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1.1 
The Scope of Integer 
and Combinatorial 
Optimization 

1. INTRODUCTION 

Integer and combinatorial optimization deals with problems of maximizing or minimiz-
ing a function of many variables subject to (a) inequality and equality constraints and 
(b) integrality restrictions on some or all of the variables. Because of the robustness of the 
general model, a remarkably rich variety of problems can be represented by discrete 
optimization models. 

An important and widespread area of application concerns the management and 
efficient use of scarce resources to increase productivity. These applications include 
operational problems such as the distribution of goods, production scheduling, and 
machine sequencing. They also include (a) planning problems such as capital budgeting, 
facility location, and portfolio analysis and (b) design problems such as communication 
and transportation network design, VLSI circuit design, and the design of automated 
production systems. 

In mathematics there are applications to the subjects of combinatorics, graph theory, 
and logic. Statistical applications include problems of data analysis and reliability. Recent 
scientific applications involve problems in molecular biology, high-energy physics, and 
x-ray crystallography. A political application concerns the division ofa region into election 
districts. 

Some of these discrete optimization models will be developed later in this chapter. But 
their number and variety are so great that we only can provide references for some of 
them. The main purpose of this book is to present the mathematical foundations of integer 
and combinatorial optimization models along with the algorithms that can be used to 
solve the problems. 

Throughout most of this book, we assume that the function to be maximized and the 
inequality restrictions are linear. Note that minimizing a function is equivalent to 
maximizing the negative of the same function and that an equality constraint can be 
represented by two inequalities. It is also common to require the variables to be nonnega-
tive. Hence we write the linear mixed-integer programming problem as 

(MIP) max{cx + hy: Ax + Gy ~ b, x E Z~, Y E R~}, 

where Z~ is the set of nonnegative integral n-dimensional vectors, R~ is the set of 
nonnegative realp-dimensional vectors, and x = (Xl, ... ,xn) andy = (Yb ... ,Yp) are the 
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4 1.1. The Scope of Integer and Combinatorial Optimization 

variables or unknowns. An instance of the problem is specified by the data (c, h, A, G, b), 
with can n-vector, hap-vector, A an m x n matrix, G an m x p matrix and ban m-vector. 
We do not distinguish between row and column vectors unless the clarity of the presenta-
tion makes it necessary to do so. This problem is called mixed because of the presence of 
both integer and continuous (real) variables. 

We assume throughout the text that all of the data sets are rational, that is, that each of 
the individual numbers is rational. Although in making this assumption we sacrifice some 
theoretical generality, it is a natural assumption for solving problems on a digital computer. 

The set S = {x E Z~, Y E R~, Ax + Gy ::::; b} is called the feasible region, and an 
(x, y) E S is called a feasible solution. An instance is said to be feasible if S * 0. The 
function 

z = cx + hy 

is called the objectivefunction. A feasible point (XO, yO) for which the objective function is 
as large as possible, that is, 

cxO + hyo ~ cx + hy for all (x, y) E S, 

is called an optimal solution. If (XO, yO) is an optimal solution, cxo + hyo is called the 
optimal value or weight of the solution. 

A feasible instance ofMIP may not have an optimal solution. We say that an instance is 
unbounded if for any OJ E R 1 there is an (x, y) E S such that cx + hy > OJ • We use the 
notation z = 00 for an unbounded instance. 

In Section 1.4.6, we will show that every feasible instance ofMIP either has an optimal 
solution or is unbounded. This result requires the assumption of rational data. With 
irrational data, it is possible that no feasible solution attains the least upper bound on the 
objective function. 

Thus to solve an instance ofMIP means to produce an optimal solution or to show that 
it is either unbounded or infeasible. 

The linear (pure) integer programming problem 

(IP) max{cx: Ax ::::; b, x E Z~} 

is the special case of MIP in which there are no continuous variables. The linear 
programming problem 

(LP) max{hy: Gy ::::; b, y ERn 

is the special case of MIP in which there are no integer variables. 
In many models, the integer variables are used to represent logical relationships and 

therefore are constrained to equal 0 or 1. Thus we obtain the 0-1 MIP (respectively 0-1 IP) 
in which x E Z~ is replaced by x E Bn, where Bn is the set of n-dimensional binary 
vectors. 

While there is no generally agreed-upon definition of a combinatorial optimization 
problem, most problems so named are 0-1 IPs that deal with finite sets and collections of 
subsets. The following is a generic combinatorial optimization problem. Let N = 

{l, ... , n} be a finite set and let c = (Cb ... , cn) be an n-vector. For F £; N, define c(F) = 
LjEF Cj. Suppose we are given a collection of subsets @P of N. The combinatorial optimiza-
tion problem is 
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(CP) max{c(F):F E BF}. 

Some examples of combinatorial optimization problems will be given later in this chapter. 
This book is divided into three parts. This chapter is concerned with the formulation of 

integer optimization problems, which means how to translate a verbal description of a 
problem into a mathematical statement of the form MIP, Ip, or CPo The rest of Part I 
contains prerequisites, including linear programming, graphs and networks, polyhedral 
theory, and computational complexity, which are necessary for Parts II and III. 

Part II is concerned with the theory and algorithms for problems IP and MIP. Part III is 
devoted to some combinatorial optimization problems whose structure makes them 
relatively easy to solve. 

2. MODELING WITH BINARY VARIABLES I: KNAPSACK, ASSIGNMENT 
AND MATCHING, COVERING, PACKING AND PARTITIONING 

An important and very common use of 0-1 variables is to represent binary choice. 
Consider an event that mayor may not occur, and suppose that it is part of the problem to 
decide between these two possibilities. To model such a dichotomy, we use a binary 
variable x and let 

{
I if the event occurs 

x = 0 if the event does not occur. 

