have arrived at a contradiction, and so T and
F cannot differ. .

‘As the greedy algorithm is easily seen to be polynomial, the Efficient Op-
" timization Property holds for the maximum weight tree problem. So we can
again consider the other three properties. To do this, we need a formulation of
the problem as an integer.program. In modeling the traveling salesman prob-
lem in Section 1.2 we saw how to avoid cycles. Thus the maximum weight
forest problem can be formulated as:

ma'x Y ecE CeTe (3.10)
Yeer(s) Te S| S| —1for 2| S| n (3.11)

46 WELL-SOLVED PROBLEMS

z.>0forec E (3.12)
T € Z8l, (3.13)

Theorem 3.9 The conver hull of the incidence vectors of the forests in a
graph is given by the constraints (8.11)-(3.12).

This result says that the Explicit Convex Hull Property holds for the Max-
imum Weight Forest Problem. We generalize and prove this result in the next
section, and in Chapter 9 we show that the Efficient Separation Property
holds for this problem.

To terminate this ‘section we introduce an important and more difficult
generalization of the optimal tree problem. Given a graph G = (V, E) and
a set of terminals T' C V, a Steiner tree on T is an edge-minimal acyclic
subgraph of G containing a path joining every pair of nodes in' 7. Such a
subgraph may or may not have edges incident to the nodes in V \ T. Given

weights ¢, for e € E, the Optimal Steiner Tree Problem is to find a minimum ~ |

weight Steiner tree. Observe that when T = V, this is the optimal tree
problem, and when | T' |= 2, it is the shortest path problem.

3.6 SUBMODULARITY AND MATROIDS*

Here we examine a larger class of problems for which a greedy algorithm
provides an optimal solution. This generalizes the maximum weight forest
problem examined in the last section. P(IN) denotes the set of subsets of N.

Definition 3.5 (i) A set function f :P (N) — R! is submodular if

f(A) + f(B) > f(AN B) + f(AU B) for 411 A,BCN.

(ii) A set function f is nondecreasing if

f(A) < £(B) for all A, B'with AC BC N.

An alternative representation of such functions is useful.

Proposition 3.10 A set function‘ f is non-decreasing and submodular if and
only if

f4) < f(B) + Y [f(BU{j}) - £(B)] for all A4, BC N.

JEA\B

Proof. Sﬁppose f is non-decreasing and submodular. Let A\B = {j1,...,Jjr}.
Then f(4) < f(AUB) = 25 [f(BU {1y, 5i}) = f(BU{j1, -, jima D] <

SUBMODULARITY AND MATROIDS* 47

T BU LY = F(B) = ¥jeaslf(BU{i} — £(B)], where the first in-
equality follows from f nondecreasing and the second from submodularity.
The other direction is immediate. ’ .

Now given a nondecreasing submodular function f on N with f(0) =0, we
consider the submodular polyhedron:

P(f) = {z € B%: 3 z; < £(8) for SC N}, |
j€S

and the associated submodular optimization problem:

max{c:z: .z € P(f)}.

The Greedy Algorithm for the Submodular Optimization Problem

(i) Order the variables so t;hat ¢ 2c2 2 o2 >02c412 . 2 Cn
(ii) Set z; = f(8%) — f(S* 1) for i = 1,...,r and z; = 0 for j > r, where
Si={1,...,i}fori=1,...,rand S = 0.

Theorem 3.11 The greedy algorithm solves the submodular optimization prob-
lem. '

Proof. As f is nondecreasing, z; = f(S*)— f(S*"!) 2 0fori=1,...,7. Also
foreach T C N, ’ ,

2.

I

ST IF(S7) - F(STY)

JET . jeTnsT
< Y (87 nT) - f(S7HNT))
jETNS™ .
< Y (S nT) - £(S7nT)
jEST ’ .

= f8nT)-F0) < £(T),

where the first inequality follows from the submodularity of f, and the oth-
ers as f is nondecreasing. So the greedy solution is feasible with value

T alf(89) - £(Sh) ' '
Now consider the linear programming dual:
min ZSQN f(S)ys
Ysjesys 2 ciforjeN
ys > 0for SC N.

Let ysi' =c¢—cyyy fori=1,...,7—1, ysr = ¢, and ys = 0 otherwise.
Clearly ys > 0 for all S € N. Also for j <, ZS:jGS ys 2 ZE___j ysi =

48 WELL-SOLVED PROBLEMS

Z:__:jl(ci —cip1) + ¢ =c¢j, and for j > 7, Dgies VS >0> ¢;. Thus the
solution y is dual feasible. Finally the dual objective value is

T r—1 T !
S F(Sys =D F(S) (e = cinr) + f(ST)er = Yo alf(s) = F(87H)
i=1 i=1 i=1

So the value of the dual feasible solution has the same value as the greedy
solution, and so from linear programming duality, the greedy solution is op-
timal. ‘ .

Note that when f is integer-valued, the greedy algorithm provides an integral
solution. In the special case when f(SU {j}) — f(S) € {0,1} forall SC N
and j € N\ S, we call f a submodular rank function, and the greedy solution
is a 01 vector. What is more, we now show that the feasible 0-1 points in the
submodular rank polyhedron generate an interesting combinatorial structure,
called a matroid. ' : ’

Proposition 3.12 Suppose that r is a submodular rank function on a set N
with r(9) = 0. '

(i) r(A) < |A| for all AC N.

(ii) If r(A) = |A|, then r(B) = |B| for all BC AC N:

(i) If o4 is.the incidence vector of AC N, z# € P(r) if and only if r(A) =
|Al. '

‘Proof. (i) Using Proposition 3.10 and the property of a submodular rank.
function, 7(A) < r(0) + L ealr({5}) —r(@)] <'|Al.

(i) Again using the same properties, |A| = r(A) < r(B) + X jea\slr(BY
{5}) =r(B)] < |B| +|A\ B| = |A|. Equality must hold throughout, and thus
r(B) = |B|.

(i(ii))If rl(Al) < A, Zeari = Al > r(A) and z4 ¢ P(r). If r(A) = |4],
> jes :cf =|AN S| =r(ANS) < r(S) where the second equality uses (ii).
This inequality holds for all S € N, and thus z4 € P(r). -

Definition 3.6 Given a submodular rank function r, a set A C N is inde-
pendent if r(A) = |A|. The pair (N,F), where F is the set of independent
sets, is called a matroid .

Based on Theopem'3.11, we know how to optimize on matroids.

Theorem 3.13 The greedy algorithm solves the mazimum weight independ-
ent set problem in a matroid.

Given a connected graph G = (V, E), it is not difficult to verify that the
‘edge sets of forests form a matroid and that the function r : P(E) — R,
where r(E') is the size of the largest forest in (V,E'), is a submodular rank
function. Specifically when S C V, E’ = E(S) and the subgraph (S, E(S))

e e IR

NOTES 49

is connected, we clearly have r(E(S)) = |S | = 1, so the forest polyhedron
(3.11)-(3.12) is a special case of a submodular polyhedron.

The constraint set associated to a submodular polyhedron has another
interesting property.

Definition 3.7 A set of linear inequalities Az < b is called Totally Dual
Integral (TDI) if, for all c € Z™ for which the linear program max{cz : Az <
b} has a finite optimal value, the dual linear program

min{yb: yA =c¢,y = 0}
has an optimal solution with y integral.

f(S) for SC N,z >0forj € N} is TDI. Based on the following result, the
TDI property provides another useful way of showing that Tertain linear pro-
grams always have integer solutions.

We have seen in the proof of Theorem 3.11 that the linear system {3 ;es %j <

Theorem 3.14 IfA:c < b is TDI, b is an integer vector, and P={z € R™:

Az < b} has vertices, then all vertices of P are integral.

Note also that if A ,is‘a TU matrix, then Az <b is TDIL.

3.7 NOTES

3.1 The theoretical importanée of the separation problem is discussed at the
end of Chapter 6. Its practical importance was brought out in the first com-
putational studies using strong cutting planes; see Chapter 9.

3.2 Totally unimodular matrices have been studied since the fifties. The char-
acterization of Proposition 3.1 is due to [HofKru56]. The interval or consec-
utive 1’s property of Exercise 3.3 is due to [FulGro65], and the stronger neces-
sary condition is from [Gho62]. A complete characterization of TU matrices
is much more difficult; see [Sey80] or the presentation in [Sch86].

3.3 We again refer to [AhuMagOr193] for network flows, as well as shortest
path and max flow problems. This book also ‘contains a large number of ap-
plications and a wealth of exercises. Note also the chapter of Ahuja on flows
and paths in [DelAMafMar97], which also indicates where some of the latest
software for network flow problems can be obtained.

3.4 The max flow min cut theorem was already part of the max flow al-
gorithm of [ForFul56]. The min cut problem arises as a separation problem in
solving TSP and other network design problems.. The problem of finding all

. . minimum cuts was answered in [GomHu61]. Recently new algorithms have

appeared that find minimum cuts directly without using flows; see Ch. 3in

50 WELL-SOLVED PROBLEMS

[CooCunetal97).

3.5 The greedy algorithm for finding minimum weight trees is from [Kru56]. :\
A faster classical algorithm is that of [Prim57]. Special algorithms based on i
Delaunay triangulations can be used for two-dimensional Euclidean problems,
[PreSha85). [Goe94] and [MagWol95] contain a discussion of many alternative
formulations for tree and Steiner tree problems.

3.6 Submodular polyhedra and the greedy algorithm for matroids are studied
in [Edm70] and [Edm71], see also [Law76]. [Wel76] is a book devoted to
matroids. For total dual integrality, see [EdmGil77].-

3.8 EXERCISES

1. Are the following matrices totally unimodular or not?
-1 1 -1

Ay

1
—_o o -
-o o
oo -
OO
o O

2. Prove that the polyhedron P = {(z1,---,Tm,Y) € RT*l:y<1lzi <y for
i=1,...,m} has integer vertices.

3. A 0-1 matrix B has the consecutive 1’s property if for any column j,
Cbyj = byj=1withi<i implies by = 1 for i <1 <"
A more general sufficient condition for total unimodularity is: Matrix Ais
TU if :

(i) ai; € {+1,-1,0} for all i, j.
(ii) For any subset M of the rows, there exists a partition (M3, M2) of M such
that each column j satisfies

|y a2 elst
: i€eM; iEM,
Use this to show that a matrix with the consecutive 1’s property is TU.

4. Consider a scheduling model in which a machine can be switched on at
most k times: 3,2 < Ky 2o — Y +¥e-1 2 0,2 <y, 0 < g,z S 1forallt,
where y; = 1 if the machine is on in period t, and z; = 1 if it is switched on
in period t. Show that the resulting matrix is TU. '

B

EXERCISES 51
5. Prove Proposition 3.3.
6. Use linear programming to find the length of a shortest path from node s

to node t in the directed graph of Figure 3.3. Use an optimal dual solution to
prove that your solution is optimal.

. Fig. 3.3 Shortest path instance

7. Use linear programming to find a minimum s — ¢ cut in the capacitated
network of Figure 3.4.

Fig. 3.4 Network instance

8. Find a minimum weight spanning tree in the graph shown in Figure 3.5.

Fig. 3.5 Tree instance

9. Prove that the greedy algorithm produces an optimal weight tree when
edge weights can be equal. '

10. Formulate the optimal Steiner tree problem as an integer program.

52 WELL-SOLVED PROBLEMS:

11. (i) For their annual Christmas party the thirty members of staff of the
thriving company Ipopt were invited/obliged to dine together and then spend
the night in a fancy hotel. The boss’s secretary had the unenviable task of

‘allocating the staff two to a room. Knowing the likes and dislikes of everyone,

she drew up a list of all the compatible pairs. How could you help her to fill
all fifteen rooms?)

(ii) Recently a summer camp was organized for an equal number of English
and French children. After a few days, the children had to participate in an
orienteering competition in pairs, each pair made up of one French and one
English child. To allocate the pairs, each potential pair was asked to give a
weight from 1 to 10 representing their willingness to form a pair. Formulate
the problem of choosing the pairs so as to maximize the sum of the weights.
(iii) If you have a linear programming code available, can you help either the
boss’s secretary or the camp organizer or both?

12. Consider a real matrix C with n columns. Let N = {1,...,n} and F
= {8 C N : the columns {c;}jes are linearly independent}. Show that (N,F)
is a matroid. What is the associated rank function r? :

13. Given a matroid, show that ,

(i) if A and B are independent sets with |A| > |B|, then there exists j € A\ B
such that AU {j} is independent, and .

(ii) for an arbitrary set A C N, every maximal independent set in A has the
same cardinality. :

Matchings and
Assignments

4.1 AUGMENTING PATHS AND OPTIMALITY

Here we demonstrate two other important ideas used in certain combinatorial
algorithms. One idea is that of a primal algorithm systematically moving from
one feasible solution to a better one. The second is that of iterating between
primal and dual problems using the LP complementarity conditions.

First a few reminders. We suppose that a graph G = (V, E) is given.

Definition 4.1 A matching _M C E is a set of disjoint edges, that is, at most
one edge of a matching is incident to any nodev e V.

Definition 4.2 A covering by nodes is a set of nodes R C V such that every
edge e € E is incident to at least one of the nodes of R.
We have shown in Section 2.5 that there is a weak duality between match- -
ings and coverings by nodes, namely for every matching M and covering by
nodes R, | M |<| R |. Here we consider the Mazimum Cardinality Matching
Problem max{| M |: M is & matching}, and to solve it we examine first how
to construct matchings of larger and larger cardinality. »

Definition 4.3 An alternating path with respect to a matching M is a path
P = vg, €1,1,€2,- - - ,€p, Up Such that

(i) €1,€3,...,€0dd € E\M'

(ii) e, €4, - -1 €even € M.

53

54 MATCHINGS AND ASSIGNMENTS
(iii) o is not incident to the matching M (vp is an exposed node).
An augmenting path is an alternating path that in addition satisfies the con-

dition:
(iv) The number of edges p is odd, and v, is not incident to the matching M.

Augmenting paths are what we need (see Figure 4.1).

Proposition 4.1 Given a matching M and an augmenting path P relative
~ to M, the symmetric difference M' = (M U P)\ (M 0 P) is a matching with
| M |>| M |. ’ : -

Proof. As n and vp do not touch M, M’ is a matching. As p is odd,
lPr\(E_\M)|=|PﬂM|+1.ThuslM’|=|MH-1. .
——— E;iges of M

e Ediges of M'

M=((3,4),(2,6)}

Augmenting Path
(,2).(2.6).(6,3).(3.4).(4,5)

Fig. 4.1 An augmenting ﬁath

So the existence of an augmenting path implies that M is not optimal. Is the
converse also true? If there is no augmenting path, can we conclude that M
is optimal?

Proposition 4.2 If there is no augmenting path relative to o matching M,
then M is of mazimum cardinality.

Proof. We show the contrapositive. We' suppose that M is not optimal.
Thus there exists a matching M’ with | M’ |>| M |. Consider the graph
whose edges are given by (M U M')\ (M N M'). The degree of each node
in this graph is 0,1, or 2. Thus the connected components of the graph are
paths and cycles. For a cycle C, the edges alternate between M and M’, and
so the cycles.are of even length and contain the same number of edges from
M and M’. The paths can contain either an even or an odd number of edges.
As | M' |>| M |, one of the paths must contain more edges from M’ than
from M. This path is an augmenting path. ' .

Can we find whether there is an augmenting path or not in polynomial
time? If there is no augmenting path, can we give a simple way to verify that

i o

BIPARTITE MAXIMUM CARDINALITY MATCHING 55

the matching we have is maximum? In the next section we give a positive
answer to both these questions when the graph is bipartite.

4.2 BIPARTITE MAXIMUM CARDINALITY MATCHING

Given a bipartite graph G = (W1, V2, E), where V = V1 UV, and every edge
has one endpoint in V; and the other in V2, we wish to find a maximum size

- matching in G. We suppose that a matching M (possibly empty) has been

found, and we wish either to find an augmenting path, or to demonstrate that
there is no such path and that the matching M is optimal.
We try to systematically examine all augmenting paths.

Observation 4.1 As augmenting paths P are of odd length and the graph is
bipartite, one of the exposed nodes of P is in V; and the other in V;. Thus it
suffices to start enumerating from V1.

Outline of the Algorithm. We start by labeling all the nodes of V; disjoint
from M. These are candidates to be the first node of an alternating path.

The first (and subsequent odd) edges of an alternating path are in E\ M,
and thus all such edges from the labeled nodes in Vi are candidates. The
endpoints of these edges in V are then labeled..

The second (and subsequent even) edges of an alternating path are in M,
and thus any edge in M touching a labeled node in V3 is a candidate. The
endpoints of these edges in V; are then labeled, and so on.

The labeling stops: either when a node of Vs is labeled that is not incident
to M, so an augmenting path has been found, or when no more edges can be
labeled, and so none of the alternating paths can be extended further.

Algorithm for Bipartite Maximum Cardinality Matching

Step 0. G = (W, Vo, E) is given. M is a matching. No nodes are labeled or
scanned.

Step 1. (Labeling)
1.0 Give the label * to each exposed node in Vi.

1.1 If there are no unscanned labels, go to Step 3. Choose a labeled un-
scanned node i. If i € V4, go to 1.2. If i € V2, go to 1.3.

1.2 Scan the labeled node i € V;. For all (4,5) € E\ M, give j the label ¢
if j is unlabeled. Return to 1.1.

56 MATCHINGS AND ASSIGNMENTS

1.3 Scan the labeled node i € V. If i is exposed, go to Step 2. Otherwise,
find the edge (j,1) € M and give node j € V the label i. Return to 1.1.

Step 2 (Augmentation). An augmenting path P has been found. Use the
labels to backtrack from j € V2 to find the path. '
Augment M. M « (MUP)\(MNP). Remove all labels. Return to Step 1.

Step 3 (No Augmenting Path). Let Vfr ,V,& be the nodes of V; and V5 that

are labeled and V;™,V; the unlabeled nodes.

Theorem 4.3 On termination of the algorithm,
(i) R=Vy UV;' is a node covering of the edges E of G.
(i) | M |=| R, and M is optimal.

Proof. (2) As no more nodes can be labeled, from Step 1.2 it follows that
there is no edge from Vit to V5. This means that Vi~ U V5 covers E.

(b) As no augmenting path is found, every node of V; is incident to an edge
e of M, and from Step 1.3 the other endpoint is in V.

(c) Every node of Vi~ is incident to an edge e of M, as otherwise it would
have received the label * in Step 1.0. The other endpoint is necessarily in V5,
as otherwise the node would have been labeled in Step 1.2.

(d) Thus | Vi~ UVt |<I M| But | R |>| M | and thus | R |=| M J. "
Example 4.1 Consider the bipartite graph shown in Figure 4.2 and the initial
matching M = {(3,8),(5,10)}- The algorithm leads to the labeling shown,

and the construction of the set. of -alternating paths shown. Two alternating
paths are found: (1,8),(3,8),(3,7) and (4,10), (5, 10), (5, 9).

O—6--O—0

®
v
OO - —0

M={(3,8),(5,10)}

_ Fig. 4.2 Biparttite matching

In Figure 4.3 we show the new matching M = {(1, 8),(3,7), (4, 10), (5,9)}
and the labeling obtained from the algorithm. Now we see that we cannot add
any more labels and no augmenting path has been found. It is easily checked |

_that the node set R = {3, 4,5,8} is an edge cover. As|M|=|R|=4Mis
, L

optimal.

‘THE ASSIGNMENT PROBLEM 57

Fig. 4.3 Bipartite matching 2
4.3 THE ASSIGNMENT PROBLEM

Given a bipartite graph G = (W1, V2, E) and weights c. for e € E, one prob-
lem is to find a matching of maximum weight. From the results on total
unimodularity, we know that it suffices to solve the linear program:

z= maxz:eEE CeTe
Y ees(i) Te S 1 forie ViuVa
ze>0forec E.

When | V4 |=| V2 |=n, and the problem is to find a matching of size n of
maximum weight, we obtain the assignment problem:

n n
z=max) iy D i CisTij
Z;-‘=1'27,‘j =1fori= 1,...,1_'1
Y mgj=1forj=1...,n.

z;j >20fori,j=1,...,n

Below we develop an algorithm for the assignment problem. Afterwards we
show how the maximum weight bipartite matching problem can be solved as
an assignment problem. :

Taking the linear programming dual of the assignment problem, we get:

w= mmz?:] Us +Z?=1 Uj
u+v; 2 fori,j=1,...,n

First we make an important observation that is valid for the assignment and
traveling salesman problems allowing us to change the cost matrix in a certain
way.

i=
signment with weights ci; differs by a constant amount from its value with
weights Cij = Cij — Ui — Vj- ‘

Proposition 4.4 For all values {w; Y2, and {v;}}=y, the value of any as-

58 MATCHINGS AND ASSIGNMENTS

This means that 2 solution is optimal with weights 'ci_,- if and only if it is
optimal with weights Gij-

Proof. For everj/ primal feasible solution,

non n n -
SO T = SN (e —wi = vi)Ti

i=1j=1 i=1 j=1
n n n n n n
=3 e~ S uil)) - S~ 03 (D wis)
i=1j=1 i=1 j=1 i=1 i=1
n n n n
=35> s - S ui— v
i=1j=1 i=1 j=1

So for any feasiblé solution of the primal, the difference in values of the two
. . n
objectives are always the constant S, i+ Sy v and the claim follows. =

Now we wish to characterize an optimal solution. ’

Proposition 4.5 If there exist u,v € R" and an assignment T € {0, 1
with:

(i) Tij = Cij = Wi ~ v; <0 for all 4,7, and

(i) zi5 =1 only when Cij = 0,

then the assignment T is optimal and has value S Uit Z;,‘___l vj.

Proof. Because Cij <0 for all 4,], the value of an optimal assignment with
weights Tij is necessarily nonpositive. But by condition (ii), with weights
Tij, the assignment T has value g Yj=1 CisTis = 0 and is thus optimal.
Now by Proposition 44, z is also optimal with weights ¢;; and has value

n
Y Uit > =15
Note that this is another way of writing the linear programming comple-

mentarity conditions. In fact (i) tells us that u,v is a dual feasible solution,
and (ii) that complementary slackness holds. :

Idea of the Algorithm. 'We are going to use a so-called “primal-dual” algo-
rithm on the graph G = (W4, V2, E) where Vi={1,-,n}, Vo= {v,---,n"}
and E consists of all edges with one endpoint in V; and the other in V2.

At all times we will have a dual feasible solution u,v, or in other words
EijSOfOTalliEtheVZ- ' .

Then we_ will try to find an assignment (2 matching of size n) using only

the edges EC E where E = {(4,7) : G5 = 0}. To.do this we will solve the
maximum cardinality matching problem on the graph G = (V1, Vs, E).

If we find a matching of size n, then by Proposition 4.5 we have an optimal

" weight assignment. Otherwise we return to the dual step and change the dual |

variables.

THE ASSIGNMENT PROBLEM 59
Algorithm for the Assignment Problem

| Step 0. Let u,v be initial weights such that ; < 0 for all 4,j. Let E =
‘ {(,4) : ©; = 0}. Find a maximum cardinality matching M* in the graph
G = (V1, Vo, E) using the algorithm described in the previous section.

If | M* |=n, stop. M* is optimal.

Otherwise, note the matching M = M* and the labeled nodes Vit Vst on
termination. Go to Step'2.)

B ey

Step 1 (Primal Step). Let E = {(4,7) : G; = 0}. M is a feasible matching, and
Vit, Vst are feasible labels. Continue with the maximum cardinality matching
algorithm of the previous section to find an optimal matching M*.
If | M* |=n, stop. M* is optimal.
Otherwise, note the matcling M = M* and the labeled nodes Vit, Vst on
~ termination. Go to Step. 2. '

Step 2 (Dual Step). Change the dual variables as follows:
Set § = miney+ jevy\vyt [-gi5)-
Set u; + u; — 6 for i € Vit
Set v; 4—-v,-+6forjeV2+,
Return to Step 1. .

" We now need to show that the algorithm terminates correctly, and then
see how long it takes. ’

Proposition 4.6 Each time that Step 1 terminates with labeled nodes Vi, Vi,
| Vit 1> V5 . '

" Proof. Every node of V2+ touches a matching edge whose other endpoint is
in V;*. In addition V;+ contains ‘at least one node that is not incident to the
matching and received an initial label *. .

Proposition 4.7 In the dual step, §>0.

Proof. We observed in the proof of Theorem 4.3 that there are no edges of
E between V;+ and V3 \ V5", Therefore ;; <0 for all i € ViHieVa\Vs'. =

Proposition 4.8 After a dual change,

Tij « Gij foriéVf",jGVz*' ‘

Ty — Ty fori€ i\ Vit j € 2\ Vo'

Cij — Cij — 4§ fori € Vl\V1+,j>€ V2+

E;J ‘-‘E;j + 5 fori € V1+1j € V2\ V2+

and the new solution is dual feasible.

Proof. T;; only increases when i € Vit,j € Va\ V5", So we must check that

the new values are nonpositive. However, § was chosen precisely so that this
" condition is satisfied and at least one of these edges now has value G;; = 0. =

60 MATCHINGS AND ASSIGNMENTS

Proposition 4.9 The. labels V1+ and Vg"’ remain valid dfter a dual change.

Proof. During a dual change, €i; is unchanged for i € Vitje V,;', and so
the labeling remains valid. ' =

The above observations tell us that the primal step can restart with the old
labels, and the dual objective value decreases by a positive amount 4(| Vit |
— | V5" |) at each iteration. However, to see that the algorithm runs fast, we
can say much more.

"Observation 4.2 | V;* | increases after a dual change, because of the previ-
ous proposition and the choice of é.

Observation 4.3 The cardinality of the maximum cardinality matching must
increase after at most n dual changes, as | V5' | cannot exceed n.

Observation 4.4 The cardinality of the maximum cardinality matching can
increase at most n times, as | M* | cannot exceed 7. ’

Proposition 4.10 The algorithm has complezity O(n?).
Proof. By the previous 6bservations, the total number of dual changes in the
course of the algorithm is O(n2). Work in a dual step is O(] E |). The work

in the primal step between two augmentations is also O(| E |).]

Example 4.2 Consider an instance of the assignment problem with n = 4
and the profit matrix

21 17 T 8
14 2 10 2
()= 12 19 4 4
8 6 12 6

We apply the assignment algorithm. In step 0, we find a first dual feasible
solution by setting v] = max;c;; for j =1,...7 andul =0fori=1,...,m
This gives a dual feasible solution, and the reduced profit matrix

0 -2 -5 0
| -8 17 2 -6
@)= _15 0o -8 —4

~19 -13 0 -2

with u = (0,0,0,0),v = (27,19,12,8).

‘The corresponding dual solution has value 0, u} + Z;l-:l v} = 66. Now
we observe that there is no zero entry in the second row of this matrix, so we
can immediately improve the dual solution, and more importantly add another

THE ASSIGNMENT PROBLEM 61

edge to E by setting u = max; ; = —2. This gives the new reduced profit
matrix

0 -2 =50
2) = -1 -15 0 -4
* -15 0 -8 -4
-19 -13 0 -2

‘

with u = (0,-2,0, 0),v = (27,19,12,8)

and a dual objective value of 64.

Fig. 4.4 Primal step

In the primal step we now construct the bipartite graph shown in Figure 44.
We find an initial matching easily by a greedy approach. Suppose we obtain
the matching M = {(1,1),(3,2'),(4,3")} with | M |= 3. The augmenting
path algorithm leads to the labels shown in Figure 4.4.

Node 2 receives the label *.

Node 3’ receives the label 2.

Node 4 receives the label 3’, and then no more labels can be given.

Thus Vit = {2,4} and V' = {3'}.

_ In the dual step, we find that § = —22, = 2. This leads to a modified dual
feasible solution and the reduced profit matrix

/0 -2 -7 O
sy | -9 -18 0 -2
@)=| _15 0o -10 —4
-17 =11 0 0

with w = (0, —4,0,-2),v = (27,19,14,8).

The dual solution now has value 62.
Now in the primal step the edge (4,4') is added to E. The same la-
bels can be given as before and in addition node 4’ now receives the la-
bel 4. An augmenting path {(2,3'),(4, 3'),(4,4")} has been found. M =
{(1,19,(2,3),(3,2), (4, 4')} is a larger matching, and as it is of size n = 4,
it is optimal. It can also be checked that its value is 62, equal to that of the

" dual solution. .

62 MATCHINGS AND ASSIGNMENTS

Now we return to the maximum weight bipartite matching problem. We
demonstrate by example how the assignment algorithm can be used to solve
it. Consider the instance shown in Figure 4.5.

Fig. 4.5 Maximum weight bipartite matching

As | Vi | — | V2 |=2, we add two nodes 4’ and 5’ to Vo. All existing edges
are given a weight max{ce,0}. All missing edges are added with a weight of
0. The resulting assignment weight matrix is

(e =

O NN O
OO WO
W oo O
o000 O0o
cooco0o0Oo

The assignment algorithm terminates with an optimal solution Z15 = T22 =
Tgg = T4a = Ts1 = L. The edges with positive weight (22), (33), (51) provide
a solution of the matching problem.

4.4 NOTES

More detailed chapters on assignment problems are in [AhuMagOr193], and on

general matchings in [CooCuneta197] and [NemWol88]. The complete story
on matchings is in the book [LovPlu8é].

4.1 The results on alternating paths are from [Ber57] and [NorRab59].

4.3 The primal-dual algorithm can be found in [Kuh55], [ForFul62]. Primal
dual algorithms for linear programming were also proposed in [DanForFulSG].
Many of the first algorithms for combinatorial optimization problems were
primal-dual, such as ‘the matching algorithm [Edm65b] and the matroid in-
tersection algorithm [Edm70}; see also [Law76] and [CooCunetal97].

EXERCISES 63

.4.5 EXERCISES

1. Find two augmenting paths for the matching M shown in the graph of
Figure 4.6. Is the new matching M’ obtained after augmentation optimal?
Why?

Fig. 46 Matching to be augmented

9. Find a maximum cardinality matching in the graph of Figure 4.7.

Fig. 4.7 Maximum cardinality matching

Demonstrate that your solution is optimal.

3. If a graph has n = 2k nodes, a matching with k edges is called perfect.
Show directly that the graph of Figure 4.7 does not contain a perfect matching.

4. Given a connected graph G = (V, E) and positive edge lengths c, fore € E,
the Chinese Postman (or garbage collection) Problem consists of visiting each
edge of G at least once beginning and finishing at the same vertex, and min-
imizing the total distance traveled. '

(i) Show that the minimum distance traveled is Y ¢ Ce if and only if the
graph is Eulerian (all nodes have even degree). o

(ii) Show that if G is not Eulerian, and k is the number of nodes of odd degres;,
then k is even and at least -’% edges must be traversed more than once.

(iif) Show that the minimum additional distance that must be traveled can
be found by solving a minimum weight perfect matching problem in a certain

64 MATCHINGS AND ASSIGNMENTS

subgraph (suppose that if e = (i,7) € E, the shortest path between i and j is
via edge e).

5. Show how a maximum flow algorithm can be used to find a maximum
cardinality matching in a bipartite graph.

6. Find a maximum weight assignmént with the weight matrix:

[

6 2 3 41
9 2760
()= 8 21 49
2 13 4 4
16 291

7. Find a maximum weight matching in the weighted bipartite graph of Figure
4.8. - ' ’

Fig. 4.8 Weighted bipartite graph

8. Show how an algorithm for the maximum weight bipartite matching prob-
lem can be used to solve the (equality) assignment problem.

9. Find a 'lowér bound 6n the optimal value of a 6-city TSP instance with
distance matrix

(ei) =

alv-amoécol
o=l N
o w | «14w
Dol o
<SRk wOr
Iwc:ooo":..

EXERCISES 65

10. Ten researchers are engaged in a set of ten projects. Let S; denote
the researchers working on project ¢ for ¢ =1,...,10. To keep track of
progress or problems, management wishes to designate one person work-
ing on each project to report at their weekly meeting. Ideally no person
" should be asked to report on more than one project. Is this possible or not,
when §; = {3,7,8,10}, 82 = {4,8},83 = {2,5,7}, 54 = {1,2,7,9}, S5
{275’7}1 Se = {11475’7}'»87 = {277}1 Sg = {1,6, 7, 10}7 Sy = {295}7510
{1,2,3,6,7,8,10}7 ’

11. Suggest an algorithm to solve Exercise 5 of Section 1.9.

-~ Dynamic Programming

5.1 SOME MOTIVATION: SHORTEST PATHS

Here we look at another approach to solving certain combinatorial optimiz-
ation problems. To see the basic idea, consider the shortest path problem
again. Given a directed graph D = (V, A), nonnegative arc distances ce for
e € A, and an initial node s € V, the problem is to find the shortest path
from s to every other node v € V' \ {s}. See Figure 5.1, in which a shortest
path from s to t is shown, as well as one intermediate node p on the path.

Fig. 5.1 Shortest s-t path

Observation 5.1 If the shortest path from s to ¢ passes by node p, the
subpaths (s, p) and (p,t) are shortest paths from s top, andptot respectively.

If this were not true, the shorter subpath would allow us to construct a shorter
" path from s to t, leading to a contradiction.

67

68 DYNAMIC PROGRAMMING
The question is how to use this idea to find shortest paths.

Observation 5.2 Let d(v) denote the length of a shortest path from s to v.
Then :

d(v) = min {d(i v} 5.1
@)=, 5’6‘3‘}1,){ (i) + civ} (5.1)
In other words, if we know the lengths of the shortest paths from s to every
neighbor (predecessor) of v, then we can find the length of the shortest path
from s to v.

This still does not lead to an algorithm for general digraphs, because we may
need to know d(i) to calculate d(j), and d(j) to calculate d(i). However, for
certain digraphs, it does provide a simple algorithm.

Observation 5.3 Given an acyclic digraph D = (V, 4) withn = [V],m =14},
where the nodes are ordered so that i < j for all arcs (i, §) € A, then for the
problem of finding shortest paths from node 1 to all other nodes, the recur-
rence (5.1) forv=2,...,n leads to an O(m) algorithm.

For arbitrary directed graphs with nonnegative weights ¢ € R'_fl, we need to
somehow impose an ordering. One way to do this is to define a more general
function D(i) as the length of a shortest path from s to i containing at most
k arcs. Then we have the recurrence: '

Du(j = min{De-sG) pin (Dens(d) +cal)

Now by increasing k from 1 to n — 1, and each time calculating Dx(j) for
all j € V by the recursion, we end up with an O(mn) algorithm and d(j) =
Dn—l(j)

This approach whereby an optimal solution value for one problem is cal-
culated recursively from the optimal values of slightly different problems is
called Dynamic Programming (DP). Below we will see how it is possible to
apply similar ideas to derive a recursion for several interesting problems. The
gtandard terminology used is the Principle of Optimality for the property that
pieces of optimal solutions are themselves optimal, states that correspond to
the nodes for which values need to be calculated, and stages for the steps
which define the ordering. :

5.2 'UNCAPACITATED LOT-SIZING

The uncapacitated lot-sizing problem (ULS) was introduced in Chapter 1
where two different mixed integer programming formulations were presented.
The problem again is to find a minimum cost production plan that satisfies

UNCAPACITATED LOT-SIZING 69

all the nonnegative demands {d;}7-;, given the costs of production {p}1,
storage {h¢}7_1, and set-up {fe}t—;. We assume f; >0 for all t.

To obtain an efficient dynamic programming algorithm, it is necessary to
understand the structure of the optimal solutions. For this it is useful to view
the problem as a network design problem. Repeating the MIP formulation
of Section 1.4, we have: '

n n n
min Zptxt + Z hist + z frue (5.2)
t=1 t=1 t=1 ’
sg-1+ Tt = di+ st fort=1,...,n (5.3)
z, < Myt fort=1,...,n ‘ (5.4)
so=sn=0,s € RY,zeR},yeB" (5.5)

where z; denotes the production in period ¢, and s; the stock at the end of
“period t. We see that every feasible solution co:tesponds to a flow in the
network shown in Figure 5.2,

Fig. 5.2 Network for lot-sizing problem

where p; is the flow cost on arc (0,t), bt is the flow cost on arc (¢,t+ 1), and
the fixed costs f; are incurred if ¢ > 0 on arc (0,1).

Thus ULS is a fixed charge network flow problem in which one must choose
which arcs (0,t) are open (which are the production periods), and then find
a minimum cost flow through the network. Optimal solutions to ULS have
two important structural properties that follow from this network viewpoint.

Proposition 5.1 (i) There ezists an optimal solution with s;_ x¢ =0 for all
t. (Production takes place only when the stock is zero.)
(ii) There ezists an optimal solution such that if Tz > 0,z = ZHk d; for

. - 1=t
some k > 0. (If production takes place in t, the amount produced eractly

satisfies demand for periods t tot +k.)

Proof. Suppose that the production periods have been chosen optimally
(certain arcs (0,) are open). Now as an optimal extreme flow uses a set of

70 DYNAMIC PROGRAMMING

arcs forming a tree, the set of arcs with positive flow contains no cycle, and
it follows that only one of the arcs arriving at node ¢ can have a positive flow
(i-e., 5t-1Tt = 0). The second statement then follows immediately. ..

Property (ii) is the important property we need to derive a DP algorithm for
ULS.

For the rest of this section we let d;; denote the sum of demands for periods
juptot (ie,dit= Z;=i d;). The next observation is repeated from Section
1.4 to simplify the calculations.

Observation 5.4 As st = }:Ll z; — dit, the stock variables can be elimin-
ated from the objective function giving 3 i, PeTe + T hese = Loy PeSe
T he(Shy 2 — die) = Tpoy O ~ S, hedys where ¢, = e +- Yo hi.
This allows us to work with the modified cost function)i ct%+0 Yot St
Sty feye, and the constant term Yz hedis must be subtracted at the end
of the calculations. : '

Let H (k) be the minimum cost of a solution for periods 1,.. ., k. Ift<kis
the last period in which production occurs (namely z; = dy1.), what happens
in periods.1,...,t — 1?7 Clearly the least cost solution must be optimal for
periods 1,...,t — 1, and thus has cost H(t —1). This gives the recursion.

Forward Recursion
H(k) = lréltigk{ﬂ (t — 1) + fe+ ceder}
with H(0) = 0.

Calculating H(k) for k =1,...,7 leads to the value H(n) of an optimal
solution of ULS. Working back gives a corresponding optimal solution. It is
also easy to see that O(n?) calculations suffice to obtain H(n) and an optimal
solution.

Example 5.1 Consider an instance of ULS with n = 4,d = (2,4,5, 1),p=
(3,3,3,3),h = (1,2,1,1) and f = (12,20,16,8). We start by calculating ¢ =
(8,7,5,4), (d11, drz, d13, daa) = (2,6,1L, 12) and the constant 4 hedyy =37,
Now we successively calculate the values of H(k) using the recursion.
H(1)=f1+01d1 = 28.)
H(2) = min[28 + c1da, H(1) + f2 + ¢ads) = min(60,76] = 60.
H(3) = min{60 + c1ds, 76+ c2ds, H(2) + fa+cads] = min{100,111, 101} = 100.
H(4)= min[100 + ci1ds, 111 + cpdyg, 101 + cads, H(3) + fa+ C4d4]
= min(108, 118,106, 112] = 106. : v

Working backwards, we see that H(4) = 106 = H(2) + fs + c3dag, SOY3 =
1,73 = 6,y4 = 24 = 0. Also H(2) = fi+cdiz, soyr =1, 71 = 6,y2 =2 =0.
Thus we have found an optimal solution z = (6,0,6,0),y = (1,0,1,0),s =

AN OPTIMAL SUBTREE OF A TREE 71

(4,0,1,0) whose value in the original costs is 106 — 37 = 69. Checking we
have 6p; + f1 + 6ps + f3 + 4hy + 1hg = 69. - .

Another possibility is to solve ULS directly as a shortest path problem.

_ Consider a directed graph with nodes {0,1,...,n} and arcs (4, j) for all 7 < j.

The cost fir1 + ci1dit1,; of arc (4,5) is the cost of starting production in
i+ 1 and satisfying the demand for periods i + 1 up to j. Figure 5.3 shows
the shortest path instance arising from the data of Example 5.1. Now a least
cost path from node 0 to node n provides a minimum cost set of production
intervals and solves ULS. i

Fig. 5.3 Shortest path for ULS

We observe that H(k) is the cost of a cheapest path from nodes 0 to k,
and as the directed graph is acyclic, we know from Observation 5.3 that the
corresponding shortest, path algorithm is. O(m) = O(n?).

5.3 AN OPTIMAL SUFBTREE OF A TREE

Here we consider another problem that can be tackled by dynamic program-
ming. However, the recursion here is not related at all to shortest paths. The
Optimal Subtree of a Tree Problem involves a tree T = (V, E) with a root
r € V and weights ¢, for v € V. The problem is to choose a subtree of
T rooted at r of maximum weight, or the empty tree if there is no positive
weight rooted subtree. ' :

To describe a dynamic programming recursion we need some notation. For
a rooted tree, each node v has a well-defined predecessor p(v) on the unique

* path from the root r to v, and, for v # r, a set of immediate successors

S(v) = {w € V : p(w) = v}. Also we let T'(v) be the subtree of T rooted atv -

containing all nodes w for which the path from 7 to w contains v. '
For any node v of T, let H(v) denote the optimal solution value of the

rooted subtree problem defined on the tree T'(v) with node v as the root. If

the optimal subtree is empty, clearly H(v) = 0. Otherwise the optimal subtree

contains v. It may also contain subtrees of T'(w) rooted at w forw € S(v). By

72 DYNAMIC PROGRAMMING

the principle of optimality, these subtrees must themselves be optimal rooted
subtrees. Hence we obtain the recursion:

H(v) = max{0,c, + », H@w)}.
weS(v)

To initialize the recursion, we start with the leaves (nodes having no suc-
cessors) of the tree. For a leaf v € V, H(v) = max|cy,0]. The calculations are
then carried out by working in from the leaves to the root, until the optimal
value H(r) is obtained. As before, an optimal solution is then easily found
by working backwards out from the root, eliminating every subtree T'(v) en-
countered with H(v) = 0. Finally note that each of the terms ¢, and H (v)
occurs just once on the right-hand side during the recursive calculations, and
so the algorithm is O(n).

Example 5.2 For the instance of the optimal subtree of a tree problem shown
in Figure 5.4 with root 7 = 1, we start with the leaf nodes H(4) = H(6) =
H(7) = H(11) = 0, H(9) = 5,H(10) =3, H(12) = 3, and H(13) = 3. Work-
ing in, H(5) = max[0, —6 + 5+ 3] =2 and H(8) = max[0,2v+0+3+3] = 8.
Now the values of H(v) for all successors of nodes 2 and 3 are known, and so
H(2) = 4and H(3) =0can be calculated. Finally H(1) = max[0, —2+4+0] =
2. Cutting off subtrees T(3),T(4), and T(6) leaves an optimal subtree with
nodes 1,2,5,9,10 of value H(1) =2 n

Fig. 5.4 Rooted tree with node weights cv

5.4 KNAPSACK PROBLEMS

Here we examine various knapsack problems. Whereas ULS and the optimal
_subtree problems have the Efficient. Optimization Property; knapsack prob-
lems in general are more difficult. This is made more precise in the next
chapter. Dynamic programming provides an effective approach for such prob-
lems if the size of the data is restricted. - .

KNAPSACK PROBLEMS 73

5.4.1 0-1 Knapsack

First we consider the 0-1 knapsack problem:

n
z=max}y ;_; CiTj

Z?;l ajxj S b
e B

where the coefficients {a;}7., and b are positive integers.

Thinking of the right-hand side X taking values from 0, 1,...,b as the state,
and the subset of variables z,. ..,z represented by k as the stage, leads us
to define the problem P,()) and the optimal value function f,.(A) as follows:

fr(A) = max 35, ¢z
(Pr()‘)) Ej;l a;T; < A
: Tz € B".

Then z = fa(b) gives us the optimal value of the knapsack problem. Thus we
need to define a recursion that allows us to calculate f,(\) in terms of values
of fo(u) for s<rand p <A :

What can we say about an optimal solution z* for problem P.(\) with
value f.(A\)? Clearly either z7 =0 or z} = 1. '

(i) If ¥ = 0, then by the same optlmahty argument we used for shortest
paths, fr()\) fr=1(N).

- (i)If z¥ = 1, then fr(\) = ¢r + fr—1(A —ar).
Thus‘we arrive at the recursion:

fr(A) = max{fr_1(A),cr + fr-1(A = ar)}.

Now starting the recursion with fo()\) = 0 for A > 0, or alternatively with
fi()) =0 for 0 < A < a; and fi(\) = max[c;,0] for A > a3, we then use
the recursion to successively calculate f2, fs, ..., fn for all integral values of
A from 0 to b.

The question that then remains is how to find an associated optimal solu-
tion. For this we have two related options. In both cases we iterate back
from the optimal value f,(b). Either we must keep all the f.()) values, or an
indicator pr(/\) which is 0 if f-(\) = fr-1()), and 1 otherwise.

If po(b) = 0, then as fn(d) = fa-1(b), we set z;, = 0 and continue by
looking for an optimal solution of value fn_1(b).

If pa(b) =1, then as fo(b) = cn + fn—1(b — an), we set z} = 1 and then
look for an optimal solution of value fn—1(b— an).

Iterating n times allows us to obtain an optimal solution.

74 DYNAMIC PROGRAMMING

Counting the number of calculations required to arrive at z = fn (b), we see
that for each calculation fr()) for A =0, 1,...,bandr =1,...,7 there are
a constant number of additions, subtractions, and comparisons. Calculating
the optimal solution requires at most the same amount of work. Thus the DP
algorithm is O(nb).

Example 5.3 Consider the 0-1 knapsack instance:

2 = max 10z + Tz3 + 2523 + 2474
21, + lzg + 623 + 514 < 7
z € B4

The values of fr(\) and pr()) are shown in Table 5.1. The values of fi(})
are calculated by the formula described above. The next column is then
calculated from top to bottom using the recursion. For example, f2(7) =
max{f1(7), 7+ fi(T -1} = max{10,7 + 10} = 17, and as the second term
of the maximization gives the value of f2(7), we set p2(7) = 1. The optimal
value z = fu4(7) = 34.

| A o f3 fa | 21 ps pa |
A= o 0 0 O
0 7T 7 7

10 10 10 10°
10 17 17 17
10 17 17 17
10 17 17 24
10 17 256 31
10 17 32 34

- e b e O O
mm ke RO RO|S
-0 00000
—_—--0 0 0 00

GO UR WO

Table 5.1 f.()) for a 0-1 knapsack problem

/Working backwards, p4.(7) =1 and hence zj = 1. p3(7—5) = p3(2) =
p3(2) = 0 and hence z§ = 3 = 0. p1(2) = 1 and hence zj = 1. Thus

z* = (1,0,0,1) is an optimal solution. .
5.4.2 Integer Knapsack Problems

Now we consider the integer knapsack problem:

— n . .
z=max} i Ci%j

n
Y1047 S0
zeZ}

KNAPSACK PROBLEMS 75

where again the coefficients {a; }?___1 and b are positive integers. Copying from
the 0-1 case, we define P.(\) and the value function g.()) as follows:

9r(A) = max E;-—l G T
1855 S A
T E€Z].

(Fr(N)

j=1

Then z = g,(b) gives us the optimal value of the integer knapsack problem.
To build a recursion, a first idea is to again copy from the 0-1 case. If z* is
an optimal solution to P,.()) giving value g,()), then we consider the value of
z;. If 27 =t, then using the principle of optimality g-(\) = ¢ t+gr—1(A—ta,)
for some t =0,1,..., I.J_,Jv and we obtain the recursion:
A t 1A —t
gr()= =0 1’ ,l)\/ TJ{Cr +gr-af ar)}
As |_] = b in the worst case, this gives an algorithm of complexxty O(nb?).

Can one do better? Is it possible to reduce the calculation of g.(}) to a
comparison of only two cases?

(1) Taking z; = 0, we again have g.(\) = gr—1(}).
(i) Otherwise, we must have z}-> 1, and we can no longer copy from above.

However, as 2 = 1+t with ¢ a nonnegative integer, we claim, again by the
principle of optimality, that if we reduce the value of z} by 1, the remaining
vector (z3,...,T)_;,t) must be optimal for the problem P,.(A — a,). Thus we
have g.(\) = ¢ + g-(A — a,), and we arrive at the recursion:

9r(N) = max{gr—1(\),¢r + gr(A — ar)}.

This now gives an algorithm of complexity O(nb), which is the same as that
of the 0-1 problem. We again set p,(\) = 0 if g-(A\) = gr—1(A) and p,(N) =1
otherwise.

Example 5.4 Consider the knapsack instance:

z =max 7z, + 922 + 2x3 + 15x4
3zy +4x0 + 13+ T24 < 10
reZ}.

The values of g.()\) are shown in'Table 5.2. With ¢; > 0, the values of g1 ()) are

easily calculated to be ¢; | 2 -] The next column is then calculated from top to

bottom using the recursxon For example, go(8) = max{g;(8),9+92(8—4)} =
max{14,9 + 9} = 18.

Working back, we see that ps(10) = p3(10) = 0 and thus =} = =3 = 0.

p2(10) = 1 and p2(6) = 0 and so z5 = 1. p1(6) = p1(3) = 1 and thus z = 2.

" Hence we obtain an optimal solution z* = (2,1,0,0). v "

76 DYNAMIC PROGRAMMING

|g1 92 9 gallp P2 P Pu |
y—0lo o 0 ofo o 0 O
1lo o 2 2o 0 1 0
2o o 4 4fo 0o 1 0
3l7 7 7 7|1 0 0 O
4l7 9 9 9ff1 1 0 O
57 9 11 111 1 1 0
614 14 14 141 0 0 O
7114 16 18 181 1 1 0
gl14 18 18 181 1 0 O
9l21 21 21 21ff1 0o 0 O
1021 23 23 231 1 0 0O

Table 5.2 g-()) for an integer knapsack problem

Another recursion can be used for the integer knapsack problem. Looking
at the example above, we see that in fact all the important information is
contained in the nt* column containing the values of gn(A). Writing h in
place of gn, can we directly write a recursion for h(X)? .

Again the principle of optimality tells us that if z* is an optimal solution
of P,()\) of value

n n
h(A) = ma.x{z ¢y Zaja:j < \zeZi}

=1 =1

with =} > 1, then h(A) = ¢ + h(X = a;j).
Thus we obtain the recursion:

h(X) = max[0, ,-E.‘,f“é‘x{"" +h(A —aj)})

This also leads to an O(nb) algorithm. Applied to the instance of Example
5.4, it gives precisely the values in the g4 column of Table 5.2.

As a final observation, the dynamic programming approach for knapsack
problems can also be viewed as a longest path problem. Construct an acyclic
digraph D = (V, A) with nodes0,1,... ,b, arcs (A, A+a;) for A € Zi, A< b-a;
with weight ¢; for j=1,...,n, and O-weight arcs (\, A+ 1) for A € Zi A<
b—1. h()) is precisely the value of a longest path from node 0 to node A.
Figure 5.5 shows the digraph arising from the instance:

z = max 10z + Tz2 + 2523 + 2474
2y + lzo + 623 + 524 < 7
T € Z%,

except that the 0-weight arcs (M A +1) are omitted by dominance.

NOTES 77

Fig. 5.5 Knapsack lohgest path problem

5.5 NOTES

5.1 The principle of optimality and dynamic programming originated with
Bellman [Bell57]. One of the more recent books on dynamic programming is
[Den82]. Shortest path problems with additional restrictions arise as subprob-
lems in many routing problems, and are solved by dynamic programming, see '
[Desetal9s].

~ 5.2 The uncapacitated lot-sizing model and the dynamic programming al-
gorithm for it are from [WagWhi58]. Dynamic programming recursions have

been developed for many generalizations including lot-sizing with backlog-
ging [Zan66], with constant production capacities [FloKle71}, with start-up

costs [F1e90], and with lower bounds on production [Con98]. Recently

[WagvanHKoe92] among others have shown how the running time of the DP
algorithm for the basic model can be significantly improved.

5.3 Various generalizations of the subtree problem are of interest. The more
general problem of finding an optimal upper/lower set in a partially ordered
set is examined in [GroLie81], and shown to be solvable as a network flow
problem. . ‘

The problem of partitioning a tree into subtrees is tackled using dynamic
programming in’ [BarEdmWol86], and this model is further studied in
[AghMagWol95]. A telecommunications problem with such structure is stud-
ied in [Balaketal95].

Many other combinatorial optimization problems become easy when the
underlying -graph is a tree [MagWol95], or more generally a series-parallel
graph [Taketal82].

5.4 The classical paper on the solution of knapsack problems by dynamic pro-
gramming is [GilGom66]. The longest path or dynamic programming view-
point was later extended by Gomory leading to the group relaxation of an

78 DYNAMIC PROGRAMMING

integer program [Gom65), and later to the superadditive duality theory for
integer programs; see Notes of Section 2.2. The idea of reversing the roles of
the objective and constraint rows (Exercise 5.7) is from [IbaKim75].

The dynamic programming appoach to TSP was first described by
[HelKar62]. Relaxations of this approach, known as state space relazation,
have been used for a variety of constrained path and routing problems; see
[ChrMinTot81]. Recently [Psa80] and [Balas95] have shown how such a re-
cursion is of practical interest when certain restrictions on the tours or arrival
sequences are imposed.

5.6 EXERCISES

1. Solve the uncapacitated lot-sizing problem with n = 4 periods, unit pro-
duction costs p = (1,1,1,2), unit storage costs h = (1,1,1,1), set-up costs
f = (20,10,45,15), and demands d = (8,5,13,4).

2. Consider the uncapacitated lot-sizing problem with backlogging (ULSB).
Backlogging means that demand in a given period can be satisfied from pro-
duction in a later period. If r; > 0 denotes the amount backlogged in period
t, the flow conservation constraints (5.3) become

841 —Tt-1+ Tt =dp + 8¢t — T
Show that there always exists an optimal solution to ULSB with

(i) st—17t = Ty = 8g—17t = 0.
(ii) z¢ > 0 implies z, = 3°{_,d; withp <t <gq.

Use this to derive a dynamic programming recursion for ULSB, or to refor-
mulate ULSB as a shortest path problem.

3. Find a maximum weight rooted subtree for the rooted tree shown in Figure
5.6.

4. Formulate the optimal subtree of a tree problem as an integer program. Is
this IP easy to solve? '

5. Given a digraph D = (V, A), travel times ¢;; for (i, j) € A for traversing
the arcs, and earliest passage times r; for j € V, consider the problem of
minimizing the time required to go from node 1 to node 7.

(1) Describe a dynamic programming solution. v
(ii) Formulate as a mixed integer program. Is this mixed integer program easy
to solve? ’

EXERCISES 79

Fig. 5.6 Rooted tree with node weights c,

6. Solve the knapsack problem

min 5z, — 3z2 + Tx3 + 1024
2z) —xo+ 43+ 524 > A
T1,T4 € Zi,.’tz,.’t:; € Bl

for all values of A between 7 and 10.

7. Let f(A) = max{}_}_; ¢jz; : 35 a;%; < Az € X C R"} and
h(t) = min{37_, a;z; : 30, ¢jz; 2 t,z € X}
Show that

(i) () > t if and only if A(t) < A.
(ii) £(b) = max{t : h(t) < b}.

Use these observations to solve the knapsack problem

max 3z, + 4z2 + 63 + 524 + 8z }
412z + 507z2 + 714zx3 + 6714 + 92025 < 1794
z € BS

by dynamic programming.
8. Solve the problem

maxx‘{+2a:§ + 4x3 + 414
2z% + 4z5 + 673 + 514 < t
1 <3,r2<2,24<1

- zeZ}

for t < 12. (Hint. One of the recursions in the chapter is appropriate.)

80 DYNAMIC PROGRAMMING
9. Formulate the 0-1 knapsack problem as a longest path problem.

10. Derive a dynamic programming recursion for the STSP using f(S,3)
with 1,j € S where f(S, j) denotes the length of a shortest Hamiltonian path
starting at node 1, passing through the nodes of S\ {1,;} and terminating at
node j. .

11. Given the weighted rooted subtree of Figure 5.6, devise a dynamic pro-
gramming algorithm to find optimal weighted subtrees with k =2, 3,...,n—1
nodes.

12. Given a tree T and a list of T1,. .., Ty of subtrees of T with weights ¢(T5)
for i = 1,...,m, describe an algorithm to find a maximum weight packing of
node disjoint subtrees.

13.* Given a rooted tree T on n nodes, and an n by n matrix C, déscribe an
algorithm to find a maximum weight packing of rooted subtrees of T, where
the value of a subtree on node set S with root i € S is 3 jes Cij-

Complexity and Problem
Reductions

6.1 COMPLEXITY

If we consider a list of the problems we have examined so far, we have either
shown or it can be shown that the following have the Efficient Optimization
Property:

The Uncapacitated Lot-Sizing Problem (Chapter 5)
The Maximum Weight Tree Problem (Chapter 3)
The Maximum Weight Matching Problem

The Shortest Path Problem (Chapter 5)

The Max Flow Problem (Chapter 3)

The TU Integer Programming Problem (Chapter 3)
The Assignment Problem (Chapter 4)

Below we make this more precise: there is a polynomial algorithm for these
optimization problems.

On the other hand, no one to date has found an efficient (polynomial)
algorithm for any of the following optimization problems:

The 0-1 Knapsack Problem (Chapter 1)

The Set Covering Problem (Chapter 1)

The Traveling Salesman Problem (Chapter 1)

The Uncapacitated Facility Location Problem (Chapter 1)
The Integer Programming Problem (Chapter 1)

The Steiner Tree Problem (Chapter 3)

- 81

82 COMPLEXITY AND PROBLEM REDUCTIONS

The remainder of this book will in large part be devoted to examining how
to tackle problems in this second group. However, it is first useful to discuss
the distinction (real or imaginary) between these two groups, so that when we
encounter a new optimization problem we have an idea how we might classify
and then attempt to solve it.

To develop such a method of classification, we need just four concepts:

A class C of legitimate problems to which the theory applies

A nonempty subclass C4 C C of “easy” problems

A nonempty subclass Cg C C of “difficult” problems

A relation “not more difficult than” between pairs of legitimate problems.

This immediately leads to:

Proposition 6.1 (Reduction Lemma) Suppose that P and Q are two legit-
imate problems.

If Q is “easy” and P is “not more difficult than” Q, then P is “easy”.

If P is “difficult” and P is “not more difficult than” Q, then Q is “difficult”.

We have already used the first part of the lemma implicitly in Chapter 4.
There we show that the maximum weight bipartite matching problem is “easy”
by showing that it is reducible to the assignment problem. Also Exercise 4.4
involves showing that the Chinese postman problem is reducible to maximum
weight matching. The goal of the rest of this chapter is to somewhat formalize
these notions. In the next section we introduce the class of legitimate problems
and the “easy” class, and in Section 6.3 we discuss the concept of problem
reduction which allows us to then define the “difficult” class. ‘By the end of
the chapter we will then have another tool at our disposal: namely a way
to show that certain problems are “difficult” by using the second part of the
reduction lemma.

6.2 DECISION PROBLEMS, AND CLASSES NP AND P

Unfortunately, the theory does not exactly address optimization problems in
the form we have posed them so far. To define the class of legitimate problems,
it is appropriate to pose decison problems having YES-NO answers. Thus an
optimization problem:

max{cz : ¢ € S}

for which an instance consists of: {c and a “standard” representation of S} is
replaced by the decision problem:
Is there an z € S with value cx > k?

for which an instance consists of {c, a “standard” representation of S, and an
integer k}.

DECISION PROBLEMS, AND CLASSES N'P AND P 83

So for the rest of this chapter (unless explicitly stated), when we refer
to an optimization problem TSP, UFL, and so on, we have in mind the
corresponding decision problem. ‘

Next we give a slightly more formal definition of the running time of an
algorithm than that given at the start of Chapter 3. It is not just the number
of variables and constraints or nodes and edges that defines the input length,
but also the size of the numbers occurring in the data. -

Definition 6.1 For a problem instance X , the length of the input L = L(X)
is the length of the binary representation of a “standard” representation of-
the instance.

Definition 6.2 Given a problem P, an algorithm A for the problem, and an
instance X, let f4(X) be the number of elementary calculations required to
run the algorithm A on the instance X. Fal) = supx{fa(X): L(X) =1} is
the running time of algorithm A. An algorithm A is polynomial for a problem
P if f3(I) = O(IP) for some positive integer D

Now we can define the class of “legitimate” problems.

Definition 6.3 VP is the class of decision problems with the property that:
for any instance for which the answer is YES, there is a “short” (polynomial)
proof of the YES. ‘

We note immediately that if a decision problem associated to an optim-
ization problem is in NP, then the optimization problem can be solved by
answering the decision problem a polynomial number of times (by using bi-
section on the objective function value).

Proposition 6.2 For each optimization problem in the two lists in Section
6.1, the associated decision problem: “Does there erist a primal solution of
value as good as or better than k?” lies in N'P.

Now we can define the class of “easy” problems.

Definition 6.4 P is the class of decision problems in NP for which there
exists a polynomial algorithm. :

Example 6.1 (i) Uncapacitated Lot Sizing. Consider ULS for which a dy-
namic programming algorithm is presented in Chapter 5. For an instance X
with integral data (n,d, p, h, f, k), the input has length L(X) = Z;; 1Mogd; 1+
S i=1llogp;] + 37 Mloghy] + > i=1log f;1 + [log k1.

The DP algorithm requires only O(n?) additions and comparisons of the
numbers occurring in the data, and hence the size of numbers required to give
a YES answer, and the running time are certainly O(L?). Thus ULS is in P.

84 COMPLEXITY AND PROBLEM REDUCTIONS

(ii) 0-1 Knapsack. For an instance X of 0-1 KNAPSACK: {Xiicmi 2
k,3 ;1 a;z; < b,z € {0,1}"}, thelength of the input is L(X) = Z;;l [logc;]
+ 271 loga;] + [logb] + [logk].

For an instance for which the answer is YES, it suffices to (a) read a solution
z* € {0,1}", and (b) check that az* < b and cz* > k. Both (a) and (b) can
be carried out in time polynomial in L, so the associated decision problem is
in NP.

From Section 5.4, dynamic programming provides an O(nb) algorithm. As
b is not equal to (log b)? for any fixed p, this algorithm is not polynomial, and
in fact no polynomial algorithm is known for 0-1 KNAPSACK.

(iii) Symmetric Traveling Salesman. For ST'SP with instance (G, B k), it
suffices to check that a proposed set of edges forms a tour and that its length
does not exceed k. The argument for most other problems on the second list
is similar.

(iv) Integer Programming. Problem IP requires a little more work, because
one needs to show that there always exists an optimal solution z* whose de-
scription length 7, [log z}] is polynomial in L. .

Do the second set of optimization problems listed in Section 6.1 above have

anything in common apart from the fact that their decision problems are in
NP, and that nobody has yet discovered a polynomial algorithm for any of
them? :

Surprisingly, they have a second property in common: their decision prob-
lems are all among the most difficult problems in N'P.

6.3 POLYNOMIAL REDUCTION AND THE CLASS NPC

This is the formal definition of “is not more difficult than” that we need.

Definition 6.5 If P, Q € NP, and if an instance of P can be converted in
polynomial time to an instance of Q, then P is polynomially reducible to Q.

Note that this means that if we have an algorithm for problem Q, it can be
used to solve problem P with an overhead that is polynomial in the size of
the instance. We now define the class of “most difficult” problems.

Definition 6.6 N'PC, the class of NP-complete problems, is the subset of
problems P € NP such that forall Q € NP, Q is polynomially reducible to P.

It is a remarkable fact not only that N'PC is nonempﬁy, but that all of the

decision problems in our second list are in NPC. So how can one prove that
a problem is in N'PC?

POLYNOMIAL REDUCTION AND THE CLASS N'PC 85

The most important step is to prové, that NPC is nonempty. Written as
an 0-1 integer program, SATISFIABILITY is the decision problem:

Given N = {1,...,n}, and 2m subsets {C;}7, and {D;}2,; of N, does the
0-1 integer program:

SNozi+ Y (1-gz5) 21fori=1,...,m

JEC; JED;
z € B®

have a feasible solution?

It is obvious that this problem is in AP. Cook showed in 1970 that SAT-
ISFIABILITY is in N'PC.

Now we indicate how the reduction lemma can be used to show that all the
problems of the second list and many others are in N'PC.
For example, to see that BIP is in N'PC, all we need to observe is that

(i) BIP € N'P, (which is immediate) and

(ii) SATISFIABILITY reduces to BIP. (Above we actually described SAT-
ISFIABILITY as a BIP, and so this is also immediate).

We now restate the Reduction Lemma (Proposition 6.1) more formally.

Proposition 6.3 Suppose that problems P,Q € N'P.
(i) If Q € P and P is polynomially reducible to Q, then P € P.
() If P € NPC and P is polynomially reducible to Q, then Q € N'PC.

Proof. (ii) Consider any problem R € N'P. As P € N'PC, R is polynomially
reducible to P. However P is polynomially reducible to Q by hypothesis,
and thus R is polynomially reducible to Q. As this holds for all R € NP,
Q e NPC. v .

This has an important corollary.
Corollary 6.1 If PNNPC # 0, then P = NP.

Proof. Suppose Q € P NNPC and take R € N'P. By (ii), as R € NP and"
Q € N'PC, R is polynomially reducible to Q. By (i), as Q € NP and R is
polynomially. reducible to Q, R € P. So NP C P and thus P = NP. =

The list of problems known to be in AN"PC is now enormous. Some of the
most basic problems in NPC are the problems in our second list. Below we

_prove that the Capacitated Lot-Sizing Problem (CLS) can be added to the list.

86 COMPLEXITY AND PROBLEM REDUCTIONS

Example 6.2 Consider the lot-sizing problerh introduced in Chapter 1, with
a production capacity constraint in each period. CLS has a formulation:

n n n
min Z pizy + Z hesy + Z pAT
t=1

t=1 t=1
Sg-1+ Tt = di+sfort=1,...,n
zy < Cyfort=1,...,n
sp=3n=0,8 € R,z € R},y € B™.

First, is the decision version of CLS in N'P? One answer lies in the obsérva-
tion that there is always an optimal solution of the form: y € {0,1}" with =
a basic feasible solution of the network flow problem in which y is fixed. So
there exists an optimal solution whose length is polynomial in the length of
the input, and can be used to verify a YES answer in polynomial time. One
just needs to check that it satisfes the constraints and its value is sufficiently
small.

We now show that 0-1 KNAPSACK is polynomially reducible to CLS. To
do this, we show how an instance of the 0-1 knapsack problem can be solved
as a capacitated lot-sizing problem. Given an instance:

n n
min{z cjy; ¢ Eajyj > b,y € B"},
j=1 j=1

we solve a lot-sizing instance with n periods, py = by =0, ft = ¢t C; = a4 for
allt,dy=0fort=1,...,n—1 and d, = b.

An equivalent formulation of the lot-sizing problem, obtained by eliminat-
ing the stock variables as described in Section 1.4, is:

n
mianQa:t + thyt

=1 t=1
t t
Z:c.- > Zd,-fort:l,...,n—l
i=1 i=1
n n B
Sa = Y
i=1 i=1

zz < Cypfort=1,...,n

r€R},y € B™

Rewriting this with the chosen values for the data, we obtain:
n
min) erye
t=1

t .
' Z:c,- > Ofort=1,...,n—1

i=1

mﬁx

CONSEQUENCES OF P = NP ORP £#NP 87

n
ZIB,‘, = b
i=1

T < ayfort=1,...,n
zeR},y € B~

Dropping the n — 1 redundant demand constraints leaves

n
min Y _ ceye
t=1
n
Se = b
t=1)
ry < aypfort=1,...,n
z € R},yeB".

Now let (z*,y*) be an optimal solution of this lot-sizing instance. Combining
the constraint Z;;l 1, = b with the constraints z; < ay; for t = 1,...,n,
we see that Y, a:y7 > b and so y* is feasible in the knapsack instance. It is
also optimal, because a better knapsack solution § with ¢ < cy* would also
provide a better lot-sizing solution ((Z); = a:7,,¥). So an optimal y vector
for the lot-sizing instance solves the knapsack instance. So 0-1 KNAPSACK
is polynomially reducible to CLS, and as 0-1 KNAPSACK € NPC, CLS €
NPC. .

6.4 CONSEQUENCES OF P = NP ORP # NP

Most problems of interest have either been shown to be in P or in N'PC.
What is more, nobody has succeeded either in proving that P = NP or in
showing that P # N'P. However, given the huge number of problems in NPC
for which no polynomial algorithm has been found, it is a practical workmg
hypothesis that P # N'P.

So how should we interpret the above results and observations?

A first important remark concerns the class NP. Typically, problems in
this class have a very large (exponentially large) set of feasible solutions, and
these problems can in theory be solved by enumerating the feasible solutions.
As we saw in Table 1.1, this is impractical for instances of any reasonable size.

A pessimist might say that as most problems appear to be hard (i.e., their
decision version lies in A"PC), we have no hope of solving instances of large size
(because in the worst case we cannot hope to do better than enumeration),
and so we should give up.

A mathematician (optimist) might set out to become famous by proving
that P = NP

A mathematician (pessimist) might set out to become famous by proving
that P # NP

88 COMPLEXITY AND PROBLEM REDUCTIONS

A mathematician (thoughtful) might decide to ask a different question: Can
I find an algorithm that is guaranteed to find a solution “close to optimal” in
polynomial time in all cases? _

A probabilist (thoughtful) might also ask a different question: Can I find
an algorithm that runs in polynomial time with high probability and that
is guaranteed to find an optimal or “close to optimal” solution with high
probability?

An engineer would start looking for a heuristic algorithm that produces
practically usable solutions. ‘

Your boss might say: I don’t care a damn about integer programming
theory. You just worry about our scheduling problem. Give me a feasible
production schedule for tomorrow in which William Brown and Daughters’
order is out of the door by 4 P.M. : v

A struggling professor might say: Great. Previously I was trying to develop
one algorithm to solve all integer programs, and publishing one paper every
two years explaining why I was not succeeding. Now I know that I might as
well study each NP problem individually. As there are thousands of them, I
should be able to write twenty papers a year.

Needless to say they are nearly all right. There is no easy and rapid solu-
tion, but the problems will not go away, and more and more fascinating and
important practical problems are being formulated as integer programs. So
in spite of the N"P-completness theory, using an appropriate combination of
theory, algorithms, experience, and intensive calculation, verifiably good solu-
tions for large instances can and must be found.

Definition 6.7 An optimization problem for which the decision problem lies
in N'PC is called N'P-hard.

The following chapters are devoted to ways to tackle such N'P-hard prob-
lems. First, however, we return briefly to the Separation Problem introduced
in Chapter 2.

6.5 OPTIMIZATION AND SEPARATION

Here we consider the question of whether there are ties between problems in
 P. How can we show that a problem is in P? The most obvious way is by
finding a polynomial algorithm. We have also seen that another indirect way
is by reduction. '

There is, however, one general and important result tying together pairs of
problems. Put imprecisely, it says:

Given a family of polyhedra associated with a class of problems (such as the
convex hulls of the incidence vectors of feasible points S C B™), the family of

NOTES 89
optirhization problems:
max{cz : = € conv(S)}

is polynomially solvable if and only if the family of separation problems:

Is z € conv(S)? If not, find an inequality satisfied by all points of S, but
cutting off z.

is polynomially solvable.

In other words, the Efficient Optimization and Efficient Separation Prop-
erties introduced in Chapter 3 are really equivalent. The other two properties
are not exactly equivalent. As we indicated earlier, if a problem has the Ef-
ficient Separation Property, it suggests that it may have the Explicit Convex
Hull Property. Also if a problem has the Explicit Convex Hull Property, then
its linear programming dual may lead to the Strong Dual Property.

6.6 NOTES

6.2 An important step in the developinent of the distinction between easy
and difficult problems is the concept of a certificate of optimality [Edm65a],
[Edm65b). ‘

6.3 Cook [Coo71] formally introduced the class NP and showed the exist-
ence of an N'P-complete problem. The reduction of many decision versions of
integer and combinatorial optimization problems to a A"P-complete problem
was shown in [Karp72], [Karp75]. The book [GarJoh79] lists an enormous
number of N'P-complete problems and their reductions. A recent update is
[CreKan95).

6.5 The equivalence of optimization and separation is shown in [GroLovSch81],
[GroLovSch84]. A more thorough exploration of the equivalence appears in
[GroLovSch88]. Other results of importance for integer programming concern
the difficulty of finding a short description of all facets for N"P-hard problems
[PapYan84], and the polynomiality of integer programming with a fixed num-
ber of variables [Len83]. Some separation problems are examined in Chapter 9.

For a general book on computational complexity, see [Pap94].

6.7 EXERCISES

1. The 2-PARTITION problem is specified by n positive integers (a1, . . .,ax).
The problem is to find a subset $ C N = {1,...,n} such that }";c5a; =

90 COMPLEXITY AND PROBLEM REDUCTIONS

> jeN\s G4» OF prove that it is impossible. Show that 9-PARTITION is poly-
nomially reducible to 0-1 KNAPSACK. Does this imply that 2-PARTI TION
is N'P-complete?

9. Show that SATISFIABILITY is polynomially reducible to STABLE SET
(Node Packing), and thus that STABLE SETis N'P-complete, where STABLE
SET is the problem of finding a maximum weight set of nonadjacent nodes in
a graph.

3. Show that STABLE SET is polynomially reducible to SET PACKING,
where SET PACKING is the problem of finding a maximum weight set of
disjoint columns in a 0-1 matrix.

4. Show that SET COVERING is polynomially reducible to UFL.

5. Show that SET COVERING is polynomially reducible to DIRECTED
STEINER TREE. .

6. Given D = (V,A), cc fore € 4, a subset F C A, and anoder € V, ARC
ROUTING is the problem of finding a minimum length directed subtour that
contains the arcs in F and starts and ends at node r. Show that TSP is
polynomially reducible to ARC ROUTING.

7.* Show that the decision problem associated to IP is an integer program-
ming feasibility problem, and is in NP.

8. Consider a 0-1 knapsack set X = {z € B™ : Y jen®Ti = b} with
0<a; <bforj€ N andlet {z*}T_, be the points of X. With it, associate
the bounded polyhedron II' = {7 € R} : zitx < 1 for t = 1,...,T} with
extreme points {7° 5_,. Consider a point z* with 0 < zj < 1lforjé€ N.

(i) Show that z* € conv(X) if and only if min{zz;1 Az < Zf;l xtA, A €
RT} =max{z*r:mel'} <1
(it) Deduce that if z* ¢ conv(X), then for some s=1,..., S, nsz* > 1.

Branch and Bound

7.1 DIVIDE AND CONQUER

Consider the problem:
z =max{cr:z € S}.

How can we break the problem into a series of smaller problems that are easier,
solve the smaller problems, and then put the information together again to
solve the original problem?

Proposition 7.1 Let S = S1U...USk be a decomposition of S into smaller
sets, and let 2¥ = max{cz :z € Sk} fork=1,...,K. Then z = max; 2*.

A typical way to represent such a divide and conquer approach is via an
enumeration tree. For instance, if S C {0,1}3, we might construct the enu-
meration tree shown in Figure 7.1. .

Here we first divide S into So = {r € S : z1 = 0} and S1 = {z €
S:xzy =1}, thenSpo ={z € Sp: 2, =0} ={z € 5 :z; =2 =0},
So1 = {z € Sy : T2 = 1}, and so on. Note that a leaf of the tree Sj,s,i, is
nonempty if and only if £ = (i1,14p,43) is in S. Thus the leaves of the tree
correspond precisely to the points of B3 that one would examine if one carried
out complete enumeration. Note that by convention the tree is drawn upside
down with its-root at the top.

Another example is the enumeration of all the tours of the traveling sales-
man problem. First we divide S the set of all tours on 4 cities into S(;2), S(13),
S(14) where S(;;) is the set of all tours containing arc (ij). Then S(;2) is di-
vided again into S(12)(23) and S(12)(24), and so on. Note that at the first level
we have arbitrarily chosen to branch on the arcs leaving node 1, and at the

91

e AR SRR

92 BRANCH AND BOUND

Fig. 7.1 Binary enumeration tree

second level on the arcs leaving node 2 that do not immediately create a sub-
tour with the previous branching arc. The resulting tree is shown in Figure
7.9. Here the six leaves of the tree correspond to the (n — 1)! tours shown,
where i1i2i3i4 means that the cities are visited in the order 41, 12,1%3,14,%1 T€-
spectively. Note that this is an example of multiway as opposed to binary
branching, where a set can bé divided into more than two parts.

1234 © 1243 1842 1324 1432 1423

Fig. 7.2 TSP enumeration tree

7.2 IMPLICIT ENUMERATION

We saw in Chapter 1 that complete enumeration is totally impossible for most

- problems as soon as the number of variables in an integer program, or nodes in
a graph exceeds 20 or 30. So we need to do more than just divide indefinitely.
How can we use some bounds on the values of {z*} intelligently? First, how
can we put together bound information? :

IMPLICIT ENUMERATION 93

Proposition 7.2 Let S = SpU...USk be a decomposition of S into smaller
sets, and let 2* = max{cz : z € Si} fork =1,...,K, ZF be an upper bound
on 2* and z* be a lower bound on 2*. Then Z = max;z* is an upper bound

on z and z = maxy, 2* is a lower bound on z.

Now we examine three hypothetical examples to see how bound informa-
tion, or partial information about a subproblem can be put to use. What can
be deduced about lower and upper bounds on the optimal value z and which
sets need further examination in order to find the optimal value?

Example 7.1 In Figure 7.3 we show a decomposition of S into two sets S;
and S as well as upper and lower bounds on the corresponding problems.

MAX 27 ' 25
13 20
_____.»
20 \ys 25
' 20 15 i a is

Fig. 7.3 Pruned by optimality

We note first that Z = max; Z¥ = max{20,25} = 25 and z = maxy 2k =
max{20,15} = 20. ’
Second, we observe that as the lower and upper bounds on z; are equal,
21 = 20, and there is no further reason to examine the set S;. Therefore the
branch S of the enumeration tree can be pruned by optimality. n

Example 7.2 In Figure 7.4 we again decompose S into two sets S and S;
and show upper and lower bounds on the corresponding problems.

MAX 27 26
13 ’ 21
—_—
18 21 ' 21

Fig. 7.4 Pruned by bound

We note first that Z = max;z* = max{20,26} = 26 and z = max; zF =
max{18,21} = 21.

Second, we observe that as the optimal value has value at least 21, and the
upper bound Z! = 20, no optimal solution can lie in the set S;. Therefore the
" branch S; of the enumeration tree can be pruned by bound. : »

94 BRANCH AND BOUND

Example 7.3 In Figure 7.5 we again decompose S into two sets S1 and S2
with different upper and lower bounds.

MAX 40 37
13
24 a7 24 a 37
i 13

Fig. 7.5 No pruning possible

13

We note first that Z = maxg 7% = max{24,37} = 37 and z = max =

max{13,—} = 13. Here no other conclusion can be drawn and we need to
explore both sets S; and Sz further. »

Based on these examples, we can list at least three reasons that allow us
to prune the tree and thus enumerate a large number of solutions implicitly.

(i) Pruning by optimality: z* = {maxcz:z € S} has been solved.
(ii) Pruning by bound: <z
(iii) Pruning by infeasiblity: S; = ¢.’

If we now ask how the bounds are to be obtained, the reply is no differ-
ent from in Chapter 2. The primal (lower) bounds are provided by feasible
solutions and the dual (upper) bounds by relaxation or duality.

Building an implicit enumeration algorithm based on the above ideas is now
in principle a fairly straightforward task. There are, however, many questions
that must be addressed before such an algorithm is well-defined. Some of the
most important questions are: :

What relaxation or dual problem should be used to provide upper bounds?
How should one choose between a fairly weak bound that can be calculated
very rapidly and a stronger bound whose calculation takes a considerable
time?)

How should the feasible region be separated into smaller regions S = S1U
..U Sg? Should one separate into two or more parts? Should one use a
fixed a priori rule for dividing up the set, or should the divisions evolve as a
function of the bounds and solutions obtained en route?

In what order should the subproblems be examined? Typically there is a
list of active problems that have not yet been pruned. Should the next one
be chosen on a the basis of last-in first-out, of best/largest upper bound first,
or of some totally different criterion?

BRANCH AND BOUND: AN EXAMPLE 95

These and other questions will be discussed further once we have seen an
example.

7.3 BRANCH AND BOUND: AN EXAMPLE

The most common way to solve integer programs is to use implicit enumera-
tion, or branch and bound, in which linear programming relaxations provide
the bounds. We first demonstrate the approach by an example:

z = max4z; — T2, (7.1)
' Tz, -2z < 14 (1.2)
z; < 3 (7.3)

2ry -2z, < 3 (7.4)

re Z2. (7.5)

Bounding. To obtain a first upper bound, we add slack variables z3, 24, T5 and
solve the linear programming relaxation in which the integrality constraints
are dropped. The resulting optimal basis representation is:

5 = 59 4 1
Z=max % 7T3 74
1 2 20
1 +3T3 +7T4 T
T2 +T4 = 3
2 10 _ 23
—5Z3 +5 T4 +rs = F
Ty, T2, T3, z4, zs = 0.

Thus we obtain an upper bound Z = 5—79, and a nonintegral solution (Z1,T2) =
(-_279,3). Is there any straightforward way to find a feasible solution? Appar-
ently not. By convention, as no feasible solution is yet available, we take as
lower bound z = —o0.

Branching. Now because z < Z, we need to divide or branch. How should we
split up the feasible region? One simple idea is to choose an integer variable
that is basic and fractional in the linear programming solution, and split the
problem into two about this fractional value. If z; =%; ¢ Z 1, one can take:

S =8n{z:z; <|%;]}
S;=8n{z:z;> f’-’fﬂ}-

It is clear that § = S; U Sz and S; N S = ¢. Another reason for this
choice is that the solution Z of LP(S) is not feasible in either LP(S;) or
LP(S2). This implies that if there is no degeneracy (i.e., multiple optimal LP
solutions), then max{Z1,%2} < %, so the upper bound will strictly decrease.

96 BRANCH AND BOUND

Fig. 7.6 Partial branch-and-bound tree 1’

Following this idea, as ; = 20/7 ¢ Z', we take 51 = Sn{z:z <2}
and Sp = SN {zx:z >3} Wenow have the tree shown in Figure 7.6. The
subproblems (nodes) that must still be examined are called active.

Choosing a Node. The list of active problems (nodes) to be examined now
contains S1,S2. We arbitrarily choose Si.

Reoptimizing. How should we solve the new modified linear programs LP(S;)
for i = 1,2 without starting again from scratch?

As we have just added one single upper or lower bound constraint to the
linear program, our previous optimal basis remains dual feasible, and it is
therefore natural to reoptimize from this basis using the dual simplex al-
gorithm. Typically, only a few pivots will be needed to find the new optimal
linear programming solution. :

Applying this to the linear program LP(S;), we can write the new con-
straint z; < 2asT1+8=2,8 2 0, which can be rewritten in terms of the
nonbasic variables as.

%x4 +s= ——g;

1.
7T

Thus we have the dual feasible representation:

Z1= max—57§ —%x:; —%134
T +izs 43z 2
T2 +x4 = 3
~2z3 +3xs +Ts = 2
Lz iz +s = =%
1, T2, I3, T4, z5, s = 0.

After two simplex pivots, the linear program is reoptimized, giving:

Z1 = max '155- —%(L‘s —3s
T +s = 2
To —%175 +s =~-%
T3 —z5 —Bs =1
1 _ 5
T4 +35%Ts +6s =35
T, T2, T3 .234, Ts, s > 0 A

BRANCH AND BOUND: AN EXAMPLE - 97
with z; = 1, and (z},73) = (2, 3)-
Branching. Sy cannot be pruned, so using the same branching rule as before,

we create two new nodes Si; = S;N{zx:z2 <0} and S12 = SiN{z: 72 2 1},
and add them to the node list. The tree is now as shown in Figure 7.7.

Fig. 7.7 Partial branch-and-bound tree 2

Choosing a Node. The active node list now contains 82,511, S12. Arbitrar-
ily choosing Sz, we remove it from the node list and examine it in more detail.

Reoptimizing. To solve LP(Sz), ‘we use the dual simplex algorithm in the
same way as above. The constraint 71 > 3 is first written as ©; —t = 3,t > 0,

“which expressed in terms of the nonbasic variables becomes:

1 2 =1
7$3+7:l)4+t— 7

From inspection of this constraint, we see that the resulting linear program

Z, = max 32 —dz3 -1z
T +:1,':B3 +g,:l:4) = 2.-,9-
b)) +x4 = 3
- %.’23 + 1—.?1'4 +zs %
%113 +%:L’4 +t —%
T, T2, T3, T4, x5, t = 0
is infeasible, Z, = —o0, and hence node S is pruned by infeasibility.

Choosing a- Node. The node list now contains S11,S12. Arbitrarily choosing
S12, We remove it from the list.

Reoptimizing. S12=SN{z:11 < 2,22 2 1}. The resulting linear program
has optimal solution Z'2 = (2,1) with value 7. As Z'? is integer, 22=1.

98 BRANCH AND BOUND

Fig. 7.8 Complete branch and bound tree

Updating the Incumbent. As the solution of LP(S12) is integer, we update
the value of the best feasible solution found 2z « max{z, 7}, and store the
corresponding solution (2,1). Si2 is now pruned by optimality.

Choosing a Node. The node list now contains only Sii-

Reoptiniizing. S =S ﬂ {z:21 <222 < 0}. The resulting linear program
has optimal solution Z!* = (3,0) with value 6. As z =T > Z11 = 6, the node
is pruned by bound.

Choosing a Node. As the node list is empty, the algorithm terminates. The
incumbent solution z = (2,1) with value z=7is optimal.

The complete branch-and-bound tree is shown in Figure 7.8. In Figure 7 .9
we show graphically the feasible node sets S;, the branching, the relaxations
LP(S;), and the solutions encountered in the example.

7.4 LP-BASED BRANCH AND BOUND

In Figure 7.10 we present a flowchart of a simple branch and bound algorithm,
and then discuss in more detail some of the practical aspects of developing
and using such an algorithm.

Storing the Tree. In practice one does not store a tree, but just the list of
active nodes or subproblems that have not been pruned and that still need to
be explored further. Here the question arises of how much information one
should keep. Should one keep a minimum of information and be prepared to
repeat certain calculations, or should one keep all the information available?
At a minimum, the best known dual bound and the variable lower and upper

LP-BASED BRANCH AND BOUND 99

X4 o Feasible Points
|
I | First Bound Constraints
|
|
o I — — — —

| Second Bound Constraints:
1

X 221 |
|
|

. | — -
xS0 20 , x

1

Fig. 7.9 Division of the feasible region

bounds needed to restore the subproblem are stored. Usually one also keeps
an optimal or near-optimal basis, so that the linear programming relaxation
can be reoptimized rapidly.

Returning to the questions raised earlier, there is no single answer that
is best for all instances. One needs to use rules based on a combination of
theory, common sense, and practical experimentation. In our example, the
question of how to bound was solved by using an LP relaxation; how to
branch was solved by choosing an integer variable that is fractional in the
LP solution. However, as there is typically a choice of a set C of several can-
didates, we need a rule to choose between them. One common choice is the
most fractional variable: '

arg maxjec min(f;, 1 — f;]

where f; =z} — |z}], so that a variable with fractional value f; = 1 is best.
Other rules are based on the idea of estimating the cost of forcing the variable
z; to become integer.

How to choose a node was avoided by making an arbitrary choice. In
practice there are several contradictory arguments that can be invoked:

(i) It is only possible to prune the tree significantly with a (primal) feasible

solution, giving a hopefully good lower bound. Therefore one should descend
* as quickly as possible in the enumeration tree to find a first feasible solution.
This suggests the use of a Depth-First Search strategy. Another argument for

100 BRANCH AND BOUND

Initialization

Initial Problem S with
Formulation P on List

2 =-Infinity

incumbent z* void

List
Empty?
i Yy | STOP
#| Incumbent z* Optimal
N

\

Choose Problem S* with
Formulation P*

v

Solve LP relaxation over P
Dual Bound 2* = LP value
+/(LP) = LP solution

<——L—r 1f P empty. prune by infeasibility J
et <z prune by bownd l

W

. Y If 2(LP) integer, update primal

bound z = ¥, and incument z* = z(LP)
Prune by optimality

‘N
Return two subproblems Sf and Sk
< with formulations P{ and P}

Fig. 7.10 Branch-and-bound flow chart

such a strategy is the observation that it is always easy to resolve the linear
programming relaxation when a simple constraint is added, and the optimal
basis is available. Therefore passing from a node to one of its immediate
descendants is to be encouraged. In the example this would imply that after
treating node Si, the next node treated would be Sy or S12 rather than Sa.

(ii) To minimize the total number of nodes evaluated in the tree, the optimal
strategy is to always choose the active node with the best (largest upper)
bound (i.e., choose node s where Z; = max; %,). With such a rule, one will
never divide any node whose upper bound Z; is less than the optimal value
2. This leads to a Best-Node First strategy. In the example of the previous
section, this would imply that after treating node Sy, the next node chosen

USING A BRANCH-AND-BOUND SYSTEM - 101

would be S with bound §7g from its predecessor, rather than Sy, or Syo with
bound 1.

In practice a compromise between these ideas is often adopted, involving an
initial depth-first strategy until at least one feasible solution has been found,
followed by a strategy mixing best node and depth first so as to try to prove
optimality and also find better feasible solutions.

7.5 USING A BRANCH-AND-BOUND SYSTEM

Commercial branch-and-bound systems for integer and mixed integer pro-
gramming are essentially as described in the previous section, and the default
strategies have been chosen by tuning over hundreds of different problem in-
stances. The basic philosophy is to solve and resolve the linear programming
relaxations as rapidly as possible, and if possible to branch intelligently. Given

_ this philosophy, all recent systems contain, or offer,

1. A powerful (automatic) preprocessor, which simplifies the model by redu-
cing the number of constraints and variables, so that the linear programs are
easier ' : . .

2. The simplex algorithm with a choice of pivoting strategies, and an interior
point option for solving the linear programs

3. Limited choice of branching and node selection options

4. Use of priorities

and some offer

5. GUB/SOS branching
6. Strong branching

7. Reduced cost fixing
8. Primal heuristics

In this section we briefly discuss those topics requiring user intervention.
Preprocessing, which is very important, but automatic, is presented in the
(optional) next section. Reduced cost fixing is treated in Exercise 7.7, and
primal heuristics are discussed in Chapter 12.

Priorities. Priorities allow the user to tell the system the relative importance
of the integer variables. The user provides a file specifying a value (import-
ance) of each integer variable. When it has to decide on a branching variable,
the system will choose the highest priority integer variable whose current lin-
ear programming value is fractional. At the same time the user can specify a
preferred branching direction telling the system which of the two branches to

102 BRANCH AND BOUND
explore first.

GUB Branching. Many models contain generalized upper bound (GUB) or
special ordered sets (SOS) of the form

k

sz:l

i=1

with z; € {0, 1} for j = 1,... ,k. If the linear programming solution z*
has some of the variables T, Tk fractional, then the standard branching
rule is to impose Sy = SN{z: % = 0} and Sz = SN {z : z; = 1} for
some j € {1,...,k}. However, because of the GUB constraint, {z:z; =0}
leaves k — 1 possibilities {z : i = 1}in; whereas {z : Z; = 1} leaves only
one possibility. So S1 is typically a much larger set than Sa, and the tree is
unbalanced.

GUB branching is designed to provide a more balanced division of S into
Sy and Sa. Specifically the user specifies an ordering of the variables in the
GUB set j1,---1Jks and the branching scheme is then to set

S1 =‘Sﬂ{x::cj,.=0i=1,...r} and
Sg=Sﬂ{a::a:ji=0i=1'+1,...k},

where 7 = min{t : o2 1}. In many cases such a branching scheme is

much more effective than the standard scheme, and the number of nodes in
the tree is significantly reduced.

User Options (2) Cutoffs. If the user knows or can construct a good feas-
ible solution to his or her problem, it is very important that its value is passed |
to the system as the incumbent value to serve as a cutoff in the branch and
bound.

(b) Simplex Strategies. Though the linear programming algorithms are
‘finely tuned, the default strategy will not be best for all classes of problems. |
Different simplez pricing strategies may make a huge difference in running |
times for a given class of models, so if similar models are resolved repeatedly |
or the linear programs seem very slow, some experimentation by the user
with pricing strategies is permitted. In addition, on very large models, in-
terior point methods may be best for the solution of the first linear program. 3
Unfortunately, up to’ now such methods are still not good for reoptimizing

quickly at each node of the tree. : ‘

_ (c) Strong Branching. The idea behind strong branching is that on difficult

problems it should be worthwhile to do more work to try to choose a better
branching variable. The system chooses a set C of basic integer variables that
are fracticnal in the LP solution, branches up and down on each of them in

PREPROCESSING* 103

turn, and reoptimizes on each branch either to optimality, or for a specified
number of dual simplex pivots. Now for each variable J € C, it has upper
bounds sz for the down branch and z_? for the up branch. The variable hav-
ing the largest effect (decrease of the dual bound)

)

ok . D U
J* =arg minjec max|z] 127]

is then chosen, and branching really takes place on this variable. Obviously,

‘solving two LPs for each variable in C is costly, so such branching should only
‘be used when the other criteria have been found to be ineffective.

7.5.1 If All Else Fails

What can one do if a particular problem instance turns out to be difficult,
meaning that after a certain time ’

(i) no feasible solution has been found, or

(ii) the gap between the value of the best feasible solution and the value of
the dual upper bound is unsatisfactorily large, or

(iil) the system runs out of space because there are too many active nodes in
the node list?

Finding Feasible Solutions. This is in general N'’P-hard. Some systems
have simple primal heuristics embedded in them. Also as discussed earlier,
using priorities and directions for branching can help. How to find feasible
solutions, starting from the LP solution or using explicit problem structure,
is the topic of Chapter 12.

Finding Better Dual Bounds. Branch-and-bound algorithms fail very of-
ten because the bounds obtained from the linear programming relaxations
are too weak. This means that tightening up the formulation of the ‘prob-
lem is of crucial importance. Systematic ways to do this are the subject of
Chapters 8-11. Specifically the addition of constraints or cuts to improve the
formulation is treated in Chapers 8 and 9, leading to the development of a po-
tentially more powerful branch-and-cut algorithm. The Lagrangian relaxation
and column generation approaches of Chapters 10 and 11 provide alternative
ways to strengthen the formulation by convexifying part of the feasible region.

7.6 PREPROCESS’ING*

_Beforev solving a linear or integer program, it is natural to check that the formu-
lation is “sensible”, and as strong as possible given the information available.

104 BRANCH AND BOUND

All the commercial branch-and-bound systems carry out such a check, called
preprocessing- The basic idea is to try to quickly detect and eliminate redund-
ant constraints and variables, and tighten bounds where possible. Then if the
resulting linear /integer program is smaller/tighter, it will typically be solved
much more quickly. This is especially important in the case of branch-and-
bound because tens or hundreds of thousands of linear programs may need to

be solved.
First we demonstrate linear programming preprocessing by an example.

Example 7.4 Consider the linear program

max 23y + T2 — I3
521, — 232 + 8z3 < 15
8r; + 3zg — I3 > 9
zy + T2 + I3 < 6
0 < =z < 3
0 < =z < 1
1 < zs3.

Tightening Bounds. Isolating variable z; in the first constraint we obtain
5x1 S15+2$2—-8$3_<_15+2X1—8X1=9

where we use the bound inequalities T2 <1land —73 < _1. Thus we obtain

the tightened bound 1 < EX
_ Similarly isolating variable z3, we obtain

'Sz3515+2x2-5:c1515+2x1;5xo=17,

and the tightened bound Z3 < a.

Isolating variable z2, we obtain

2z225x1+8x3—1525xo+8x1—15='—7.

Here the existing bound T2 > 0 is not changed. ;
Turning to the second constraint, isolating z and using the same approach, |
weob}:’ain 8r; >9—3x2+T3 2 9—3+4+1=7,and an improved lower bound
Ty 2§ !
Nosmore bounds are changed based on the second or third constraints.
However, as certain bounds have been tightened, it is worth passing through |
the constraints again.’ :
Constraint 1 for z3 now gives 83 < 15+2z2— 521 < 15+2-5%x%= o
Thus we have the new bound z3 < 1. ‘ !

Redundant Constraints. Using the latest upper bounds in constraint 3, we see
that . |
+z2+7% <9+1+101<6 *

T1 2 3= 5 64 y |

|

i
i
i

PREPROCESSING* 105

and so this constraint is redundant and can be discarded. The problem is now
reduced to

max 2z +x2 —I3
511 —229 +8z3 <15
8z, +3z2 —I3 =9

1<z <§ 0<z<1, 1<z <¥L

Variable Fizing (by Duality). Considering variable z2, observe that increasing
its value makes all the constraints (other than its bound constraints) less tight.
As the variable has a positive objective coefficent, it is advantageous to make
the variable as large as possible, and thus set it to its upper bound of 1.
(Another way to arrive at a similar conclusion is to write out the LP dual.
For the dual constraint corresponding to the primal variable x5 to be feasible,
the dual variable associated with the constraint zo < 1 must be positive. This
implies by complemementary slackness that T, = 1 in any optimal solution.)

Similarly, decreasing =3 makes the constraints less tight. As the variable
has a negative objective coefficient, it is best to make it as small as possible,
and thus set it to its lower bound z3 = 1. Finally the LP is reduced to the
trivial problem : :

max{2zr;, : § <z1 < 3} .
Formalizing the above ideas is straightforward.

Proposition 7 .3 Consider the set S = {a: :agZo + E;;l a;z; <blj<z; <
uj for 5 =0,1,...,n}.

(i) Bounds on Variables. If ag > 0, then

TS (b- Y ajli— Y aju;)/ae,

) Jj:a;>0 j:d,-<0
and if ag < 0, then

zo=(b—). ajlj— Y ajuj)/ao.

j:a;>0 j:a;<0

(i) Redundancy. The constraint aoxo + 3.}, a;2; < b is redundant if

E a;ju; + Z ajl,- <b.
j:a;>0 j:a;<0
(iii) Infeasibility. S =0 if

. Z ajl,-+.2 ajﬁj>b.

j:a; >0 j:a;<0

106 BRANCH AND BOUND

(iv) Variable Fizing. For a mazimization problem in the form: max{cz :
Az < bl <z <u}, if}a.-i_>n_“0 forali=1,...,m and ¢; <0, then z; = lj-

Conversely if aij <0 for ali=1,...,mandc; >0, then T; = Uj.

Turning now to integer programming problems, preprocessing can some-
times be taken a step further. Obviously, if z; € Z* and the bounds l; or u;
are not integer, we can tighten to

51 < 5 < lugl-

For mixed integer programs with variable upper and lower bound constraints
liy; < x5 < UjY; with y; € {0,1}, it is also important to use the tightest
bound information.

For BIPs it is common to look for simple “logical” or “poolean” constraints
involving only one or two variables, and then either add them to the problem
or use them to fix some variables. Again we demonstrate by example.

Example 7.5 Consider the set of constraints involving four 0-1 variables:

Txy - +3T2 —4zg —2r4 < 1
-2z, +Tzz +3x3 +z4 < 6
-2z, —313 —6x4 < -5
3z —2x3 > -1
T e B+

Generating Logical Inequalities. Examining row 1, we see that if z; = 1,
then necessarily z3 = 1, and similarly z; =1 implies z4 = 1. This can be
formulated with the linear inequalities z1 < =3 and z; < T4, We see also
that the constraint is infeasible if both z1 = T2 = 1 leading to the constraint
y+z2 <L ‘

Row 2 gives the inequalities z2 < 71 and zo +x3 < 1.

Row 3 gives T3 + T4 2 landzz3+z4 > 1.

Row 4 gives T3 2 T3-

Combining Pairs of Logical Inequalities. We consider pairs involving the same |
variables. |
TFrom rows 1 and 4, we have z; < z3 and T1 = T3, which together give
T = I3. ; :
From rows 1 and 2, we have z1 + 22 <landz2<T1 which together give '
zo = 0. Now fromz3+ 4> 1 and zp =0, we obtain z4 = 1.

Simplifying. Making the substitutions 2 = 0,3 = T1,T4 = 1, all four coxi- ‘V
straints of the feasible region are redundant, and we are left with z1 € {0,1},
so the only feasible solutions are (1,0,1,1) and (0,0,0,1)- ']

NOTES 107

In Exercise 7.10, the reader is asked to formalize the approach taken in this
example. The logical inequalities can also be viewed as providing a foretaste
of the valid inequalities to be developed in the next chapter.

7.7 NOTES

-

7.2 The first paper presenting a branch-and-bound algorithm for integer pro-
gramming is [LanDoi60]. [Litetal63] presents a computationally successful
application to the TSP problem using an assignment relaxation. [Balas65]
developed an algorithm for 0-1 problems using simple tests to obtain dual
bounds and check primal feasibility.

7.4 Almost all commercial codes since the 1960s have been linear program-
ming based branch-and-bound codes. The two-way branching scheme com-
monly used is from [Dak65].

7.5 A discussion of important elements of commercial codes can be found in
[Beal79]. GUB/SOS branching is from [BealTom70], probing from [GuiSpi81],
and strong branching from [Appetal95]. One important new idea is constraint
. branching, used for TSP problems in [CloNad93], and by [CooRutetal93] in
their implementation of basis reduction for integer programming based upon
the fundamental paper [Len83]. Recent experiments with various branch-and-
bound strategies are reported in [LinSav97].

As solving linear programs forms such an important part of an integer
programming algorithm, improvements in solving linear programs are crucial.
All recent commercial codes include an interior point algorithm, as for many
large linear programs, the latter algorithm is faster than the simplex method.
However, because reoptimization with the simplex method is easier than with
interior point codes, the simplex method is still used in branch-and-bound.
Improving reoptimization with interior point.codes is a major. challenge for
the next few years. See [RooTerVia97] and [Wri97] for recent texts on in-
terior point algorithms. Work on solving integer programs with interior point
algorithms is a wide open area [MitTod92],[Mit96]. _

Knapsack problems, in which the linear programming relaxations can be
solved by inspection, have always been treated by specialized codes; see the
book [MarTot90]. ’

7.6 Preprocessing is crucially important for the rapid solution of linear pro-
grams. Its importance for integer programs is recognized in [BreMitWil73],
and discussed more recently in [HofPad91],[Sav94).

108 BRANCH AND BOUND
7.8 EXERCISES

1. Consider the enumeration tree (minimization problem) in Figure 7.11:

Fig. 7.11 Enumeration tree (min)

(i) Give tightest possible lower and upper bounds on the optimal value z.
(ii) Which nodes can be pruned and which must be explored further?

9. Consider the two-variable integer program:

max - 97 + 572

4z, + 9z2 = 35
T S 6
1 — 3T2 > 1

3z, + 222 < 19

r € Z2

%

Solve by branch-and-bound graphically and algebraically.

3. Consider the 0-1 knapsack problem:

n n
‘ma.x{z ¢jTj ¢ Za,-:c,- <b,z € B"}

i=1 j=1

with aj,¢; > 0 for j = 1,...,n.

(i) Show that if a>. > & >0, Z;;i aj <band ¥ ;a5 > b the solution
of the LP relaxation is @; = 1for j =1,....,7 1, z, = (b— Zg;{ a;)/ar,
andzj=0forj>r. - :
(ii) Solve the instance
max 17z + 10z2 + 2523 + 17x4
51 + 3z +8z3 + Tx4 S'IZ

zeB*

EXERCISES 109
by branch-and-bound.
4. Solve the integer knapsack problem:

max 10z; + 12z + 7z3 + %14
4z + 519 + 323+ 114 < 10
Z1,Tg € Zi,:l?3,:l:4 € {0,1}

by branch-and-bound.

5. (i) Solve the ST'SP instance with n = 5 and distance matrix

- 10 2 4 6

- - 9 3.1

(ee) = _ _ 5 6
‘ - - - -2

by branch-and-bound using a 1-tree relaxation (see Definition 2.3) to obtain
bounds.

(ii) Solve the T'SP instance with n = 4 and distance matrix

-7 6 3
3 - 69
Cal)={ 2 3 - 1
79 4

by branch-and-bound using an assignment relaxation to obtain bounds.
(iii) Describe clearly the branching rules you use in (i) and (ii), and motivate
your choice.

6. Using a branch-and-bound system, solve your favorite integer program
with different choices of branching and node selection rules, and report on the
differences in the running time and the number of nodes in the branch-and-
bound tree.

7. Reduced cost firing. Suppose that the linear programming relaxation of an
integer program has been solved to optimality, and the objective function is
then represented in the form

Z = maxcz, T = Ggo + Z Go;T; + Z doj(z; — uj)
JENB, JENB;

where N B, are the nonbasic variables at zero, and NB, are the nonbasic
variables at their upper bounds uj, @oj < 0 for j € NBy, and ag; > 0 for
J € NBz. In addition suppose that a primal feasible solution of value z is
known. Prove the following: In any optimal solution,

110 BRANCH AND BOUND

z; < | 25E] for j € Ny, and

T > uj— [9%955] for j € Na.
8. Consider a fixed charge network problem:

min{cz + fy: Nz = bz <uy,z€RY,Y€ zZvy}

where N is the node-arc incidence matrix of the network, and b the demand
vector. In using priorities, suggest a preferred direction for the variables.

9. Consider the 0-1 problem:

max 5x1 — T1z2 — 10z3 + 3z4 -— 5T
zy + 3z2 - bxg + x4 + 45 < O
23, — 6x2 + 3r3 — 2ty — 225 < -4
2ry — 2z3 — %4 + z5 < -2
r '€ B
Simplify using logical inequalties.
10. Logical. Given a set in 0-1 variables
n
X={meB“:Zaj:c,-§b}
j=1 :
with aj > 0for j=1,...,7 under what conditions is

(i) the set X empty?

(ii) the constraint 3.7_; @;%; < b redundant?
(iii) the constraint z; = 0 valid?

(iv) the constraint T; + Z; < 1 valid?

Apply these rules to the first constraint in Exercise 9.
11. Prove Proposition 7.3 concerning preprocessing.

12. Let
n
X={.’E€Bn :Eaj:c,- < b}
j=1

witha; > ag>...2a, 20 and b > 0. The idea is to write each such set in
some simple canonical form. For example, for z € B3, 12z, +8z2+311 < 14
is equivalent to 21 + 1zo + 123 < 2.

(i) When n = 2, how many distinct knapsack sets are there? Write them out
in a canonical form with integral coefficients and 1 =a; = a2.

EXERCISES 111
(ii) Repeat for n = 3 with a; < 2.

13*. Some small integer programs are very difficult for mixed integer program-
ming systems. Try to find a feasible solution to the integer equality knapsack:
{ze2z?: Z;;l a;z; = b} with a = (12228, 36679, 36682, 48908, 61139, 73365)
and b = 89716837. -

14. Suppose that P = {z € R" : A’z < b} for i = 1,...,m and that
Cr.C{l,...,m}fork=1,...,K. A disjunctive program is a problem of the
form :

max{cz : T € Ujec, Pt for k=1,...,K}.

Show how the following can be modeled as disjunctive programs:

(i) a 01 integer program.

(ii) a linear complementarity problem: w = ¢+ Mz,w,z € R, w;z; = 0 for
j=1...,m.

(iii) a single machine sequencing problem with job processing times p;, and
variables t; representing the start time of job j for j =1,...,n.

(iv) the nonlinear expression z = max{3z, + 2z2 — 3,9z, — 4z + 6}.

(v) the constraint: if z € RL is positive, then z lies between 20 and 50, and
is a multiple of 5.

15. Devise a branch-and-bound algorithm for a disjunctive program.

. .

VCuttz'ng Plane Algorithms

8.1 INTRODUCTION

Here we consider the general integer program:
(IP)) max{cz:z € X}
where X = {z: Az < b,z € Z7}.
- Proposition 8.1 conv(X) = {z: Az < b,z > 0} is a polyhedron.

This result, already presented in Chapter 1, tells us that we can, in theory,
reformulate problem I'P as the linear program:

(LP) ' max{cz : Az < b,z > 0}

and then for any value of ¢, an optimal extreme point solution of LP is an
optimal solution of IP. The same result holds for mixed integer programs
with X = {(z,y) € R} x Z} Az + Gy < b} provided the data A,G,b are
rational.)

In Chapter 3 we have seen several problems, including the assignment prob-
lem and the spanning tree problem, for which we have given an explicit de-
scription of conv(X). However, unfortunately for N'P-hard problems, there
is almost no hope of finding a “good” description. Given an instance of an
N'P-hard problem, the goal in this chapter is to find effective ways to try and
approximate conv(X) for the given instance.

The fundamental concept that we have already used informally is that of
a valid inequality. :

113

114 CUTTING PLANE ALGORITHMS

Definition 8.1 An inequality 7z < mo is a valid inequality for X C R" if
7z < mo for all z € X.

fX= {ze2r:Az < b} and conv(X)= {z € R" : Az < b}, the constraints
aiz < b; and a‘z < b; are clearly valid inequalities for X.

The two questions that immediately spring to mind are
(i) Which are the “good” or useful valid inequalities? and

(ii) If we know a set or family of valid inequalities for a problem, how can we
use them in trying to solve a particular instance?

8.2 SOME SIMPLE VALID INEQUALITIES

First we present some examples of valid inequalities. The first type, logical in-
equalities, have already been seen in Example 7.5 in looking at preprocessing.

Example 8.1 A Pure 0-1 Set. Consider the 0-1 knapsack set:
X = {1‘ eB5: 3zy —4xqg + 213 —3T4 + T3 < -2}

If zo = z4 = 0, the lhs (left-hand side) = 3z + 223 + Ts > 0 and the rhs
(right-hand side) = —2, which is impossible. So all feasible solutions satisfy
the valid inequality z2 + 24 > 1. .

Ifz; =1andz2=0, the Ihs = 34223 — 324 + 25 2 3—3 =0 and the rhs
= -2, which is impossible, so z1 < 72 is also a valid inequality. : .

Example 8.2 A Mixed 0-1 Set. Consider the set:
X ={(z,y) : 3 <9999y,0<z <5y € B'}.
1t is easily checked that the inequality
T 5 5y

is valid because X = {(0,0), (z,1) with0O< =z < 5}. As X only involves two
variables, it is possible to represent X graphically, so it is easy to check that
the addition of the inequality z < 5y gives us the convex hull of X.

Such constraints arise often. For instance, in the capacitated facility loca-
tion problem one has the feasible region:

Tien i Sbjys forj €N
: ZjGNx"j =aq;fori € M
v Tij >0fori€ M,je N,y; € {0,1} for j € N.

SOME SIMPLE VALID INEQUALITIES 115

All feasible solutions satisfy z;; < b;jy; and z;; < a; with y; € B!, This is
precisely the situation above leading to the family of valid inequalities z;; <
min{a;, bj }yj . , []

Example 8.3 A Mixed Integer Set. Consider the set

X={(z,y):2<10y,0<z < 14,y € Z}}.

It is not difficult to verify the validity of the inequality = < 6 + 4y, or written
another way, £ < 14— 4(2—y). In Figure 8.1 we represent X graphically, and
see that the addition of the inequality < 6 + 4y gives the convex hull of X.

y
3
Feasible Points
x<10y Y/
2 (142) A
/4
/ /
N/ Valid Inequality
(10,1)
1 1
14 X

Fig. 8.1 Mixed integer inequality
For the general case, when C does not divide b, and

X ={(z,9):x<Cy,0<z<byeZ}},

one obtains the valid inequality z < b — y(K — y) where K = [%] and
v=b—([&]-1)C. .

Example 8.4 A Combinatorial Set: Matchings. Consider the X of incidence
vectors of matchings: .

YeesiyTe SlforieV (8.1)
zez\P (8.2)

where 6(i) = {e € E : e = (i, j) for some j € V}.

116 CUTTING PLANE ALGORITHMS

Take a set T C V of nodes of odd cardinality. As the edges of a matching
are disjoint, the number of edges of a matching having both endpoints in T

- is at most mi:-l- Therefore

|T|-1
2‘

(8.3)

Tz <
¢€E(T)

is a valid inequality for X if | T |>3and|T|is odd. .

Example 8.5 Integer Rounding. Consider the integer region X = PN z4
where : :
P = {z € R} :13z; + 203 + 1123 + 674 2 72}.

Dividing by 11 gives the valid inequality for P:
By + By + 23+ L4268

As 'z > 0, rounding up the coeficients on the left to the nearest integer gives
2z, + 272+ T3+ T4 2 %11 + —21—2-:1:2 +x3+ 1—61-:54 > 6%, and so we get a weaker

valid inequality for P:
2z +2x2 + 23 + T4 > 6%.

As z is integer and all the coefficients are integer, the lhs must be integer. An
integer that is greater than or equal to 6—1‘% must be at least 7, and so we can
round the rhs up to the nearest integer giving the valid inequality for X:

221+23’:2+$3+$4Z7. =

Such regions arise in many problems. Consider, for instance, a Generalized
Transportation Problem where the problem is to satisfy the demand dj of
client j using trucks of different types. A truck of type i has capacity Ci,
there are a; of them available, and the cost if a truck of type i is sent to client
j is cij. The resulting integer program is:

n n
minZE CijTij

i=1 j=1
n
ZC;xij > d,-forj:l,.‘.,n
_"i=1
3 n
Zzij < gijfori=1,...,m
i=1
z € mn

+

where each demand constraint gives rise to a set of the form X.

VALID INEQUALITIES 117

Example 8.6 Mixed Integer Rounding. Consider the same examble as above
with the addition of a continuous variable. Let X = PN (24 x R') where

P={(y,s) € Ry x R} : 13y; + 20y, + 11y + 6y + 5 > 72}.
In terms of the generalized transportation model, there are four types of truck

available to satisfy demand, but it is also possible to satisfy demand from an
alternative source. Dividing by 11 gives.

1+ By +ys + Syu > 252,
suggesting that there is a valid inequality

2y1 + 2y2 + y3 + y4 + as > 7 for some a. (8.4)

Looking at the rhs term 725’, we see that the rhs [7";;’] decreases from 7
to 6 at the critical value s = 6, indicating the value @ = é. Inequality (8.4)
turns out to be valid for values of o > %, and later we will see that it can

even be strengthened a little, giving:

S+ tystyat+is>T .

8.3 VALID INEQUALITIES

To understand how to generate valid inequalities for integer programs, it is
first necessary to understand valid inequalities for polyhedra (or linear pro-
grams).

8.3.1 Valid Inequalities for Linear Programs

So the first question is: When is the inequality 7z < g valid for P = {z:
Az < b,z > 0}7 ‘

Proposition 8.2 7z < 7o is valid for P = {z : Az < b,z > 0} # 0 if and
only if -

there erist u > 0,v > 0 such that uA — v = 7 and ub < m, or alternatively
there exists u > 0 such that uA > 7 and ub < .

Proof. By linear programming duality, max{nz : £ € P} < 7 if and only if
min{ub: ud —v =m,u > 0,v > 0} < m. -

118 CUTTING PLANE ALGORITHMS

8.3.2 Valid Inequalities for Integer Programs
Now we consider the feasible region of an integer program:
{r:Az <bz € z%}

and ask the same question.
Surprisingly, the complete answer is in some sense given in the following
very simple observation.

Proposition 8.3 Let X = {y € Z' : y < b}, then the inequality y < [b] is
valid for X.

We have already used this idea in Example 8.5. We now give two more ex-
amples. ’

Example 8.4 (cont) Valid Inequalities for Matching. Here we give an al-
ternative algebraic justification for the validity of inequality (8.3) that can be
broken up into three steps.

(i) Take a nonnegative linear combination of the constraints (8.1) with weights
u; = % forieTandu; =0fori € VAT. This gives the valid inequality:

S ety > ze <\ T

e€E(T) e€§(T,V\T)

H

|

(li) Becé.use Te Z 0, ZCGE(T) Te S zeEE(T) Te + %Eee&(T,V\T) Te,y a.nd sO
T
msly
e€E(T)
is a valid inequality.
(iii) Because z € Z", the lhs Y ecE(T) Te MUS be an integer, and so one can
replace the rhs value by the largest integer less than or equal to the rhs value.

So | T
Y, mslg)
e€E(T)
is a valid inequality. .

Example 8.7 Valid Inequalities for an Integer Program. An identical ap-
proach can be used to derive valid inequalities for any integer programming
region. Let X = PNZ™ be the set of integer points in P where P is given by:

7.'121 - 2332 S 14
X2 _<_ 3
2Ty —2z2 < 3

r >0.

VALID INEQUALITIES 119

(i) First combining the constraints with nonnegatxve weights u = (2,3,0),
we obtain the valid inequality for p

1 121
—Ty < —.
22:1 + 631‘2 =77

(ii) Reducing the coefficients on the left-hand side to the nearest integer gives
the valid inequality for P:

121
2$1 + Ozg < H :

(iii) Now as the left-hand side is integral for all points of X, we can reduce
the rhs to the nearest integer, and we obtain the valid inequality for X:

2x1<[121J—5

Observe that if we repeat the procedure, and use a weight of ; on this last
constraint, we obtain the tighter inequality z; < 13]=2. -

Now it is easy to describe the general procedure that we have been using.
Chvital-Gomory procedure to construct a valid inequality for the set
X = PnZ" where P = {z € R} : Az < b}, A is an m x n matrix with
columns {a;,az,...,a,}, and u € R}:

(i) the inequality

n
Zua,-zj <ub

j=1
is valid for P as « > 0 and 3_7_, ajz; < b,
(ii) the inequality _
n
Z[uajjxj <ub
. i=1
is valid for P as £ > 0,
(iii) the inequality
n
> luajz; < |ub)

i=1

is valid for X as z is integer, and thus }°7_, |ua;|z; is integer.

The surprising fact is that this simple procedure is sufficient to generate
all valid inequalities for an integer program.

1

120 CUTTING PLANE ALGORITHMS

Theorem 8.4 Every valid inequality for X can be obtained by applying the
Chudtal-Gomory procedure a finite number of times.

Proof.* We present a proof for the 0-1 case. Thus let P = {reR": Az <
b,0<z <1} # 9, X = PN Z"™, and suppose that 7z < mo with , mo integral
is a valid inequality for X. We will show that this inequality is a C-G inequal-
ity, or in other words that it can be obtained by applying the Chvatal-Gomory
procedure a finite number of times.

Claim 1 The inequality 7z < 7o + tisa valid inequality for P for some
teZ}.

Proof. zpp = max{cz : T € P} is bounded as P is bounded. Take
t = [zLp] — mo-

Claim 2 There exists a sufficiently large integer M that the inequality

1rz§7ro+Mij+MZ(1-—z,-) (8.5)
JEN® JENT .

is valid for P for every partition (N 0 N1) of N.

Proof. It suffices to show that the inequality is satisfied at all vertices z* of
P. If z* € 2", then the inequality 72 < o is satisfied, and so (8.5) is satisfied.
Otherwise there exists & > 0 such that 3-;en0 75 +Yjem(1-25) 2@ for all
partitions (N°, N') of N and all non-integral extreme points * of P. Taking
M > £, it follows that for all extreme points of P, '

art <mott<mt+M Y MY (-1
JEN© jeN?
Claim 3Ifrz <mo+7+1lisa C-G inequality for X with 7 € Z}, then
7|'$_<_1|'0+T+ij+ Z(l—a:j)‘ (8.6)
jEN© jeN?

is a C-G inequality for X. .
Proof. Take the inequality 7z < mo +7 + 1 with weight (M —1)/M and the
inequality (8.5) with weight 1 /M. The resulting C-C inequality is (8.6).

Claim 4 If ‘
mr < "'0;";*" T+ Z z; + Z 1-zj) 87
jeTeu{p} jET!
and :
rr<mr+ Szt o, (1-%) (8.8)

JET® jeTru{p}

A PRIORI ADDITION OF CONSTRAINTS 121

are C-G inequalities for X where (T°,T") is any partition of {1,...,p — 1},
then '

7ra:$1ro+‘r+2z,-+ Z(l—z,-) (8.9)

JET® JET?

is a C-G inequality for X.
Proof. Take the inequalities (8.7) and (8.8) with weights 1/2 and the result-
ing C-G inequality is (8.9).

Claim 5 If
mx<mo+T7+1

is a C-G inequality for X, then
T < T+ T

is a C-G inequality for X. -
Proof. Apply Claim 4 successively for p=n,n—1,...,1 with all partitions
(T°, 1) of {1,...,p-1}. '

Finally starting with 7 = t—1 and using Claim 5 forT = t—1,--.,0 establishes
that 7z < mp is a C-G inequality. , .

For inequalities generated by other arguments, it is sometimes interesting to
see how easily they are generated as C-G inequalities, see Exercise 8.15.

Now that we have seen a variety of both ad hoc and general ways to derive
valid inequal@es, we turn to the important practical question of how to use
them. .

8.4 A PRIORI ADDITION OF CONSTRAINT_S

In discussing branch-and-bound we saw that preprocessing was a first step
in tightening a formulation. Here we go a step further. The idea here is to -
examine the initial formulation P = {z : Az < b,z > 0} with X = PN 2",
find a set of valid inequalities Qx < g for X, add these to the formulation
immediately giving a new formulation P’ = {z : Az < b,Qz < g,z > 0} with
X = P'NZ™. Then one can apply one’s favorite algorithm, Branch-and-Bound

or whatever, to formulation P’. '

Advantages. One can use standard branch-and-bound software. If the valid

inequalities are well chosen so that formulation P’ is significantly smaller than

P, the bounds should be improved and hence the branch-and-bound algorithm

should be more effective. In addition the chances of finding feasible mteget
“solutions in the course of the algorlthm should increase.

122 CUTTING PLANE ALGORITHMS

Disadvantages. Often the family of valid inequalities one would like to add
is enormous. In such cases either the linear programs become very big and
take a long time to solve, or it becomes impossible to use standard branch-
and-bound software because there are too many constraints.

How can one start looking for valid inequalities a priori? In many instances
the feasible region X can be written naturally as the intersection of two or
more sets with structure, thatis, X = X 1 X2. Decomposing or concentrating
on one of the sets at a time may be a good idea.

For instance, we may know that the optimization problem over the set
X2 = P2U Z™ is easy. Then we may be able to find an explicit description
of P2 =conv(P2 N Z™). In this case we can replace the initial formulation
P! (P? by an improved formulation p'=P'nP2

Whether the optimization problem over X2 is easy or not, one may be able
to take advantage of the structure to find valid inequalities for X 2, which
allow us to improve its formulation from P? to P? C P?, and thereby again .
provide an improved formulation P’ = P* N P for X.

Example 8.8 Unéapacitated Facility Location. Take the “weak” formulation
used in the 1950s and 1960s:

zx;j = 1lfori=1,...,m

]
3
A

myj forj=1,...,n

Ofori=1,...,m, j=1..,1n

o
IN IV

Yj <lforj=1,...,m

Let X; be the set of points-in the polyhedron P;:

m
Yoz < my
i=1
Tij 2 Qfori=1,...,m
0 < yjsla

with y; integer. The convex hull Pj of the set X is given by

zij < y; fori=1,...,m
Tij 2 Qfori=1,...,m
0 < y<l

AUTOMATIC REFORMULATION OR CUTTING PLANE ALGORI. . S 123

Now the reformulation obtained by replacing P; by P; for j =1,...,n is the
~ “strong” formulation P":

n
E Tij

= 1lfori=1,...,m
i=1
z; < yifori=1,....mj=1,...,n
zi > Ofori=1,...,m, j=1,...,n
0<y; < lforj=1,...,n

The strong formulation is now commonly used for this problem because the
bound it provides is much stronger than that given by the weak formulation,
and the linear programming relaxation has solutions that are close to being
integral. . .

Example 8.9 Constant Capacity Lot-Sizing. Using the same notation as for
ULS introduced in Section 1.4, a basic formulation of the feasible region X is

A

St—1 + Tt
Q y < Cyfort=1,...,n
0=s,=0,5 € R}*'.zeR"yeB"

We derive two families of inequalities for X. First consider any point (z, s,y) €
X. First as s;—; > 0, the inequality z; < d; + s; clearly holds. Along with
z; < Cy; and y; € {0,1}, it is then not difficult to show that z: < dey: + st
is valid for X. (Note that without the variable s;, this is precisely the mixed
0-1 inequality of Example 8.2).

Second, summing the. flow conservation constraints, and using s; > 0, we
get the inequality Z:___l T > Z:___l d;. Then using z; < Cy; gives C Y s, ¥i >
S di,or Y v > (Th,di)/C. Now as St _. v is integral, we can use
Chvétal-Gomory integer rounding to obtain the valid inequality

Z Y 2 [——Zizl di]'

i=1

di+sgfort=1,...,n

Adding just these 2n inequalities significantly strengthens the formulation
of this problem. .

8.5 AUTOMATIC REFORMULATION OR CUTTING PLANE
ALGORITHMS

Suppose that X = P N Z™ and that we know a family F of valid inequalities
‘wx < m, (m,m) € F for X. In many cases F contains too many inequalities

124 CUTTING PLANE ALGORITHMS

(2™ or more) for them to be added a priori. Also given a specific objective
function, one is not really interested in finding the complete convex hull, but
one wants a good approximation to it in the neighborhood of the optimal
solution. :

We now describe a basic cutting plane algorithm for (IP), max{cr : T €
X}, that generates wyseful” inequalities from F.

Cutting Plane Algorithm

Initialization. Set t =0 and P® = P.
Tteration t. Solve the linear program:

7 = max{cz : v € P*}.

Let zt be an optimal solution.

If z* € Z™, stop. x* is an optimal solution for IP.

If z* ¢ Z™, solve the separation problem for z* and the family F.

If an inequality (nt, 7§) € F is found with wtzt > 7§ so that it cuts off zt, set
pt+l = ptn {z : vtz < mh}, and augment t. Otherwise stop.

If the algorithm terminates without finding an integral solution for IP,
pt=Pn{z:rz<nh i=1...,1}

is an improved formulation that can be input to a branch-and-bound -al-
gorithm. It should also be noted that in practice it is often better to add
several violated cuts at each iteration, and not just one at a time.

In the next section we look at a specific implementation of this algorithm.

8.6 GOMORY’'S FRACTIONAL CUTTING PLANE ALGORITHM

Here we consider the integer program:
max{cz : Az =b,z20 and integer}.

The idea is to first solve the associated linear programming relaxation and
find an optimal basis, choose a basic variable that is not integer, and then
generate a Chvatal-Gomory inequality on the constraint associated with this
basic variable so as to cut off the linear programming solution. We suppose,
given an optimal basis, that the problem is rewritten in the form:

maxaoo + 2_jeN B 305%;
zp, + ZjeNBEuj:cj =Ty foru=1,...,m
z > 0 and integer

GOMORY'S FRACTIONAL CUTTING PLANE ALGORITHM 125

with @o; < 0 for j € NB and @y > 0 for u = 1,...,m, where NB is the set
of nonbasic variables.

If the basic optimal solution z* is not integer, there exists some row v with
@yo ¢ Z'. Choosing such a row, the Chvétal-Gomory cut for row u is

zZB, t+ Z [@uj]zj < [Guo)- (8.10)
JENB ‘
Rewriting this inequality by eliminating 2, gives
Z (@uj — |Bu;])z; 2 Tuo — [Tuo]
JENB
or

D Fus®i 2 fuo (8.11)

JENB
where f,; = @y; -\ra)ujj for j € NB, and fuo = Gyo — |Guo].

By the definitions and the choice of row u, 0 < fuj <1land 0 < fuo < 1.
As z3;=0 for all nonbasic variables j € NB in the optimal LP solution, this in-
equality cuts off z*. It is also important to observe that the difference between
the left- and right-hand sides of the Chv4tal-Gomory inequality (8.10), and
hence also of (8.11), is integral when z is integral, so that when (8.11) is
rewritten as an equation:

s=~fuw+) futj

JjENB

the slack variable s is a nonnegative integer variable.

Example 8.10 Consider the integer program

z=max 4z; — 1I9
Ty — 212 < 14
T2 < 3
2ry — 2z < 3
T, T2 2 0 and integer.

Adding slack variables z3, 74, T5, observe that as the constraint data is integer,
the slack variables must also take integer values. Now solving as a linear
program gives:

z=max 7 =3T3 —3T4
T +%$3 +%$4 = 272
Z2 +T4 = 3
~3z3 +0z s = 2B
T, Z2, Zs, x4, s > 0 and integer.

126 - CUTTING PLANE ALGORITHMS

The optimal linear programming solution is z = (%,3,0,0, By ¢ 73, so we
use the first row, in which the basic variable z; is fractional, to generate the
cut:

3l

z3 +

B 1]
B =]

T4 2
or
3=“%+=1,'Z3+'.2;:B4
with s,z3,z4 > 0 and integer.
Adding this cut, and reoptimizing leads to the new optimal tableau

z = max 2 —Lizs -3s
T1 +s =2
- T2 ~izs +s =1
T3 —zx5 —5s =1
T4 \-l-%ws +6s = %
T, T, I3, T4y, T5:S > 0 and integer.

Now the new optimal linear programming solution & = (2,1,1,3,0) is still
not integer, as the original variable z2, and the slack variable z4 are fractional.
The Gomory fractional cut on row 2, in which z is basic, is %xs > % or —%15+
t = —3 with t > 0 and integer. Adding this constraint and reoptimizing, we
obtain

z =maxT —3s —t
Ty +s =2
T2 +s -t =1
T3 —5s -2t =2
T4 +6s +t =
B 13 -t =1

T1, Ta, T3, T4, T5S ¢ > 0 and integer.

Now the linear programing solution is integral, and optimal, and thus (z1,22) =
(2,1) solves the original integer program. L]

It is natural to also look at the cuts in the space of the original variables.

Example 8.10 (cont) Considering the first cut, and substituting for 3 and
T4 gives:
1(14 - T2y +232) + 2(3-x2)2 %
or 1 <2
In Figure 8.2 we can verify that this inequality is valid and cuts off the
fractional solution (3.?-,3). Similarly, substituting for zs in the second cut
%:25 > -;- gives the valid inequality z; — 22 < 1in the original variables. »

To find a general formula that gives us the cut in terms of the original
variables, one can show: :

MIXED INTEGER CUTS 127

-
—y
X, -

oy
Cuts Added
207.3) J

C

q o
4x 1-x 2
b o @1
: 7/
/
/7 (2,1/2)

7/

4 P
7/ 1 X,

Fig. 8.2 Gomory cutting planes

Proposition 8.5 Let 8 be rowu of B~, and ¢; = §; — | B;] fori=1,---,m.
The Gomory cut Zje ~B fuiTi 2 fuo, when written in terms of the original
variables, is the Chvdtal-Gomory inequality '

> leas)z; < Lgb].
j=1

Looking at the first Gomory cut generated in Example 8.10, 3 is given by
the coefficients of the slack variables in row u = 1, so 8 = (3,2,0). Thus
q= (%, %,O) and we obtain 1r; + 0z < [2—7°_| =2.

8.7 MIXED lNTEGER CUTS

8.7.1 The Basic Mixed Integer Inequality

We saw above that when y < b,y € Z!, the rounding inequality y < |b]
suffices to generate all the inequalities for a pure integer program. Here we
examine if there is a similar basic inequality for mixed integer programs.

Proposition 8.6 Let X2 = {(z,y) € Ry xZ' : z+y > b}, and f = b—b] >
0. The inequality

z > f([b] - y) or§+yz [5]

is valid for X2.

128 CUTTING PLANE ALGORITHMS

y
S
Feasible Points
8 \
\ : \
b \\\ \ Cut
2 \
1
0 1 2 b 3 X

Fig. 8.3 Basic mixed inequality

Proof. Ify>[b],thenz >02> f([b] —y). fy < [b], then

b—y=f+(lb]-v) ,
f+f(b)—y), as|b)j—y>0and f <1,
£([6] = y)- -

T

v iIv

The situation is shown in Figure 8.3. The following corollary allows us to
compare more directly with the all-integer case.

Corollary If XS = {(z,y) € Ry x Z' :y < b+z},and f =b— [b] > 0, the
inequality ')

T
< —
y<l+75
is valid for X<.
Proof. Rewritingy < b+zasz—y > —band observing that —b—|—b] = 1-f,
we obtain from Proposition 8.6 that 127 —y = [-b] = —|b]. .

Thus we see that when the continuous variable z = 0, we obtain the basic
integer rounding inequality.

Example 8.6 (cont) The trucking example discussed earlier led to the set
h +2p+ystyat+ 2B withye Z4 and s > 0. Using Proposition 8.6

MIXED INTEGER CUTS 129

with [b] =7 and f = &, we obtain immediately that

s 6
2 ﬁ(7 2y1 — 2y2 — y3 — a)

is a valid inequality. »

8.7.2 The MixEdjlnteget Rounding (MIR) Inequality

To obtain a slight variant of the basic inequality, we consider a sef
XMIR — {(2) eARﬁ, x Z3 :a1y1 +azy2 < b+1x},

- where a1,a2 and b are scalars with b ¢ ZJ1.

Proposition 8.7 Let f = b— |b| and f; = a; — |a;] fori = 1,2. Suppose
fi £ f < fa, then

los o + (o) + 2=y < 10y + 12 (812)

f
is valid for XMIR,

Proof. (z,y) € XMIR gatifies lai)yr + [a2lye < b+ z + (1 — fo)yz as
y1 2 0, and a2 = [az] — (1 — f2). Now the Corollary to Proposition 8.6 gives
Loy + [az]y < [b] + [z + (1 = fa)yel /(1 -),
which is the required inequality. : .
Example 8.11 Consider the set X = {(v,z) € Z3 xRL : y1+1y2+ y3 < |

2 > +z} . Using Proposxtlon 8.7, we have f = 1/2 fi= 1/3 f2=0, f3 = 3/4,
and thus

5
3y1 + y2 +§y3 <1042z
is valid for X. ' .

8.7.3 The Gomory Mixed Integer Cut*

Here we continue to consider mixed integer programs. As for all integer pro-
grams in Section 8.6, any row of the optimal linear programming tableau, in
which an integer variable is basic but fractional, can be used to generate a cut
removing the optimal linear programming solution. Specifically, such a row
leads to a set of the form:

= {(yB‘nya"”) €Z'x 7P x X Ry :yp, + E Tujy; + Z @u;Tj =Tuo},
JEMN JEN2

130 CUTTING PLANE ALGORITHMS

where n; =| N; | for i = 1,2.
Proposition 8.8 Ifduo ¢ 2%, fj = Tuj — |Guj] for j € N1U N3, and fo=
Tuo — |Guo), the Gomory mized integer cut
1-f; _ _
S i+ Mw +) Guszst S fo aujz; 2 fo
1-fo i 4~ 1-fo

fi<fo fi>fo Tu; >0 Tu;j<0

is valid for X€.

Proof. The mixed integer rounding inequality (8.12) for X Gis

_ _ j— T _
v+ 3 (Bulys +) (@) +€’—_—f—°)w+ Y oteai < (Al
fi<fo fi>fo 0 ;<0 °

Substituting for yp, proves the claim. .

Example 8:.12 Consider the mixed integer progfam:

z=max 4z; — T2 :
Ty — 2x2 < 14
3 < 3
2z, — 2wy < 3
r, € Z}, T2 20

Note that this is the same as Example 8.10 except that variable z2 € R isa
real variable. Solving as a linear program gives:

= 59 _4 1
z = max % 723 7T4
2
z +izs +i34 2
T2 +T4 = 3
0 _ 23
—7%3 +5 T4 +r5 = T

(=]

1 € Ziy 2, 3, T4,T5 2 .
The basic variable z; is fractional and the first row gives the MIR cut 1 < 2,
which after elimination of z; becomes the Gomory mixed integer cut:
-.1?273 + ’2.7334 > %

Adding this cut and reoptimizing leads to the solution z = (2, %), which is
feasible and hence optimal for the mixed integer program. This can also be
seen graphically in Figure 8.2 with just the addition of the cut z1 <2 n

8.8 DISJUNCTIVE |’NE;QUA|.|T|ES';
The-set X = X1 U X2 with X! CR} fori=1,2isa disjunction (union) of

the two sets X! and X2. The following simple result has already been used
implicitly in Proposition 8.6 in deriving the basic mixed integer-inequality.

DISJUNCTIVE INEQUALITIES® 131

Proposition 8.9 If Yi-i1miz; < wh is valid for X* for i = 1,2, then the

inequality
n
Z m;ZT; < Mo
=1
is valid for X if m; < min[r},7?] for j=1,...,n and m > max{r3, 7.

Proof. If z € X, thenz € X' orz € X2 If £ € X%, then as ¢ > 0,
> ie1 MiT5 S Yoi_ mixj < wh < mo for i = 1,2. Thus the inequality is valid
forallz € X. n

Disjunctions of polyhedra are particularly interesting. Modeling such sets
is easy; see Exercises 1.3 and 8.10. Using Proposition 8.2, it is also easy to
characterize valid inequalities for such disjunctions.

Proposition 8.10 If P* = {z € R? : A’z < b'} for i = 1,2 are nonempty
polyhedra, then (w,mo) is a valid mequahty for con'u(P1] P2) if and only if
there exist ul,u? > 0 such that < u*A* and mo > u'b? fori=1,2.

Example 8.13 Let P! = {z e RZ : —z1 4+ 33 < L,z + 22 < 5}

and P2 ={z € Ry :z; < 4—2x1+:c2 < —6,71 — 3z2 < —2}. Tak-
5
27

ing u! = (2,1) and u? = (£, 3,0) and applying Proposition 8.10 gives that
—x3 + 373 < 7 is valid for P! U P2. See Figure 8.4. .
:cz’
(54) (10,4)
-1 432 <7 -
- - P,
2,3)
42
Py
(o.1)
(510) - z

Fig. 8.4 Disjunctive inequality

Specializing further, we consider 0-1 problems, where X = PnZ™ C {0,1}"
with P={r € R*: Az <b,0<z<1}. Let PP=Pn{z e R*:z; =0},
and P!=Pn{zeR":z;=1} for some j € {1,...,n}.

132 CUTTING PLANE ALGORITHMS

Proposition 8.11 The inequality (, o) is a valid for conv(P° U P?) if there
ezists u' € RT,v* € R}, w' € R} fori=0,1 such that

x < u0A+ 00 +ulej,m <utA+vl - wlej,
7o > ulb+ 149, mo 2 ulb+ 101 —wl.

Proof. Apply Proposition 8.10 with PO={zreRt:Ac<bz <17 < 0}
andP1={a:eR’_;:Aa:Sb,a:_<_1,—:c,'5—1}. .

Example 8.14 Consider the 0-1 knapsack problem

max 12z + 14z2 + Tz3 + 12z4
41’1 + 510 +3x3 +6x4 <8
z € B*

with linear programming solution z* = (1,0.8,0,0). ‘

As 3 = 0.8 is fractional, we choose j =2 in defining P° and P!, and then
look for the most violated valid ir_xeqﬁality (m,mo) given by Proposition 8.11.
To do this, we solve a linear program consisting of maximizing 7z* — o Over
the polyhedron describing the coefficients of the valid inequalities given in the
proposition, namely .

max 1.0m; +0.8m2 — Mo

m < 4u® +0d,m < 4ul +vl

7y < 5u® + 0§ + w0 m < 5ul + v} —w!

73 < 3u® +19,m3 < 3ul + v}

4 < 6u0 + 09, ma < 6ul + 0}

o > 8ud + 10 + 03 + 03 + v}

o > 8ul + v} +vh + vl +vf -

w9, ut, 00, v, wl, w 2 0.

Note that for the linear program to have a bounded optimal value, it is neces-
sary to normalize the inequality. Two possibilities are Z;.'zl mj<lorm =1
The resulting inequality is

1z + 322 <1,

with violation of % For P°, it is a combination of constraints 3 < 1 and
22 <0 with o] =1 andw” = 1 respectively. For P!, it is a combination of
the knapsack inequality 4z1+5z2+3%3 +6x4 < 8and —72 < —1 with ul =3

and w! = 1 respectively. Both normalizations lead to the same inequality. ®

The idea of looking for the most violated inequality will be pursued in the -
next chapter, when we try to obtain “strong” inequalities.

NOTES 133

8.9 NOTES -

8.2 The inequality (8.4), called a blossom ineguality, is from [Edm65a).

8.3 The rounding procedure to generate cuts is from [Gom58]. The general
procedure described here and the proof of Theorem 8.4 for bounded integer
programs is from [Chv73]. In [Sch80], the result is extended to unbounded
polyhedra.

8.4 The strong formulation for UFL is used computationally in [Spi69).

8.5 The first cutting plane algorithm reported is the procedure used to solve
a 54-city T'SP in [DanFulJoh54].

8.6 The fractional cutting plane algorithm is presented in (Gom58],[Gom63].
The latter paper also contains a beautiful theoretical result, namely that the
algorithm converges ﬁmtely if the rows off which the cuts are generated are
properly chosen.

8.7 Gomory mixed integer cuts are proposed in [Gom60]. The presentation
of mixed integer rounding inequalities is from [NemWol90]. The theory of
superadditive valid inequalities and superadditive duality [Joh80] and Chapter
I1.1 in [NemWol88] provides a complete explanation of cuts for integer and
mixed integer programs.

Gomory has shown that finite convergence can be attained with his mixed
integer cuts if the objective function is integer valued. It is an open question
whether this is true for 0-1 mixed integer programs with an arbitrary objective
function. In [CooKanSch90}, the question of how finite convergence might be

- obtained is reexamined.

Recently [GunPoc98] present a new way to combine basic mixed integer
inequalities. Gomory mixed integer cuts have also been recently revived as a
computational tool; see [Balasetal96).

8.8 Disjunctive and Gomory mixed integer cuts are closely related. Pro-
position 8.9 was already used implicitly by Gomory in developing the mixed
integer cut. In the same way that the Chvétal-Gomory procedure can be used
to generate all valid inequalities for an integer program, it can be shown that a
simple disjunctive procedure repeated finitely (see Exercise 8.11) can be used
to generate all valid inequalities for a 0-1 mixed integer program.

The approach here is based on the disjunction of polyhedra developed by
Balas [Balas75a] in the 1970s; see also [Jer72]. In particular, Balas shows the
beautiful result that to obtain the convex hull of a 0-1 MIP, it suffices to
take the convex hulls of each 0-1 variable one at a time. Related to this res-
ult, a variety of extended formulations have recently been proposed to obtain
tighter formulations for 0~1 MIPs [LovSch91], [BalasCerCor93], [SheAda90].

e

134 CUTTING PLANE ALGORITHMS

In practice, under the name lift and project, Proposition 8.11 is used as in Ex-
ample 8.14 to develop a disjunctive cutting plane algorithm. Computational
results are given in [BalasCerCor96].

8.10 EXERCISES

1. For each of the three sets below, find a missing valid inequality and verify
graphically that its addition to the formulation gives conv(X).

(i)X={zeB2:3:cl—4x2_<_1}
(i) X = {(z,y) € R} X B!:z<20y,z< T}
(ii) X = {(z,y) € Ry x 71 :z < 6y,z <16}

2. In each of the examples below a set X and a point z or (x,y) are given.
Find a valid inequality for X cutting off the point. :

®
X = {(z,y) € B x B' iz + 53 S 2y,z; S 1for j=1,2}
(z1,22,9) = (1,0,0.5)
(ii) :
X = {(z,y) € R} x 2} :z <9,z < 49}
9
(z,9) =07
(iif) A
X = {(z1,72,y) E R x Z} :m + 22 S 25, 71 + z2 < 8y}
' 25
(xl)m25 y) = (20, 5, ‘—8—)
(iv) -
X = {z € Z% : 92y + 122 + 823 + 1724 + 1375 2 50}
z=(0,2,0,0,0
6
]
X ={z €2} 4z +8x2+Tos+ 514 < 33}
= (0,0, §7§,0),

3. Prove that y2 +y3 + 2y, < 6 is valid for

X={ye Zi s dyy + 5y2 + 9ys + 1294 < 34}.

EXERCISES 135

4. Consider the problem
minz; + 2z,
Ty +1T2 >4
31 +332 >3
TE Zi.

Show that z* = (%, %) is the optimal linear programming solution and find
an inequality cutting off =*.

5. Solve min{5z; + 9z2 + 23z3 : 20z, + 3527 + 9573 > 319,z € Z3} using
Chvétal-Gomory inequalities or Gomory’s cutting plane algorithm.

6. Solve mé.x{5x1 +922+23x3—4s : 271+ 3724923 < 3243,z € Zi, S € R_l,,}
using MIR inequalities.

7. (i) Show that the inequality z; < dyy; + s is valid for ULS.
(ll) Show that z, + Tt < (de + dt+1)yt + dt+1yt+1 + 8¢+ is valid.
(ii) For ! <n, L={1,...,l} and SC L, show that the inequality

l
275 < 3 (3 diys
j€s i€S t=5

is valid for ULS.

8. Consider the stable set problem. An odd hole is a cycle with an odd number
of nodes and no edges between nonadjacent nodes of the cycle. Show that if
H is the node set of an odd hole,

Dz <(H|-1)/2

jEH
is a valid inequality.
9. Use the mixed integer rounding pro;:edure to show that
(1 +6y2)/4 +ys + 4y > 16

is a valid inequality for ' '

X ={y € Z} : y1 + 6yo + 12y + 48y, > 184}.
10. Use the mixed integer rounding procedure to show that

» x2+z4520+4(y—2)

is a valid inequality for X = |

{(:c,y) € R4+ X Z_}_ T +T2+23+74 S 10y, 71 < 13,22 < 15,23 < 6,24 < 9}.

136 CUTTING PLANE ALGORITHMS

11.(i) Show that if 7o < mo + a(z;j — k) and 7z < ™o + B(k + 1 — ;) with
o,8>0and k € Z! are both valid for a polyhedron P, then 7z < mis
valid for PN {z : zj € Z'}. An inequality generated in this way is called a
D-inequality. :

(ii)* Show that if P C R is a polyhedron and j € {1,...,n}, every valid
inequality for conv(PN{z:z; € B1}) is or is dominated by a D-inequality.

12.* Prove that if P* = {z € R* : A¥z < b*} are bounded polyhedra for
k = 1,2, then conv(P!UP?) = {z : there exists (z,2,2%,y',9%) € R* X R" X
R™ x R} x R} satisfying Akzk < byk for k=1,2,z=2'+ 2yt +y? =1}

13. Consider an instance of the generalized transportation problem

min Y7L, 0 G ij
Yy mii Shifori=1,...,m
TRz 2diforj=1,...,n
z e Z7

with m = 4.n = 6,a = (15,25,40,70),b = (10,5,7,4), d = (45,120,165, 214,
64,93) and

23 12 34 25 27 16
| 29 24 48 35 28 19
(ei)=1| 43 31 52 36 30 21 |°

54 36 54 46 34 27

Solve with a mixed integer programming system. Now by inspecting the lin-
ear programming solution, or otherwise, add one or more valid inequalities to
the formulation and resolve. Compare the number of nodes in the branch-
and-bound tree before and after. Try to minimize the number of nodes.

14. Consider a telecommunications problem where the demands between pairs
of nodes aré given. The problem is to install sufficient capacity on the edges
of the graph so that all the demands can be satisfied simultaneously. If there
is flow of one demand type from i to j, and simultaneously others from j to
i, the capacity available must be the sum of the two opposite-flows. Capacity
can be installed in units of 1 and/or 24, costing 1 and 10 respectively. For a
graph on 6 nodes, the following demand matrix must be satisfied

12 51 — —

v 53 51 —
=1 - - - 32
, R 3 |

N
EXERCISES 137

Formulate and solve with a mixed integer programming system. Try to tighten
the formulation.

15. (i) Derive the inequalities of Example 8.1 as C-G inequalities.

(ii) Consider theset X = {z € B*: z;+z; < 1forall1<i<j < 4}. Derive

the clique inequalities z1 + 22 + 23 < 1 and x; + 22 + 73 + T4 <1as CG
inequalities.

Strong Valid Inequalities

9.1 INTRODUCTION

In the last chapter we have seen a variety of valid inequalities, and presented
a generic cutting plane algorithm. The Gomory fractional cutting plane al-
gorithm is a special case of this algorithm with the particularity that finding
cuts is very easy at each iteration. Theoretically it is of interest because it has
been shown to terminate after a finite number of iterations, but in practice it
has not been successful. However, Gomory mixed integer cuts, as well as the
disjunctive cuts, have been recently successfully used in practice.

Here we address the question of finding strong valid inequalities that are
hopefully even more effective. The basic cutting plane algorithm is the same
as in Section 8.5, however:

(i) We need to say what “strong” means — for our purposes it is any inequal-
ity that leads to a stronger formulation. However, in Section 9.2 (optional)
we formalize what is meant by the strength of an inequality.

(ii) Describing interesting families F of strong inequalities may be far from
easy.

(iii) Given a family F of strong valid inequalities, the separation problem for
F may require a lot of work. It may be polynomially solvable, or it may be
NP-hard, in which case a heuristic algorithm has to be developed. In Sec-
tions 9.3-9.5, we examine three sets: 0-1 knapsack sets, mixed 0-1 sets, and
the set of incidence vectors of subtours that arises in a generalization of the

139

140 STRONG VALID INEQUALITIES

traveling salesman problem. We develop a family of strong valid inequalities,
and discuss the resulting separation problem for each of the families.

(iv) To solve difficult or large problems to optimality, strong cutting planes
need to be embedded into a branch-and-bound framework. The resulting al-
gorithms, called branch-and-cut algorithms, are discussed in Section 9.6.

In discussing separation algorithms, it is important to remember certain
ideas encountered earlier. First because Efficient (Polynomial) Optimization
and Efficient Separation are equivalent,

(i) If Efficient Optimization holds for a class of problems of the form ma.x{ca: :
z € X}, it may be possible to obtain an “explicit” description of the convex
hull of X, and perhaps also a combinatorial separation algorithm for conv(X),
and

(ii) If the Optimization Problem is N'P-hard, there is no hope (unless P =
NP) of obtaining an explicit description of conv(X), but this should not deter
us from looking for families of strong valid inequalities.

As before, the idea of decomposition may be useful. In particular,

(iii) If we can break up the feasible set so that X = XN X2 where the op-
timization problem over X2 is polynomially solvable, then we can attempt to
find conv(X?), and

(iv) If X = X' n X2, but the optimization problems over X! and X 2 are
both A'P-hard, it may be still be worthwhile (and easier) to attempt to find
valid inequalities for X! and X 2 separately in the hope that the resulting
inequalities will also be strong for the intersection X = X' n X2.

9.2 STRONG INEQUALITIES

Here we address briefly the question of what it means for an inequality to be
strong for a set P = {xeR}:Az < b}. This leads us to introduce certain
concepts important for the description of polyhedra. We also present different
arguments that can be used to prove that an inequality is strong, or to show
that a set of inequalities describes the convex hull of a discrete set.

9.2.1 Dominance

We note first that the inequalities 7z < 7o and Arz < Ao are identical for
any A > 0. :

STRONG INEQUALITIES 141

Definition 9.1 If 7z < mp and pz < Mo are two valid inequalities for P C R%,
7z < mo dominates px < po if there exists u > 0 such that = > up and
mo < upo, and (m, 7o) # (up, ump).

Observe that if 7z < 7y dominates uz < po, then {r € R} : nz < mo} C
{z € R} : pz < po}.

Definition 9.2 A valid inequality mz < mp is redundant in the description
of P, if there exist k > 2 valid inequalities 7'z < mh for i = 1,...,k for
P, and weights u; > 0 for i = 1,...,k such that (Ef=1 wrt)z < Ef=1 umh
dominates 7z < .

Here we observe that {z e R% : niz < mh for i = 1,....,k} S {z € R} :
(Ciawn)z < T wnd} € {z € RY 1z < mo}.
Example 9.1 Taking n = 2, (7, 7o) = (1,3,4) and (1, uo) = (2,4, 9), we see

that with w = , 7 > 1y and mo < 1po, and so z; + 3x3 < 4 dominates
2z1 + 4x2 < 9. See Figure 9.1a.

£ z2
6z —z,<9

—55,-212<6

9r, -5z, <6

(a) (b)-

Fig. 9.1 Dominance of inequalities

Again with n = 2, suppose that P = {z ¢ RZ : 62, — 22 <9,91; — 525 < 6}.
Now consider another valid inequality 5z; — 222 < 6 for P. Taking weights
u = (3, 3), we see that 5z; — 2z, < 6 is redundant. See Figure 9.1b. -

Where P = conv(X) is not known explicitly, checking redundancy may be
very difficult. Theoretically it is important to know which inequalities are
needed or nonredundant in the description of P. Practically, the important
point is to avoid using an inequality when one that dominates it is readily
available.

In the next subsection, we discuss polyhedra and characterize which in-

" equalities are nonredundant.

142 STRONG VALID INEQUALITIES

9.2.2 Polyhedra, Faces, and Facets

The goal here is to understand which are the important inequalities that are
necessary in describing a polyhedon, and hence at least in theory provide the
best possible cuts. ' .

For simplicity we limit the discussion to polyhedra P C R" that contain n
linearly independent directions. Such polyhedra are called full-dimensional.
Full-dimensional polyhedra have the property that there is no equation ax = b
satisfied at equality by all points = € P. ‘

Theorem 9.1 If P is a full-dimensional polyhedron, it has a unique minimal
description ’

P={zeR:dc<bfori=1,...,m},
where each inequality is unique to within a positive multiple.

This means that if one of the inequalities in the minimal description is re-
moved, the resulting polyhedron is no longer P, so each of the inequalities
is necessary. On the other hand every valid inequality 7z < mo for P that
is not a positive multiple of one of the inequalities aiz < b; for some i with
1 < i < m is redundant in the sense of Definition 9.2 as it is a nonnegative
combination of two or more valid inequalities.

We now discuss another way in which the necessary inequalities can be
characterized.

Definition 9.3 The points zl,... ,z¥ € R™ are affinely independent if the
k — 1 directions z2 —z?,...,z* — z! are linearly independent, or alternatively

the k vectors (z!,1)...,(z*,1) € R**! are linearly independent.

Definition 9.4 The dimension of P, denoted dim(P), is one less than the
maximum number of affinely independent points in P.

This means that P C R is full-dimensional if and only if dim(P) = n.

Definition 9.5 (i) F defines a face of the polyhedron Pif F = {z € P: 7z =
mo} for some valid inequality 7z < mo of P.

(ii) F is a facet of P if F is a face of P and dim(F) =dim(P) — 1.

(iii) If F is a face of P with F={z € P:mz= 7o}, the valid inequality
nz < o is said to represent or define the face.

It follows that the faces g:;f polyhedra are polyhedra, and it can be shown that
the number of faces of a polyhedron is finite. Now we establish a way to
recognize the necessary inequalities.

Proposition 9.2 If P is full-dimensional, a valid inequality Tz < mo 18 ne-
cessary in the description of P if and only if it defines a facet of P.

STRONG INEQUALITIES 143

So for full-dimensional polyhedra, 7z < mo defines a facet of P if and only if
there are n affinely independent points of P satisfying it at equality.

Example 9.2 Consider the polyhedron P C R2, shown in Figure 9.2, de-
scribed by the inequalities

T < 2
gy + z3 < 4
T3 + 2z < 10
Ty + 2z < 6
Ty + z2 2 2
T > 0
T > 0

(0.3)

(2.2)
0.2)

((A)}

\I(z,o)
l\ X,

Fig. 9.2 Facets and faces of a polyhedron

P is full-dimensional as (2,0), (1,1), and (2,2) are three affinely independent
points in P.

The inequality z; < 2 defines a facet of P as (2,0) and (2,2) are two
affinely independent points in P satisfying z; < 2 at equality. Similarly the
inequalities 1 + 2z2 < 6,27 + z2 > 2 and z; > 0 define facets.

On the other hand, the inequality z, + z2 < 4 defines a face consisting of
just one point (2,2) of P, and hence it is redundant. Adternatively, considering
the inequalities 27 < 2 and z; + 222 < 6 with weights u = (-;-, é—) also shows
that x; + 2 < 4 is redundant.

The inequality z3 > 0 is the sum of the inequalities £ < 2 and —z; — 22 < .
—2 and so it is also redundant.

144 STRONG VALID INEQUALITIES

The minimal description is given by

Ty < 2
2t;, + z2 < 6
1 + T2 = 2
T > 0.

9.2.3 Facet and Convex Hull Proofs*

This section is for those interested in proving results about the strength of
certain inequalities or formulations. The aim is to indicate ways to show that
a valid inequality is facet-defining, or that a set of inequalities describes the
convex hull of some discrete set X C VA
For simplicity we assume throughout this subsection that conv(X) is
bounded as well as full-dimensional. So there are no hyperplanes contain-
ing all the points of X. As example we take the set X = {(z,y) € BT X B':
22'_1_1 z; < my} that arises in Sections 1.6 and 8.4 in formulating the uncapa-
citated facility location problem.

Problem 1. Given X C Z7% and a valid inequality mz < mo for X, show that
the inequality defines a facet of conv(X).

We consider two different approaches.

Approach 1. (Just use the definition.) Find n points z!,...,z" € X satis-
fying mz = 7o, and then prove that these n points are affinely independent.

Approach 2. (An indirect but useful way to verify the affine independence.)
(i) Select t > n points zl,...,xt € X satisfying 7z = To- Suppose that all
these points lie on a generic hyperplane pz = po.

(ii) Solve the linear equation system

n
Zuj:v;? =ppfork=1,...,t
j=1 .

in the n + 1 unknowns (g, Ho)-
(iii) If the only solution is (14, po) = A(m,mo) for A # 0, then the inequality
7z < mo is facet-defining./

Example 9.3 Taking X = {(z,y) € R} x B!': Y™, z; < my}, we have that
dim(conv(X) = m+1. Now we consider the valid inequality z; <y and show
that it is facet-defining using Approach 2.

We select the simplest points (0, 0), (es,1) and (e; + €5, 1) for j # i that
are feasible and satisfy z; = y.

STRONG INEQUALITIES 145

As (0,0) lies on Y7 ; pi%; + ftm41Y = po, po = 0.

As (e4,1) lies on the hyperplane 31" | pi%i + pim+1y = 0, pi = —pm41.
As (e; +e;,1) lies on the hyperplane Y v | pizi — piy = 0, pj = 0 for j # i.
So the hyperplane is p;z; — piy =0, and z; < y is facet-defining. .

Problem 2. Show that the polyhedron P = {z € R" : Ax < b} describes
conv(X).

Here we preseni: eight approaches.

Approach 1. Show that the matrix A, or the pair (A,b) have special struc-
ture guaranteeing that P =conv(X).

Example 9.4 Take X = {(z,y) € RT x B! : 3", z; < my}, and consider
the polyhedron/formulation

P = {(z,y) € R} xR':z;<yfori=1,...,my <1}.

Observe that the constraints z; —y < 0 for i = 1,...,m lead to a matrix with
a coefficient of +1 and —1 in each row. Such a matrix is TU; see Proposition
3.2. Adding the bound constraints still leaves a TU matrix. Now as the
requirements vector is integer, it follows from Proposition 3.3 that all basic
solutions are integral, and P = conv(X). =

Approach 2. Show that points (z,y) € P with y fractional are not extreme
points of P.

Example 9.4 (cont) Suppose that (z*,y*) € P with 0 < y* < 1. Note first
that (0,0) € P. Also as z} < y*, the point (%L, ..,=m 1) € P. But now

‘1 v‘ b
.] y
(JJ ’y*) = (1 - y*)(0,0) +y‘(y_:7 sy ?‘T“v)
is a convex combination of two points of P and is not extreme. Thus all
vertices of P have y* integer. : L]

Approach 3. Show that for all ¢ € R", the linear program 2P = max{cz :
Az < b} has an optimal solution z* € X.

Example 9.4 (cont) Consider the linear program zP = max{} v, ciz; +
fy:0<x; <yfori=1,...,m,y < 1}. Consider an optimal solution (z*,y*).
Because of the constraints 0 < ; < y, any optimal solution has z} = y* if¢; >
0 and z] = 0 if ¢; < 0. The corresponding solution value is (3_,...5o ¢ + f)y*
if y* > 0 and 0 otherwise. Obviously if (3_;..,50¢i + f) > 0, the objective is
maximized by setting y* = 1, and otherwise y* = 0 is optimal. Thus there is
always an optimal solution with y integer, and zZ? =(Tie>0G+Hf. =

146 STRONG VALID INEQUALITIES

Approach 4. Show that for all ¢ € R", there exists a point z* € X and
a feasible solution u* of the dual LP wEP = min{ub,ud = ¢,u 2 0} with
cz* = u*b. Note that this implies that the condition of Approach 3 is satisfied.

Example 9.4 (cont) The dual linear program is
mint
w; >¢fori=1,...,m

-y mwitt>f
w,-ZOfori:l,...,m,tZO.

Consider the two points (0,0) and (z*,1) with z¥=1if¢; > 0and z} =0
otherwise. Taking the better of the two leads to a primal solution of value
(Tiie;>0 i+ f)T. The point w; = ¢ffori=1,...,mandt = Cieso Nt
is clearly feasible in the dual. Thus we have found a point in X and a dual
solution of the same value. L]

Approach 5. Show that if 7z < 7o defines a facet of conv(X), then it must
be identical to one of the inequalities aiz < b; defining P.

Example 9.4 (cont) Consider the inequality S T + Tma1y < mp. Let
S={ie{l,...,m}:m> 0}and T={i € {1,...,m}:m < 0}. Note that
as the point (0,0) € X, m > 0, and as (5,1) € X, Ties i + Tm1 < Mo,
where €5 is the characteristic vector of S. Also a facet-defining inequality
must have a tight point with y = 1. The point (e°,1) maximizes the lhs, and
SO Zies“i + Tmy1 =70 2 0.

Now consider the valid inequality obtained as a nonnegative combination
of valid inequalities:

z; —y < 0 with weight ; for i € S

—x; < 0 with weight —; forieT

y < 1 with weight 3 ;e g i + Tm+1-

The resulting inequality is Y i~; TiZi + Tm+1Y < Yies i+ Tma1- This
dominates or equals the original inequality as Y ies i+ Tma1 < mo. So the
only inequalities that are not nonnegative combinations of other inequalities

- are those describing P. .

Approach 6. Show that for any ¢ € R",c # 0, the set of optimal solu-
tions M(c) to the problem maxf{cz : £ € X} liesin {z : @’z = b;} for some
i=1,...,m, where a’z < b for i =1,---,m are the inequalities defining P.

Example 9.4 (cont) Consider an arbitrary objective (c, f) € R™ x R*.
If f>0,y=1inevery optimal solution and so M(c, f) € {(z,¥):y= 1}.
If ¢; < 0, then z; = 0 in every optimal solution. .
If ¢; > 0 and f <0, then z; =y in every optimal solution.
Ifc;=0foralléand f <0, then z; = 0 in any optimal solution.

0-1 KNAPSACK INEQUALITIES 147
All cases have been covered, and so P =éonv(X). =

Approach 7. Verify that b € Z", and show that for all ¢ € Z™, the optimal
value of the dual wl?® is integer valued. This is to show that the inequalities
Az < b form a TDI system, see Theorem 3.14.

Example 9.4 (cont) We have shown using Approach 4 that wfP =
(Xi:e;>0Ci + f)T. This is integer valued when c and f are integral.)

Approach 8. (Projection from an Extended Formulation). Suppose Q C
R™ x RP is a polyhedron with P = proj,(Q) as defined in Section 1.7. Show
that for all ¢ € R™, the linear program max{cz : (z,w) € Q} has an optimal
solution with = € X.

Example 9.5 (Uncapacitated Lot-Sizing). It can be shown that solving the
extended formulation presented in Section 1.6 as a linear program gives a

solution with the set-up variables y,...,yn integral, and thus provides an
optimal solution to ULS. So its projection to the (z,y, s) space describes the
convex hull of solutions to ULS. , .

9.3 0-1 KNAPSACK INEQUALITIES

Consider the set X = {z € B": 3_7_ a;z; < b}. Complementing variables if

necessary by setting Z; = 1 — z;, we assume throughout this section that the
coefficients {a;}}.., are positive. Also we assume b> 0. Let N = {1,...,n}.

9.3.1 Cover Inequalities

Definition 9.6 A set C C N is a cover if ;. a; > b. A cover is minimal
if C \ {7} is not a cover for any j € C. '

Note that C is a cover if and only if its associated incidence vector z€ is
infeasible for S. :

Proposition 9.3 If C C N is a cover, the cover inequality
dozi<lcl-1
jec

is valid for X.

Proof. We show that if % does not satisfy the inequality, then =¥ ¢ X.
If Y jeczf >/ C | =1, then | RNC |=| C | and thus R 2 C. Then

Z?:lajzf=2jeRajZEjecaj>bandSOER¢X. []

148 STRONG VALID INEQUALITIES

_Example 9.6 Consider the knapsack set _
X={ze B7: 11z, +6a:2+6x3+51:4+5:c5+4:1:6+x7 <19}.

Some minimal cover inequalities for X are:

Ty +T2 +Z3 < 2

Ty +22 4z < 2

T +z5 +z6 < 2
< 3

3 +z4 +Ts +Te

9.3.2 Strengthening Cover Inequalities

Are the cover inequalities “strong”? Is it possible to strengthen the cover
inequalities so that they provide better cuts?)

First we observe that there is a simple way to strengthen the basic cover
inequality.

Proposition 9.4 If C is a cover for X, the extended cover inequality

Z :BjS|C|—1

J€EE(C)
. is valid for X, where BE(C) =CU{j: a; 2 a; for alieC}.
The proof of validity is almost identical to that of Proposition 9.3.

Example 9.6 (cont) The extended cover inequality for C = {3,4,5,6} is
1+ T2 +Ta+za+T5+T6 <3 So the cover inequality Z3 +Z4 + 5 +Z6 <3
is dominated by the valid inequality z; +Z2 + Z3 + x4+ 15+ 76 < 3.
Observe, however, that this is in turn dominated by the inequality 2z1 +
$2+$3+.’B4+$5+$6$3.’ L]

Can we define a procedure that allows us to find the last inequality, which
is nonredundant (facet-defining) and thus as strong as possible?

Example 9.6 (cont) Consider again the cover inequality for C = {3,4,5,6}.
Clearly when z, = z2 = z7 = 0, the inequality T3 + T4 + T5 + T6 < 3 is valid
for {x € B*: 6z3 + 524 + 525 + 426 < 19}.

Now keeping z2 = =7 =0, we ask for what values of o, the inequality

a1z1+x3+z4+:1:5+:z:653

is valid for {z € B®: 11z + 6z3 + 574 + 5zg + 4z6 < 19}7
When z; = 0, the inequality is known to be valid for all values of o.
When z; =1, it is a valid inequality

0-1 KNAPSACK INEQUALITIES 149

if and only if ay + 3 + x4 + 25 + z6 < 3 is valid for all z € B* satisfying
6z3 + 5z4 + 55 + 4z6 < 19 — 11, or equivalently

if and only if oy +max{z3+z4+z5+16 : 6z3+514+515+4x6 < 8,z € B4} < 3,
or equivalently

if and-only if oy < 3¢, where { = max{z3 +z4+ 25+ ¢ : 623 + 524 + 55 +
4z < 8,z € BY}.

Now ¢ =1 at the point = (0,0,0,1), and hence o; < 2.

Thus the inequality is valid for all values of @; < 2, and a; = 2 gives the
strongest inequality. - m

In general the problem is to find best possible values for a; for j € N\ C such
that the inequality

ij+ Z ajz; <|C | -1
jec JEN\C

is valid for X.
The procedure we now describe leads to such a set of values and in fact

provides a facet-defining inequality for conv(X) when C is a minimal cover
and a; < bforall j € N.

Procedure to Lift Cover Inequalities
Let j1,...,Jr be an ordering of N'\ C. Set t = 1.
The valid inequality Ef;i ;5 + 3 jec Tj <| C | —1 has been obtained so

far. To calculate the largest value of a;, for which the inequality ;,Tj, +
il @, T + 3 jec Tj <| C | —1 is valid, solve the knapsack problem:

t-1
G = maxz 0, x5, + Z z;
i=1

j€c
t-1
Doz + Y e < b-ay,
i=1 jecC

z € {0,1}IC1+t-1,

Set aj, =|C | -1 - (.
Stopift=r.

It can be seen that ¢: measures how much space is used up by the variables
{d15+++,4e-1} U C in the lifted inequality when z;, = 1.

Example 9.6 (cont) If we take C = {3,4,5,6},51 = 1,5, = 2 and jz = 7,
we have already been through the steps to calculate o3 = 2. Continuing with

150 >TRONG VALID INEQUALITIES

variable x5, (2 =
max{2z,+T3+T4+T5+T6 ¢ 11z, +6x3+5z4+5z5+416 < 19—6 = 13,z € B5}

=2,and thusaj, =az =3-2=1.

A similar calculation shows that (3 = 3 and thus aj, = a7 = 0. Thus
we finish with a facet-defining inequality 2z +1z2+1x3 +1z4+1z5+1x6+027
<3. : n

Returning to the question of the strength of the cover inequalities, it is not
difficult to show that 3 ccz; < |C | - 1 is facet-defining for conv(X') where
X' = {z € BI° : ¥ caz; < b}. This suggests that the inequality is
strong. On the other hand, it is clearly strengthened by the lifting procedure
that terminates with a facet-defining inequality for conv(X).

9.3.3 Separation for Cover Inequalities

Now let F be the family of cover inequalities for X, and let us examine the
separation problem for this family. Explicitly we are given a nonintegral point
z* with0 < zj <lforallje N, and we wish to know whether z* satisfies
all the cover inequalities. To formalize this problem, note that the cover
inequality can be rewritten as

S -z 21

jeC
Thus it suffices to answer the question:

Does there exist a set C C N with Y jec a; > b for which Yiec(l—73) <17,
or put slightly differently, o

Is¢= l’nincc_:_N{ZjeC(l - .’L‘;) : ZjeC aj; > b} <17

As the set C is unknown, this can be formulated as a 0-1 integer program
where the variable z; = 1 if j € C and z; = 0 otherwise. So the question can
be restated yet again, '

Is ¢ = min{3 e (1 — 7})2 : Ljen 25% > b,z € B"} <1?

Theorem 9.5 (i) If { > 1, * satisfies all the cover inequalities.
(4) If ¢ < 1 with optimal solution z%, the cover inequality
Y ier®i SI R| -1 cuts off * by an amount 1-¢.

Example 9.7 Consider the 0-1 knapsack set

X = {z € BY: 45z, + 46z + 793 + 5474 + 5325 + 12576 < 178}.

MIXED 0-1 INEQUALITIES 151

and the fractional point z* = (0,0, %, %, 1,0).
The cover separation problem is:

minlz + 125 + %za + -;-z‘; + 025 + 12¢
4521 + 4623 + 7923 + 5424 + 5325 + 1252 > 178
z € BS.

An optimal solution is z® = (0,0,1,1,1,0) with ¢ = %. Thus the inequality
T3+ T4+25<2

is violated by 1 — { = %. .

9.4 MIXED 0-1 INEQUALITIES
Here we consider the mixed 0-1 set:

X ={(z,y) e R} x B": Z z; <b+ Z zj, T; < ajy; for j € N; UNL}.
JEN1 JEN2

Note that when N2 = ¢ and z; = a;y; for all j € Ny, this reduces to the
knapsack set studied in Section 9.3. The set X can be viewed as the feasible
region of a simple fixed charge flow network (see Figure 9.3).

N2

Fig. 9.3 Mixed 0-1 flow

9.4.1 Flow Cover Inequalities

Definition 9.7 A set C = C; U C; with C; C N;,Cy C N, is a generalized
cover for X if 3} .c0, a5 — Y jec, @ = b+ A with A > 0. X is called the
(cover-)ezcess.

Proposition 9.6 The flow cover inequality

Yo+ Y@My <t+ YA y+ Y g

jECy JEC ‘jec; j€EL, JEN3Z\(C2UL3)

152 STRONG VALID INEQUALITIES

is valid for X, where Lz C N\ Ca.

Proof. Let Cf = {j € C1:a; > A}. Now given a point (z,y) € X, we
must show that (z,y) satisfies the inequality. Let T = {j € NyUNz: y; = 1}.
There are two cases. '

Case 1. |CH\T | +|LsNT |=0. Now

Yiec it Yiec.(ai — N1 -y5)
Zjecmr x5+ ZjeCi"\T(aj -A)

= 2jecinr Ti (a8 |CY\T|=0)

< 2 jen, Ti (asz; >0)

< b+ ien, Ti (by definition of X)

= b+ ¥ ec, T + LjeLant Ti + Ljen\(CauLa) Ti

< b+ Yjec, @i+ 0+ Ljen(caura) Ti (as | L2NT [=0)

I

b+ Yjec, @ F A jer, Ui t+ Y jeN\(CaULs) T

Case 2. |CH\T |+ |L:NT |21

Yiec Ti + Tiec, (@5 = N (1 —95)
Tiecinr Ti + Ljechr(es =)
Tiec, %~ |CT\TIX (asz; < aj)
Sieci i~ A+ A LanT| (es—|CI\T|S -1+ L2NT])
b+ jec, a;+A Yjer, Yi
b+ Tiec, 4+ A Ljer, Ui + Djemcurn @ (2885 2 0).

Il

IN L IA LA

Example 9.8 Consider the set
X ={(z,y) € R?,_ x B : 21 + 25 + 23 < 4+ T4 + T5 + T6y

71 < 31,22 < 3y2,73 < 6y3, T4 < 3y4, 5 < 5y5,Te < 1ys}.

Taking C; = {1,3} and 02 = {4}, C = (C1,C7) is a generalized cover with
) = 2. Taking Ly = {5}, the resulting flow cover inequality is

23+ 23 +1(1 —y1) +4(1 —ys) S 7+ 2ys5 + Te-

MIXED 0-1 INEQUALITIES 153

9.4.2 Separation for Flow Cover Inequalities

If one makes the assumption that z; = a;y; and a; > X for all j € C, and
that L, = N, \ C2, the flow cover inequality becomes:.

Yoaws+ Y (a—N1-y)<b+ Yy as+A Y w

. jeCy j€C J€EC2 FENZ\C2

or after simplification,

S oA -y b+ Yai+r Y w,

J€ECh FEC1 j€C2 JEN3\C2

or dividing by A,
-+ > oy,
JEC JFENI\C2

or after rewriting,

S-w)-> 1=y

JEC jEC: JEN:

This is nothing but the cover inequality for a 0-1 knapsack set with both
positive and negative coefficients {z € B™ : 3_.cn, a5%; — 2 jen, 35¥i < b}
where the cover (Cy, Cs) satisfies Ejec, a; — fl_,jecz a; =b+ A with A > 0.
This immediately suggests a separation heuristic for the flow cover inequal-
ities. Letting z be the unknown incidence vector of C = (Ci,C3), consider

the knapsack problem

¢=minY N (1 -4})2 — Ljen, Y52
zjeNl ajzj — ZjENQ a;jzj >b
z € B™.

Let 2€, the incidence vector of C, be an optimal solution.

Flow Cover Separation Heuristic. Take the cover C = (Cy,C;) obtained by
solving this knapsack problem, and test whether

Yz (G- N A-g) > b+ Y +Ad v+ Y 5
i€t i€t j€Ca j€La JEN2\(CaULa)

where Ly = {j € N2\ C2 : Ayj < z}}. If s0, a violated flow cover inequality
has been found.

154 STRONG VALID INEQUALITIES

Example 9.8 (cont) Suppose that a solution (z*,y*) is given with T* =
(3,0,4,3,0,0) and y* = (1,0, %,1,0,0). Solving the knapsack problem

¢ = min0z; + 123 + 323 — 124 — 025 — 026
3zl+322+6za—3z4—525—z6 >4
2 € BS,

one obtains as solution C; = {1,3}, C2 = {4}, and A= 2. The resulting flow
cover inequality

1 +z3+1(1—y1) +4(1 —y3) ST+ Ts + Te

is violated by %. .

As in the previous section, it is natural to ask if the flow cover inequality
of Proposition 9.6 is facet-defining, and if not to attempt to strengthen the
inequality by lifting. A partial answer is that the inequality is facet-defining
when z; =y; =0 for j € N2 and C, is a minimal cover. However calculating
valid lifting coefficients is more complicated because of the presence of the
z; < a;y; constraints, so it becomes a computational question whether such
lifting is worthwhile in practice.

' 9.5 THE OPTIMAL SUBTOUR PROBLEM

Consider a variant of the traveling salesman problem in which the salesman
makes a profit f; if he visits city (client) j € N, he pays travel costs ce if
he traverses edge e € E, but he is not obliged to visit all the cities. His
subtour must start and end at city 1, and include at least two other cities.
This problem is also known as the prize collecting traveling salesman problem,
and is a subproblem of certain vehicle routing problems. It is NP-hard.

Introducing binary edge variables: Te = 1 if edge e lies on the subtour and
z, = 0 otherwise for e € E; and binary node variables: y; = 1 if city j lies on
the subtour and y; = 0 otherwise for j € N, one obtains the formulation

max — ZeéE ceTe + 2 jen JiYi 9.1)
eesiiyTe = 20 fori €N (9.2)

YeeE(s) Te = Yies\(ky Vi for k € S,SC N\ {1} (9.3)
7 n= (9.4)

z € BIFly e BINL. : (9.5)

Constraints (9.2) ensure that if a node is visited, two adjacent edges are used
to enter and leave, and (9.3) are generalized subtour elimination constraints
(GSEC), which ensure that there is no subtour that does not contain node

THE OPTIMAL SUBTOUR PRuBLEM 155

1. Note that if we allow z. € {0,1,2} for e € §(1), we also allow subtours
consisting of node 1 and just one other node.

The question addressed here is not to find new inequalities, but how to deal
with the exponential number of generalized subtour elimination constraints.

9.5.1 Separation‘for Generalized Subtour Constraints

Let N’ = N\ {1}, and E' = E\ {6(1)}. To formalize the separation problem,
we represent the unknown set S C N’ by binary variables z with z; = 1 if
t € S. Now (z*,y*) violates the (k,S) generalized subtour inequality if

YooE> >
e€E'(S) i€S\{k}

if and only if {, > 0 where

G=max{ > zuzy- Y yuizeBV gz =1}
e=(i,j)EE":i<j ieN'\{k}

Note that this is a quadratic 0-1 program without constraints.

We now show how this problem can be solved in polynomial time. First we
convert it into a linear integer program, and then we observe that the linear
programming relaxation is integral.

We introduce variables we with we = 1if 2; = z; =1 for e = (3,5) € E'
with 7 < j, and we obtain the integer program -

Ck = ma.ereE, a::we - ZieN'\{k} y:z; (9.6) ’

(IP) We < 2z, we < 2z for e = (i,5) € E' 9.7)
’ We > 2z; +2; — 1 for e = (3,5) € E (9.8)
we BIFl ze BN 2 =1. (9.9)

Proposition 9.7 If z; > 0 for e € E', the linear program consisting of
(9.6),(9.7) and the bound constraints obtained by relazing integrality in (9.9)
always has an integer optimal solution solving IP.

Proof. Consider the linear programming relaxation of IP. As z}; > 0 for all
e € E', there exists an optimal solution with w, as large as possible. Thus by
(9.7), we = min(z;, z;). As z; <1 for all i € N’, min(z;, 2;) > 2z; + z; — 1, and
so (9.8) is automatically satisfied, and can be dropped. Now each constraint
of the linear programming relaxation contains two nonzero coefficients of —1
and +1, and is thus totally unimodular by Proposition 3.2 .

The constraint matrix in the dual of the linear program in Proposition 9.7
is a node-arc incidence matrix, and so the problem can be solved as a max
- flow problem. As k € {2,...,n}, the separation problem for GSECs can be

156 STRONG VALID INEQUALITIES

solved exactly by solving n —1 max flow problems. In practice, very fast sep-
aration heuristics have also been developed in computational studies of the
TSP, which can be used to find many violated GSECs.

Example 9.9 We consider an instance of the optimal subtour problem with
- 4 3 3

3
| - = - 4
n=7f=(241371,Nad()=| - - - -

| & o w o

| v OB N

| woo &d 3T

Jteration 0. We solve a linear programming relaxation of problem (9.1)—(9.5)
consisting of the degree constraints (9.2), constraint 4, =1, the trivial GSECs
Ze < Uiy Te L yj fore= (4,7) € E, and the botinds on the variables.

The resulting solution consists of two subtours (1,5,2,4) and (3,6, 7) with
2LP =4,

Tteration 1. The constraint T3s + 37 + Ter < Y3 + Y7 is added cutting off the
subtour (3,6, 7).

The solution of the new relaxation consists of two subtours (1,3,6,7) and
(2,4,5) with 2LF = 4. :

Tteration 2. The constraint To4 + 25 +Tas S Y4 +Ys is added cutting off the
subtour (2,4, 5). '
The new LP solution is shown in Figure 9.4 with 2LP = 4.

1 b_____ 1. °
~ //@\ 05 | X085
| .
o e

0.5

Fig. 9.4 Fractional optimal subtour solution

The separation problem for k =7 is the linear program:
{7 = maxlwys + 1wqs + 0.5wa7 + 0.5wer + 0.5w37 + 0.5w3e

<1z —0.523 — 124 — 125 — 0.52¢

subject to 0 < we < 23,2 <1 fore=(i,j) € E', r =1.
An optimal solution is z3 = 26 = 27 = W3e = W37 = We7 = 1 with violation
Gr= % ‘ '

BRANCH-ANUD-CUT 157

Tteration 8. The constraint z3g + 37 + Te7 < Y3 + Ys is added.
The new linear programming solution is the single subtour (1,2,5,4,7,6),
which is thus optimal with value of 2. .

9.6 BRANCH-AND-CUT

Successful solution of difficult IPs requires a combination of the many dif-
ferent ideas developed in this and earlier chapters. In Chapter 7, in dis-
cussing branch-and-bound, we mentioned the importance of efficient prepro-
cessing, fast solution and reoptimization of linear programs, and good search
strategies.

The need for good primal heuristics has been stressed, and ideas for using
the linear programming solution to try to construct feasible solutions are dis-
cussed in Chapter 12. In this and the previous chapter we have also considered
the use of separation algorithms to generate cutting planes which tighten up
the formulations.

A Branch-and-Cut Algorithm is a branch-and-bound algorithm in which
cutting planes are generated throughout the branch-and-bound tree. Though
this may seem to be a minor difference, in practice there is a change of philo-
sophy. Rather than reoptimizing fast at each node, the new philosophy is to
do as much work as is necessary to get a tight dual bound at the node. Now
the goal is not only to reduce the number of nodes in the tree significantly by
using cuts and improved formulations, but also by trying anything else that
may be useful such as preprocessing at each node, a primal heuristic at each
node, and so forth.

In practice there is obviously a trade-off. If many cuts are added at each
node, reoptimization may be much slower than before. In addition, keeping all
the information in the tree is significantly more difficult. In branch-and-bound
the problem to be solved at each node is obtained just by adding bounds. In
branch-and-cut a cut pool is used in which all the cuts are stored. In addition
to keeping the bounds and a good basis in the node list, it is also necessary
to indicate which constraints are needed to reconstruct the formulation at the
given node, so pointers to the appropriate constraints in the cut pool are kept.

A flowchart of the basic steps of a branch-and-cut algorithm is shown in
Figure 9.5. ‘

Example 9.10 Generalized Assignment Problem. We consider an instance
of the problem

m n
max 371, D0 CijTi
Z?_—.lxij <lfori=1,...,m
Yz <bjforj=1,...,n
T E an

158

STRONG VALID INEQUALITIES

INITIALIZATION
z =max{cz : 2 € X}
with formulation P
z = —INF, incumbent z* empty
Preprocess initial problem
and put on Nodelist

l

NODE
If Nodelist empty, go to EXIT

Else choose and remove node i from Nodelist

and go to RESTORE

' RESTORE
the formulation F* of the set xt
Set k=1, and P*! = P*

!

LP RELAXATION
Iteration k. Solve 7 = max{cz : z € P**}

If infeasible, prune and go to NODE
FElse solution 2%+ and go to CUT

:

CUT
Iteration k. Try to cut off z**
If no cuts found, go to PRUNE
Else add cuts to P** giving P+
Increase k by 1, and go to LP RELAXATION

}

PRUNE
I 7"* < z, go to NODE R

If z € X, set z=Z"* update incumbent z* — 2%
and go to NODE

Else go to BRANCHING

BRANCHING
Create two or more new problems X

with formmlations Fy
Add them to the Nodelist

EXIT

Incumbent z* Optimal
Value z

' Fig. 9.5 Branch-and-cut

BRANCH-AND-CUT 159

with m = 10,n = 5, b = (91,87, 109, 88, 64)7,

(110 16 25 78 59 9% 1 21 66 59

65 69 54 28 T1 : 54 53 44 26 60

19 93 45 45 9 3 01 43 42 5

89 31 72 83 20 72 30 56 72 9

| 62 17 717 18 39 4 1 1 o183 21
€i)=| 37 115 87 50 o7 | @)= 20 090 87 52 85
80 102 98 74 61 72 96 97 73 49

78 96 87 55 717 . 75 82 83 44 59

74 27 99 91 5 68 8 87 T4 4

\ 8 97 99 99 51 /) 60 83 98 88 45

We use a branch-and-cut system generating lifted cover inequalities. Three
passes are made at the top node with up to 5 cuts added per pass. One pass is
made at all other tree nodes with up to 5 cuts added per pass. The resulting
branch-and-cut tree is shown in Figure 9.6. ’

554.1

Fig. 9.6 Branch-and-cut tree

Initialization. The preprocessor eliminates the five variables 11, T332, Z62, T72, Z6s
with a;; > bj.

Node 1. The initial linear programming value is 595.6. After three passes,
14 cuts have been generated, and the improved linear programming value is
554.1, with corresponding linear programming solution: 12 = 1,23 = Z25
0.5,23;1 = 0.76,T33 = 0.24,743 = T45 = 0.5,x52 = 0.74,Z54 = 0.26, x61
1,73 = T75 = 05,782 = 1,791 = 0.76,z94 = 0.24,Z101 = 0.24, 10,4
0.76, z;; = 0 otherwise.

Z+3 is chosen as branching variable, creating node 2 with z73 = 1 and node
3 with 73 = 0.

o

Node 2. Three cuts are added. The resulting linear programming solution is
integral with value 537. The incumbent value z and solution z* are updated.
The node is pruned by optimality.

160 STRONG VALID INEQUALITIES

Node 3. One cut is generated. The resulting linear programming solution
with value 548.9 is nonintegral. z13 is chosen as branching variable, creating
node 4 with z;3 = 0 and node 5 with z;3 =1.

Node 4. The linear programming solution is integral with value 545. The
incumbent value and solution are updated. The node is pruned by optimality.

Node 5. The linear programming solution value does not exceed the incum-
bent value of 545. The node is pruned by bound.

Termination. The node list is empty. z = 545 with optimal solution ;2 =
Toz = T3y = T4z = T2 = Tl = T75 = Tez = To1 = Z10,4 = 1and z;; =0
otherwise.

If the number of cut passes is unlimited at the top node, 18 cuts are gener-
ated, the final linear programming value is 546, and the branch-and-cut tree
has just three nodes. Using just branch-and-bound, 4206 nodes are required. =

9.7 NOTES

The use of cutting planes as a practical tool for solving general integer pro-
grams was almost completely abandoned in the 1960s and 1970s. However,
the interest in looking for strong valid inequalities for NP-hard problems in
the early 1970s can perhaps be traced to two sources:

(i) The beautiful polyhedral results of Edmonds and Fulkerson in the late
1960s in deriving the convex hulls of the sets of incidence vectors for match-
ing, branching, and matroid problems, as well as the results of Gomory, and
Gomory-and Johnson, in developing characterizations of the valid inequalities
for group and integer programming problems, and

(ii) The idea that because of NP-completeness theory, there is no hope of an
efficient algorithm for integer programming, and therefore that it is important
to study specific problem structure if progress on NP-hard problems is to be
made.

The first polyhedral studies in the early seventies, other than those of the
knapsack polytope, were of the stable set polytope [Pad73], [NemTro74] and -
the TSP polytope [GroPad75]. '

9.2 Books on polyhedra include [Gru67], [StoWit70], and [Zie95]. Surveys
specially written with integer programming and combinatorial optimization
in view are [Pul83] and Chapter 1.1.4 in [NemWol88].

9.3 Cover inequalities for 0-1 knapsack polytopes were developed simultan-
eously in [Balas75b), [HamJohPel75], and [Wol75a). The concept of lifting,
already present in [Gom69)], was extended in [Pad73], [Wol75b]. A major step

EXERCISES 161

forward came with the use of these inequalities in a cutting plane/branch-and-
bound algorithm for 0-1 IPs [CroJohPad83]. Twenty years later separation
routines for these inequalities are finally making their way into the commercial
codes such as: CPLEX, XOSL, and XPRESS.

Recent developments include the derivation of larger classes of inequalities
[Weid7] for 0-1 knapsacks, and the generalization of cover inequalities to 0-1
knapsacks with GUB constraints [Wol90], [Guetal95], and to integer knap-
sacks [Cerietal95].

9.4 Flow cover inequalities appeared first in [PadVanRWol85] and were im-
plemented computationally in [VRoWol87]. Other related inequalities for the
model appear in [Sta92]. Recently stronger liftings of the flow cover inequal-
ities and extensive computational tests are presented in [Guetal96]. A new
mixed integer model consisting of a 0-1 knapsack constraint plus a single con-
tinuous variable is studied in [MarWol97).

9.5 The optimal subtour problem is studied in [Balas89]; see also [Bau97].
The GSEC inequalities are proposed by [Goe94] in studying the Steiner tree
problem. The reduction of the quadratic 0-1 problem to the dual of a network
flow problem is folklore. The reduction to a series of max flow problems is
in [Rhy70]. The problem of finding violated subtour elimination constraints
quickly is faced by all the researchers developing computational studies of the
TSP problem. [PadRin91] present very effective heuristic separation routines.
A recent survey on TSP is [JueReiRin95].

9.6 Two recent surveys on branch-and-cut are [JueReiThi95] and [LucBea96).
See also the annotated bibliography [CapFis97] which .contains references to
applications in general mixed integer programming, routing, scheduling, graph
partitioning, set packing and covering, network design, and location problems
among others. v

Three research codes especially built to allow the easy development of
branch-and-cut applications are MINTO [NemSavSig94], ABACUS [Thi95]
and bc — opt [Cordetal97].

9.8 EXERCISES

1. Consider the set X = {z € 2% : z; — 22 > —1,2z; + 622 < 15,z — 22 <
3,2z, + 4z, < 7}. List and represent graphically the set of feasible points.
Use this to find a minimal description of conv(X).

2. Let X = {z € B": }_;enaiz; < b} witha; > 0for j € N and b > 0.
Show that a valid inequality Zje N TjZj < mp with mp > 0 and m; < 0 for
j € T # 0 is dominated by the valid inequality 3~y max[m;, 0]z; < mo.

162 STRONG VALID INEQUALITIES

3. In each of the examples below a set X and a point z* are given. Find a
valid inequality for X cutting off z*.

@)
X={a:635:9:1:1+8z2+6:z3+6:c4+5a:5514}
’ 533
z-(0a§)ZvaO)1
(ii)
X = {z € B®: 9z, + 82 + 6z3 + 64 + 575 < 14}
1133
T (57’572’1’0))
(i) @
X={:c€Bs:7m1+6x2+6.r3+4:z4+3x5$14}
1.11
z_‘(Tial"i’Zal)v
(iv)

X= {xGBs 12z, —912+8$3+6$4—3I5 52}
11
r= (0, 0, 5, g, 1)
4. Consider the knapsack set
X = {z € B®: 12z, + 9z2 + T3 + 5z4 + 525 + 376 < 14}.

Set 71 = 2 = T4 = 0, and consider the cover inequality x3 + 5 +26 < 2 that
is valid for X' = X n{z : 21 =72 = 24 = 0}.

(i) Lift the inequality to obtain a strong valid inequality 0171 + g2 +asTa+ |
z3 + x5 + 16 < 2 for X. |

(ii*) Show that z3 + 5 + T < 2 defines a facet of X'.
(iii*) Use (ii) and the calculations in (i) to show that the inequality obtained
in (i) defines a facet of conv(X).

5. Consider the set X = {(z,y) € R} x B:z)+z2+ T3 +z4 > 36,
21 < 20y;, T2 < 10y, 73 < 10y3, 74 < 8ya}

(i) Derive a valid ineqﬁality that is a 0-1 knapsack constraint.
(ii) Use this to cut off the fractional point z* = (20,10, 0,6),y* = (1,1,0,3)
with an inequality involving only y variables.

* 6. In each of the examples below a set X and a point (z*,y*) are given. Find
a valid inequality for X cutting off (z*, y*).

EXERCISES 163

() X = {(z,y) € R} x B*: 21 + 22 + 23 < 7,21 < 3y1, 22 < 5y, 23 < 6ys}
(z*i y‘) = (2’ 5’ 0’ %y 1, 0)0

(ii) X = {(z,y) € Ry x B3: 7T < 2y + 22 + 23,2; < 3y1,%3 < 5y2, 73 < 6ys}
(1"»3/*) = (21 5,0, %’ 1’0)

(iil) X = {(z,y) € RE x B® : 21 + 23+ 73 < 4 + 24 + 75 +z6,71 < 3y1,22 <
3y2, 3 < 6ys3, T4 < 3y4, 5 < 5y5,76 < 1y}

(1.", y') = (3y 3,0,0, 2,0;1, 1,0,0, %7 0)

7. Consider the set X = {(z,32) € R} x B : 21 + T3 < b+ 23,25 < Myp}. §
Derive a flow cover inequality with C = ({2},0). For the constraints of ULS,

St—1+ Ty = dy + 8¢, Ty < My, T4, 5¢-1,8 > 0,y € B, what is the resulting
inequality?

8. Consider the set X = {(z1,y2,¥3,v4) € R} x B3: z; < 1000y, + 1500y; +
2200y4,:1:1 S 2000}. ’
Show that it can be rewritten as a mixed 0-1 set

XI={($,I‘/)GR1XB4:11512+:;3+$4,

21 < 200091, 72 < 1000y, 75 < 1500ys, 74 < 2200ys}
with the additional constraints '

¥ = 1,22 > 1000y2, x3 > 1500y3, z4 > 2200y,.
Use this to find a valid inequality for X cutting off

5
(121, Y2, Y3, y4) = (2000, 0» 1’ a9/
22
9. X is the set of incidence vectors of STSP tours. Find a valid inequality
for conv(X) cutting off the point z* given in Figure 9.7.

Fig. 9.7 Fractional solution of STSP

10. Solve the optimal subtour problem with n = 6, f=1(0,19,13,1,8,12) and

164 STRONG VALID INEQUALITIES

(ce) =

|
—
o
| v 5w w
| 5 = © ok

11. Solve the quadratic 0-1 problem

ngc{:c € B® : 2123 + 22173 + 3T154 + 8135 + 12274 + 37275 + 6T3T4

+5z415 — T3 — 422 — 1023 — 24 — 275}

12. Consider the optimal subtree of a tree problem (Section 5.3) with an
additional budget constraint, with feasible region: X = {z € B" : zj < Tp(j)
forj # 1,2 en 05%5 < b} where p(j) is the predecessor of j in the tree rooted
at node 1. C C N is a tree cover if the nodes of C form a subtree rooted at
node 1 and ;¢ a; > b o

Show that if C is a tree cover, the inequality Ejec(“’p(j) —z;) > 1isvalid
for X where zp(1) = 1. ‘

13. A possible formulation of the capacitated facility location problem is:

EjeNzij =gq;forieM
Tiem iy Sbiys forje€N
z > RT"™,y € B™.

Given an instance with m = 5 and n = 3, use the substitution v; = > ienm Tids

10

012
3

7
7

8
4
2
5
3 15

Fig. 9.8 Tractional solution of CFL

and) ;en v = e NG to obtain an inequality cutting off the fractional solu-
tion consisting of the flow z* shown in Figure 9.8 and y* = (1, 4, 18)

14. Given a graph G = (V,E) with n =| V |, consider the set of incidence
vectors of the stable sets X = {reBr:zi+z; <1 for e = (i,j) € E}.
Show that the clique inequality Y ;ecj < 118 valid and defines a facet of
conv(X), where a cligue C C V is a maximal set of nodes with the property

EXERCISES 165
that for all pairs 4, j € C, the edge e = (3,7) is in E.
15.* Show that inequalities at least as strong as the cover and extended cover

inequalities can be obtained by one application of the Chvatal-Gomory pro-
cedure of Section 8.3.

16. Cbnsider an instance of the generalized assignment problem

max 317, SO ¢
YiaTii=1lfori=1...,m
z:’;lai,-zg,' < bj fOl‘j = 1,...,n
z € B

with m = 10,n = 5,b = (80, 63, 75, 98, 59) and

(3 24 53 27 17 /15 44 76 43 34\
15 23 43 74 23 19 23 45 46 34
54 43 27 21 36 10 6 3 23 15
92 83 45 35 23 60 45 34 36 23

(i) = 19 10 33 43 12 (i) = 21 12 34 4 10
=1 91 55 32 26 23 |'\99VT| 67 65 34 20 37

15 25 35 37 28 23 34 44 47 32
47 43 35 32 37 23 25 32 15 27
34 23 52 46 43 |15 13 23 24 34
\ 35 23 34 25 40) \10 15 23 12 13

Solve with a mixed integer programming system. Add valid inequalities so as
to reduce the number of nodes.

10

Lagrangian Duality

10.1 LAGRANGIAN RELAXATION

Consider the integer program:

2z = maxcx
Az <b
Dz <d
z € Z%}.

(IP)

Suppose that the constraints Az <b are “nice” in the sense that an integer
program with just these constraints (e.g., network constraints) is easy. Thus
if one drops the “complicating constraints” Dz < d, the resulting relaxation
is easier to solve than the original problem IP. Many problems have such a
structure, for example, the traveling salesman problem if one drops the con-
nectivity constraints, the uncapacitated facility location problem if one drops
the client demand constraints, and so on. However, the resulting bound ob-
tained from the relaxation may be weak, because some important constraints
are totally ignored. One way to tackle this difficulty is by Lagrangian relaza-
tion, briefly introduced in Chapter 2.

We consider the problem IP in a slightly more general form:

z = maxcz
Dx<d
reX

where Dz < d are m complicating constraints.

167

168 LAGRANGIAN DUALITY

For any value of u = (u,..., Um) > 0, we define the problem:.

z(u) = maxez + u(d — D)

(IP(x) zeX.

Proposition 10.1 Problem IP(u) is a relazation of problem IP forallu > 0.

Proof. Remember that IP(u) is a relax.ation of IP if:

(i) The feasible region is at least as large. This holds because {z : Dz < d,T €
X}cX. ‘

(i) The objective value is at least as great in IP(u) as in IP for all feasible
solutions in IP. Asu>0and Dr <dforallz € X, cz +u(d— Dz) > cx for
allz € X.]

We see that in JP(u) the complicating constraints are handled by adding
them to the objective function with a penalty term u(d — Dz), or in other
words, u is the price or dual variable or Lagrange multiplier associated with
the constraints Dz < d. o

Problem IP(u) is called a Lagrangian relazation (subproblem) of IP with
parameter u. As IP(u) is a relaxation of I P, z(u) > z and we obtain an upper
bound on the optimal value of IP. To find the best (smallest) upper bound
over the infinity of possible values for u, we need to solve the Lagrangian Dual
Problem :)

(LD) wrp = min{z(v) : u > 0}.

Observation 10.1 When the m constraints that are dualized are equality
constraints of the form Dz = d, the corresponding Lagrange multipliers u €
R™ are unrestricted in sign, and the Lagrangian dual becomes

wrp = Min,z(u).

Solving the Lagrangian relaxation I P(u) may sometimes lead to an optimal
solution of the original problem IP.

Proposition 10.2 Ifu >0,

(i) z(u) is an optimal solution of I P(u), and

(i) Dz(u) < d, and

(i4i) (Dz(u)); = d; whenever u; >0 (complementarity),
then z(u) is optimal in IP.

Proof. By (i) wrp < 2(u) = cz(u) + u(d — Dz(u)). By (iii) cz(u) + u(d —
Dz(u)) = cz(u). By (i) z(u) is feasible in IP and so cx(uv) < z. Thus
wip < cz(u) + u(d — Dz(u)) = cz(u) < 2. But as wrp > z, equality holds
thoughout, and z(x) is optimal in IP. .

g

LAGRANGIAN RELAXATION 169

Note also that if the constraints dualized are equality constraints, condition
(iii) is automatically satisfied, and an optimal solution to IP(u) is optimal for
IP if it is feasible in IP.

Consider now the application of this approach to the uncapacitated facility
location problem, starting with the strong formulation:

z=max Y ien X jen Cii%ii — Ljen fiVi
(IP) SienTij=1 forie M
’ Tij—y; <0forie M,jeN
z € RIMIxINl o ¢ BINI,

Dualizing the demand constraints gives:

z(u) =max) cp EjeN(cij —)i — EjeN FiYi+ et
(IP(u)) Tij—y;j<O0forie M,jEN
T € RlM'x|N|’y € BlN'_

This in turn breaks up into a subproblem for each location. Thus 2(u) =
> jen %i(w) + X, ui where .

zj(w) = max 3 e p(cij = wi)Zij — f595
(IP;(u)) zij —y; <0 fori € M,
zij 2 0 for i € M,y; € BL.

Problem IPj(u) is easily solved by inspection. If y; = 0, then :z:,;j = 0 for
all i, and the objective value is 0. If y; = 1, all clients that are profitable
are served, namely those with ¢;; — u; > 0. The objective value is then
Y ien maxfeyj — ui, 0] = fj. So zj(u) = max{0, 3,)y max[ci; — u;, 0] - fj}-

Example 10.1 Uncapacitated Facility Location. Consider an instance with

m = 6 clients and n = 5 potential locations, fixed location costs f =
(2,4,5,3,3) and the client-location profit matrix

(ey) =

OJO—‘M‘OD'PO}
O BN
Q0 N = O W
OV i W=

Taking u = (5,6,3,2,5,4), we obtain the revised profit matrix

170 LAGRANGIAN DUALITY

1 -3 -4 -2 0
-2 4 -4 0 =5

o 11 =20

(cij - ’U,,') = 0 -2 2 -1 2
' -4 3 1 -3 0
-1 -2 0 4 -3

with Y, ui = 25. The resulting Lagrangian problem IP(u) is then solved
by inspection as described above. For instance, for j = 2, we obtain value 0
if y2 = 0. On the other hand, if y2 = 1 at a cost of 4, we can set To; = 1as
Co2 —uz =4 >0 and z52 = 1 as cs2 — us = 3, and thus the net profit with
y2 =1is 7 — 4 = 3. Hence it is optimal to set y = 1 giving 29(u) = 3.
Carrying out a similar calculation for each depot, an optimal solution of
IP(u) is to set y1 = y3 = y5 = 0,y2 = T2 = Ts2 = 1,y4 = Te4 = 1 giving
z(u) =3+1+ 3 ;i =29. .

Now consider the application of Lagrangian relaxation to the symmetric
traveling salesman problem. Remember that a 1-tree is a tree on the graph
induced by nodes {2,...,n} plus two edges incident to node 1; see Section
2.3. So a tour is any 1-tree having two edges incident to each node.

Alternatively, we have seen that the problem of finding a minimum cost
tour can be formulated as an integer program:

z=miny,cpCeTe (10.1)

" YeesyTe=2forallieV (10:2)
TeensTe < 15| -1 forall 2 |S| < V] -1 (10.3)
: z € BBl (10.4)

Observation 10.2 Half the subtour constraints (10.3) are redundant. For
any feasible solution of the linear programming relaxation of this formulation,
IS | = Leen(s) Te = 7 Lies Leesq) Te ~ Lueck(S) Te = 3 Lecs(5,5) Te Where
(S, 5) is the set of edges with one endpoint in S and the otherin S =V \S.
Therefore, as 8(S,3) = 8(5,5), | S| =X eer(s) Te =I S | =Y ecE(3) Te and
80 Y.em(s) Te <I S| —1if and only if 3" .c p(s) Ze < S| —1. Note also that
summing the constraints (10.2) and dividing by 2, we obtain Y ecpTe =T

Therefore, we can drop all subtour elimination constraints with 1 € S. Now
to obtain a Lagrangian relaxation, we dualize all the degree constraints on the
nodes, but also leave the degree constraint on node 1, and the constraint that
the total number of edges is n, giving:

2(u) =min Y ep(ce — Ui — Uj)Te + 2 v i (10.5)
286‘5(1) xe = 2 (10-6)

B
A
i

LAGRANGIAN RELAXATION 171

(IP(u)) Yecr(s)Te S |S|—1for2< (S| <[V -1, 1¢ 8 (10.7)
YecpTe =1 (10.8)
z € BIEI, (10.9)

The feasible solutions of IP(u) are precisely the 1-trees. Finding a min-
imum weight 1-tree is easy, so this is potentially an interesting relaxation.
Note also that as ST'SP is a minimization problem, its Lagrangian dual is a
maximization problem. As the dualized constraints are equality constraints,
the dual variables are unrestricted in sign. Thus here wrp = max, z(u).

Example 10.2 Consider an instance of ST'SP with edge cost matrix

- 30 26 50 40
- — 24 40 50
(c)=| - = - 24 26
- — - - 30

Taking dual variables u = (0,0, -15,0,0,0) and writing ¢, = ¢, — u; — u;, we
obtain the revised cost matrix

— 30 41 50 40
- — 39 40 50
@)=| - - - 39 4
- 1

The optimal 1-tree is found by taking the two cheapest edges out of node
1, that is, edges (1,2) and (1,5), plus the edges of an optimal tree on nodes
{2,3,4,5}. Choosing greedily, the edges (4,5), (2,3), and (3,4) are chosen in
that order. z(u) is the sum of the length of this 1-tree and the value of 2 Y u;,
namely 178 — 30 = 148. The resulting 1-tree is shown in Figure 10.1.

Fig. 10.1 Optimal tour for STSP

We have that z(u) = 148 < z. However, as the 1-tree is a tour it is readily

ii . : o

172 LAGRANGIAN DUALITY

checked that its length is also 148. Thus this tour is optimal. This also follows
directly from Proposition 10.2. s

The questions that we would now like to answer are;
(i) How good is the upper bound obtained by solving the Lagrangian dual?
and’

(ii) How can one solve the Lagrangian dual?

10.2 THE STRENGTH OF THE LAGRANGIAN DUAL

To understand the Lagrangian dual problem (LD), we suppose for simplicity
that the set X contains a very large but finite number of points {z1,...,zT}
Now

wLp = miny>o 2(u)
= minyo{maxsex(cz + u(d — Dz)]}
minuzo{maxt._.l,,_,,r[m:‘ +u(d— Dz‘)]»}

1l

= minn
n > cxt + u(d — Dz*) for all ¢
' u€ RT,n€ R,
where the new variable 7 has been introduced to represent an upper bound
on z(u). The latter problem is a linear program. Taking its dual gives:
wrp = max Yy_, pa(ce?)
23;1 P't(Dxt -d)<0
T -
Et=l>m =1
peRL.
Now setting = = 2'{:1 wxt, with 2};1 pe =1, € RY, we get:
wrp = MaxXcT
Dz <d
z € conv(X).

More generally it can be shown that the result still holds when X is the
feasible region of any integer program X = {zezy: Az < b}.

Theorem 10.3 wrp = maai{c:r: : Dz < d,z € conv(X)}.

cxmpenee

SOLVING THE LAGRANGIAN DUAL 173

This theorem tells us precisely how strong a bound we obtain from dualiza-
tion. In certain cases it is no stronger that the linear programming relaxation.

Corollary If X = {z € Z%} : Az < b} and conv(X) = {z € R? : Az < b},
then wyp = max{cr : A:c<b Dz <d,z € R? n}.

For STSP, as constraints (10.6)~(10.8) with z > 0 describe the convex
hull of the incidence vectors of 1-trees, this corollary tells us that wp gives
us precisely the value of the linear programming relaxation of formulation
(10.1)-(10.4). This is very interesting because it means that we have found
a way to solve a linear program with an exponential number of constraints
without treating them explicitly.

The proof of Theorem 10.3 also tells u us a good deal about the structure of
the Lagrangian dual. It shows that the problem has been convexified so that
it becomes a linear program. We also see that

wWLp = Miny>o{mazs=, . rlcz* + u(d — Dz*)]}.

Thus the Lagrangian dual problem can also be viewed as the problem of
minimizing the piecewise linear convex, but nondifferentiable function z(u)
(see Figure 10.2).

z(u)

Fig. 10.2 Form of the dual problem

10.3 SOLVING THE LAGRANGIAN DUAL .

The linear programming formulation appearing in the proof of Theorem 10.3
provides one way to calculate wyp, though the large number of constraints
means that a constraint generation (or cutting plane) approach is required,

“as described in Chapter 8. An alternative approach that is very simple and

174 LAGRANGIAN DUALITY

easy to implement without using a linear programming system is a subgradient)
algorithm, which we describe below. !
The subgradient algorithm is designed to solve the problem of minimizing

a piecewise linear convex function:

miny>of(u), where flu)= ma:ct=1w_;r[atu —by).
In the case of the Lagrangian dual, we have:
wLp = 2121% z(u)

where z(u) = maxs=1,...7((d - Dz‘)u + czt).
A subgradient is a straightforward generalization of a gradient.

Definition 10.1 A subgradient at u of a convex function f:R" > Rlisa

vector y(u) € R™ such that f(v) > f(u) + 4(u)T (v — u) for all v € R™. :
For a continuously differentiable convex function f, Y(u) = Vf(u) =

(Fau't{’ vy 5—‘?‘-&) is the gradient of f at u. L

Subgradient Algorithm for the Lagrangian Dual

Initialization. v = u0.

Tteration k. u = u*. :

Solve the Lagrangian problem I P(u¥) with optimal solution z(u¥).
uk+! = maz{u* — u(d — Dz(u*)), 0}

k—k+1

The vector d — Dz(u¥) is easily shown to be a subgradient of z(u) at uk. !

The simplicity of this algorithm is amazing. At each iteration one takes |
a step from the present point »¥ in the direction opposite to a subgradient.
The difficulty is in choosing the step lengths {ue}2,-

Theorem 10.4 (a) If 3 pr — 0, and px — 0 as k — 0o, then z(ug) —
wip the optimal value of LD.

(b) If ux = pop* for some parameter p < 1, then z(ux) — wip if po and p
are sufficiently large.

(c) IFW > wip and px = ex[z(u*) —0)/||d - Dz (u*)||? with 0 < ex < 2, then

i
i

.z(uF) — W, or the algorithm finds u* withw > z(u*) > wpp for some finite

k.

This theorem tells us that rule (a) guarantees convergence, but as the series
{px} must be divergent (for example px = 1/k), convergence is too slow to

~ be of real practical interest.

On the other hand, step sizes (b) or (c) lead to much faster convergence,
but each time with a possible inconvenience.

SOLVING THE LAGRANGIAN DUAL 175

Using rule (b), the initial values of 1o and p must be sufficiently large, oth-
erwise the geometric series ugp* tends to zero too rapidly, and the sequence
uF converges before reaching an optimal point. In practice, rather than de-
creasing pi at each iteration, a geometric decrease is achieved by halving the
value of puy every v iterations, where v is some natural problem parameter
such as the number of variables.

Using rule (c), the difficulty is that a dual upper bound @ > wrp is typ-
ically unknown. It is more likely in practice that a good primal lower bound
w < wrp is known. Such a lower bound w is then used initially in place of
w. However, if w < wrp, the term z(u") — w in the numerator of the expres-
sion for y4 will not tend to zero, and so the sequences {u*}, {z(u*)} will not
converge. If such behavior is observed, the value of w must be increased.

For the symmetric traveling salesman problem, care must be taken be-
cause here we are minimizing and the dualized constraints are the equality
constraints

> ze=2foralieV.
e€4(3)

The step direction is given by the rule

uft! = uf (2 - Z T (u¥)).
e€(1)

Here the i** coordinate of the subgradient 2 — ces(i) Te(u) is two minus the
number of arcs incident to node i in the optimal 1-tree. The step size, using
rule (c), becomes

e = ek(w—2(u*))/ Y 2= Y ze(u*))?

3 e€s(1)

where a lower bound w on wy p is appropriate because STSPis a minimiza-
tion problem and LD a maximization problem. '

Example 10.2 (cont) Suppose that we have found the tour (1,2,3,4,5,1)
of length 148 by some heuristic, but we have no lower bounds. We update the
dual variables using rule (c) from Theorem 10.4. We take ¢, = 1 and, as no
lower bound is available, we use the value W = 148 of the tour.

Iteration 1. u! = (0,0,0,0,0). The revised cost matrix is ¢! = c. An optimal
1-tree is shown in Figure 10.3, and z(u') = 130 < 2. As (2-3,¢ s(i) Te(WF)) =
(0,0,-2,1,1), we have

u? = u' + [(148 - 130)/6](0,0, —2,1,1).

176 LAGRANGIAN DUALITY

Fig. 10.3 Optimal 1-tree for ¢

Iteration 2. u? = (0,0,—6,3,3). The new cost matrix is

— 30 32 47 37
- — 30 37 47
@@= - - - 21 29
- - - - 24

We obtain z(u?) = 143 + 2}, u? = 143, and
u® = u? + ((148 — 143)/2)(0,0,-1,0,1).

(D~ 7

Fig. 10.4 Optimal 1-tree for &
The new optimal 1-tree is shown in Figure 10.4.

Iteration 3. u® = (0,0,-17/2,3,11/2).
The new cost matrix is
— 30 345 47 345
—- — 325 37 445
@=|- - - 295 29
- - - = 215

LAGRANGIAN HEURISTICS AND VARIABLE FIXING 177

Fig. 10.5 Optimal 1-tree for &

The new optimal 1-tree is shown in Figure 10.5 and we obtain the lower
bound z(u3) = 147.5. As the cost data c are integral, we know that z is
integer valued and so z > [147.5] = 148. As a solution of cost 148 is known,
the corresponding solution has been proved optimal. .

As the subgradient algorithm is often terminated before the optimal value
wrp is attained, and also as there is in most cases a duality gap (wrp > 2),
Lagrangian relaxation must typically be embedded in a branch-and-bound
algorithm.

10.4 LAGRANGIAN HEURISTICS AND VARIABLE FIXING

Once the dual variables u begin to approach the set of optimal solutions,
a solution z(u) is obtained that is hopefully *close” to being primal feasible
every time that a Lagrangian subproblem I P(u) is solved. In the ST'SP many
nodes of the 1-tree will have degree 2, and so the solution is not far from being
a tour, while for the UFL, many clients are served exactly once, and only a
few are not served at all. Therefore it is often straightforward to devise a
simple heuristic that converts z(u) into a feasible solution without greatly
decreasing/increasing its value/cost. Below we examine this simple idea for
set covering problems, as well as the possibility of fixing some variables once
good primal and dual solutions are available.

Consider an instance of the set-covering problem
min{z ¢z ¢ Z aijzj > 1forie M,z € B},
JEN jEN
with a;; € {0,1} for i € M,j € N. The Lagrangian relaxation in which all
the covering constraints are dualized is

2(u) = Z‘ug + min{Z(c_.,- - Z u;a45)x; : ¢ € B"}

ieM JEN ieM

178 LAGRANGIAN DUALITY

for u > 0.

One simple possibility is to take an optimal solution z(u) of this relaxation, -
drop all rows covered by the solution z(u), that is, the rows i € M for which
2ieN aijz;(u) > 1, and solve the remaining smaller covering problem by a
greedy heuristic. If y* is the heuristic solution, then zH = z(u) +y* is a
feasible solution. It is then worth checking whether it cannot be improved by
setting to zero some of the variables with z; (u) =1.

Once a heuristic solution has been found, it is also possible to use ‘the
Lagrangian for variable fixing. If Z is the incumbent value, then any better
feasible solu’tion x satisfies Y ;¢ p i tmin ;e v (C5 —zie M UiGi)Tj < ez <Z.
Let N1 = {] eN: cj‘EieM UiGi5 > 0} and No = {J eN: cj"EieM uiaij <

0}.

Proposition 10.5 Ifk € N1 and ¥ e pr i+ 2 jeno (65— Liem Wid%is) + (k=
Yienm wigik) 2 %, then zx = 0 in any better feasible solution. .

Ifk € No and Yepr i + 2 jeno\ ik} (G — Sien witij) 2 %, then zp =1
in any better feasible solution.

Example 10.3 Consider a set-covering instance with m =4,n =6,

00 1

101
c=(6,6,11,5,8,8) and a;; = (1) } (1) (1) (1) g
001010

Taking u = (4,4, 3,3), the Lagrangian subproblem IP(u) takes the form
z(u) =14+ min{—1z; + 0z3 + 1x3 + 174 + 125 + 176 : T € BS}.

An optimal solution is clearly. z(u) = (1,0,0,0,0,0) wth z(u) = 13. The
solution z(u) covers rows 1 and 3, so the remaining problem to be-solved
heuristically is :

min6z;+ 6z + 1llrz + 5z4 + 8zs + 8¢
T2 Ty + T
' x3 Ts5
z € BS

VIV
=

for which a greedy heuristic gives the solution y* = (0,0,0,0,1,0). Adding to-
gether these two vectors, we obtain the heuristic solution zH# =(1,0,0,0,1,0)
with cost 14. Thus we now know that the optimal value lies between 13 and
14. '

~ Now using Proposition 10.5, we see that with No = {1} and N; = {3,4,5,6},
71 =1 and 23 = 24 = 25 = 2¢ = 0 in any solution whose value is less than
14. »

CHOOSING A LAGRANGIAN DUAL 179

10.5 CHOOSING A LAGRANGIAN DUAL

Suppose the problem to be solved is of the form:

z = maxcz
Alz < bt

(IP) Azz; b2
z€e VAR

If one wishes to tackle the problem by Lagrangian relaxation, there is a
choice to be made. Should one dualize one or both sets of constraints, and if
so, which sets? The answer must be based on a trade-off between

(i) the strength of the resulting Lagrangian dual bound wzp,
(ii) ease of solution of the Lagrangian subproblems IP(u), and
(iii) ease of solution of the Lagrangian dual problem: wrp = ming>o z(u).

Concerning (i), Theorem 10.3 gives us precise information about the
strength of the bound.

, Concerning (ii), the ease of solution of I P(u) is problem specific. How-
ever, we know that if IP(u) is “easy” in the sense of reducing to a linear
program, that is IP(u) involves maximization over X = {z € 27 : Az < b}

- and conv(X) = {z € R} : Az < b}, then solving the linear programming
relaxation of IP is an altematlve to Lagrangian relaxation.

Concerning (iii), the difficulty using the subgradient (or other) algorithms
is hard to estimate a priori, but the number of dual variables is at least some
measure of the probable dlfﬁculty

To demonstrate these trade-offs, consider the Generalized Asszgnment Prob-
lem (GAP):

n m
z= maxzj.—.l Ei-_q CijTij
2?__.11‘,',' <1 for i = 1,...,m
z?;l Qi Ti5 S bj for] = 1,. S 1)
T € B™",

We consider three possible Lagranglan relaxations. In the first we dualize
both sets of constraints giving w} ;, = miny>¢,,30 w!(u, v) where

w! (u,v) = max, Zj=l E.':l (cij —ui — aijv;)Ts; + Zi=1 u; + Zj=1 v;b;
z € B™,

Here we dualize the first set of assignment constraints giving w? , = min, 30 w?(u)
where

180 LAGRANGIAN DUALITY

w?(u) = max, Y7y Yrey (cij —)i + Lis i
Z?—Ll ;545 < bj for] = 1,. Y]
T € B™",

and here we dualize the knapsack constraints giving wip = mifu>0 w3(v)
where ' ;

w3(v) = maxg Y 5y Yoimy(Cij — @iV5)%ij + > =1 Vibi
' Yriziy Slfori=1,..,m
z € B™".

Based on Theorem 10.3, we know that wip = wip = zpp as for each i,
conv{z : Y51 %ij < 1,%i5 € {0,1} for j = 1,...,n} = {z: Y1 %ii <
1,0<z; <lforj=1,. ..,n}. The values of w*(u,v) and w?(v) can both
be calculated by inspection. To calculate w(u,v), note that the problem
decomposes variable by variable, while for w3(u,v) the problem decomposes
into a simple problem for each j = 1,...,n. In terms of solving the Lagrangian
dual problems, calculating w} , appears easier than calculating w}, because
there are only m as opposed to m +n dual variables.) '

The second relaxation potentially gives a tighter bound w?, < zLp 8s
in general for fixed j, conv{z : Y.i1, ai;Tij < bj,Tij € {0,1}"} € {z :
Z:’;l 0T < bj,0 < Ty < 1fori=1,...,m}. However, here the Lagrangian
subproblem involves the solution of m 0-1 knapsack problems.

10.6 NOTES
10.1 Many of the properties of the Lagrahgia,n dual can be found in [Eve63].
The successful solution of what were at the time very large TSPs [HelKar70],

[HelKar71] made the approach popular.

10.2 The application to integer programming and in particular Theorem 10.3

- and its consequences were explored in [Geo74].

10.3 The use of the subgradient algorithm to solve the Lagrangian dual
again stems from-[HelKar70]. Detailed studies and-analysis of the subgradi-
ent approach can be foind in [HelWolCro74] and [Gof77]. Recently more
sophisticated nondifferentiable optimization techniques have been used; see
[Lemetal95]. Simple multiplier .adjustment methods have also been tried for
various problems, among them the uncapacitated facility location problem
[Erl78]. An alternative approach, Dantzig-Wolfe decomposition, is treated in
the next chapter.

EXERCISES 181

10.5 A comparison of different Lagrangian relaxations for the capacitated
facility location problem can be found in [CorSriThi91]. By duplicating vari-
ables, dualizing the equations identifying variables, and solving separate sub-
problems for each set of distinct variables, Lagrangian relaxation can be used
to get stronger bounds in certain cases; see Exercise 10.6. Lagrangian decom-
position is one of several names given to this idea [JorNas86], [GuiKim87).
Lagrangian relaxation is an important practical tool for many structured
problems. Surveys on the applications of Lagrangian duality include [Fis81]
and [Beas93]. It suffices to open journals such as Operations Research, Man-
agement Science or the European Journal of Operations Research to find
a wide variety of applications. [Beas93] lists 21 applications based on Lag-
rangian relaxation that were found in these three journals just for 1991.

10.7 EXERCISES:

1. Consider an instance of UFL with m = 6,n = 5, delivery costs

6 2 135
4 10 2 6 1
|3 2 413
%=1 2 0 41 4
1 8 6 25
3 2 481

and fixed costs f = (4,8,11,7,5). Using the dual vector u = (5,6,3,2,6,4),
solve the Lagrangian subproblem I P(u) to get an optimal solution (z(u), y(u))
and lower bound z(u). Modify the dual solution (z(u),y(u)) to construct a
good primal feasible solution. How far is this solution from optimal?

2. Suppose one dualizes the constraints z;; < y; in the strong formulation of

UFL. How strong is the resulting Lagrangian dual bound, and how easy is
the solution of the Lagrangian subproblem?

3. Use Lagrangian relaxation to solve the ST'SP instance with distances

- 8 2 14 26 13

- — 7 4 16 8
(e)=] - = - 23 14 9
- - - - 12 6
- - - - - 5

182 LAGRANGIAN DUALITY

4. Use Lagrangian relaxation to solve the GAP instance with

6 10 1 5 7 2
12 12 5 14 8 7 :
()= 15 4 3 |,(ay)=] 10 6 12 and b = (15,15,15)T.
' 10 3 9 8 4 15
8 9 5 6 12 5

5. Consider a 0-1 kné,psack problem

z = max10y; + 4y2 + 14y3
3yt +y2 +4y3 <4
y € B3.

Construct a Lagrangian dual by dualizing the knapsack constraint. What is
the optimal value of the dual variable?)

Suppose one runs the subgradient algorithm using step size (b) in Theorem
10.4, starting with u® = 0,420 = 1 and p = §. Show that the subgradient al-
gorithm does not reach the optimal dual solution.

6. Lagrangian Decomposition. Consider the problem z = max{cz : Az S
bi for i = 1,2,z € Z7} with the reformulation

max{acz+(1-a)cz? : A'z* < b fori=1,2, zt—z? =0,z° € 27 for i = 1,2}

for0O<a<l1.
Consider the Lagrangian dual of this formulation in which the n constraints
£l — 22 = 0 are dualized. What is the strength of this dual?

7. Consider the capacitated facility location problem

min ¥ epr Ljen CisTii + Ljen fili
EjeNzij =gq; fori e M
YiemTij SbjyjforjEN
z;; < min{a;, b;}y; for i € M,j5€N
Zje)\[bjy; 2 Yiem @i
z € RT"y € B™.

Discussthe advantages and disadvantages of different Lagrangian relaxations.
Which would you choose to implement.and why?

EXERCISES 183

8. Consider the assignment problem with budget constraint

max EieM EjeN CijTij
jeN Tij = lforieM
iemTij=1forjeN
ieM 2jeN BijTij < b
x € B™n,

Discuss the strength of different possible Lagrangian relaxations, and the ease

or difficulty of solving the Lagrangian subproblems, and the Lagrangian dual.

11

Column Generation
Algorithms

11.1 INTRODUCTION

One of the recurring ideas in optimization and in this text is that of decom-
position. We have several times considered what happens when the integer
programming problem (IP) max{cz : £ € X} has a feasible region X that can
be written as the intersection of two or more sets with structure X = nK X%
for some K > 1. Even more particular is the case where the constraints take
the form:

Azt +A222 4., +AKzK =
Diz! < 4
< .
< .
. DEzK < dg
ez, .. . ,aK ez

so that the sets X* = {z*¥ € Z7* : D*z* < d;} are independent for k =
1,..., K, and only the joint constraints EkK=1 A¥zk = b link together the
different sets of variables. _ ,
Given an objective function max Ei{:l ckz*, two earlier approaches that
would permit us to benefit from such structure are cut generation, in which
~ we would try to generate valid inequalities for each subset X* k = 1,..., K,
and Lagrangian relaxation, in which we would dualize the joint constraints so
as to obtain a dual problem:

min L(u),

185

186 COLUMN GENERATION ALGORITHMS
where

K
L(u) = ma.x{Z(c" —uAR)z* +ub: ¥ e Xk fork=1,...,K},
k=1

and the calculation of L(u) breaks up into K distinct subproblems:

v K
L(u) = Zma.x{(c" — ud*)zk : F € X*} + ub.
k=1 ’

In this chapter we examine a third way to exploit the structure of integer
programs of the above form. Throughout we assume that each of the sets X*

is bounded for k = 1,...,K. The approach essentially involves solving an

equivalent problem of the form:

K K .
max{Z‘yk/\k : ZB"/\" = B,\F >0 integer fork=1,... ,K}
k=1 k=1

where each matrix B* has a very large number of columns, one for each of the

feasible points in X*, and each vector A¥ contains the corresponding variables.

For example, we now derive an alternative formulation of this type for the
uncapacitated facility location problem UFL. Here the locations j = 1,...,n
correspond to the indices k =1,..., K. For each nonempty subset S € M of
clients, let AL = 1 if depot j satisfies the demand of client set S. This then
leads to the formulation: '

min Y en Lsse(Lies Cii + fj){\’é (11.1)
Y jeN Ls#hies M=1forieM (11.2)
Ysup My <1 forjeN 11.3)
M, e {0,1}for g #S C M,j € N. (11.4)

‘Here the cost of)\’5 is the cost of 6pening depot j and servitig the clients
in' S from depot j. The first constraints again impose that each client is |

served, while the second set of constraints ensure that at most one subset of |

clients is assigned to depot j. In practice the latter constraints are typically |

unnecessary. Why?

Thus the problems we wish to solve here are integer programs with an |
enormous number of variables, where the columns are often described impli- |

citly as the incidence vectors of certain subsets of a set, that is tours, client

_subsets, and so on. Below we show how such (large) formulations of an in-

teger program, called Master Problems, also arise by reformulation. We then
consider how to solve the linear programming relaxation of these Master Prob-

lems, and relate the strength of this relaxation to that obtained by Lagrangian
_ duality, or by the use of cutting planes. Finally we consider what to do when |
the linear programming solution is not integral, and we must resort to enu-

meration, leading to IP Column Generation or Branch-and-Price algorithms.

DANTZIG-WOLFE REFORMULATION OF AN IP 187
11.2 DANTZIG-WOLFE REFORMULATION OF AN IP

Consider the problem in the form:

K K
IP) z= max{.cha:k : Z’Akzk =br* e X* fork=1,...,K} (11.5)
k=1 k=1

where X* = {z* € Z}* : D*z* < d;} for k=1,...,K. Assuming that each

set X* contains a large but finite set of points {z%t}7%, we have that X* =

N Tp, Tk
{z¥ e R™ : 2* = Z)\k,tmk", Z/\k,t =LA €{0,1} fort =1,...,Ti}.
t=1 t=1

Now substituting for z* leads to an equivalent P Master Problem:

z=max T S5k (RN
Ther ik (ATt A = b
f;lAk,t =1 fork=1,...,K
At €{0,1} fort=1,..., Ty and k=1,..., K.

(IPM)

Continuing with problem UF' L, suppose we start from the weak formulation

minien Xjen %4 + Ljen fivs (11.6)
EjGN Tij = 1 forieM (11.7)
ZiGM Tij < my; for JEN (11.8)

z € BIMIXINl 4 ¢ BINI, (11.9)

Here we can take (11.7) as the joint constraints, and X* = {(z1x, . . . , Zmk, Uk) :
Yiem Tik < myx, Tik € B! fori € M, y, € {0,1}}. The points in X* are
{(z%,1)}scm, where z% is the incidence vector of S C M, and (0,0) with
associated variables A%, ¥ respectively leading to the IP Master Problem:

min ;e [Cs20(Ties i + £)0 + £53)
Yjen Do S54sics z\f;v =1 forieM
PsnpXs+ N +1i=1forjeN
i)\{q € {0,1} for SC M,j € N,v# € {0,1} forj € N.

Observe that as f; > 0, variable /\g is dominated by »7 and can be dropped.

Now this formulation and (11.1)-(11.4) are identical if we take 17 to be the
slack variable in (11.3).

188 COLUMN GENERATION ALGdRITHMS
11.3 - SOLVING THE MASTER LINEAR PROGRAM

Here we use a column generation algorithm to solve the linear programming -
relaxation of the Integer Programming Master Problem, called the Linear
Programming Master Problem:

K T
EPM = max 3y 3,51 (F2) Ak

(LPM) TE L T (455N, = b

o Me=1lfork=1,...,K
Mep20 fort=1,..., Tk k=1,....K
: cz .
where there is a column | Afz | for each z € X*. Below we will use {m;}}2,
€k

as the dual variables associated with the joint constraints, and {ux }{=, as dual
variables for the second set of constraints, known as converity constraints.

The idea is to solve the linear program by the primal simplex algorithm.
However, the pricing step of choosing a column to enter the basis must be
modified because of the enormous number of columns. Rather than pricing
the columns one by one, the problem of finding a column with the largest
reduced price is itself a set of K optimization problems.

Initialization. We suppose that a subset of columns (at least one for each k)is
available, providing a feasible Restricted Linear Programming Master Problem

LPM = max &\

(RLPM) AX=b
i>0
where b = 11’), A is generated by the available set of columns and is a

submatrix of -

Algll | AlgbT A221 | AZ2Te | AKgKL L AKgRTK
1 .1 A
1.1 ,

1 . 1

and & X are the corresponding costs and variables. Solving RLPM gives an
optimal primal solution A* and an optimal dual solution (m,) € R™ x RK.

SOLVING THE MASTER LINEAR PROGRAM 189

Primal Feasibility. Any feasible solution of RLPM is feasible for LPM.
In particular, * is a feasible solution of LPM, and so 7LPM — & =
Ty Tibi + S e < ZEPM

Optimality Check for LPM. We need to check whether (m, p) is dual feasible
for LPM. This involves checking for each column, that is for each k, and
for each € X* whether the reduced price ¢z — A%z — pr < 0. Rather
than examining each point separately, we treat all points in X* implicitly by
solving an optimization subproblem:

G =max{(cf —1A¥)z -y z € Xx*y.

Stopping Criterion. If { = 0 for k = 1,.. ., K, the solution (m,pu) is dual
feasible for LPM, and so 2LPM < o mibi + Zf=1 Lk- As the value of the

primal feasible solution) equals that of this upper bound, X is optimal for
LPM.

Generating a New Column. If ¢, > 0 for some k, the column corresponding to
the optimal solution Z* of the subproblem has positive reduced price. Intro-
ckzk
ducing the column | A*#* | leads to a new Restricted Linear Programming
(% ’
Master Problem that can be easily reoptimized (e.g., by the primal simplex
algorithm).

A Dual (Upper) Bound. From the subproblem, we have that G = (k-
7AF)z — p for all z € X*. It follows that (c* — wA*)T — g — Gk < 0 for all
x € X*. Therefore setting ¢ = (¢1,---,Cx), we have that (m,u + ¢) is dual
feasible in LPM. Therefore

K K
AP 13 et 3 G
k=1 k=1

These different observations lead directly to an algorithm for LPM that
terminates when (; = 0 for k = 1,..., K. However, as in Lagrangian relaxa-
tion, it may be possible to terminate earlier.

An Alternative Stopping Criterion. If the subproblem solutions (#,...,zK)
satisfy the original joint constraints Zi;l AFzk = b then (#,...,7K) is
optimal.)

This follows because (x = (c* — wA¥)z% — 1y implies that Yickik =
Yo mAkEE 4 2ok + >l =mb+ 2k Mk + >k G- Therefore the primal
feasible solution has the same value as the upper bound on zLPM,

190 COLUMN GENERATION ALGORITHMS

11.3.1 STSP by Column Generation

Here we consider the application 6f the above algorithm to solve the Master
Linear Program of a problem in which there is just a single subproblem.
We again consider the symmetric traveling salesman problem, which can be .
written as

min{z CeTe : Z z.=2forie N,z e X'}

e€E e€d(i)
where
X'={z €27 : Toes1)Te =2 Leer(s) Te S| S| -1for 6 C5C N\ {1},
ZeeE Te = n}

is the set of incidence vectors of 1-trees.

Writing Te = Y 4. c gt M, Where G* = (N, E?) is the tth 1-tree, the degree
constraints become Y_,c5i) Te = Lecs(i) Ltecmt M = Dt di); = 2 where
d is the degree of node i in the 1-tree G*. Thus the corresponding Linear
Programming Master is ' ’ ’

(min T3k, (eat) e
Zt;1 d:At =2forie N
T
o1 At ;— 1
AeRT

(LPM)

- with which we associate dual variables {u;}, to the degree cbnstraints,
and dual variable pu to the convexity constraint. The corresponding single

subproblem is

G= min{Z(ce — U —Uj)Te — P T E Xll}
e€EE

as the 1-tree Gt has reduced cost ezt — Yy dbui —p = &' = T e v Ui Dees(s)
zt —p =Y cp(Ce — Ui — u;)xt — 1, where z, for e € E are the edge variables
of the 1-tree G*, and e = (i, j) for e € E.-

Note that because we are dealing with 1-trees, d§ = 2 for all ¢, and so the
first equation in LPM is twice the convexity constraint. As a result we can
drop the convexity constraint.

Example 11.1 Consider an instance of STSP with distance matrix
7215

3 6 8
4 2
9

SOLVING THE MASTER LINEAR PROGRAM 191

We initialize with a restricted LPM having 7 columns, corresponding to a
tour of length 28 and six 1-trees chosen arbitrarily

min 28X; +25); +21)3 +19X4° +22Xs5 +18)¢ +28)\7
221 42X 42x3 420 42X +2Xx +2\;
2\ +202 +2)3 +1)g +1Xs +2)Xg +3X\;
2A1 +3X2 +2X3 +3Xs 42X +3x +1)7
2A1 42X 43Xz 4+3Xs 43X +1Xxg +1N;
201 4+1h2 +1d3 41xg 42X +2Xh6 +3)\;
A > 0.

The resulting linear programming solution is A = (0,0, %, 0, %, %, %) with cost
22.5 and dual solution u = (13,1, 1 5 0). The corresponding reduced
cost matrix for the subproblem is

W
CE RN

87 _91 _1m3 _1u
R &
A B
4 A
-7
The optimal 1-tree is 14 = 215 = Zoq = Zg5 = 235 = 1 with ¢ = -3

Therefore 22.5 + ¢ = 16.75 < 2P < 22.5.
~ We start a new iteration by introducing this 1-tree as a new column in
the restricted master with cost 22, and degrees (2,2,1,2,3). The new linear
programming solution is A = (0,0, %,0, 0, %,0, %) with cost 20.333 and dual
solution u = (%,1,-5,2 0).
The corresponding reduced cost matrix for the subproblem is

25 43 21 35

6 2 $
1 2.
E
5 a2
3
3
The optimal 1-tree is T3 = 214 = 93 = To4 = T35 = 1 with ¢ = —-l-:_,% The

lower bound of 20.333 — 1?4 = 15.667 is not as good as that obtained before.
Therefore we now have 16.75 < 2LP < 20.333.

Again we introduce this 1-tree as a new column in the restricted master with
cost 14, and degrees (2,2,3,2,1). The new linear programming solution is A =
(0,0,0,0,0,0,0, %, %) with cost 18 and dual solution u = (13,0, —4,0,0).

The corresponding reduced cost matrix for the subproblem is

-6 -7 -12 -8

7 6 8
8 6
. 9

192 COLUMN GENERATION ALGORITHMS

The optimal 1-tree is T14 = T15 = Za3 = T4 = 35 = 1 with { = —1. The

lower bound on zXPM jncreases to 18 — 1 = 17. As this 1-tree is a tour, it

follows from the alternative stopping criterion that it is optimal. Alternatively
one can check that its real cost is 17. "

11.3.2 Strength of the Linear Programming Master

How strong is the linear programming relaxation of the Master Problem? Is .
there some hope that it will solve the original problem IP?

Proposition 11.1

K K
2LPM max{}_:c"z" : Z.A":L‘": b,z* € conv(X*) for k=1,...,K}.
k=1 . k=1

Proof. LPM can be obtained from the original problem IP by substitut-
ing o8 = T zFtA, TT* Ak = L,Ake > Ofort = 1,...,T;. Thisis
equivalent to substituting z* € conv(X*). s

As discussed in the introduction to this chapter, when IP is decomposable,
Lagrangian relaxation and cutting plane algorithms are two possible alternat-
ive approaches. Specifically let wrp be the value of the Lagrangian dual when
the joint constraints K | Akzk = b are dualized, and let 2°U7 be the value
obtained when cutting planes are added to the linear programming relaxation
of IP using an exact separation algorithm. for each of the sets conv(X k) for
k=1,...,K.

The next result, showing that all three approaches are in some sense equi-
valent as they lead to the same dual bounds, is based on Theorem 10.3, Pro-
position 11.1, and the fact that an exact separation algorithm for conv(X k)
implicitly generates conv(X¥).

Theorem 11.2 zLPM =y p = 26UT,

As the subproblems solved in both the column generation and Lagrangian
dual approaches are optimization problems over X' k, column generation can
be viewed as an algorithm for solving the Lagrangian dual in which the dual
variables 7 are updated using linear programming by solving the Restricted
Linear Programming Master. This is in comparison with the subgradient
algorithm often used to solve the Lagrangian dual that is based on a much
simpler updating procedure.

On the other hand, if we use the cutting plane approach, though the bound
obtained is potentially the same, separation problems over conv(X*) have to
be solved instead of optimization problems.

As the theoretical complexity of the optimization and separation problems
for conv(X¥) is the same, the choice of approach depends on the relative -
difficulty in solving the two problems as well as on the convergence of the
column generation and cutting plane algorithms in practice.

5,

IP COLUMN GENERATION FOR 0-1 IP 193

11.4 IP COLUMN GENERATION FOR 0-1 |P

If when the column generation algorithm terminates, the optimal solution
vector A = (AL,..., XK) of LPM is not integer, then IPM is not yet solved.
However, 2/PM > 2, which suggests the possibility of using such upper bounds
in a branch-and-bound algorithm. In this section we present an algorithm for
0-1 problems using this bound, called an IP column generation or branch-
and-price algorithm. _
Again we have the original problem
z=max{}{, Fz* : S Akgk =,

IP i y
(IP) Dkzk <d* fork=1,... K, zk € B fork=1,...,K}

and its reformulation
z=max 3L, Tk (Faktyn,
ZII:;I Efil(Akl'k't)/\k,t =b
Yl Ae=1fork=1,... K
’\k,t € {0,1} fort = 1,...,Tk,k = 1,,,_,K.

(IPM)

whose linear programming relaxation has optimal solution X.

Because the points z5t € X* are distinct 0-1 vectors, note that % =
Zf;l Aktz%t € {0,1}™ if and only if X is integer. Therefore if A is not
integer, there is some s and j such that the corresponding 0-1 variable x5 has
linear programming value Z7 that is fractional, and on which one can branch.

This suggests the branching scheme shown in Figure 11.1(a), in which
the set S of all feasible solutions is split into Sp = S N {z : zf = 0} and
S1 = 8N{z: 2§ = 1}. Note that this is exactly the same type of scheme used
in the basic branch-and-bound algorithm in Chapter 7.

(@ (b)

Fig. 11.1 Branching for 0~1 column generation: (a) original (b) column variables

It is important now to make sure that it will still be possible to solve the new
linear programming master problems without difficulty. To do this we need

194 COLUMN GENERATION ALGORITHMS

to define the new Master Problems associated with S; for i = 0,1, and the/
new subproblems. !

Now as ok = 31, M.z € {0,1}, z§ = & € {0,1} implies that ot =4
for all k,t with A,¢ > 0. So the Master Problem at node S; = SN{z: zj = i}

fori=0,1is

Z(Si) = max Ek#n Zt(ckxlw)kk’t + Et:x;"r—“i(c&zn’t)xmt
Sktn Lo (AFTF N e + Zt;;;-‘=¢(A'°3""t)A~,t =b
(IPM(S5)) S Mg=lfork#x
o tiz)t =i A =1
Mee€{01}fort=1,...,Te,k=1,.... K.

This has the same form as the original Master Problem except that a set of
columns are excluded on each branch, and the previous LPM solution is now
infeasible. Turning to the column generation subproblems, the subproblem is
unchanged if k # x. However, for subproblem & and i = 0,1, we have

¢x(S;) = max{(c® — TA")z — px : T € X", 75 = i},

which is very similar to the original subproblem. ;

Another idea is to branch on some fractional Ak, variable, fixing it to Oand |
1 respectively, see Figure 11.1(b). Note, however, that on the branch in which
Ak,c = 0, just one column, corresponding to the tt solution of subproblem k,
is excluded, so the resulting problem is almost identical to the original one.
This means that the resulting enumeration tree has the undesirable property
of being highly unbalanced. In addition it “is often difficult to impose the
condition Ar; = 0, and thus to prevent the same solution being generated
again as optimal solution after branching.

One potential advantage of the column generation approach, visible in Ex-
ample 11.2, is that the optimal solutions to RLPM are often integral or close |
to integral. In the first case this gives a feasible integer solution, and in the :
second such a solution can often be obtained by a simple rounding heuristic. -

11.5 IMPLICIT PARTITIONING/PACKING PROBLEMS

An important subclass of decomposable 0-1 I Ps are packing and partitioning
problems. Given a finite set M = {1,...,m}, there are K implicitly described
sets of feasible subsets, and the problem is to find a maximum value packing
or partition of M consisting of certain of these subsets.

In terms of the original IP (11.5) of Section 11.2, we set zF = (v*, wF) with
y* € {0,1}™ the incidence vector of subset k of M, & = (eF, f¥), A¥ = (I,0)
and b = 1. One should think of the variables wk as auxiliary variables needed
to define whether the subset with incidence vector y* is feasible, and to define

IMPLICIT PARTITIONING/PACKING PRObLEMS 195

the possibly nonlinear objective value of the corresponding subset. So we have
the formulation

K K
z= max{Z(e"yk + fruwky Zy" <1,k vy e Xk fork=1,.. ., K}
» k=1 k=1
Now if (y**,w*?) corresponds to the t* feasible solution in the set X k. and

Ak,¢ is the corresponding variable, we obtain an equivalent Integer Program-
ming Master

K T
z=max}) ., Yk (ekykt + Fruwkt) A,
E;il Zt:y{'"=l Me=1lforie M

‘ Yh Me<lfork=1,....K
Az €{0,1}fort=1,..., Tr,k=1,..., K.

We now present several problems of this type. Clearly as the partitioning
problem is a special case of (11.5), the algorithm of the previous section can
be applied.

Multi-Item Lot-Sizing. Suppose we are given demands df for items k =
1,...,K over a time horizon ¢t = 1,...,T. All items must be produced on
a single machine; the machine can produce only one item in each period and
has a capacity Cf if item k is produced in period ¢. Given production, storage,
and set-up costs for each item in each period, we wish to find a minimum cost
production plan. This problem can be formulated as

. K T
min 35, 3, (pFzf + hEst + fEyf
Ei;lnyl fort=1,...,n
(z%,s*,y*) e Xk fork=1,...,K

where X* = {(c¥,s*,y*) € R? x R? x B" : sk, + 2k = dk + sf, 2 <
Cfyf fort=1,...,n}.

Clustering. Given a graph G = (V, E), edge costs ¢, for e € E, node weights
d; for i € V, and a cluster capacity C, we wish to split the node set V into
K (possibly empty) clusters satisfying the property that the sum of the node-
weights in each cluster does not exceed C, in a way that minimizes the sum of
the weights of edges between clusters (maximizes the sum of weights of edges
within clusters). Figure 11.2 shows a feasible solution for an instance with 3
clusters and a capacity of 9. The thick edges are those between clusters. The
problem can be formulated as

K
maxy ., 2ecE cew}

Yh yk<lforieV
(wk,yF)e X fork=1,...,K

196 COLUMN GENERATION ALGORITHMS

where X* = {(w*,y*) € B™ x B™: w} <ykwk <ybwk > yF+yf -1 for%
e = (i,5) € B, Yiey div¥ < C} with y¥ = 1 if node i is in cluster k and |
w¥ = 1 if edge e has both endpoints in cluster k. |

i

K=3, C=9
Node weights shown

Fig. 11.2 Clustering solution with three clusters

Capacitated Vehicle Routing. Given a graph G = (V, E), a depot node 0, edge
costs c. for each e € E, K identical vehicles of capacity C, and client orders d;
for i € V'\ {0}, we wish to find a set of subtours (cycles) for each vehicle such !
that (i) each subtour contains the depot, (ii) together the subtours contain all |
the nodes, (iii) the subtours are disjoint on the node set V' \ {0}, and (iv) the
total demand on each subtour (the total amount delivered by each vehicle)
does not exceed C.

Another problem with such a decomposable structure is the generalized "‘
assignment problem. An instance of GAP is treated by branch-and-cut in
Section 9.6. '

11.6 PARTITIONING WITH IDENTICAL SUBSETS"

The clustering and vehicle routing problems of the last section both have the
property that the clusters or vehicles are interchangeable (independent of k).
This -means that the numbering of the subsets is arbitrary, and exchanging
any two sets leads to an essentially identical solution. |

Here we consider how the integer programming column generation al-
gorithm of Section 11.4 can be specialized to take account of this symmetry.
As Xk = X, (¢, f) = (e, f) and Ty = T for all k, we can set Ae = Yy Myt
and IPM now takes'the form:

max Y, (eyt + fwt)Ae
2t:y?=1 At =1 for 1 G M

PARTITIONING WITH IDENTICAL SUBSETS* 197

Tiod <K
Ae BT,

There is now just a single column generation subproblem. Letting the dual
variables associated with the linear programming relaxation be {m;};cas and
4, the subproblem is:

¢ =max{(e—m)y-+ fu— p: (y,0) € X}

and LPM can be solved as in Section 11.3.
What happens if the solution X of LPM is not integral? It is now not at
all obvious how to recover the original variables z* or the Ak, variables, so

the branching scheme proposed in Section 11.4 must be modified. We now
consider two possibilities.

Branching Rules

M) If 23:-.1 At = a ¢ Z, then form two branches with ELI At < |a] and
23;1 At 2 [a] respectively.

(ii) A second possibility is based on the simple observation that if we take
two elements of M, either they appear together in some subset, or not. So we
choose a pair of elements (rows) i and j in M for which

0< Z A <1,

tiyf=yi=1

and we then form two branches with Ytyteyt=1 At =1and Dbt At=0

=y;=1
respectively.

In the first case (i) we impose that i and Jj lie in the same subset, and in
the second case (ii) that they lie in different subsets. In case (i) all columns
corresponding to subsets Q containing either i or j but not both are elimin-
ated from the Master Problem, and the constraint Yi = y; is added to the
subproblem to ensure that any new column generated does not generate a
subset containing i but not j, or vice versa. In case (ii) columns containing
both 4 and j are eliminated from the Master, and the constraint y; + y; <1
is added to the subproblem.

So, imposing the constraints y; = yj or ¥; + y; < 1 on each subproblem
permits us to branch as shown in Figure 11.3.

The following result says that this second branching scheme is sufficient.

Proposition 11.3 If X ¢ BT, there erist rows i, Jj € M such that

0< Z A < 1.

t:y‘5=y;.=1

198 COLUMN GENERATION ALGORITHMS

Fig. 11.3 A branching scheme for partitioning

Such a pair is also not difficult to find. '
Example 11.2 Consider an instance of the clustering problem of Section 11.5
with G = (V, E) the complete graph on 3 nodes, K = 3 clusters, the objective
of choosing as many edges as possible within the clusters, and at most 2 nodes
allowed per cluster, that is, node weights d; = 1 for all i € V, edge weights
¢e =1 for all e € E, and cluster capacity C = 2. %

1. Solving LPM. Starting the Restricted LPM with clusters consisting of
single nodes leads to

max 0\, + 02 + 0A3

11 +0X +0A3 1

01 +1X2+0x3 = 1

OAM +0X2+1X3 = 1

M +12+10 < 3
A0

with RLPM value 0, primal solution A = (1,1,1), and dual solution 7 =
(0,0,0), 2 = 0. This provides a feasible solution to the original problem of
objective value 0, and so we set z = 0. |

2. Solving the Subproblem. The subproblem of selecting a feasible cluster of |
maximum reduced price is |

¢ = minwyz +wis + waz — Oys — Oy2 — Oy3 — 0
‘wip <ywiz LY, w12 21 +HY2 -1
wis <yLwia <YWz 2 Y1 +ys—1
wos < Yo, w23 S Y3, wa3 2 Y2 +y3 — 1
Y1ty t+ys <2
w e BIEl y e BIVI

PARTITIONING WITH IDENTICAL SUBSETS* 199
giving ¢ =1 and an optimal solution w1y = y; =y, = 1.

3. Solution of LPM. After three iterations LPM is solved in the form

max0A; +0A2 + 0A3 + 10y + 105 + 16
1A + 0z +0Ag + 1 + 1) +0)g

0A1 + 1Az + 0A3 + 104 4 0Xs + 1)g

0A1 +0Ao 4+ 1A3 +0Xg + 1A + 1X¢
g+ + 13+ 1 + 15 +1)Xg
A>0

with optimal solution Ay = s = X¢ = } and 2LPM = 3.

IN N
O e e

4. Branching. Taking rows i = 1 and | = 2, we use the second branching
scheme and split the problem into two subproblems:

S is the set of solutions in which nodes 1 and 2 do not lie in the same
cluster, so S} is obtained by setting Ay = 0 cutting off the existing solution.
All new clusters containing both nodes 1 and 2 are excluded. :

S is the set of solutions in which any cluster containing either 1 or 2 must
contain the other, so S, is obtained by setting A2 = A3 = A5 = Ag = 0 cutting
off the existing solution. Any new clusters containing just one of the nodes
1,2 are excluded.

5. Reoptimizing for S;. With A4 = 0, the new RLPM is
max0A; +0Az + 0)g + 15 + Lg

I +0A2+0A3+1As+ 0 = 1

0\ +‘]‘.)\2 +0A34+0As+1X = 1

OA1+0A2+ 13+ 15 +10g = 1

I+ +13+10+10 < 3
A>0

with optimal primal solution \; = Ag = 1, and dual solution 7 = (0,0,1), =
0. The incumbent is updated, z = 1.

6. Subproblem for S;. The subproblem is
¢ = minwiz + w13 + w3 — 1y; — Oyo — Oys — 0
w12 YL, W12 S Y2, w12 2 Y1 + Y2 — 1
w13 <Y1, w13 < Y3, w13 2y +y3 — 1
w23 < Y2, W23 S Y3, W3 2 Y2 +y3 — 1
n+y2+y3 <2
y1+y2<1
w € BBl y e BIVI

’

200 COLUMN GENERATION ALGORITHMS

giving ¢ = 0. So LPM(S,) is solved with zZPM(S;) = 1. The node is pruned .

by bound.

7. Node S;. When setting A2 = A3 = As = A¢ =0, the liew RLPM has unique
optimal solution X3 = A4 = 1. We continue iterating between subproblem and
the restricted Master till LPM is solved with zZ¥M(S;) = 1. Then the node

is pruned by bound, and as there are no outstanding nodes, the incumbent =

solution A\; = A = 1 is optimal. This corresponds to one cluster containing
node 1, another containing nodes 2,3, and the third necessarily empty. .

11.7 NOTES

11.1 The fundamental paper on the decomposition of linear programs, known :
as Dantzig-Wolfe decomposition, is [DanWol60]. Recent surveys in this area

include [Barnetal94] and [Desetal95].

11.3 The first use of column generation to solve the Master linear program
arising from an integer programming problem is probably the work on the cut- |
ting stock problem [GilGom61], [GilGom63]. The equivalence of the bounds
provided by the linear programming Master and the Lagrangian dual has been

known since [Geo74)].

11.4 The first papers on integer programmingt column generation appeared
in the eighties [DesSouDes84],[DesSou89] on routing problems in which the
subproblems ‘are constrained shortest path problems that are solved by dy-
namic programming.

11.5 The multi-item lot-sizing and clustering problems have been tackled by
integer programming decomposition in [Vdbeck94], and the clustering prob-
lem in [JohMehNem93], the generalized assignment problem in [Sav93], and
binary and integer cutting stock problems in [Vancetal94] and [Vdbeck96] re-
spectively.

11.6 The branching rule (ﬁ) is from [RyaFos81]. Recent more general branch-
ing rules that are not restricted to 0-1 problems appear in [Barnetal94] and
[VdbeckWol96)].

In [Ben62] an almrr;gtivé resource-based reformulation and decomposition
approach is proposed; see Exercise 11.5. :

EXERCISES 201

11.8 EXERCISES

1. Consider the following instance of UFL with m = 4,n=3,

(ci5) = and f = (8,6,5).

o W
[
L I I

Reformulate using an Integer Programming Master Problem. Solve the Linear
Programming Master by column generation.

2. Solve the following instance of ST'SP by column generation

- 3 4 2
- - 5 6
=| _ _

3. Consider GAP with equality constraints

max 370, YU €t

ST =1lfori=1,...,m

E?;l Q@i T4j < bj fOl‘j = 1,...,72.
T € B™".

: 21
Solve an instance with m = 3,n = 2, (¢ij) = (ai;) = (11), and b =
' 1 2

9 by inter programming decomposition. Solve also by Lagrangian relax-

ation and by cutting planes and compare.

4. Formulate the Integer Programming Master and subproblems for the three
problems presented in Section 11.5.

5.* (Benders’ Reformulation). Use the results of Exercise 1.15 to show that
(MIP) z=max{cz+hy: Az+Gy<breR},ycY C R}
has the equivalent formulation

z = max7n
ﬂSu’(b—Gy)+hyfors=1,...,S
v'b~-Gy)>0fort=1,...,T
yeY.

202 COLUMN GENERATION ALGORITHMS
Describe a cutting plane algorithm for MIP based on this reformulation.

6. Consider the problem of scheduling n jobs on m identical machines. The
processing time of job j is p; for j = 1,...,n, and the objective is to termin-
ate all jobs as soon as possible. Formulate as an IP and discuss algorithmic
options for the problem.

7. Suppose that 15 pieces of length 32, 35 of length 20, 17 of length 15, and 42
of length 11 must be cut from sheets of length 104. Find the minimum number
of sheets required. Formulate, discuss possible algorithms, and present lower
and upper bounds on the minimum value.

12

Heuristic Algom'thms

12.1 INTRODUCTION

Given that many, if not most, of the practical problems that we wish to solve
are N'P-hard, it is not surprising that heuristic or approximation algorithms
play an important role in “solving” discrete optimization problems—the idea
being to hopefully find a “good” feasible solution quickly.

Different reasons may lead one to choose a heuristic:

A solution is required rapidly, within a few seconds or minutes.

The instance is so large and/or complicated that it cannot be formulated as
an IP or MIP of reasonable size.

Even though it has been formulated as an MIP, it is difficult or impossible
for the branch-and-bound system to find (good) feasible solutions.

For certain combinatorial problems such as vehicle routing and machine
scheduling, it is easy to find feasible solutions by inspection or know-
ledge of the problem structure, and a general-purpose mixed integer
programming approach is ineffective.

In designing and using a heuristic, there are various questions one can ask:

Should one just accept any feasible solution, or should one ask a posteriori
how far it is from optimal?

Can one guarantee a priori that the heuristic will produce a solution within
€ (or a%) of optimal?

203

204 HEURISTIC ALGORITHMS

Can one say & priori that, for the class of problems considered, the heuristic
will on average produce a solution within a% of optimal?

The rest of this chapter is divided into four parts. In the first, we formalize
the greedy and local exchange heuristics introduced by example in Chapter
2. We then consider two improved local exchange heuristics, tabu search

-and simulated annealing, that include ways to escape from a local optimum,

and genetic algorithms that work with families of solutions. These heuristics,
though often very effective, provide no (dual) performance bounds and thus
no direct way of assessing the quality of the solutions found. We then con-
sider some problems for which by simple analysis a priori worst-case bounds |
can be obtained. Though these bounds are typically weak, only guaranteeing |
solutions within, say 50%, of optimal, the resulting heuristics are typically
much more effective in practice. Finally we discuss how to use a mixed in- |
teger programming system in heuristic fashion with the aim of finding good |

solutions quickly, and also of obtaining at least some a posteriori performance |

guarantees.

12.2 GREEDY AND LOCAL SEARCH REVISITED

Here we formalize the greedy and local search algorithms presented by ex-
ample in Section 2.6. First we suppose that the problem can be written as a
combinatorial problem in the form:

Sr’xéi?,{c(S) :v(S) = k}.

For example, the 0-1 knapsack problem

n n
min{z ¢jT; Z ajz; > b, z € B"}

- g=1 i=1
with ¢j,a; > 0 for j = 1,...,n is of this form with o(S) = Yjes cirv(S) =
Y jesaj and k =b. The uncapacitated facility location problem also fits this
model if we take ¢(S) = ;ep Minjes ij + Xjes fi for S # 0,v(S) =| S|
and k=1. .

Below we assume that the empty set is infeasible.

A Greedy Heuristic

1. Set S = (start with the empty set). Set ¢ = 1.
t=1,0s t—1 X
2. Set j; = arg min f,(gt_ 3 3:)::‘g. — (choose the element whose additional

~ cost per unit of resource is minimum).

3. If the previous solution S*~ is feasible, and the cost has not decreased,
stop with §¢ = S*~1.

GREEDY AND LOCAL SEARCH REVISITED 205

4. Otherwise set S* = §*~1 U {j,}. If the solution is now feasible, and the
cost function is nondecreasing or ¢t = n, stop with SC = §¢.

5. Otherwise if ¢t = n, no feasible solution has been found. Stop.

6. Otherwise set t « t + 1, and return to 2.

Example 12.1 We apply the greedy heuristic to an instance of the unca-
pacitated facility location problem with m = 6 clients, n = 4 depots, and
costs)

6 2 3 .4
1 9 4 11
15 2 6 3 |
(ei) = 9 11 4 8 and f = (21,16,11,24).
7T 23 2 9
4 3 1 5
The algorithm gives:

Initialization. S° = ¢. SO is infeasible.

Iteration 1. c(1) = (6+1+15+9+7+4) +21 = 63,c(2) = 66,¢(3) =
31,c(4) = 64, s0 j; = 3, S* = {3} and ¢(S!) = 31. S! is feasible.

Iteration 2. c(1,3) - ¢(3) = (min{6, 3} + min{1, 4} + min{15, 6} + min{9, 4} +

min{7, 2} +min{4,1})+(21+11) - 31 = 18,¢(2,3) —¢(3) = 11, ¢(3,4) —c(3) =
11. :

Termination. As the cost has not decreased, the algorithm stops with heur-
istic solution S¢ = {3} and cost 31. .

Greedy heuristics have to be adapted to the particular problem structure.
For STSP there are several possible greedy heuristics that choose edges one
after another until a tour is obtained. The “nearest neighbor” heuristic starts
from some arbitrary node, and then greedily constructs a path out from that
node. The “pure greedy” heuristic chooses a least-cost edge j: such that St
is still part of a tour (i.e., St consists of a set of disjoint paths, until the last
edge chosen forms a tour).

To describe local search it is'simpler to formulate the combinatorial optim-
ization problem as

min{<(S) : 9(5) = 0}

where g(S) > 0 represents a measure of the infeasibility of set S. Thus the
constraint v(.S) > k used above can be represented here by 9(8) = (k—v(S))*.
. For alocal search algorithm, we need to define a solution , a local neighbor-
hood Q(S) for each solution S C N, and a goal function f(S) which can either

i
i
|
|
|

.

206 HEURISTIC ALGORITHMS

be just equal to ¢(S) when S is feasible, and infinite otherwise, or a composité
function of the form ¢(S) +ag(S) consisting of a weighted combination of the
objective function value and a positive multiple a of the infeasibility measure
for S. ‘

A Local Search Heuristic. Choose an initial solution S. Search for a set
S’ € Q(S) with £(S') < f(S). If none exists, stop. SH = §is alocal optimum
solution. '

Otherwise set S = S’, and repeat.

Appropriate choices of neighborhood depend on the problem structure. A very
simple neighborhood is that in which just one element is added or removed
from S, that is, Q(S) = {$': $' =SU {j} for j e N\SIu{s':8 =8\ {i}
for i € §}. This neighborhood has only O(n) elements.) !

Another neighborhood that is appropriate if feasible sets all have the same
size is that in which one element of S is replaced by another element not in’
S, that is, Q(S) = {§': ' =Su{j}\{i}forje N\Sandie€ S}. This
neighborhood has O(n?) elements. ’

For STSP, there is no tour differing from an initial tour by a single edge..
However, if two edges are removed, there is exactly one other tour contain-,
ing the remaining edges (see Figure 12.1). This leads to the well-known 2-
exchange heuristic for the STSP on a complete graph.

" Replacement edges

Fig. 12.1 2-Exchange for STSP

2-Exchange Heuristic for STSP

The local search heuristic is applied with the following specifications:
A set S C E is a solution if the set of edges S form a tour.
Q(S) = {9’ is a solution: &' # 5,| ' NS |=n— 2}, where n =| V' |.
f(S) = Zees Ce-

The resulting local search solution is called a 2-optimal tour. -

IMPROVED LOCAL SEARCH HEURISTICS 207

12.3 IMPROVED LOCAL SEARCH HEURISTICS

How do we escape from a local minimum, and thus potentially do better
than a local search heuristic? This is the question addressed by the tabu and
simulated annealing heuristics that we now present briefly.

12.3.1 Tabu Search

When at a local minimum, a natural idea is to move to the best solution in
the neighborhood even though its value is worse. One obvious difficulty with
this idea is that cycling may occur, that is, the algorithm returns to the same
solution every two or three steps: S® — 8! — §0 — S, ...

To avoid such cycling, certain solutions or moves are forbidden or tabu.
Directly comparing the new solution with a list of all previous incumbents
would require much space and be very time consuming. Instead, a tabu list of
recent solutions, or recent solution modifications, is kept.

A basic version of the tabu search algorithm can be described as follows:

. Initialize an empty tabu list.
. Get an initial solution S.
3. While the stopping criterion is not satisfied:
3.1. Choose a subset Q'(S) C Q(S) of non-tabu solutions.
3.2. Let " =arg min{f(T): T € Q(S)}.
3.3. Replace S by S’ and update the tabu list.
4. On termination, the best solution found is the heuristic solution.

DN =

The parameters specific to tabu search are:
(1) The choice of subset Q'(S). Here if Q(S) is small, one takes the whole
neighborhood, while if Q(S) is large, Q’(S) can be a fixed number of neigh-
bors of S, chosen randomly or by some heuristic rule.

(if) The tabu list consists of a small number ¢ of most recent solutions or
modifications. If t = 1 or 2, it is not surprising that cycling is still common.
The magic value ¢ = 7 is often cited as a good choice.

(iii) The stopping rule is often just a fixed number of iterations, or a certain
number of iterations without any improvement of the goal value of the best
solution found. o

Considering the neighborhood function
Q) ={TCV:T=Su{j}forje V\S}U{T CV:T = S\({i}oriec S}

consisting of single element switches, the tabu list might be a list of the last ¢
_elements {i1,...,1;} to be added to an incumbent, and of the last ¢ elements
{d1,-.., 72} to be removed. - A neighbor T is then tabu if T = S\ {i,} for

L
i

208 HEURISTIC ALGORITHMS

some ¢ = 1,...,t or if T = SU{j,} for some ¢ = 1,...,t. Therefore one
cannot remove one of the ¢ elements added most recently, and one cannot add
one of the ¢ elements removed most recently. i

Tabu search also uses common sense. There is no justification to make a |
solution tabu if it is the best solution found to date, or it is interesting for
some reason. So one or more aspiration levels can be defined that are used |
to overrule the tabu criteria. More generally, tabu search can be viewed as a
search strategy that tries to take advantage of the history of the search and
the problem structure intelligently.

12.3.2 Simulated Annealing

Simulated annealing is less direct. The basic idea is to choose a neighbor
randomly. The neighbor then replaces the incumbent with probablity 1 if it |
has a better goal value, and with some probability strictly between 0 and 1 if |
it has a worse goal value.

The probability of accepting a worse solution is proportional to the d1f~
ference in goal values, so slightly worse solutions have a high probability of |
being accepted, while much worse solutions will only be accepted infrequently. |
Therefore if the number of iterations is sufficiently large, it means that one
can move away from any local minimum. On the other hand, for the pro-
cess to converge in the long run, the probability of accepting worse solutions
decreases over time, so the algorithm should end up converging to a “good”
local minimum.

A Simulated Annealing Heuristic

1. Get an initial solution S.
2. Get an initial temperature T and a reduction factor r with 0 <r < 1.
3. While not yet frozen, do the following:
3.1 Perform the following loop L times:
3.1.1 Pick a random neighbor S’ of S.
3.1.2 Let A = f(S') — £(9).
313IfA<0,set S=9.
3.1.4If A >0, set S = S’ with probability e~2/T.
'3.2 Set T « rT. (Reduce the temperature.)
4. Return the best solution found.

Note that as specified above, the larger A is, the less chance there is of mak-
ing a move to a solu_tibn worse by A. Also as the temperature decreases, the
chances of making a move to a worse solution decrease.

Exactly as for local éxchange heuristics, one has to define:

(i) A solution

_ IMPROVED LOCAL SEARCH HEURISTICS 209

(ii) The neighbors of a solution
(iii) The cost of a solution
(iv) How to determine an initial solution.

The other parameters specific to simulated annealing are then:

(v) The initial temperature T

(vi) The cooling ratio r

(vii) The loop length L

(viii) The definition of “frozen,” or the stopping criterion.

As application, we again consider the graph equipartition problem (see
Section 2.6). There we defined a solution S to be an equipartition (S,V'\ S)
with the two sets differing in size by at most one, and a neighborhood Q(S) =

AT cV:T\S|=|S\T|=1}. '
~ Here we go for more flexibility, by allowing any set S C V representing the
partition (S,V \ S) to be a solution.

The neighborhood of a solution S is defined by a single element switch with
Q(S) as in Section 12.3.1. The cost of a partition is

f8)= > ect+a(S|-|V\S))?

e€8(S,V\S)

for some & > 0. Therefore any disparity in the size of the two sets is penalized
in the goal function.

In designing and discussing improved local search algorithms, three more
general concepts are useful in thinking about the right combination of choices.

Communication. It is important that the neighborhood structure be such
that it is possible to get from any solution S to any other solution S’ prefer-
ably in a small number of moves. Failing this, it should be possible to get
from any solution S to at least one optimal solution.

Diversification. This relates to facilitating movement between very differ-
ent areas of the search space. A high initial temperature T, a long tabu list,
and the possibility of using random restarts all encourage diversification.

Intensification. This relates to the opposite idea of increasing the search
effort in promising areas of the search space. Choosing optimally in the neigh-
borhood, or enlarging the set Q’(S) of neighbors temporarily, are measures of
intensification.

210 HEURISTIC ALGORITHMS

12.3.3 Genetic Algorithms

Rather than working to improve individual solutions, genetic algorithms work
with a finite population (set of solutions) Si,...,Sk, and the population |
evolves (changes somewhat randomly) from one generation (iteration) to the |
next. 3

An iteration consists of the following steps:

(i) Evaluation. The fitness of the individuals is evaluated.

(ii) Parent Selection. Certain pairs of solutions (‘parents) are selected based
on their fitness.

(iii) Crossover. Each pair of parents combines to produce one or two new |
solutlons (offspring). |

(iv) Mutation. Some of the offspring are randomly modified.
) Populatibn Selection. Based on their fitness, a new population is se-
lected replacing some or all of the original population by an identical number
of offspring.

We now indicate briefly ways in which the different steps can be carried out.
EBualuation. As in the local search algorithms, a goal function f(S) or a pair

of objective and infeasibility functions ¢(.5) and g(S) are used to measure the
fitness of a solution S.

Parent Selection. The idea is to choose “fitter” solutions with a higher
probability. Thus from the initial population, S; is chosen with probability
S;

PRENTCAN

The implementation of crossover and mutation are more problem depend-
ent. : -

Crossover. Here one seeks some natural way to combine two fit solutions to
produce a new fit solution. One way this is often done is by representing the -
solution S as a binary or integer string z1z3...Zr.

Three possible wayls’" to combine such strings are:

1-point crossover. Given two strings z1z2...z, and y1¥2...¥r, and an in-
teger p € {1,...,7 — 1}, the two children are z1...ZpYp41...yr and y1...

YpTp+1---Tr.

LN

WORST-CASE ANALYSIS OF HEURISTICS 211

2-point crossover. Given two strings 123 ...z, and y192...¥,, and integers
p,q € {1,...,r—1} with p < g, the two children are z; . . ZpYp+1 .- YgZqyy ...
Zr and Y1 ... YpTpi1- .. TqYg+1 - - - Yr-
Uniform crossover. Given two strings z,z, ...z, and y1y3... Yr, the result is

a child 2y ... z, where each z; is randomly chosen from {z;,y;} for i = L.o..,r

Mutation. A simple 1-point mutation of a child z; ... 2, is a random choice
of p € {1,...,7} and a random integer %y from the appropriate range giving
a modified solution 2;...2p—1Zp2p41 ... 2,. A 2-point mutation is a swap of
the values z, and z, for some p < q.

Consider again the generalized assignment problem in the form:

miny e nr 3ien CiTis (12.1)
ZjEN Tij = lforie M (122)
ZiEM Qi Tij <b;forjeN _ (12.3)
z € BIMIXIN, ' (12.4)

S is a “solution” if its incidence vector satisfies (12.2) and (12.4). It is
represented by an integer m-vector (ji,...,Jm) where j; is the job to which
person i is assigned (i.e, z;; =1 for i € M).

Two fitness values are the objective value ¢(S) = 3.,/ ¢i,s, and the in-

feasibility value g(S) = EjeN(EieM aij —bj)*.

The two-point crossover and the two-point mutation described above, both
lead to new solutions satisfying (12.2) and (12.4).

Finally, the objective value ¢(S) might be used in the selection of parents,
while the feasibility measure g(S) may be appropriate for the selection of the

“new population.

These simple ideas are obviously far from covering all possibilities. For
problems in which the solution is a permutation, such as STSP or machine
scheduling, some more suitable form of crossover is necessary.

12.4 WORST-CASE ANALYSIS OF HEURISTICS

To start with, we consider a very simple example, the integer knapsack prob-
lem: :

(IKP) z=max{}7_, ¢;z; : Y705z < bz € Z7)
where {a;}7_,,b € Z;. Without loss of generality we assume that a; < b for
jeNand%Z%forjeN\{l}.

‘The greedy heuristic solution for IKP is zH = ([;”;J, 0,...,0) with value

2H = ez,

212 HEURISTIC ALGORITHMS

Theorem 12.1 -‘-z—

Nh—-

Proof. The solution to the linear programmihg relaxation of IKP is ;1 =

;";,:cj =0 for j =2,...,n giving an upper bound zZP = %119 > z. ‘
Now as a; < b, |_ j21 Setting;'i-:[a—"lj+fwith0$f<l,wehave ‘
thet |5)/2; = Ll°iif 2 Flj-:ljlj =7
So 4 > Hp = —V;i=‘—ﬁlz§ .

It is important to observe that the analysis depends on finding both a lower
bound on z from the heuristic solution, and also an upper bound on z coming
from a relaxation or dual solution.

As a second problem we consider ST'SP on a complete graph with the edge
lengths satisfying the triangle inequality, that is,.if e; € E for i = 1,2,3 are
the three sides of a triangle, then c., +ce; > cc, fori # j # k,%,4,k € {1,2,3}.
Note that when this inequality holds, the shortest path between two nodes
i,j is along the edge (i, j) (see Figure 12.2).

i+2
i+1 j1

<ec

c et +...+(7]_1,i

b
Fig. 12.2 Triangle inequality

To understand the heuristics and their analysis we need to introduce Eu-
lerian graphs.

Definition 12.1 G = (V, E) is a Eulerian graph if the degree of each node is
even.

Proposition 12.2 If G = (V, E) is a connected Eulerian graph andv €V is
an arbitrary node, it is possible to construct a walk starting and ending at v
in which each edge is traversed ezactly once.

Note that a walkis an aitemating set of nodes and edges vp, €1,v1,€2,...,€r,Vr
where e; = (v;—1,v;) € Efori=1,...,r.
For the analysis below, we need the following.

Proposition 12.3 Given a complete graph H on node set V with edge lengths
satisfying the triangle inequality, let G = (V, E) be a connected Eulerian sub-

WORST-CASE ANALYSIS OF HEURISTICS 213

graph of H. Then the original graph contains a Hamiltonian (STSP) tour of
length at most 3= i c..

Proof. The proof is by construction. Suppose m =| E | and v = vy, e1,v1, ey,
-++s €m,Um = v is a walk through the edges of G where each edge e

13-y €m
occurs once and e; = (vi_1,v;) for i = 1,... ym. Consider the list of nodes
encountered in order vy, vy,...,vp,. Suppose v;, is the kt* distinct node to
appear in the sequence. Then v = Uiys Vigs oo vy Uiy Vs, = 0 IS a tour. We

now estimate its length. By the triangle property, the length of the subwalk
between nodes v;, and v;, +1 18 at least as long as the length of edge fi, =

(Vir; Vi,). More precisely Y"1 || ¢, > ¢, So the tour length Sk=16fi <
n ik
> k=1 241 Cey = 2eeE Ce- .

Now we can describe a first heuristic.

The Tree Heuristic for STSP

1. Inthe complete graph, find a minimum-length spanning tree with edges
Er and length zp = e B Ce-

2. Double each edge of Er to form a connected Eulerian graph.

3. Using Proposition 12.3, convert the Eulerian graph into a tour of length 2.

Note that in Step 1 the degree of each node of the tree is nonzero. So when the
edges are duplicated in Step 2, the degree of each node is even and positive.

Proposition 12.4 5;— <2.

* Proof. As every tour consists of a tree plus an additional edge, we obtain the
lower bound 2r < z. By construction, the length of the Eulerian subgraph
is 2z7. By the tour construction procedure, z < 2zp provides the upper
bound. Thus we have % <zr<z<AH, . .

Now we describe a second heuristic based on the construction of a shorter
Eulerian subgraph. A matching is perfect if it is incident to every node of the
graph.

The Tree/Matching Heuristic for STSP

1. In the complete graph, find a minimum-length spanning tree with edges
Er and length 2z = e Eq Ce- :

2. Let V' be the set of nodes of odd degree in (V, Er). Find a perfect matching
M of minimum length z)s in the graph G’ = (V',E’) induced on V' where
E’ is the set of edges of Er with both endpoints in V. (V,Epr U M) is a
connected Eulerian graph.

3. Using Proposition 12.3, convert the Eulerian graph into a tour of length z€.

214 HEURISTIC ALGORITHMS

Note that here the perfect matching M has degree 1 for each node of V’, and
thus (V, Er U M) has positive even degree at every node.

Fig. 12.3 Optimal tour longer than two matchings on V'

<3
Prop051t10n 12.5 ‘7 5.

Proof. As above, zr < 2. Now suppose without loss of generality that
the optimal tour of length z is the tour 1,2,...,n. Let j1,j2,...;J2k be
the nodes of V in increasing order. Consider the perfect matchings M =
{(41,72), (3, da)s ---» (Jok—1,72k)} of length zp, and Mz = {(jz2,Ja), (s, Js)s

«» (J2k—-2, J2k-1), (Jzk,.h)} of length zps,, both with endPOmtS V'. Again by
the triangle inequality ;i j, + Cizjat+ -+ +Cianigs < Sl teny =2
(see Figure 12.3). But now zy < zu, for i =1,2 and so 2zp < 2p, +
zM, Cirja + Cigyga T v+ + Ciggy < 2. Finally, agam using Proposition 12.3,

2© <zT+zM<z+z/2—(3/2)z "

12.5 MIP-BASED HEURISTICS

Below we discuss three heuristics for integer or mixed integer programs. The
idea of the first is to take the linear programming solution at any node of
the branch-and-bound tree and dive down the tree in the hope of finding a
feasible solution. The other two can be implemented by anyone having access
to a general mixed integer programming system.

A Dive-and-Fix Heuristic. We suppose that we have a mixed 0-1 problem.

Given an linear programming solution (z*,y*), let F = {j : y] ¢ {0,1}} be
the set of 0-1 variables'that are fractional.

Initialization. Take the linear programming solution (z*,y*) at some node.

Basic Iteration:
As long as F # 0,

" MIP-BASED HEURISTICS 215

Let i =arg minj¢ r{minfy},1- 31} (find the variable closest to integer).
If y; < 0.5, fix y; = 0 (if close to 0, fix to 0).

Otherwise set y; = 1 (if close to 1, fix to 1).

Solve the resulting LP.

If the LP is infeasible, stop (the heuristic has failed).

Otherwise let (z*,y*) be the new linear programming solution.

Termination: '
If F =0, (z*,y*) is a feasible mixed integer solution.

The next two heuristics use the mixed integer system in iterative mode,
because the original problem is too large or difficult. For simplicity we decribe
the heuristics for an IP, but the approach applies immediately to MIPs.

Suppose the problem can be written in the form:

z = maxclz! + 212
(IP) Alzl 4 A%2 =)
: xIGZ:‘,:cz_er{_’.

We suppose that the vatiablesm}- for j € Ny are more important than
the variables 2 for j € N, with n; =| N; | for i = 1,2. It may be that z!
represent major investments, while z2 represent less important decisions such
as maintenance, or else the z! variables may represent decisions in the initial
periods, while the 22 variables represent decisions in later periods.

The idea is to solve two (or more) easier LPs or MIPs. The first one
allows us to fix or limit the range of the more important z! variables, whereas
the second allows us to choose good values for the variables z2.

Relax-and-Fix Heuristic

1. Relaz. Solve the relaxation

: Z = maxclz! 4 222
(MI1P1) Alz! 4+ A22 = p
z' € Z,2? € R

in which the integrality of the 22 variables is dropped. Let (@*,7?%) be the
corresponding solution.

2. Fiz. Fix the important variables z! at their values in M] P1, and solve the
restriction

216 HEURISTIC ALGORITHMS

z =maxclz! + Az?
Alzl + A%22 =}
(IP2) J

z? e Z}2.
Let (', ?) be the corresponding solution if IP?2 is feasible.

3. Heuristic Solution. The heuristic solution is zH = (Z*,#?) with z = cz¥ <
z<L7Z

The idea of the next heuristic is similar, but here we suppose that an ef-|
fective strong cutting plane algorithm is available, so that after adding cuts,
at least some of the integer variables take values close to integer or to their |
final values. Again we suppose that the variables z! are in some way dxﬁ‘erent
from, or more important than, the z2 variables. |

Cut-and-Fix Heuristic

1. Cut. Apply a strong cutting plane algorithm to IP terminating with a
tightened linear programming relaxation

%z = maxclz! + c2z?
Alzl 4+ A%22%2 =}
Azl § A222 <}

.’tl € Rm,z.z € RM

(LP1)

with solution (Z!,%?). Here Alz! + A2z2 < b represent the cuts added to the ;
initial linear programming relaxation. 5

2. Fiz (or Bound). Choose €. For j € N, set l; = |Z} +¢] and u; = [} —¢].
Solve the restriction
2z =maxclz! + c?z?
Alz! + A%2% =)
(IP2) Alz! + 222 <b
I<zl<u
e Zp 2% € 2

with solution (3!, Z2) if IP2 is feasible.

3. Heuristic Solution. The heuristic solution is zH = (#!,#2) with z = ez <
z2<7Z.

Observe that if € is small and positive, z! variables taking linear program-
ming values within e of integer in LP1 are fixed in I P2, while others are

NOTES 217

forced to take either the value E;J or the value ff,l] On the other hand, if
€ is negative, all the z! variables can still-take at least two values in J P2,

12.6 NOTES

For a simple treatment of the topics in Sections 12.2 and 12.3, see [Ree93]. A
highly readable survey is [Pir96]. See also the annotated bibliography on local
search [AarVer97]. At a more advanced level the recent book [AarLen97] is
devoted to local search and its extensions, including chapters written by spe-
cialists on the complexity of local search, simulated annealing, tabu search,
genetic algorithms, applications to vehicle routing, TSP, machine scheduling
VLSI layout, and so forth. An issue of Management Science [FisRin88] is
dedicated to the subject of heuristics. '

12.2 Greedy heuristics are part of the 'folklbre; see for instance [KueHam63]
for an early application to location problems. Local search heuristics date at
least to [Cro58], [ReiShes5).

12.3 Tabu search and simulated annealing have been applied successfully to
find good quality feasible solutions to a remarkably wide range of problems.

. Tabu search started with the work of [Glo86], [Glog9), [Glo90]. The origins

of simulated annealing heuristics are attributed to [Metetal53], [Kiretal83],
[Cern85). Theoretical results, relying on the asymptotic behavior of Markov
chains, can be used to show that the simulated annealing algorithm almost
surely terminates with a global optimum if run with a slow cooling schedule
for a long enough time. However, these results are inapplicable in practice,
and fail to explain the many successes of this method. A recent bibliography
of simulated annealing and tabu search is [OsmLap96]. Genetic algorithms
originated with the work of [Hol75], [Gol89). The generalized assignment
problem is treated in [Beas97).

Another recent approach is that of neural networks (see the texts cited
above). Constraint logic programming provides an alternative approach for
certain discrete problems. - '

© 12.4 The first worst-case analysis of a heuristic for a scheduling problem is in

[Gra66], but the analysis of bin packing heuristics [Johetal74] really seems to
have initiated much of the work in this area. The tree/matching heuristic for
STSP is from [Chr76]; see also [CorNem?7s].

For certain problems it has been shown that finding a heuristic giving a
performance guarantee of @ or better is only possible if P = AP, while for
others one can find so-called fully polynomial approzimation schemes with per-
formance guarantees of o for any c in a time polynomial in the input length
and-1/a. The book [Hoc95] includes surveys on approximation results for bin
packing, covering and packing, and network design problems among others,

218 HEURISTIC ALGORITHMS

as well as on randomized algorithms and on the hardness of approximation.
Another recent survey is [Shm95].

12.5 Variants of the dive-and-fix heuristic are common; see [NemSavSig94].
The relax-and-fix heuristic is also well known. Two recent examples of the
relax-and-fix and cut-and-fix heuristics are in [BieGun98] and [Belvetal98]
respectively.

'12.7 EXERCISES

1.‘ Apply the different heuristics presented to an instance of STSP with the
following distance matrix: |

. 28 -
i 57 28 — :
72 45 20 -
8 54 3 10 -

8 57 28 20 22 -
8 63 57 72 81 63 - .

Devise at least one new heuristic and apply it to this instance.

2. Apply greedy and local neighborhood heuristics to an instance of the
problem of most profitably allocating clients to at most K depots:

max 3 e pr 2 jen CisTij
Zjeinj =1lforieM
xiijj fOl“iéM,jGN

Yien¥i<K
z € B™,y € B",

with m = 7 clients, n = 6 potential depots, K = 3, and
3

(ci5) =

DD W
N N

S
VOO W
NwhaOOS O
N N

3. Devise a greedy heuristic for the set covering problem. '

4. Consider the problem of finding a maximum cardinality matching from
Chapter 4. A matching M C E is mazimal if M U {f} is not a matching for

EXERCISES 219

any f € E\ M. Let z be the size of a maximum matching, and 2¥ be the
size of a mazimal matching. Show that z# > 1z

5. Consider the 0~1 knapsack problem: z = max{} ",y ¢;; : 2 jena;T; <
b,z € B"} with a; > 0 for j € N. Consider a greedy heuristic that chooses
the better of the integer round down of the linear programming solution, and
the best solution in which just one variable is set to one. Show that 2C > %z.

6. Show that the 0-1 covering problem

Z =min E?=1 f.?z]
Z;‘;l Qi T; 2bforieM
zeB

with a;; > 0 for i € M,j € N can be written in the form

z=min{}_ f;: 9(5) = o(V)}

j€s

where g : P(N) — R},_ is a nondecreasing set function. What is g? Show that
9(8) +9(T) 2 g(SUT) + g(SNT) for all S,T C N.

7. Consider the’ generalized transportation problem:

. m n
z=min} 7, j=1CijTij
YoriTij <agfori=1,....,m
Yim1 Cizij >djforj=1,...,n
z ez

(i) Propose a heuristic for this problem.
(ii) Propose an exact algorithm.

1
|
i
|

8. Dévise a heuristic for the instance of GAP in Exercise 10.4.

15

From Theory to Solutions

13.1 INTRODUCTION

The aim in this final chapter is to indicate how the ideas presented earlier can
be put to use to improve the formulation and solution of integer programs.
Specifically we discuss briefly the type of software available, then we ask how
an integer programmer might look for a new valid inequality, or an improved
formulation for a specific problem, and finally we look at two practical applic-
ations and ask how an integer programmer might try to solve them. The goal
is not to study any problem exhaustively, nor to present computational res-
ults for different approaches, but rather to indicate the questions to be asked
and the steps to be considered in trying to produce results for a particular
problem.

13.2 SOFTWARE FOR SOLVING INTEGER PROGRAMS
\

Two essential tools for an integer programmer are a modeling language, and
a mixed integer programming system.

A modeling language provides a way for the user to write out a model of his
mixed integer programming formulation in a formal way that closely resembles
the mathematical formulations used throughout this book. In addition such
languages allow recuperation of the data from files or databases, and calcula-
tions based on the data. Given the model written in the modeling language as
input, the output is typically a representation of the mixed integer program

221

222 FROM THEORY TO SOLUTIONS

in a standard (but unfortunately highly unreadable) format, known as MPS
format.

There are at least two crucial advantages in using a modeling language.
First, the model provides documentation, making it relatively easy to return
to a model several weeks or months later. ‘Second, with such a model, changes
to a formulation can be made very easily and quickly. The modified model
can then be used to regenerate an MPS file, and the modified formulation
can often be resolved within seconds or minutes. An example of a model in
a representative language is shown below. This formulation and instance are
discussed in Section 13.4.

'
MODEL FCNF ! Fixed Charge Network Flow Model
! Instance from Section 13.4
! Modelling language: XPRESS MP-MODEL
! Parameters/Indices
LET N=4 ! Number of nodes
LET M=8 ! Number of arcs
! Vectors/Matrices
TABLES
B(N) ! Demand at node i
TAIL(M) ! Tail of arc e
HEAD(M) ! Head of arc e

C(M) ! Fixed cost of arc e
!

! Usually read from files
DATA
B(1)=-6,2,3,1
TAIL(1)=1,1,4,1,2,
HEAD(1)=4,2,2,3,3,
C(1)=5,2,7,3,2,4,9
!
VARIABLES

x(M) ! Flow x(e) in arc e for e=1,...,m

y(M) ! Binary variable y(e)=1 if arc is open

CONSTRAINTS

t Flow conservation at node i
BAL(i=1:N): SUM(e=1:M | HEAD(e) .eq. i)x(e) &

-SUM(e=1:M | TAIL(e) .eq. i)x(e) = B(i)
! Variable upper bound constraint on arc e
VUB(e=1:M): x(e) < (-B(1))*y(e)
! Fixed cost of installing arcs
MINOBJ: SUM(e=1:M)C(e)*y(e) $

HOW DO WE FIND AN IMPROVED FORMULATION? 223

BOUNDS
y(e=1:M) .bv. ! Binary Variable
1

GENERATE ! Produce the MPS file
!

! Usually further instructions for presenting
! the solution in readable form

END

!

A mized integer programming system is a program that reads in an mixed
integer program in MPS format and possibly other formats, creates an internal
representation of the problem, referred to as the matrizr, and then typically
attempts to solve it by linear-programming-based branch-and-bound as de-
scribed in Chapter 7. Recently some of the major systems have started using
branch-and-cut, generating 0-1 knapsack inequalities and in some cases mixed
integer inequalities as well.

Certain systems also provide optimization subroutine libraries, permitting
the user to build his own special-purpose system. These libraries contain sub- -
routines to load and unload LPs and MIPs, to optimize matrices, to retrieve
data from matrices, to modify matrices including the addition or deletion of
constraints and/or columns, to examine both primal and dual solutions, and so
on. Many special purpose branch-and-cut and column generation algorithms
have been developed in this way.

One of the most recent developments is an extended modeling and op-
timization library that integrates a modeling language and a mixed integer
programming system. Thus the user can simultaneously have access to the
model file and the problem matrix, allowing for the higher-level development
of new iterative optimization strategies for very large models, including relax-
and-fix heuristics, specially adapted branching strategies, column generation,
and so on.

13.3 HOW DO WE FIND AN IMPROVED FORMULATION?

We first examine two simple lot-sizing models that appear as submodels in
the production planning application to be examined in Section 13.5. The two
models, both of which have been discussed earlier, differ in their complexity.

13.3.1 Uncapacftated Lot-Sizing

Consider the set XULS =

. . t
{(.’L', 8, y) € R xR} xB™ : St—14+Ts = dy+384, 7 < (d")yg fort = 1,... ,n}
+ Xy

i=1

s
B S i

224 FROM THEORY TO SOLUTIONS
We typically ask a series of questions.
Q1. Is optimization over XYZS polynomially solvable?

A1l. Yes. This is shown in Section 5.2. Therefore, as indicated in Chapters 2 ‘
and 6, there is some hope of finding an explicit description of conv(XYLS).

One way to improve a formulation is to add valid inequalities. To make
a start at finding a valid inequality, one approach is to look at the non- -
integral solutions obtained when solving the linear programming relaxation of
min{pz + hs + fy : (z,5,y) € XULS}. :

We consider an instance with d = (6,7,4,6,3,8),h = (1,1,3,1,1,2) and
f =(8,12,8,6,10,23). As d; > 0, we immediately add y1 =1 to the formu- |
lation.

“The resulting linear programming solution (z!,s',y') is shown in Figure
13.1. ;

X

Xy Xy x y o xy y |

6|1 7[0o2s afore - efo3s 1|1

. ~ . !

OarudO) |

i 6 7 4 6 3 8 '

Fig. 13.1 First ULS solution

Q2. How ean the point (z!, s1,y!) be cut off?

Observation 13.1. As in the development of the dynamic programming
recursion for ULS, the solution decomposes between successive points with '
s = 0. Soit suffices to look at the solution lying between si=0ands}=0,
namely z} = 7,93 = 0.25,s} = 0, s} = 0 for which the y variable is not integer.

A2a. 'Try to use known cutting planes. Consider the set
n
{(z2,92,51,82) € R} x B' x R :s1 + 22 =da + 83,22 < O diy2)}-
=2

The flow cover ineqﬁality with variable z5 in the cover C and excess A =
Y7, d; — d gives the inequality =2 + d2(1 —y2) < d2 + 82, or in general

g <dyy+sgfort=1,...,n.

“A2b. Try to find a valid irllequa.lity directly. Again just consider the partial 5
solution z} = 7,y} = 0.25,s} = 0,s} = 0. Logically in any feasible solution

HOW DO WE FIND AN IMPROVED FORMULATION? 225

to ULS with y, = 0, there is no production in period 2, and so the demand
dz = 7 for period 2 must be contained in the entering stock s;. Thus s1>7
if yo = 0. Now we try to convert this observation into a valid inequality.

~ The inequality s; > d2(1 — y;) does the trick when Y2 = 0. So we just
need to check that it is also valid when y, = 1. But in this case the inequality
reduces to s; > 0, which is a constraint of the initial problem. So in general
we have a valid inequality

stZdt(léyt) fort=1,...,n.

Using the equality s;—; + z; = d; + s, it is readily checked that the two
inequalities we have come up with are the same, and those for ¢ = 2,3,4 cut
off the linear programming solution (z!, s, y?).

To go a step further, we add these inequalities to the formulation, and the
new linear programming solution is as shown in Figure 13.2.

xy x Yy
611 11
%} OarndO,
6 3 8

vFig. 13.2 Second ULS solution

Again the question is how to cut off the point (z2,s2,y2). As s2=0,it
suffices to look at the nonintegral solution for periods 1-3.

A2c. Extending the argument in A2b, we observe that if there is no produc-
tion in periods 2 and 3, then s; > dy + d3 = 11. This immediately gives the
family of valid inequalities '

l X -
Sk-1 Z(Zdt)(l_—yk—...—yz) for1<k<i<n
t=k

and among them s; > 11(1 — y2 — y3) cuts off (2, s2,y2).

Again we add these inequélities to the formulation, and the new linear
programming solution is as shown in Figure 13.3.

Here we observe that the cuts added in the last two iterations are both
satisfied at equality. Somehow we need something stronger.

A2d. We have used the two valid inequalities s; > da(1 — y2) and s; >
(d2 + d3)(1 — y2 — y3). Comparing the two, we see that the dz term in the
second inequality is weaker than in the first. The valid inequality

812 da(1 —y2) +da(1 — g5 — y3)

- 226 FROM THEORY TO SOLUTIONS

X

x Y y Xy
1.3]0.32 611 1|1
s
S OO,
8 3 8

6 7 4

Fig. 13.3 Third ULS solution

takes this observation into account, and has exactly the fight condition neede«i
to include the demands dy, or d; +d3. After adding this inequality, we obtail
a solution with y integer. The general form of this last inequality is :

sk-12) de(l—yp—...—y) for ISk<I<n. (13.1
t=k [

§

Before leaving this example, there are still several questions that we Imght
ask about the use and strength of the inequalities we have found. |

Q3. Are the inequalities (13.1) as strong as possible (facet-defining), or aréf
they nonnegative combinations of other valid inequalities?

A3. Yes. The inequalities are facet-defining, see Exercise 13.5.

Q4. Do the constraints of the original formulation plus the O(n?) mequa.htxes
(13.1) describe conv(XVL5)? ‘ |

A4. No. The inequality zx < (Zt_k d¢)y; + st is valid and facet-defining for
any | > k, and is not equivalent to any inequality of the form (13.1) when
! > k. However, the inequalities (13.1) are sufficient to solve most practlcaL
instances. i

» Q5. Is the separation problem for the inequalities (13.1) and a point (z*, s*, y*}
easy? :

A5. Yes. Fix k, and find the smallest value | > k for which yg +...+ y,‘ >1.
If I > k, check if ' |
’ -1
sk < Zd,(l ~Yr—-—Y5)
t=k
If so, this is the most violated mequahty for the given value of k. If not, no,
such inequality is violated. !

HOW DO WE FIND AN IMPROVED FORMULATION? 227

In conclusion, one has the option of either reformulating by adding the
O(n?) inequalities a priori, or of using a simple separation routine to generate
the inequalities (13.1) as cuts when they are violated.

Q6. Is there an extended formulation for ULS?

A6. There are several including the one presented in Section 1.6; seé also
Subsection 9.2.3. However, in spite of their strength, most such formulations

have the disadvantage of having an order of magnitude more variables and
constraints. :

13.3.2 Capacitated Lot-Sizing

Here we consider the more constrained set XCLS =

{(z,s,y) € RY x R} XB™:8_)+x; = di + 8,74 < Cyyy for t = 1,...,n}.
We start with the same questions. V

Q1. Is optimization over XCLS polynomially solvable?

Al. No. CLS is shown to be N'P-hard in Section 6.3. Therefore the best we
can hope for is to find a good approximation of conv(XCLS),

Q2. How do we find valid inequalities?
We again try to make use of existing inequalities, by considering relaxa-
tions for which valid inequalities are known. After looking at single periods, it

is natural to aggregate together flow conservation equations from consecutive
periods.

A2a. Consider the relaxation

: 1 !
{(sk—1,9x,--.,) € RL x B=k+1 . g, 4 Zijj 2 Zdj},
‘ =k =k

obtained by summing the constraints $¢t-1 + T; = d; + 8; and replacing z,
by its upper bound Cey: for periods k,...,l, and by replacing s; by its lower
bound of 0. ' -

One can either attempt to generate an MIR inequality off this constraint
(see Section 8.7), or else one can view it as a 0-1 knapsack problem with a
continuous variable sj_;. Using the approach used in Section 9.3, one can
fix sy_; =0, apply a knapsack separation heuristic, and then lift back in the
continuous variable.

A2b. Aggregating the same constraints as above, replacing s by its lower
bound 0, and adding orne of the valid inequalities for ULS (see A4 of Subsec-

Zeo FROM THEORY TO SOLUTIONS

tion 13.2.1) leads to the set

{(:l:k, ooy Tl Sty Yky oo - ,y;) € RS_-'H'I X R},_ X Bl_k"'1 :

1 1
sz < Zd]‘ + s1,

i=k i=k
]

;< Cyja; < (D _de)y; +sifor j=k,..., 1}
t=j

Fixing s; = 0, this becomes a single node flow set (see Section 9.4), for which
one can generate flow cover inequalities before reintroducing s;. ;

Consider the solution shown in Figure 13.4 for an instance with n = 6,d =
(6,7,4,6,3,8) and C = (15,8,10, 10,5, 10).

x y X y x Yy x ¥
15| 1 2 |os 10 |1 7 | 087
S S s s
5 2 @)
6 7 4 6
c= 15 8 10 10 5 10

Fig. 13.4 CLS solution

Again because s3 = 0, we can decompose the solution into two parts, one
for periods 1-3 and the other for periods 4-6. !

For periods 1-3 we look at the relaxation suggested in ' A2a, giving the set

{y € B3 : 15y, + 8ya + 10y3 > 17}
and the fractional point (y1,%2,¥3) = (1,0, 2) The 0—1 knapsack separation
routine, or the Chvital-Gomory procedure for y; + 15y2 + 15y3 > }; both |
lead to the violated valid inequality |
nty2+ys=2.
For periods 4-6 we :Iook at the relaxation suggested in A2b:
(x4, Ts, 6, Y4, Y5, Y6, 36) € RS x B® x R} : 24 + 25 + z6 < 17 + 36,

x4 < min(10, 17)y4 + 36,25 < min(5, 11,)ys + s6, T < min(10, 8)ye + s¢

with fractional point (x4, s, Zs, ¥4, ¥s, ¥s, S6) = (10,0,7,1,0,0.875,0).

FIXED CHARGE NETWORKS: REFORMULATIONS 229

The flow cover inequality with cover variables (z4,26)and A = 10+4+8— 17=
1 leads to the violated valid inequality

- Zat+26+9(1 —ys) + 7(1 - yg) < 17 + s6.

: r
Q3. Are the inequalities obtained as tight as possible?

A3. In practice it may not be impdrtant to check that the inequalities define
facets. However, it is worth checking whether the inequalities can be easily
strengthened, or possibly decomposed into two or more valid inequalities,

Q4. Is the separation problem for the inequalities arising in A2a or A2b easy?

Ad4. In practice, a separation heuristic, such as that for flow covers, can be
devised.

13.4 FIXED CHARGE NETWORKS: REFORMULATIONS

13.4.1 The Single Source Fixed Charge Network Fiow Problem

The basic fized charge network flow problem (FCNF) involves a digraph D =
(N, A), a demand vector b € R", capacity and cost vectors u,c € R™. The
problem is to choose a set A’ C A of ares of minimum cost such that there
is a feasible flow in the resulting digraph D' = (N, A') satisfying the demand
and capacity constraints. We restrict our attention to single-source problems,
that is, we suppose that node 1 is the root or source at which flow enters,
sob; <0,b; >0foricT C N\ {1}, and b; = 0 otherwise. Note that a
necessary condition for feasibility is that b; = — Yiem {13 bi. We also assume
that ¢;; > 0 for all (3,5) € A, and set n = |N| and m = |A|.
To formulate this problem, we define variables

z;j to be the flow in arc (4,5) € A, and
Y¥ij = 1if arc (4,5) € A is open, and ¥i; = 0 otherwise.

We then obtain the formulation

min}.; e 4 Cij%s (13.2)
Yjev-6)%5i — Ljeveqy Ty =bi fori € N (133)
0< Tij < ui;yi; for (i,j)e A (13.4)

yeB™, (13.5)

230 FROM THEORY TO SOLUTIONS

Small examples suffice to show that the formulation (13.2)~(13.5) is no’
very strong, and large instances cannot be solved with this formulation, s
here we consider how alternative formulations might be found for FCNF, a
well as for a special case of FCNF. ' ‘

To obtain some initial ideas, we again look at the linear programming solu
tion obtained for a small instance. With n = 4,m = 8, and the networl
shown in Figure 13.5, the solution of the linear programming relaxation i
21 =1, = 3,72 = 2,02 = §,74 = 3,44 = 3,2 = y; = 0 otherwise. The
data is given in Section 13.1 where this instance is presented as a example o
a formulation written in a modeling language.

Fig. 13.5 Fixed charge network flow

Observation 13.2. The formulation is unlikely to be effective because in
the linear programming solution y;; = zij/us; for all (i,5) € A. Therefore
for an uncapacitated problem with u;; large, the fixed arc costs are severel;ﬁ
underestimated and so iﬁeflinear programming bound is particularly weak.

Observation 13.3. Consider the flow into node 4. Even though all the de-é
mand for the node flows in the arc (1,4), y14 = % is far from taking the value
1 that it should have in an integer programming solution with z14 > 0. |

Observation 13.4. Consider node 4 again. As by = 1, there must be some

flow entering the node, and therefore at least one arc entering the node must
be open.

A Multicommodity Reformulation. Observation 13.3 leads to the idea

of looking for a formulation in which the destination of the flow in each arc is%

explicit. Specifically if we introduce new multicommodity variables

z§; is the flow of commodity k in arc (4,§) whose destination is node k,

i

FIXED VCI-)IARGE NETWORKS: REFORMULATIONS 231

we have that z,!‘]- < bg, and zf,- = 0 if y;; = 0, leading to the variable upper
bound constraint zfj < bryi;. Writing a formulation with these new distinct
destination or multicommodity variables is straightforward.

min Z(i,j)GA CijYij (13.6)

Yiev-) 4 - Yievta Hy=diforie NkeT (13.7)
0 < z& < min(u;j, by)y;; for (i,5) € A, ke T . (13.8)
Pker 25 = mij for (i,5) € A (13.9)

Zij Sugj for (4,5) e 4 (13.10)

yeB™. (13.11)

- where df = —by, for i = 1, d¥ = by, for i = k and d¥ = 0 otherwise.

Note now that if zfj = bi in a linear programming solution, this constraint
will force y;; = 1. In particular, in our example if 2{, = 1, then yy4 = 1. Thus
we have obtained an apparently stronger formulation, but at the cost of an
order of magnitude more variables and coristraints.

13.4.2 The Directed Subtree Problem

When the single-source FCNF is uncapacitated, for instance when Uuz; > by
for all (7, j) € A, then the resulting digraph D’ = (N, A') is feasible if and only
if there is a directed path from node 1 to every node ¢ € T with a positive
demand. If such a digraph contains no cycles, it is a directed subtree with
root 7 = 1. Now in the original formulation of FCN F, it suffices to take
bi=—|T|andb;=1forie T, and in the multicommodity reformulation
the constraints (13.9) and (13.10) involving z;; are redundant, and so we-
obtain

min Z(i,j)eA CijYij (13.12)

Yiev-) %~ Ljevr@y 7 =df forie Nk e T (13.13)
0< 2k <yyfor (i,j)e A keT (13.14)

y € B™. (13.15)

where df = —1 for i =1, df =1 for i = k and d* = 0 otherwise.
Another possibility is to look for a formulation involving only the y;; vari-
ables for (4, j) € A. Observation 13.4 immediately suggests the valid inequality

: Y ezt
JjeEV-(3)
forallieT.

232 FROM THEORY TO SOLUTIONS
Q1. Can this inequality be generalizéd?

A1l. As there is a positive flow from node 1 to node ¢ € T, there must be a
positive flow across every (1,1) cut-set separating 1 from i. This means that
there must be at least one arc directed across each of these cut-sets, leading
to the larger family of valid inequalities '

> w2l
(i5)€8(X,X)
forall X CV withl1€ X and TNX #0. -

Q2. Do these new inequalities provide a valid formulation of the directed tree
problem, namely is the dicut formulation |

min 3 jea G » (13.16).
Yiesx,pyYis 2 1for X CV with1€ X, TnX#0 (1317)

yE€B™ (13.18),

a valid formulation?

A2. Yes. For any i € T, if every cut-set separating 1 and ¢ contains an arc,
then there exists a directed path from 1 to 4, and thus a minimal feasible solu-
tion is the incidence vector of a directed subtree. Conversely the incidence
vector of any directed subtree is feasible.

Q3. Can anything be said about the strength of the multicommodity (13.12)-
(13.15) and dicut formulations (13.16)-(13.18) for the directed subtree prob-
lem? ‘;

A3. We know from Section 1.7 that formulations can be compared by examin- 3‘
ing their projections in the original space of variables. For a given y € R
with y;; < 1 for all (3,5) € A, the linear programming relaxation of the ‘mul-
ticommodity formulation is feasible if and only if for each i € T, there is a
feasible flow of one unit from node 1 to node i in the digraph with arc capa-

' cities y;;. By the max-flow/min cut theorem (Section 3.4), this holds if and |

only if the capacity of every 1 — i cut is at least 1. But this is precisely the
condition for y to be feasible in the linear programming relaxation of the dicut |
formulation. Thus we conclude that the strength of the two formulations is

. the same.

13.5 MULTI-ITEM SINGLE MACHINE LOT-SIZING

A set of products or items have to be produced on a single machine. Because
of important start-up costs and changeover times between the production of

-MULTI-ITEM SINGLE MACHINE LOT-SIZING 233

different items, the planning horizon has been broken up into equally spaced
time intervals (periods such as a day, or an 8-hour shift) such that only one -
item is produced per period. Also certain items have minimum run-times,
and others have minimum down-times specified between successive production
runs of the item.

' The data consists of

the demand d; for item i in period ¢

the storage cost h* per period per unit of item 1

the start-up cost g* for item i

the changeover cost ¢*/ when passing from the production of i to j

the changeover time A% when passing from the production of i to j
. the production rate p* per period for item i

the minimum run-time o for item i

the minimum down-time 3¢ for item 4

the production capacity C, per period

For simplicity we assume that the data have been preprocessed so that the
initial stocks and safety stocks (lower bounds on stocks) are zero. In addition
we assume that the basic unit of each item i is the amount produced per unit
of time. With this assumption p' = 1 for all i = 1,...,m, and C; = C is the
length of a period.

We make the obvious choice of variables:

x} the amount of time that item i is produced in period ¢
s; the stock of i at the end of ¢ measured in time units
¥; = 1 if the machine is set up for 4 in ¢

z; = 1 if a production run of i starts in ¢

x¢ =1if item i is produced in period t — 1 and j in ¢.

This leads to the formulatidn

min 3570, SR (hsi + gizi + i TxE) - (13.19)
si_y+ai=di+siforallit (13.20)

zi < Cyi - Z;v':j#i Ayt for all 4, ¢t (13.21)

2z >yl —yi_| forall it (13.22)

i <y for all 4,¢ (13.23)

2 <1-—yi_ forallit (13.24)

XP 2 yi g+l —1forall i, with i # j (13.25)
X¢ <yi_y for all i, j,¢ with i # j (13.26)

X¢ <y for all i, j,¢ with i # j (13.27)

234 FROM THEORY TO SOLUTIONS

Z<yiq forallitu=1,...,08 (13.28)
Z<1-yi,forallit,u=1,...,0 (13.29)
S yi=1forallt (13.30)

si,zi > 0,95,z € {0,1} for all 4,¢ (13.31)
x7 € {0,1} for all 4, j,t with i # j (13.32)

where (13.20) are flow conservation constraints, (13.21) are production capa-
city constraints, (13.22)-(13.24) define 2} as start-up variables, (13.25)—(13.27)
define xi’ as changeover variables, (13.28), (13.29) express the minimum run
time and minimum down-time conditions, and (13.30) the single item per
period restriction. For simplicity we ignore the fact that zero production is
allowed even when an item is set up for a production run of one or several
periods.

We suppose that this application is to be solved with a standard mixed
integer programming system, and so no significant change of variables is en-
visaged. Thus the available options are to strengthen constraints, to add
valid inequalities, plus possibly knapsack and mixed integer cuts that can
be generated automatically, or to use an extended formulation involving new
variables. ‘ '

We examine in turn various possibilities.

Improving Branch-and-Bound Performance. We present three simple
observations that may radically modify the performance of a branch-and-
bound algorithm. '

Observation 13.5. If the variables y} are all 0-1 valued and constraints
(13.22)—(13.27) are present, the variables 2} and x;’ will automatically take
0-1 values. Therefore it may be possible to make the z and x variables con-
tinuous.

Observation 13.6. If the start-up costs {g°} and changeover costs {g*'}
are positive, one might consider whether it is valid and computationally in-
teresting to drop constraints (13.23),(13.24),(13.26),(13.27) for the products
without minimum run and down times, on the grounds that z{ and x;’ will
only take the value 1 if forced. Note also that (13.23) reappears as one of the
constraints (13.28), and (13.24) as one of the constraints of (13.29).

Observation 13.7. Giving priorities to the binary variables yi based on the
period ¢, and/or the importance of the product i should be considered.(

Problem-Specific Cutting Planes. Note first that with the relaxation zi <
Cuyi of (13.21), the problem contains capacitated lot-sizing (CLS) relaxations
for each item i, and thus the inequalities for both ULS and CLS derived in
Section 13.2 can be used.

MULTI-ITEM SINGLE MACHINE LOT-SIZING 235

It is also natural to ask whether the basic lot-sizing inequalities can be
improved in the presence of the start-up and/or changeover variables. One
improvement is easily seen. The inequalities

!
se-12) de(l—yp—... —)
t=k

for ULS were valid because no production between periods k and t, which
can be restated as yx-+ ...+ y, = 0, implies that the demand d; must be
included in the entering stock Sk—1. With start-up variables, the condition
Yk + 2Zk+1 + ... + 2 = 0 also implies no production between periods k and t,
and thus demonstrates the validity of

]
Sk~1 ZZdt(14yk—zk+1—...—zt) for1<k<li<n.
t=k
This dominates the previous ineqliality asz; <y fori=1,...,n

Modeling Minimum Run-Times. If an item must be produced during at
least a periods, there can be at most one start-up of the item in the interval
t-a+ 1,t]. In addition if it starts at some time in this interval, then the
machine must still be set up in period ¢. This shows that the inequality

[+
D zwp<yfori<t<n

u=1)
is valid for each item, and can be used to replace the inequalities (13.23) and

(13.28).
Similarly for the down times, the inequality

B
D mu<l-yforl<t<n

u=1

is valid, and can replace (13.24) and (13.29).

Modeling Start-ups and Changeovers. Here we consider the constraints
(13.22)-(13.27) and (13.30) linking the Y, 2, and x variables. First we add a
small number of additional variables:

X’ =1 if item j is produced in periods — 1 and ¢.

Observe that if we know for which item the machine is setup in period 1, the

X variables tell us everything about the state of the machine from then on.

More specifically they determine the path taken through the acyclic network

shown in Figure 13.6. The path shown corresponds to the solution with
o2 g2 =gl =3 =1

N=¥2=Y3=ys=y; .

236 FROM THEORY TO SOLUTIONS

t=1 ’ t=2 t=3 t=4 t=5
i=1 @) @) 0]
=2 @) Ne) @)

=3 @) O @) ol

Fig. 13.6 Representation of solution with changeovers

Thus we have

m.
Syl =1

i=1

m .o .

Soxf = vioyforallit
j=1

m 3 3

Soxi¥ = gl foralljt
i=1

z{+xij = ¢ forall j,t

y,2 € B"‘",xeB”‘z"

This formulation has an order of magnitude fewer constraints than (13.25)-
(13.27), and it is as strong as possible. In what sense?

Heuristics. Relax-and-fix heuristics, in which, for example, variables in
earlier periods are considered more important, provide one way of finding feas-
bile solutions to large problems. Another approach is to consider the values of
the set-up variables § in the linear programming solution as probabilities, and
thus to construct a solution in which, for each period ¢, the item i produced
is found by selecting ¢ randomly with probabilities gifori=1,...,m.

13.6 A MULTIPLEXER ASSIGNMENT PROBLEM

We consider two variants of a problem that arose in the telecommunications
industry.

Problem A. Given a graph G = (V,E), demands de > 0 measuring the
communications required between nodes i,j where e = (i,j) € E, and an
unlimited number of identical rings of capacity C, the demands must be as-
signed unsplit to the rings without exceeding capacity. If a demand d. with
e = (i,j) is assigned to a certain ring, multiplexers costing a each must be
installed at nodes i and j on that ring. The problem is to find a feasible assign-

A MULTIPLEXER ASSIGNMENT PROBLEM 237

ment of demands to rings, so that the cost /number of multiplexers installed
is minimized. .

Problem B. Additional constraints are imposed on Problem A based on the
structure of the multiplexers. Specifically a multiplexer contains eight slots,
each of capacity C; = 16. By adding a special card to a slot, costing 3, the
capacity of a slot is increased to C3 = 63. The problem is now to minimize
the total cost of the multiplexers and the special cards.

We start by presenting a natural formulation for Problems A and B.
Let k =1,..., K denote the set of rings. We take as variables

y?’: = 1 if demand d_ is assigned to ring k, and
z; =1 if a multiplexer is installed at node i of ring k,

and obtain as formulation A:

mina YL, Yy ot (13.33)

'):,I:;l YE=1forecE (13.34)

Yecpdey¥ <Cfork=1,... K (13.35)
yfSxf,yfSa:;-’fore=(i,j)eE’,k=1,---,K (13.36)
zFeBlforicVik=1,... K (13.37)

yk e B! forecEk=1,.... K (13.38)

Here constraint (13.34) assigns each demand to some ring, (13.35) ensures
that the ring capacity is not exceeded, and (13.36) that multiplexers are in-
stalled where required. '

In Problem B, it is necessary to add additional variables

z,l‘ the number of slots of capacity C; used at node i on ring k, and

w¥ the number of slots of capacity C; used at node i on ring k.

The objective is now modified to become

K K
minazz.’cﬁ‘ +ﬁZZw£‘,

. k=1ieV k=1ieV
and additional constraints :

ees ey <1625 + 63wk foric Vik=1,... K
ZFruwb<8tforieVik=1,. K

FwfeZlforieVik=1,.. K

2

238 FROM THEORY TO SOLUTIONS

are needed to ensure that enough capacity is available at each node, and that
the available number of slots is not exceeded. |

For these two problems it is not clear a priori whether a branch-and-bound-
based M IP system has any chance of producing reasonable solutions. Thus we |
first need to choose an algorithmic approach that will provide useful bounds, .
and then perhaps look further at the quality of the formulation. We again
proceed via a series of questions. We start by examining Problem B.

Q1. Does Problem B have special structure?
Al. It is readily seen that problem B is of the form

K
ny:l forec E
k=1

(yk,zk,zk,wk) eXFfork=1,...,K
with each of the sets X* identical.
Q2. What algorithmic approach does this suggest?
A2. From Chapters 10 and 11, we might consider a Lagrangian relaxation
approach or a column generation approach, where the subproblem involves op-

timizing over X¥, or a cutting plane approach with separation over conv(XF).

As we prefer where possible to use a general M 1P system, we consider first
the possibility of approximating conv(X k) with valid inequalities.

Q3. Can we find valid inequalities for conv(X k)?

A3. X* contains 0-1 knapsack and integer knapsack constraints plus preced-
ence constraints, but nothing else is apparent. |

~ We also look at the complete problem.

Q4. Can we find global lower bounds on the number of multiplexers, or spe-
cial slots required, either in total or at a specific node?

Ada. The total demand at node i is D(3) = 3 ees(s) de- Assuming that only
one multiplexer can be installed at each node on a ring, the maximum capa-
city of a multiplexer is min(C,8 x 63). Thus we obtain the valid inequality

X 2% > [D(i)/ min(C,504)] for each node i € V.

A MULTIPLEXER ASSIGNMENT PROBY£0 239

A4b. Working with slots in place of multiplexers, we have that

K K
16 2F+63) wk > D(s),
k=1 k=1

which after setting Z = K | 2k and W = i, w can be rewritten as the
set {(Z,W) € 22 : 162 + 63W > D(i)}. Dividing by 16 we immediately
obtain the Chvétal-Gomory inequality

Z 4+ 4W > [D(i)/16).

It is also simple in practice to find all the inequalities required to represent
the convex hull of a set in two variables.

Q5. What can be done about the symmetry, namely the fact that each ring
is identical, and thus many feasible solutions are essentially the same?

AS5. Constraints can be added to break the symmetry. For instance, one can
impose that the multiplexer vector (%,..., a:fvl) for ring k be lexicographic-
ally as large as the corresponding vector for ring k+1. As only one multiplexer
is allowed per node per ring, a sufficient set of constraints is

zk > gkt

z¥ 4+ ok > ¥t 4 ghn

2c% + zk 4+ ok > 2zt 4 gkt 4 gk

def + 20 + ofF 4+ oF > dzftl 4 2ghtl 4 kel k1

Justify.
Q6. What branch-and-bound options should be considered?

A6. Given the relative importance of the variables, it appears natural to give
the z¥ variables highest priority for branching followed by the w’ variables.
The reply to Q4 also suggests the idea of explicitly introducing aggregate
variables X* = 2,1;1 =¥ with W* and Z* defined similarly. In this case these
variables should have higher priority than the corresponding individual vari-
ables. :

Now we turn back to Problem A. As it has the same structure as Problem
B, but no tightening of the formulation is apparent, decomposing as suggested
in A2 appears a possibility.

Q7. Is Lagrangian relaxation or column generation a suitable algorithm for
Problem A? R , '

24v FROM THEOR"Y TO SOLUTIONS

ATa. Criteria for evaluating the pros and cons of using Lagrangian relaxation
were given in Section 10.5. Because the rings are identical, there is only one

subproblem to be solved that takes the form :

min{ain - Z"reye . (xvy) € X}

i€V e€E

where X = {(z,y) € BVl x BIFI EceEdeye < Cye £ Ti,Ye < T for

e=(i,j) € E}.

We consider the difficulty of the subproblem, the difficulty of solving the
Lagrangian dual, and the strength of the dual bound. Though the subprob-

lem is A"P-hard, the graphs are typically small so the subproblem should be
solved quickly by branch-and-bound. The only indication of the difficulty
of convergence of the subgradient algorithm is the number of dual variables
| E |. Finally as the constraints defining the set X certainly do not define

conv(X), the Lagrangian dual bound may well be significantly stronger than |

that provided by the linear programming relaxation of Formulation A: In |

practice this turns out to be the case, and the bound is very close to the
optimal integer programming value.

A7b. Taking a column generation approach, the subproblem to be solved |

is the same as above, and the bound provided by the Linear Programming

Master is the same as that of the Lagrangian dual. Implementing a column

generation algorithm may require more work than implementing Lagrangian
relaxation unless one of the codes specially designed for column generation
is used. On the other hand the column generation procedure is more robust,
and less likely to have difficulties of convergence. It may also provide good
feasible solutions en route. ‘ :

Q8. What about heuristics?

AS8. Problem A is an edge-partitioning problem. The simulated annealing or
tabu search heuristics proposed for node partitioning in Section 12.3 can be
readily adapted to this problem as feasibility of a set of edges (demands) can
be tested very easily. One possibility is to take as a solution an edge partition
in which the demand on each ring is feasible, and as objective function the
number of multiplexers required. As neighborhood one can take the set of
feasible edge partitions obtained either by moving a single edge to another
ring, or by interchanging a pair of edges lying on different rings.

13.7 NOTES

13.2 Details of many of the recent mathematical programming systems and
" modeling languages can be found in [ORMS97]. Four of the more well-known
languages are AMPL, GAMS, LINGO and MP-MODEL(XPRESS), and three

i
H
i

H
i

EXERCISES 543

of the major MIP systems are CPLEX, OSL and XPRESS. The latter also
have optimization subroutine libraries. There is now a movement toward
the development of branch-and-cut sytems, and MINTO [SavNem93], M1PO
[BalasCerCor96], and bc — opt [Cordetal97] provide both 0-1 knapsack and
mixed integer separation routines as part of a branch-and-cut solver for general
IPs and MIPs.

For researchers, MINTO [SavNem93] and ABACUS [Thi95] are designed to-
facilitate the development of custom-built branch-and-cut or branch-and-price
systems. EMOSL [EM97] is an extended modeling and optimization library
permitting interaction between the modeling language and the optimizer.

13.3 A survey of cutting plane results for ULS and CLS can be found in
[PocWol9s). :

13.4 The transformations in this section are all well-known. The multicom-
modity reformulation appears in [RarCho79] but was almost certainly known
earlier. Its projection is analyzed in [RarWol93]. The dicut formulation for
branchings is from [Edm67), and the dicut formulation for Steiner trees has
been examined recently in [Goe94]. :

13.5 The model presented here is based on a variety of real applications. Re-
cent results for models with start-ups can be found in [Con96]. The modeling
of changeovers is from [KarmSch85}; see also [Wol97).

13.6 More details on-the multiplexer assignment problem and its solution
appear in [Sutetal98] and [Belvetal9s).

Exercise 13.7 is a reduced version of a problem from a competition Whizz-
kids’96 that appeared in a Dutch newspaper [Whi96).

13.8 EXERCISES

1. Consider a unit commitment problem with 5 generators and 12 (2-hour)
‘time periods. Period 1 follows on again from period 12, and the pattern
is repeated daily. d = (50,60, 50, 100, 80, 70, 90, 60, 50, 120, 110,70) are the
demands per period, and the reserve is 1.2 times the demand, so the total
capacity of the generators switched on in any period must be at least this
reserve. The capacity of the generators is C = (12,12, 35,50, 75), and their
minimum levels of production are L = (2,2,5,20,40). In addition each gener-
ator must stay on for at least two periods. The ramping constraints only apply
to the fifth generator — when on in two successive periods, the output cannot
increase by more than 20 from one period to the next, and cannot decrease by
more than 15. The costs are approximate. The main cost is a start-up cost
g = (100, 100, 300, 400, 800). There are also fixed costs f=(1,1,5,10,15) and
variables costs p = (10,10, 4, 3, 2) in each period that a generator is on.

242 FROM THEORY TO SOLUTIONS

Formulate and solve with a mixed integer programming system. .Try to
minimize the number of nodes in the tree. '

2. Frequency Assignment. Frequencies from the range {1,...,6} must be
assigned to 10 stations. For each pair of stations, there is an interference
parameter which is the minimum amount by which the frequencies of the two
stations must differ. The pairs with nonzero parameter are given below:

e= L2 @3 G4 &5 (.6 6D (18 69
) 4 2 3 1 1 2.

1 2
e= (9,10 (1,8) (210) (3,10 (510) (7,10) (25)
3 2 1 1 4 2 2

The goal is to minimize the difference between the smallest and largest fre-
quency assigned. '

3. Find a minimum cost directed Steiner tree in the complete digraph on
n = 10 nodes with root node r = 1, terminal nodes 2,5,7,8,10, and arc costs

(12 6 7 4 11 8 4 5 715\
9 4 2 2 12 4 7 11 4 28
6 3 8 2 1215 19 3 7 9
91 33 24 52 2 19 6 2 9 15
6 3 5 8 4 3 2 7 4 12
14 17 32 24 15 11 22 28 9 6
8§ 3 5 2 3 4.7 8 10 3
31 24 46 52 43 13 24 27 61 21
2 3 4 3 5 7 9 3 59
291 24 13 38 67 94 24 3 26 23)

4. Consider an instance of a constant capacity lot-sizing model with n = 4
periods, an initial stock of 8 units, demands d = (2,3,6,5), lower bounds
on stocks of (5,2,3,0) units, and production capacity C = 5. Convert the
instance to an equivalent one with no initial stock and no zero lower botnds
on the stocks. Describe an algorithm for the general case.

5.* Show that the inequality
1
IR IOBLIZRL
ijes j€S i=j ‘
is facet-defining for XULS where1 <l <nand SC{1,...,I}. When is the
more general inequality of Exercise 8.6 facet-defining? .

6. Use the fact that any s — t flow can be represented as a sum of flows on
individual s — t paths to reformulate the fixed charge network flow problem

EXERCISES 243
of Section 13.4. Does this lead to any new algorithms for the problem?

7. Two cyclists must deliver newspapers in Manhattan. They pick them up at
6 a.m. and have to deliver to 60 customers as soon as possible. It is well known
that the streets in Manhattan form a rectangular grid, so we can assume that
the distance between two points (z;, z3) and (yv¥2)is|z1i—y1 | + |z, -v2 .
The coordinates of the sixty customers are

(17,310) (39,85) (48,403) (49,444) (55,153)
(59,250) (59,476) (62,353) (81,441) (85,367)
(85,419) (89,418) (105,376) (109,258) (110,441)
(110,447) (118,413) (120,49) (120,451) (120,459)
(122,104) (133,410) (142,439) (145,412) (146,364)
(161,190) (161,414) (161,434) (162,458) (165,374)
(167,399) (178,409) (179,265) (179,365) (179,427)
(182,359) (184,76) (184,198) (185,124) (186,169)
(186,440) (188,63) (194,433) (197,352) (200,376)
(211,462) (212,140) (222,181) (223,21) (223,328)
(233,27) (235,405) (239,229) (276,231) (284,362)
(286,24) (292,148) (299,188) (302,184) (317,237)

The depot is at (375,375). Assuming that both cyclists cover 300 distance
units per hour, what is the earliest time by which every newspaper can be
delivered? : .

8. A Multiplexer Assignment Instance. 5 nodes (communications centers) are
linked on a network. Demands between nodes are :

— 8 45 65 116

- -9 0 4
d)y=] - - - 104 126
- - - - 8

An unlimited number of fiber optic cables can be run through the five nodes
in a ring. If part of the demand between nodes 4 and j is placed on some ring,
add/drop multiplexers (ADMs) must be placed at nodes i and j. The total
demand assigned to a ring (assuming 100% protection) cannot exceed 256.
Each ADM has eight slots. The capacity of each slot is 16, unless a terminal
multiplexer (TM) is installed in the slot, in which case its capacity is 63. The
cost of an ADM is 3 and of a TM is 1. Find an assignment of the demands
to the rings that minimizes the total cost.

9. The Traveling Salesman Problem with Time Windows. A truck driver
must deliver to 9 customers on a given day, starting and finishing at the
depot. Each customer i = 1,...,9 has a time window [r;, d;] and an unloading
time p;. The driver must start unloading at client i during the specified

244 FROM THEORY TO SOLUTIONS

time interval. If she is early, she has to wait till time r; before starting to
unload. Node 0 denotes the depot, and c;; the time to travel between nodes
iand j for i,5 € {0,1,...,9}. The data are p = (0,1,5,9,2,7,5,1,5,3),r =
(0,2,9,4,12,0,23,9,15, 10),d = (150, 45, 42, 40, 150, 48, 96,100,127, 66), and

(—54446,3218w
7 - 2 5 3 5 4 4 4 9
3 4 - 1 1 12 4 3 11 6
2 2 3 - 2 23 2 9 11 4
|6 472 - 9 83 21
=1 4 6 7 3 - 8 5 7 4|
12 32 5 12 18 5 - 7 9 6
9 11 4 12 32 5 12 — 5 22
6 4 7 3 5 8 6 9 - 5
\464735869—)

10. Lot-Sizing with Minimum Batch Sizes and Cleaning Times. Consider
the problem of production of a single item. Demands {d;}}-.; are known in
advance. Production capacity in each time period is C, but in the last period
of a production sequence it is reduced to C. In each production sequence,
at least a minimum amount P must be produced, and production is at full
capacity in all but the first and last periods of a production sequence. There is
a fixed cost of f for each period in which the item is produced, the storage costs
are h per item per period, and the backlogging costs g. Solve an instance with
n=12,d = (5,4,0,0,6,3,2,0,0,4,9,0),C =7,C =4,f = 50,h = 1,9 = 10,
and P = 19. , :

References

AarLen97. E.H.L. Aarts and J.K. Lenstra, eds., Local Search in Combinator-
ial Optimization, Wiley, Chichester (1997).

AarVer97. EH.L. Aarts and M. Verhoeven, Local Search, Ch. 11 in
[AarLen97).

AghMagWol95. E.H Aghezzaf, T.L. Maghanti and L.A. Wolsey, Optimizing
Constrained Subtrees of Trees, Mathematical Programming 71, 113-126
(1995).

AhuMagOrl93. R. K. Ahuja, T.L. Magnanti and J.B. Orlin, Network Flows,
Prentice Hall, Englewood Cliffs, NJ, (1993).

Appetal95. D. Applegate, W.J. Cook, R. Bixby and V. Chvétal, Finding Cuts
in the TSP, DIMACS Technical Report 95-05, Rutgers University, New
Brunswick, NJ, March 1995.

Balaketal95. A. Balakrishnan, T.L. Magnanti and R.T. Wong, A Decompos-
ition Algorithm for Local Access Telecommunication Network Expansion
Pla.nmng, Operations Research 43, 58-66 (1995).

Ba.las65 E. Balas, An Additive Algorithm for Solving Linear Programs with
0-1 Variables, Operations Research 13, 517-546 (1965).

Balas75a. E. Balas, Disjunctive Programs: Cutting Planes from Logical Con-
ditions, in O.L. Mangasarian et al., eds., Nonlinear Programing, Vol. 2,
Academic Press, New York, pp. 279-312 (1975).

245

246 REFERENCES

Balas75b. E. Balas, Facets of the Knapsack Polytope, Mathematical Program-
ming 8, 146-164 (1975).

Balasg9. E. Balas, The Prize Collecting Traveling Salesman Problem, Net-
works 19, 621-636 (1989).

Balas95. E. Balas, New Classes of Efficiently Solvable Generalized Travel-
ing Salesman Problems, MSSR-611, GSIA, Carnegie-Mellon University,
Pittsburgh, March 1995.

BalasCerCor93. E. Balas, S. Ceria and G. Cornuéjols, A Lift-and-Project
Cutting Plane Algorithm for Mixed 0-1 Programs, Mathematical Pro-
gramming 58, 295-324 (1993).

BalasCerCor96. E. Balas, S. Ceria and G. Cornuéjols, Mixed 0-1 Program-
ming by Lift-and-Project in a Branch-and-Cut Framework, Management
Science 42, 1229-1246 (1996).

Balasetal96. E. Balas, S. Ceria, G. Cornuéjols and G. Natraj, Gomory Cuts
Revisited, Operations Research Letters 19, 1-9 (1996).

Balletal95a. M.O. Ball, T.L. Magnanti, C.L. Monma and G.L. Nemhauser,
eds., Handbooks in Operations Research and Management Science, Vol.
7, Network Models, North-Holland, Amsterdam (1995).

Balletal95b. M.O. Ball, T.L. Magnanti, C.L. Monma and G.L. Nemhauser,
eds., Handbooks in Operations Research and Management Science, Vol.
8, Network Routing, North-Holland, Amsterdam (1995).

BarEdmWol86. 1. Barsny, J. Edmonds and L.A. Wolsey, Packing and Cover-
ing a Tree by Subtrees, Combinatorica 6, 245-257 (1986).

Barnetalod. C. Barnhart, E.L. Johnson, G.L. Nemhauser and M.W.P.
Savelsbergh, Branch and Price: Column Generation for Solving Huge In-
teger Programs, Computational Optimization Center COC-94-03, Geor-
gia Institute of Technology, Atlanta, February 1994 (revised May 1995).

Bau97. P. Bauer, The Circuit Polytope: Facets, Mathematics of. Operations
Research 22 110-145 (1997). :

Beal79. E.M.L. Beale, Branch and Bound Methods for Mathematical Pro-
gramming Systems, Annals of Discrete Mathematics 5,"201-219 (1979).

BealTom70. E.M.L. Beale and J.A. Tomlin, Special Facilities in a Gen-
eral Mathematical Programming System for Nonconvex Problems Using
~Ordered Sets of Variables, in J. Lawrence ed., Proceedings of the Fifth
Annual Conference on Operational Research, Tavistock Publications, pp.
447-454 (1970). o

REFERENCES 247

Beas93. J.E. Beasley, Lagrangean Relaxation, Ch. 6 in Modern Heuristic
Technigues for Combinatorial Problems, Blackwell Scientific Publications,
Oxford (1993).

Beas96. J.E. Beasley, ed., Advances in Linear and Integer Programming, Ox-
ford University Press, Oxford (1996).

Beas97. J.E. Beasley, A Genetic Algorithm for the Generalised Assignment
Problem, Computers and Operations Research 24, 17-23 (1997).

Bell57. R.E. Bellman, Dynamic Programming, Princeton University Press,
Princeton (1957).

Belvetal98. G. Belvaux, N. Boissin, A. Sutter and L.A. Wolsey, Optimal
Placement of Add/Drop Multiplexers: Static and Dynamic Models,
European Journal of Operational Research (to appear) (1998).

Ben62. J.F. Benders, Partitioning Procedures for Solving Mixed Variables
Programming Problems, Numerische Mathematik 4, 238-252 (1962).

Ber57. C. Berge, Two Theorems in Graph Theory, Proceedings of the National
Academy of Science 43, 842-844 (1957).

Ber73. C. Berge, Graphs and Hypergraphs, North-Holland, Amsterdam
(1973).

BieGun98. D. Bienstock and O. Giinliik, Capacitated Network Design —
Polyhedral Structure and Computation, ORSA Journal on Computing
(to appear) (1998).

BonMur76. J.A. Bondy and U.S.R. Murty, Graph Theory with Applications,
Macmillan, London (1976).

BreMitWil73. A.L. Brearley, G. Mitra and H.P. Williams, An Analysis of
Mathematical Programs Prior to Applying the Simplex Method, Math-
ematical Programming 7, 263-282 (1973). .

CapFis97. A. Caprara and M. Fischetti, Branch and Cuﬁ Algorithms, Ch. 4
in [DelAMafMar97).

Cerietal95. S. Ceria, C. Cordier, H. Marchand and L.A. Wolsey, Cutting
Planes for Integer Programs with General Integer Variables, Mathematical
Programming (to appear) ,(1998)'

Cern85. V. Cerny, A Thermodynamical Approach to the Travelling Salesman
Problem: An Efficient Simulation Algorithm, Journal of Optimization
Theory and Applications 45, 41-51 (1985).

Chr76. N. Christofides, Worst Case Analysis of a New Heuristic for the Trav-
elling Salesman Problem, Report 388, GSIA, Carnegie-Mellon University,
(1976). .

248 REFERENCES

ChrMinTot81. N. Christofides, A. Mingozzi and P. Toth, State Space Relax-
ation Procedures for the Computation of Bounds to Routing Problems,
Networks 11, 145-164 (1981).

Chv73. V. Chvétal, Edmonds Polytopes and a Hierarchy of Combinatorial
Problems, Discrete Mathematics 4, 305-337 (1973). .

Chv83. V. Chvital, Linear Programming, Freeman, New York (1983).

CloNad93. J.M. Clochard and D. Naddef, Using Path Inequalities in a
Branch and Cut Code for the Symmetric Travelling Salesman Problem,
in G. Rinaldi and L.A., Wolsey eds., Proceedings 3rd IPCO Conference,
Louvain-la-Neuve, pp. 291-311 (1993).

Con96. M. Constantino, A Cutting Plane Approach to Capacitated Lot-Sizing
with Start-up Costs, Mathematical Programming 75, 353-376 (1996).

Con98. M. Constantino, Lower Bounds in Lot-Sizing Models: a Polyhedral
Study, Mathematics of Operations Research 23, 101-118 (1998).

CooT7l. S.A. Cook, The Complexity of Theorem-Proving Procedures, Pro-
ceedings of the 3rd Annual ACM Symposium on Theory of Computing
Machinery, ACM, 151-158 (1971). '

CooCunetal97. W.J. Cook, W.H. Cunningham, W.R. Pulleyblank and A.
Schrijver, Combinatorial Optimization, Wiley, New York (1997).

CooKanSch90. W.J. Cook, R. Kannan and A. Schrijver, Chvital Closures for
Mixed Integer Programming Problems, Mathematical Programming 47,
155-174 (1990).

CooLovSey95. W.J. Cook, L. Lovész and P. Seymour, eds., Combinatorial
Optimization, DIMACS Series in Discrete Mathematics and Computer
Science, AMS (1995).

CooRutetal93. W. Cook, T. Rutherford, H.E. Scarf and D. Shallcross, An
Implementation of the Generalized Basis Reduction Algorithm for Integer
Programming, ORSA Journal of Computing 5, 206-212(1993).

Cordetal97. C. Cordier, H. Marchand, R. Laundy and L.A. Wolsey, bc — opt:
A Branch-and-Cut Code for Mixed Integer Programs, CORE Discussion
Paper 9778, Université Catholique de Louvain, October 1997.

CorNem78. G. Comuéj,éls and G.L. Nemhauser, Tight Bounds for Chris-
tofides’ Travelling Salesman Heuristic, Mathematical Programming 14,
116-121 (1978). ' :

CorSriThigl. G. Cornuéjols, R. Sridharan and J.M. Thizy, A Comparison of
Heuristics and Relaxations for the Capacitated Plant Location Problem,
European Journal of Operational Research 50, 280-297 (1991).

REFERENCES - 249

CreKan95. P. Crescenzi and V. Kann, A Compendium of NP Optimiza-
tion Problems, Technical Report SI/RR-95/02, Dipartimento di Scienze
dell’Informazione, University of Rome, “La Sapienza” (1995),

Cro58. G.A. Croes, A Method for Solving Travelling Salesman P

roblems, Op-
erations Research 6, 791-812 (1958).

CroJohPad83. H. Crowder, E.L. Johnson and M.W. Padberg, Solving Large

Scale Zero-One Linear Programming Problems, Operations Research, 31,
803-834 (1983). \

Dak65. R.J. Dakin, A Tree Search Algorithm for Mixed Integer Programming
Problems, Computer Journal 8, 250-255 (1965).

Dan57. G.B. Dantzig, Discrete Variable Extremum Problems, Operations Re-
search 5, 266-277 (1957). ' :

Dan63. G.B. Dantzig, Linear Programming and Extensions, Princeton Uni-
versity Press, Princeton (1963).

DanForFul56. G.B. Dantzig, L.R. Ford and D.R. Fulkerson, A Primal-Dual
Algorithm for Linear Programming, in H. Kuhn and A.W. Tucker, eds.,
Linear Inequalities and Related Systems, Princeton University Press, Prin-
ceton (1956).

DanFulJoh54. G.B. Dantzig, D.R. Fulkerson and S.M. Johnson, Solution of a -

Large Scale Traveling Salesman Problem, Operations Research 2, 393-410
(1954).

DanWol60. G.B. Dantzig and P. Wolfe, Decomposition Principle for Linear
Programs, Operations Research 8, 101-111 (1960).

DelAMafMar97. M. Dell’Amico, F. Maffioli and S. Martello, eds., Annotated
Bibliographies in Combinatorial Optimization, Wiley, Chichester (1997).

Den82. E.V. Denardo, Dynamic Programming Models and Applications
Prentice-Hall (1982). - ' ‘

Desetal95. J. Desrosiers, Y. Dumas, M.M. Solomon and F. Soumis, Time
Constrained Routing and Scheduling, Ch. 2 in [Balletal95b).

DesSou89. J. Desrosiers and F. Soumis, A Column Generation Approach to
the Urban Transit Crew Scheduling Problem, Transportation Science 23,
1-13 (1989). ‘

DesSouDes84. J. Desrosiers, F. Soumis and M. Desrochers, Routing with
Time Windows by Column Geéneration, Networks 14, 545-565 (1984).

Edm65a. J. Edmonds, Paths, Trees and Flowers, Canadian Journal of Math-
ematics 17, 449-467 (1965). :

250 REFERENCES

Edm65b. J. Edmonds, Maximum Matching and a Polyhedron with 0-1 Ver-
tices, Journal of Research of the National Bureau of Standards 69B,
125-130 (1965).

Edmé67. J. Edmonds, Optimum Branchings, Journal of Research of the Na-
tional Bureau of Standards T1B, 233-240 (1967).

Edm70. J. Edmonds, Submodular Functions, Matroids and Certain Poly—
hedra, in R. Guy, ed., Combinatorial Structures and Their Applications,
Proceedings of the Calgary International Conference, Gordon and Breach,
pp. 69-87 (1970).

Edm?71. J. Edmonds, Matroids and the Greedy Algorithm, Mathematical Pro-
gramming 1, 127-136 (1971).

EdmGil77. J. Edmonds and R. Giles, A Min-Max Relation for Submodular
Functions on Graphs, Annals of Discrete Mathematics 1, 185-204 (1997).

EM97. XPRESS-MP Extended Modeling and Optimisation Subroutine Lib-
rary, Reference Manual, Release 10, Dash Associates, Blisworth House,
Blisworth, Northants (1997).

Erl78. D. Erlenkotter, A Dual-Based Procedure for Uncapacitated Facility
Location, Operations Research 26, 992-1009 (1978).

Eve63. H. Everett III, Generalized Lagrange Multiplier Method for Solving
Problems of Optimal Allocation of Resources, Operations Research 11,
399-417 (1963).

Fis81. M.L. Fisher, The Lagrangean Relaxation Method for Solving Integer
Programming Problems, Management Science 27, 1-18 (1981).

FisRin88. M.L. Fisher and A.H.G. Rinnooy Kan, eds., The Design and Ana-
lysis of Heuristics, Management Science 34, 263-429 (1988).

Fle90. D. Fleischmann, The Discrete Lot-Sizing and Scheduling Problem,
European Journal of Operational Research 44, 337-348 (1990).

FloKle71. M. Florian and M. Klein, Deterministic Production Planning with
Concave Costs and Capacity Constaints, Management Science 18, 12-20
(1971).

ForFul56. L.R. Ford, Jr./and D.R. Fulkerson, Maximum Flow through a Net-
work, Canadian Journal of Mathematics 8, 399-404 (1956).

ForFul62. L.R. Ford, Jr. and D.R. Fulkerson, Flows in Networks Princeton
University Press, Princeton (1962).

FulGro65. D.R. Fulkerson and D.A. Gross, Incidence Matrices 'and Interval
Graphs, Pacific Journal of Mathematics 15, 833-835 (1965).

REFERENCES 251

GarJoh79. M.R. Garey and D.S. Johnson, Computers and Intractability: A
Guide to the Theory of NP- Completeness, Freeman, San Francisco (1979).

Geo74. A.M. Geoffrion, Lagrangean Relaxation for Integer Programming,
Mathematical Programming Study 2, 82-114 (1974).

GeoMar72. A.M. Geoffrion and R.E. Marsten, Integer Programming Al

gorithms: A Framework and State-of-the Art Survey, Management Se;-
ence 18, 465-491 (1972). o

Gho62. A Ghouila-Houri, Caracterisation des Matrices Totalement Unimod-
ulaires, C.R. Academy of Sciences of Paris 254, 1192-1194 (1962).

GilGom61. P.C. Gilmore and R.E. Gomory, A Linear Programming Approach
to the Cutting Stock Problem, Operations Research 9, 849-859 (1961).

GilGom63. P.C. Gilmore and R.E. Gomory, A Linear Programming Approach
to the Cutting Stock Problem: Part II, Operations Research 11, 863-888
(1963). .

GilGom66. P.C. Gilmore and R.E. Gomory, The Theory and Computation of
Knapsack Functions, Operations Research 14, 1045-1074 (1966).

Glo68. F. Glover, Surrogate Constraints, Operations Research 16, 741-749
(1968).

Glo86. F. Glover, Future Paths for Integer Programming and Links to Artifi-
cial Intelligence, Computers and Operations Research 13, 533-549 (1986).

Glo89. F. Glover, Tabu Search: Part I, ORSA Journal on Computing 1, 190~
206 (1989).

Glo90. F. Glover, Tabu Search: Part II, ORSA Journal on Computing 2, 4-32
(1990).)

Goe94. M.X. Goemans, The Steiner Polytope and Related Polyhedra, Math-
ematical Programming 63, 157-182 (1994). '

Gof77. J-L. Goffin, On the Convergence Rates of Subgradient Optimization
Methods, Mathematical Programming 13, 329-347 (1977).

Gol89. D.E. Goldberg, Genetic Algorithms in Search, Optimization, and Ma-
chine Learning, Addison-Wesley, Reading, MA (1989).

Gom58. R.E. Gomory, Outline of an Algorithm for Integer Solutions to Linear
Programs, Bulletin of the American Mathematical Society 64, 275-278
(1958). '

‘Gom6'0. R.E. Gomory, An Algorithm for the Mixed Integer Problem,

RM-2597, The Rand Corporation (1960).

252 REFERENCES

Gom63. R.E. Gomory, An Algorithm for Integer Solutions to Linear Pro-
grams, in R. Graves and P. Wolfe, eds., Recent Advances in Mathematical
Programming, McGraw-Hill, New York, pp. 269-302 (1963).

Gom65. R.E. Gomory, On the Relation between Integer and Non-Integer
Solutions to Linear Programs, Proceedings of the National Academy of
Sciences 53, 260-265 (1965).

Gom69. R.E. Gomory, Some Polyhedra relatéd to Corner Problems, Linea
Algebra and its Applications 2, 451-588 (1969). :

GomHu61. R.E. Gomory and T.C. Hu, Multi-Terminal Network Flows, SIAM
Journal 9, 551-570 (1961).

GomJoh72. R.E. Gomory and E.L. Johnson, Some Continuous Functions re-
lated to Corner Polyhedra, Mathematical Programming 3, 23-85 (1972).

Gra66. R.L. Graham, Bounds for Certain Multiprocessing Anomalies, Bell
Systems Technical Journal 45, 1563-1581 (1966).

GraRinZip93. S.C. Graves, A.H.G. Rinnooy Kan and P.H. Zipkin, eds., Hand-
books in Operations Research and Management Science, Vol. 4, Logistics
of Production and Inventory, North-Holland, Amsterdam (1993).

GroLie81. H. Gréflin and T. Liebling, Connected and Alternating Vec-
tors: Polyhedra and Algorithms, Mathematical Programming 20, 233-244
(1981).

GroLovSch81. M. Grotschel, L. Lovasz and A. Schrijver, The Ellipsoid
Method and its Consequences in Combinatorial Optimization, Combinat-
orica 1, 169-197 (1981).

GroLovSch84. M. Grotschel, L. Lovasz and A. Schrijver, Corrigendum to our
Paper “The Ellipsoid Method and its Consequences in Combinatorial Op-
timization,” Combinatorica 4, 201-295 (1984).

GroLovSch88. M. Grotschel, L. Lovasz and A. Schrijver, Geometric Al-
gorithms and Combinatorial Optimization, Springer, Berlin (1988).

GroPad75. M. Grotschel and M. W. Padberg, Partial Linear Characterig-
ations of the Asymmetric Travelling Salesman Polytope, Mathematical
Programming 8, 378-381 (1975).

Gru67. B. Grunbaum, Convez Polytopes, Wiley, New York (1967).

Guetal95. Z. ‘Gu, G.L. Nemhauser and M.W.P. Savelsbergh, Lifted Cover
" Inequalities for 0-1 Integer Programs, LEC-96-05, Georgia Institute of
Technology (1995).

REFERENCES 253

Guetal96. Z. Gu, G.L. Nemhauser and M.W.P. Savelsbergh, Lifted Flow
Cover Inequalities for Mixed 0-1 Integer Programs, LEC-96-05, Georgia
Institute of Technology (1996).

GuiKim87. M. Guignard and 8. Kim, Lagrangean Decomposition for Integer
Programming: Theory and Applications, RAIRO 21, 307-323 (1987).

GuiSpi81. M. Guignard and K. Spielberg, Logical Reduction Methods in Zero-
One Programming, Operations Research 29, 49-74 (1981).

GunPoc98. O. Giinliik and Y. Pochet, Mixing Mixed-Integer Inequalities,
CORE DP9811, Université Catholique de Louvain (1998).

HamJohPel75. P.L. Hammer, E.L. Johnson ahd U.N. Peled, Facets of Regular
0-1 Polytopes, Mathematical Programming 8, 179-206 (1975).

HelKar62. M. Held and R.M. Karp: A Dynamic Programming Approach to
Sequencing Problems. Journal of SIAM 10, 196-210 (1962).

HelKar70. M. Held and R.M. Karp, The Traveling Salesman Problem and
Minimum Spanning Trees, Operations Research 18, 1138-1162 (1970).

HelKar71. M. Held and R.M. Karp, The Traveling Salesman Problem and
Minimum Spanning Trees: Part II, Mathematical Programming 1, 6-25
(1971).

HelWolCro74. M. Held, P. Wolfe and H.P. Crowder, Validation of Subgradient
Optimization, Mathematical Programming 6, 62-88 (1974).

Hoc95. D.S. Hochbaum, ed., Approzimation Algorithms for N'P-hard Prob-
lems, PWS Publishing, Boston (1995).

HofKru56. A.J. Hoffman and J.B. Kruskal, Integral Boundary Points of Con-
vex Polyhedra, in H.W. Kuhn and A.W. Tucker, eds., Linear Inequalities
and Related Systems, Princeton University Press, Princeton, pp. 223-246
(1956).

HofPad9l. K. Hoffman and M. Padberg, Improving Representation of Zero-
One Linear Programs for Branch-and-Cut, ORSA Journal of Computing -
3, 121-134 (1991). .

Hol75. J.H. Holland, Adaptation in Natural and Artificial Systems, University
of Michigan Press, Ann Arbor, MI, (1975).

IbaKim75. O.H. Ibarra and C.E. Kim, Fast Approximations Algorithms for
the Knapsack and Sum of Subset Problems, Journal of the ACM 22,
463-468 (1975).

Jer72. R.G. Jeroslow, Cutting Plane Theory: Disjunctive Methods, Annals
- of Discrete Mathematics 1, 293-330 (1972).

254 REFERENCES

Johetal74. D.S. Johnson, A. Demers, J.D. Ullman, M.R. Garey and R.L. Gra-
ham, Worst Case Performance Bounds for Simple One-Dimensional Pack-
ing Algorithms, SIAM Journal on Computing 3, 299-325 (1974).

Joh80. E.L. Johnson, Integer Programming — Facets, Subadditivity and Dual-
ity for Group and Semigroup Problems, SIAM Publications, Philadelphia
(1980). ’

JohMehNem93. E.L. Johnson, A. Mehrotra and G.L. Nemhauser, Min-Cut
Clustering, Mathematical Programming 62, 133-152 (1993). '

JorNas86. K. Jornsten and M. Nasberg, A New Lagrangian Relaxation Ap-
proach to the Generalized Assignment Problem, European Journal of Op-
erational Research 27, 313-323 (1986). ’

JueReiRin95. M. Jiinger, G. Reinelt and G. Rinaldi, Thé Travelling Salesman
Problem, Ch. 4, 225-330 in [Balletal95a]. :

JueReiThi95. M. Jiinger, G. Reinelt and S. Thienel, Practical Problem Solv-
ing with Cutting Plane Algorithms in Combinatorial Optimization,
11-152 in [CooLovSey95].

KarmSch85. U.S. Karmarkar and L.Schrége, The Deterministic Dynamic
Product Cycling Problem, Operations Research 33, 326-345 (1985).

Karp72. R.M. Karp, Reducibility among Combinatorial Problems, in R.E.
Miller and J.W. Thatcher, eds., Complezity of Computer Computations;
Plenum Press, New York, 85-103 (1972).

Karp75. R.M. Karp, On the Complexity of Combinatorial Problems, Net-
works 5, 45-68 (1975). :

Kiretal83. S. Kirkpatrick, C.D. Gelatt, Jr., and M.P. Vecchi, Optimization
by Simulated Annealing, Science 220, 671-680 (1983).

Kru56. J. B. Kruskal, On the Shortest Spanning Subtree of a Graph and the
Traveling Salesman Problem, Proceedings of the American Mathematical
~ Society 7, 48-50 (1956).

KueHam63. A.A. Kuehn and M.J. Hamburger, A Heuristic Program for Loc-
ating Warehouses, Management Science 9, 643-666 (1963). -

Kuh55. HW. Kuhn, The Hungarian Method for the Assignment Problem,
Naval Research Logisﬁcs Quarterly 2, 83-97 (1955).

LanDoi60. A.H. Land and A.G. Doig, An Automatic Method for Solving Dis-
crete Programming Problems, Econometrica 28, 497-520 (1960).

Law76. E.L. Lawler, Combinatorial Optimizaton: Networks and Matroids,
Holt, Rinehart and Winston, New York (l976). ’

REFERENCES 255

Lawetal85. E.L.Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan and D.B. Shmoys,
eds., The Traveling Salesman Problem: A Guided Tour of Combinatorial
Optimization, Wiley, Chichester (1985).

Lemetal95. C. Lemaréchal, F. Pellegrino, A. Renaus and C. Sagastizabal,
Bundle Methods Applied to the Unit Commitment Problem, Communic-
ation at the 17th IFIP T'C7 Conference, Prague, July 1995.

Len83.- H.W. Lenstra Jr., Integer Programming with a Fixed Number of Vari-
ables, Mathematics of Operations Research 8, 538-547 (1983).

LinSav97. J. Linderoth and M.W.P. Savelsbergh, A Computational Study of
Search Strategies for Mixed Integer Programming, Report LEC 97-12,
Georgia Institute of Technology (1997).

Litetal63. J.D.C. Little, K.G. Murty, D.W. Sweeney and C. Karel, An Al-
gorithm for the Traveling Salesman Problem, Operations Research 11,
972-989 (1963).

LovPlu86. L. Lovdsz and M.D. Plummer, Matching Theory, North-Holland,
Amsterdam (1986).

LovSch91. L. Lovész and A. Schrijver, Cones of Matrices and Set Functions
and 0-1 Optimization, STAM Journal on Optimization 1, 166-190 (1991).

LucBea96. A. Lucena and J.E. Beasley, Branch and Cut Algorlthms, Ch. 5
in [Beas96].

MagWol95. T.L. Magnanti and L.A. Wolsey, Optimal Trees, in [Balleta195a].

MarTot90. S. Martello and P. Toth, Knapsack Problems: Algorithms and
Computer Implementations, Wiley, Chichester (1990).

MarWol97. H. Marchand and L.A. Wolsey, The 0-1 Knapsack Problem with
a Single Contmuous Variable, CORE DP 9720, Louvain-la-Neuve, March
1997.

Metetal53. N. Metropolis, A. Rosenbluth, H. Rnsenbluth, A. Teller and E.
Teller, Equations of State Calculations by Fast Computing Machines,
Journal of Chemical Physics 21, 1087-1091 (1953).

MirFra90. P.B. Mirchandani and R.L: Francis, eds., Discrete Location Theory,
Wiley, New York (1990). -

Mit96. J E Mitchell, Interior Point Algorithms for Integer Programming, Ch.
6 in [Beas96].

MitTod92. J.E. Mitchell and M.J. Todd, Solving Combinatorial Optimization
Problems Using Karmarkar’s Algorithm, Mathematical Programming 56,
245-285 (1992).

256 - REFERENCES

NemRinTod89. G.L. Nemhauser, A.H.G. Rinnooy Kan and M.J. Todd, eds.,
Handbooks in Operations Research and Management Science, Vol. 1, Op-
timization, North-Holland, Amsterdam (1989).

NemSavSig94. G.L. Nemhauser, M.W.P. Savelsbergh and G. Sigismondi,
MINTO, a Mixed Integer Optimizer, Operations Research Letters 15,
47-58 (1994). :

NemTro74. G.L. Nemhauser and L.E. Trotter, Properties of Vertex Pack-
ing and Independence System Polyhedra, Mathematical Programming 6,
48-61 (1974).

NemWol88. G.L. Nemhauser and L.A. Wolsey, Integer and Combinatorial Op-
timization, Wiley (1988).

NemWol89. G.L. Nemhauser and L.A. Wolsey, Integer Programming, Ch. 6
in [NemRinTod89]

NemWol90. G.L. Nemhauser and L.A. Wolsey, A Recursive Procedure for
Generating All Cuts for 0-1 Mixed Integer Programs, M athematical Pro-
gramming 46, 379-390 (1990).

NorRab59. R.Z. Norman and M.D. Rabin, An Algorithm for the Minimum
Cover of a Graph, Proceedings of the American Mathematical Society 10,
315-319 (1959).

OheLenRin85. M. O’hEigeartaigh, J.K. Lenstra and A.H.G. Rinnooy Kan,
eds., Combinatorial Optimization: Annotated Bibliographies, Wiley,
Chichester (1985).

ORMS97. Linear Programming Software Survey, OR/MS Today 56-63, April
1997

OsmLap96. 1.H. Osman and G. Laporte, Metaheuristics: a Bibliography, An-
nals of Operations Research 63, 513-623 (1996).

Pad73. M.W. Padberg, On the Facial Structure of Set Packing Polyhedra,
Mathematical Programming 5, 199-215 (1973). ‘

PadRin91. M.W. Padberg and G. Rinaldi, A Branch and Cut Algorithm for
Resolution of Large Scale Symmetric Traveling Salesman Problems, SIAM
Review 33, 60-100 (1991).

PadVanRWol85. M.W. Padberg, T.J. Van Roy and L.A. Wolsey, Valid Linear
Inequalities for Fixed Charge Problems, Operations Research 33, 842-861
(1985). '

Pap94. C.H. Papadimitriou, Computational Complezity, Addison-Wesley,
Reading, MA (1994). :

REFERENCES 257

PapSti82. C.H. Papadimitriou and K. Stieglitz, Combinatorial Optimization:
Algorithms and Complerity, Prentice-Hall, Englewood Cliffs, NJ (1982).

PapYan84. C.H. Papadimitriou and M. Yannakakis, The Complexity of Fa-

cets (and Some Facets of Complexity), Journal of Computing and System
Science 28, 244-259 (1984).

ParRar88. G. Parker and R. Rardin, Discrete Optimization, Academic Press,
‘New York (1988). . :

Pir96. M. Pirlot, General Local Search Methods, EBuropean Journal of Oper-
ational Research 92, 493-511 (1996).

PocWol95. Y. Pochet and L.A. Wolsey, Algorithms and Reformulations for
Lot-Sizing Problems, 245-294 in [CooLovSey95].

PreSha85. F.P. Preparata and M.I. Shamés, Computational Geometry: An
Introduction, Springer, New York (1985).

Prim57. R.C. Prim, Shortest Connection Networks and Some Generaliza-
tions, Bell System Technological Journal 36, 1389-1401 (1957).

Psa80. H.N. Psai'aftis, A Dynamic Programming Approach for Sequencing
Groups of Identical Jobs, Operations Research 28, 1347-1359 (1980).

Pul83. W.R. Pulleyblank, Polyhedral Combinatorics, in Mathematical Pro-
gramming: The State of the Art, A. Bachem, M. Grétschel and B. Korte,
eds., Springer, Berlin, pp. 312-345 (1983).

Pul89. W.R. Pulleyblank, Polyhedral Combinatorics, in [NemRinTod89).

QueSch94. M. Queyranne and A.S. Schulz, Polyhedral Approaches to Ma-
chine Scheduling, Preprint 408/1994, Department of Mathematics, Tech-
nical University of Berlin, Berlin (1994). o

RarCho79. R. Rardin and U. Choe, Tighter Relaxations of Fixed Charge
Network Flow Problems, Industrial and Systems Engineering Report
J-79-18, Georgia Institute of Technology (1979).

RarWol93. R. Rardin and L.A. Wolsey, Valid Inequalities and Projecting
the Multicommodity Extended Formulation for Uncapacititated Fixed
Charge Network Flow Problems, European Journal of Operational Re-
search (1993).

Ree93. C.R. Reeves, ed., Modern Heuristic Techniqﬁes for Combinatorial
Problems, Blackwell Scientific Publications, Oxford (1993).

-ReiShe65. S. Reiter and G. Sherman, Discrete Optimizing, J. Society of In-
dustrial and Apllied Mathematics 13, 864-889 (1965).

258 REFERENCES

Rhy70. J.M.W. Rhys, A Selection Problem of Shared Fixed Costs and Net-
work Flows, Management Science 17, 200-207 (1970).

RooTerVia97. C. Roos, T. Terlaky and J-Ph. Vial, Theory and Algorithms
for Linear Optimization: An Interior Point Approach, Wiley (1997).

RyaFos81. D.M. Ryan and B.A. Foster, An Integer Programming Approach
to Scheduling, in A. Wren, ed., Computer Scheduling of Public Transport
Urban Passenger Vehicle and Crew Scheduling, North-Holland, Amster-
dam, 269-280 (1981).

SalMat89. H.M. Salkin and K. Ma{;hur, Foundations of Integer Programming,
North-Holland, Amsterdam (1989).

Sav93. M.W.P. Savelsbergh, A Branch and Price Algorithm for the General-
ized Assignment Problem, Computational Optimization Center COC-93-
02, Georgia Institute of Technology, Atlanta (1993). '

Sav94. M.W.P. Savelsbergh, Preprocessing and Probing Techniques for Mixed
Integer Programming Problems, ORSA Journal of Computing 6, 445-454
(1994). ' v

SavNem93. M.W.P. Savelsbergh and G.L. Nemhauser, Functional Description
of MINTO, a Mixed INTeger Optimizer, Report COC-91-03A, Georgia
. Institute of Technology, Atlanta, Georgia (1993).

Sch80. A. Schrijver, On Cutting Planes, Annals bf Discrete Mathematics 9,
291-296 (1980).

Sch86. A. Schrijver, Theory of Linear and Integer Programming, Wiley,
Chichester (1986).

Sey80. P.D. Seymour, Decomposition of Regular Matroids, Journal of Com-
binatorial Theory B28, 305-359 (1980). v

SheAda90. H. Sherali and W. Adams, A Hierarchy of Relaxations between the
Continuous and Convex Hull Representations for Zero-One Programming
Problems, SIAM Journal on Discrete Mathematics 3, 411-430 (1990).

Shm95. D.B. Shmoys, Computing Near-Optimal Solutions to Combinatorial
Optimization Problems, 355-398 in' [CooLovSey95].

Sie96. G. Sierksma, Integer and Linear Programming: Theory and Practice,
Marcel Dekker (1996).

Spi69. K. Spielberg, Plant Location with Generalized Search Origin, Man-
agement Science 16, 165-178 (1969).

Sﬁag2. J. Stallaert, On the Polyhedral Structure of Capacitated Fixed Charge
Network Problems, Ph.D. Thesis, Univ. of California (1992).

REFERENCES 259

StoWit70. J. Stoer and C. Witzgall, Convexity and Optimization in Finite
Dimensions, Springer (1970).

Sutetal98. A. Sutter, F. Vanderbeck and L.A. Wolsey, Optimal Placement
of Add/Drop Multiplexers: Heuristic and Exact Algorithms, Operations
Research (to appear) (1998).

Taketal82. K. Takamizawa, T. Nishiéeki and N. Saito, Linear Time Comput-
ability of Combinatorial Problems on Series Parallel Graphs, Journal of
ACM 29, 623-641 (1982). '

Thi95. S. Thienel, ABACUS: A Branch-and-Cut System, Doctoral Thesis,
Department of Computer Science, Universitit zu Kéln (1995).

Vancetal94. P.H. Vance, C. Barnhart, E.L. Johnsoen and G.L. Nembhauser,
Solving Binary Cutting Stock Problems by Column Generation and
Branch-and-Bound, Computational Optimization and Applications 3,
111-130 (1994).

Vdbeck94. F. Vanderbeck, Decomposition and Column Generation for In-
teger Programs, Ph.D. Thesis, Faculté des Sciences Appligées, Université
Catholique de Louvain, Louvain-la-Neuve (1994).

Vdbeck96. F. Vanderbeck, Computational Study of a Column Generation
Algorithm for Bin Packing and Cutting Stock Problems, Research Papers
in Management Studies, University of Cambridge, no. 1996-14 (1996).

VdbeckWol96. F. Vanderbeck and L.A. Wolsey, An Exact Algorithm for IP
Column Generation, Operations Research Letters 19, 151-159 (1996).

Vdbei96. R.J. Vanderbei, Linear Programming: Foundations and Extensions,
Kluwer, Boston (1996).

VRoWol87. T.J. Van Roy and L.A. Wolsey, Solving Mixed 0-1 Problems by
Automatic Reformulation, Operations Research 35, 45-57 (1987).

WagvanHKoe92. A.P.M. Wagelmans, C.P.M. van Hoesel and A.W.J. Kolen,
Economic Lot-Sizing: An O(nlogn) Algorithm that Runs in Linear Time
in the Wagner-Whitin Case, Operations Research 40, Supplement 1,
145-156 (1992).

WagWhi58. H.M. Wagner and T.M. Whitin, Dynamic Version of the Eco-
nomic Lot Size Model, Management Science 5, 89-96 (1958).

Wei97. R. Weismantel, On the 0/1 Knapsack Polytope, Mathematical Pro-
gramming 77, 49-68 (1997).

Wel76. D.J.A. Welsh, Matroid Theory, Academic Press, London (1976).

Whi96. Whizzkids ’96, Verdien F5000 met een Krantenwijk in Manhattan,
~ De Telegraaf, Technische Universiteit Eindhoven, and CMG (1996).

260 REFERENCES

Wil78. H.P. Williams, Model Building in Mathematical Programming, Wlley,
Chichester (1978).

Wol75a. L.A. Wolsey, Faces for a Linear Inequality in 0-1 Variables, Math-
ematical Programming 8, 165-178 (1975).

Wol75b. L.A. Wolsey, Facets and Strong Valid Ineqﬁalities for Integer Pro-
grams, Operations Research 24, 367-372 (1975). '

Wol90. L.A. Wolsey, Valid Inequalities for Mixed Integer Programs with Gen-
eralised and Variable Upper Bound Constraints, Discrete Applied Math-
ematics 25, 251-261 (1990).

Wol97. L.A. Wolsey, MIP Modelling of Changeovers in Production Planning
and Scheduling Problems, E'uropean Journal of Operational Research 99,
154-165 (1997).

Wri97, S. Wright, Primal-Dual Interior Point Algorithms, SIAM Publica-
tions, Philadelphia (1997).

Zan66. W.I. Zangwill, A Deterministic Multi-Period Productiqn Scheduling
Model with Backlogging, Management Science 13, 105-119 (1966).

Zie95. G.M. Ziegler, Lectures on Polytopes, Sprmger-Verlag, New York
(1995).

ABACUS, 161, 241
Affine independence, 142
Algorithm
primal-dual, 58, 62
subgradient, 174
Approximation scheme, 217
Aspiration level, 208
Assignment problem, 5, 8, 57, 59, 81
generalized, 157, 179, 211
multiplexer, 236, 243
relaxation, 33
Bc-opt, 161, 241
Benders’ reformulatlon, 201
Bound, 92
dual, 24, 94, 103, 175
lower, 238
primal, 24, 30, 94
tightening, 104
Branch-and-bound, 95, 160, 223, 239
active node, 96
bounding, 95, 99
branching, 95, 97, 99
GUB, 102
strong, 102
estimations, 99
LP-based, 98
node selection, 96-98
performance, 234
priorities, 101
prune
by bound, 93

Index

by infeasibility, 94
by optimality, 93
reoptimization, 96-98
system, 101
tree storage, 98
updating incumbent, 98
variable
fixing, 105-106, 177
most fractional, 99

~ Branch-and-cut, 140, 157, 223, 241

Branch-and-price, 193
See also Column generation

Branching problem, 160
Branching scheme, 193
Changeover, 233, 235
Chinese postman problem, 63
Chvétal-Gomory inequality, 119, 239
Clique, 164
Clustering problem, 195, 198
Column generation, 190, 223, 238-239

1P, 193

branching scheme, 197

Combinatorial optimization problem, 4
Complementarity condition, 168
Complexity, 60
Consecutive 1’s property, 49
Constraint

aggregation, 227

complicating, 167

joint, 185

logical, 106

261

262 INDEX

redundant, 104-105
See also Valid inequality
Convergence, 174
Convex function, 173
Convex hull, 15, 46, 113, 172, 224
proof, 144
property, 38, 40, 46, 89
Cooling ratio, 209
Cover, 147
by nodes, 28, 53
minimum cardinality, 29
generalized, 151
inequality, 147
extended, 148
lifted, 159
separation, 150
Crossover, 210
Cut
minimum, 43, 49
pool, 157
Cut-set, 232
constraints, 8
Cutting plane algorithm, 124, 192, 234, 238
Gomory fractional, 124
Cutting problem, 3
Cycling, 207
D-inequality, 136
Decomposition, 91, 122, 140, 185
Degree constraint, 170
Delaunay triangulation, 50
Digraph
acyclic, 68
Dimension, 142
Discrete alternatives, 11
Disjunction, 11, 130
Divide and conquer, 91
Dominance, 141
Dual, 27
Lagrangian, 168, 174, 192
solution complexity, 179
_ strength, 172, 179
strong, 43
property, 38, 40, 89
variable, 27, 168
Duality, 28, 94
strong, 28
superadditive, 33
weak, 29)
Dynamic programming, 67 /
recursion, 70 !
0-1 knapsack, 73
"integer knapsack, 7576
subtree, 72
Easy problem, 37
Efficient
algorithm, 37
optimization property, 37, 89, 140

separation property, 40, 89
EMOSL, 241
Enumeration, 8

implicit, 94
Extreme point, 15, 145

"Face, 142

Facet, 142, 226
proof, 144
Facility location problem, 10, 18
capacitated, 114
uncapacitated, 10, 13, 16, 31, 81, 122,
144, 169, 186, 205
Feasible solution, 103
Finite convergence, 133
Fixed charge network flow, 151, 223, 229
Fixed costs, 9:
Flow
conservation constraint, 234
cover inequality, 152, 224, 229°
separation, 153
maximum, 43, 81, 1565
Forest, 43
Formulation, 5, 9, 12, 223
better, 16
dicut, 232
extended, 14, 227
ideal, 14
strength, 232
strong, 123
weak, 122
Generalized assignment problem, see
Assignment problem

Generalized transportation problem, 116 .

Genetic algorithm, 210

Gomory cut, 127
mixed integer, 129

Gradient, 174

Graph
bipartite, 55
connected, 43
equipartition, 32, 209
Eulerian, 212
series-parallel, 77
theory, 18

Greedy algorithm, 44, 47

Group problem, 160

Heuristic algorithm, 30, 203, 240
2-exchange, 206
cut-and-fix, 216
dive-and-fix, 214
greedy, 30, 178, 204-205
Lagrangian, 177
local search, 31
MIP-based, 214
nearest neighbor, 205
relax-and-fix, 215, 236
separation, 156

tree, 213
tree/matching, 213
worst case analysis, 211

Incidence matrix, 7
node-edge, 29

Incumbent, 31

Independent set, 48

Input length, 83)

Integer program, 3, 81, 84, 113
binary, 3, 85 :
mixed, 3, 115, 127, 201

0-1, 114
totally unimodular, 81
Interior point algorithm, 101
Knapsack problem, 6, 18, 27, 72

0-1, 6, 9, 12, 16, 30, 73, 81, 84, 86, 114,

147, 150, 180
" integer, 74, 211
Labeling, 55
Lagrange multiplier, 168
Lagrangian, see Dual and Relaxation
Lagrangian decomposition, 182
Lift and project, 134
Lifting, 149, 227
Linear programming, 18
dual, 57
Local minimum, 208
Local optimality, 31
Local search algorithm, 31, 205
goal function, 205
neighborhood, 205
solution, 205
Lot-sizing problem, 11
backlogging, 77
capacitated, 85, 227
constant capacity, 77, 123
multi-item, 195, 232

uncapacitated, 11, 17, 68, 81, 83, 147, 223

Master problem, 187
column generation, 189
dual bound, 189
1P, 187, 196
LP, 188

restricted, 188

strength, 192
optimality condition, 189
primal feasibility, 189

Matching, 28, 33, 53, 115
bipartite, 55
maximum cardinality, 29
maximum weight, 81
perfect, 63

Matroid, 48
intersection algorithm, 62
optimization problem, 160

MINTO, 161, 241

MIP system, 223, 238, 241

INDEX

MIPO, 241 ,
MIR inequality, 129, 227
Modeling language, 221, 240
MPS format, 222
Mutation, 210
Neighborhood, 31, 207, 240
Network flow problem, 18
fixed charge, 69
minimum cost, 40
Node
active, 98
exposed, 54
Odd hole, 135
Optimality conditions, 23, 168
Optimization problem, 89
Partitioning problem, 194
2-partition, 89
identical subproblems, 196
Path, 42
alternating, 53
augmenting, 54, 56
longest, 76
shortest, 42, 67, 81
Performance guarantee, 203
a priori, 203
Pivoting strategy, 101
Polyhedron, 12
minimal descrip,tion, 142
Polynomial
algorithm, 83, 224
reduction, 84
Preprocessing, 101, 103
Principle of optimality, 68
Priorities, 234, 239
Problem
decision, 82
difficult, 82
easy, 82
infeasibility, 105
legitimate, 82-83
most difficult, 84
simplification, 106
structure, 238
Production planning problem, 2, 18
See also Lot-sizing problem

- Projection, 17, 147

Quadratic 0-1 problem, 27, 155
Reduced cost fixing, 109
Reduction factor, 208
Reduction lemma, 82, 85
Reformulation
a priori, 121
automatic, 123
Dantzig-Wolfe, 187
multicommodity, 230
Relaxation, 24, 94, 227
combinatorial, 26

- 263

264 INDEX

Lagrangian, 27, 33, 167, 170, 238
linear programming, 25
state-space, 78
Restriction, 33
Rounding inequality
integer, 116
mixed integer, 117
Routing problem, 77
arc, 90
network, 18
vehicle, 154, 196
Run-time, 235
Running time, 83
Satisfiability problem, 85
Scheduling problem, 1, 18
aircraft, 2
bus, 2
crew, 1
train, 1
Search
best-node first, 100
depth-first, 99
Separation algorithm, 140, 192
Separation problem, 37, 89,124, 226, 229
cover inequalities, 150
flow cover inequalities, 153
" subtour constraints, 155
Set covering problem, 6, 9, 81, 90, 177
Set function, 46 ‘
Simplex algorithm, 18, 101
Simulated annealing, 208, 240
Single-source, 229
Software, 221
Stable set problem, 90, 135
Start-up, 77, 233, 235
Subgradient, 174
Submodular, 46
optimization problem, 47
polyhedron, 47
rank function, 48
Subroutine library, 223, 241
Subtour
elimination constraint, 8, 170
elimination constraint
generalized, 154
separation, 155

optimal, 154
Subtree
directed, 231
of a tree, 71
Symmetry, 196, 239
breaking, 239
Tabu
list, 207
search, 207
Telecommunications problem, 2, 7
Temperature, 208
Totally dual integral, 49, 147
Totally unimodular, 38, 41, 49, 145, 155
Tour, 26
2-optimal, 206
Traveling salesman problem, 7, 9, 18, 26,
78, 81, 91
geometric, 175
prize collecting, 154
symmetric, 26, 31, 84, 170, 190, 212
Tree, 27
1-tree, 27, 170
cover, 164
maximum weight, 81
optimal, 43
partitioning, 77
predecessor, 71
root, 71
Steiner;, 46, 81
directed, 90
successor, 71
Triangle inequality, 212
Unit commitment problem, 2
Valid inequality, 114, 224
basic mixed integer, 127
blossom, 133
cover, 147 .
disjunctive, 131 .
for IP, 118
for LP, 117
for Matching, 118
mixed 0-1, 151
redundant, 141
strong, 139-140, 229
superadditive, 133
Walk, 212

WILEY-INTERSCIENCE
SERIES IN DISCRETE MATHEMATICS AND OPTIMIZATION

ADVISORY EDITORS

RONALD L. GRAHAM
AT & T Laboratories, Florham Park, New Jersey, U.S.A.

JAN KAREL LENSTRA
Department of Mathematics and Computer Science,
Eindhoven University of Technology, Eindhoven, The Netherlands

ROBERT E. TARJAN
Princeton University, New Jersey, and
NEC Research Institute, Princeton, New Jersey, U.S.A.

AARTS AND KORST ¢ Simulated Annealing and Boltzmann Machines: A Stochastic Approach to
Combinatorial Optimization and Neural Computing

AARTS AND LENSTRA e Local Search in Combinatorial Optimization

ALON, SPENCER, AND ERDOS ¢ The Probabilistic Method

ANDERSON AND NASH e Linear Programming in Infinite-Dimensional Spaces: Theory and
Application

ASENCOTT e Simulated Annealing: Parallelization Techniques

BARTHELEMY AND GUENOCHE o Trees and Proximity Representations

BAZARRA, JARVIS, AND SHERALI ¢ Linear Programming and Network Flows

CHONG AND ZAK e An Introduction to Optimization

COFFMAN AND LUEKER e Probabilistic Analysis of Packing and Partitioning Algorithms

COOK, CUNNINGHAM, PULLEYBLANK, AND SCHRIJVER ¢ Combinatorial Optimization

DASKIN ¢ Network and Discrete Location: Modes, Algorithms and Applications

DINITZ AND STINSON e Contemporary Design Theory: A Collection of Surveys

ERICKSON e Introduction to Combinatorics

GLOVER, KLINGHAM, AND PHILLIPS ¢ Network Models in Optimization and Their Practical
Problems

GOLSHTEIN AND TRETYAKOV ¢ Modified Lagrangians and Monotone Maps in Optimization

GONDRAN AND MINOUX e« Graphs and Algorithms (Translated by S. Vajda)

GRAHAM, ROTHSCHILD, AND SPENCER « Ramsey Theory, Second Edition

GROSS AND TUCKER e Topological Graph Theory

HALL e Combinatorial Theory, Second Edition

JENSEN AND TOFT e Graph Coloring Problems

KAPLAN « Maxima and Minima with Applications: Practical Optimization and Duality

LAWLER, LENSTRA, RINNOOY KAN, AND SHMOYS, Editors » The Traveling Salesman
Problem: A Guided Tour of Combinatorial Optimization

LAYWINE AND MULLEN o Discrete Mathematics Using Latin Squares

LEVITIN e Perturbation Theory in Mathematical Programming Applications

MAHMOUD -« Evolution of Random Search Trees)

- MARTELLO AND TOTH e Knapsack Problems: Algorithms and Computer Implementations

McALOON AND TRETKOFF e Optimization and Computational Logic

MINC « Nonnegative Matrices

MINOUX e Mathematical Programming: Theory and Algorithms (Translated by S. Vajda)

MIRCHANDANI AND FRANCIS, Editors Discrete Location Theory

NEMHAUSER AND WOLSEY e Integer.and Combinatorial Optimization

NEMIROVSKY AND YUDIN e« Problem Complexity and Method Efficiency in Optimization
(Translated bv E. R. Dawson) ’

PACH AND AGARWAL « Combinatorial Geometry

PLESS e Introduction to the Theory of Error-Correcting Codes, Third Edition

ROOS AND VIAL ¢ Ph. Theory and Algorithms for Linear Optimization: An Interior Point: Approach

SCHEL ._«MAN AND ULLMAN e Fractional Graph Theory: A Rational Approach to the Theory of
Graphs

SCHRIJVER ¢ Theory of Linear and Integer Programming

TOMESCU o Problems in Combinatorics and Graph Theory (Translated by R. A. Melter)

TUCKER » Applied Combinatorics, Second Edition

WOLSEY -« Integer Programming

YE e Interior Point Algorithms: Theory and Analysis