The event itself may be almost anything, depending on the specific situation being 
considered. Several examples follow. 

The 0-1 Knapsack Problem 

Suppose there are n projects. Thejth project,} = 1, ... , n, has a cost of aj and a value of Cj. 
Each project is either done or not, that is, it is not possible to do a fraction of any of the 
projects. Also there is a budget of b available to fund the projects. The problem of choosing 
a subset of the projects to maximize the sum of the values while not exceeding the budget 
constraint is the 0-1 knapsack problem 

Here the jth event is the }th project. This problem is called the knapsack problem because 
of the analogy to the hiker's problem of deciding what should be put in a knapsack, given a 
weight limitation on how much can be carried. In general, problems of this sort may have 
several constraints. We then refer to the problem as the multidimensional knapsack 
problem. 

The Assignment and Matching Problems 

Another classical problem involves the assignment of people to jobs. Suppose there are n 
people and m jobs, where n ~ m. Each job must be done by exactly one person; also, each 
person can do, at most, one job. The cost of person} doing job i is c ij. The problem is to 
assign the people to the jobs so as to minimize the total cost of completing all of the jobs. 
To formulate this problem, which is known as the assignment problem, we introduce 0-1 
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variables Xij, i = 1, ... , m,} = 1, ... ,n corresponding to the ijth event of assigning 
person} to job i. Since exactly one person must do job i, we have the constraints 

(2.1) 
n 

I Xi) = 1 for i = 1, ... , m. 
)=1 

Since each person can do no more than one job, we also have the constraints 

(2.2) 
m 

I Xi) ~ 1 for} = 1, ... , n. 
i=1 

It is now easy to check that if X E Bmn satisfies (2.1) and (2.2), we obtain a feasible solution 
to the assignment problem. The objective function is min L~I L}=I cijxij. 

In the assignment problem the m + n elements are partitioned into disjoint sets of jobs 
and people. But in other models of this type, we cannot assume such a partition. Suppose 
2n students are to be assigned to n double rooms. Here each student must be assigned 
exactly one roommate. Let the ijth event, i <}, correspond to assigning students i and} 
to the same room; also suppose that there is a value of c ij when students i and} are 
roommates. The problem 

(2.3) {max
2I1 I CijXij: I Xki + I Xij = 1, i = 1, ... , 2n, X E Bn(2n-I)} 
i=i )=i+i k<i j>i 

is known as the perfect matching problem. We will see later that it is a generalization of the 
assignment problem. If the equality constraints in (2.3) are replaced by equal-to-or-Iess-
than inequalities, then the problem is called the matching problem. 

Each of the above problems fits into the context of CPO In the knapsack problem, N = 

{l, ... , n} and F E:JP if and only if LjEF aj ~ b. In the assignment problem, N = {ij: i = 

1, ... , m,} = 1, ... , n} and F E :JP if and only if IF n {i 1, ... , in} I = 1 for all i and 
IF n {l}" ... ,m}} I ::::; 1 for all}. 

Set-Covering, Set-Packing, and Set-Partitioning Problems 

A common way of defining gji leads to important classes of combinatorial optimization 
problems known as set-covering, set-packing, and set-partitioning problems. Let M = 
{l, ... , m} be a finite set and let {M) for j EN = {l, ... , n} be a given collection of 
subsets of M. For example, the collection might consist of all subsets of size 
k, for some k ~ m. We say that F ~ N covers M if UjEF M j = M. In the CP known as the 
set-covering problem, gji = {F: F covers M}. We say that F ~ N is a packing with respect to 
M if M j n Mk = 0 for all}, kEF,} * k. In the CP known as the set-packing problem, 
gji = {F: F is a packing with respect to 1\1}. If F ~ N is both a covering and a packing, then 
Fis said to be a partition of M. In the set-covering problem, c) is the cost of M) and we seek 
a minimum-cost cover; in the set-packing problem, however, Cj is the weight or value of M j 

and we seek a maximum-weight packing. 
These problems are readily formulated as 0-1 IPs. LetA be the m x n incidence matrix 

of the family (M) for} EN; that is, for i EM, 

{
I if} E F 

Xj = 0 if} $. F. 
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Then F is a cover (respectively packing, partition) if and only if x E En satisfies 
Ax ~ 1 (respectively Ax ~ 1, Ax = 1), where 1 is an m-vector all of whose components 
equal 1. We see, for example, that the set-packing problem is the special case of the 0-1 IP 
withA a 0-1 matrix (i.e., a matrix all of whose elements equal 0 or 1) and b = 1. Note that an 
assignment problem with m jobs and m people is a set-partitioning problem in which 
M = {l, ... ,m, m + 1, ... ,2m} and M j for} = 1, ... , m2 is a subset of M consisting of 
one job and one person. 

Many practical problems can be formulated as set-covering problems. A typical 
application concerns facility location. Suppose we are given a set of potential sites N = {I, 
... , n} for the location offire stations. A station placed at} costs Cj. We are also given a set 
of communities M = {I, ... , m} that have to be protected. The subset of communities 
that can be protected from a station located at} is M j • For example, M j might be the set of 
communities that can be reached from} in 10 minutes. Then the problem of choosing a 
minimum-cost set of locations for the fire stations such that each community can be 
reached from some fire station in 10 minutes is a set-covering problem. There are many 
other applications of this type, including assigning customers to delivery routes, airline 
crews to flights, and workers to shifts. 

3. MODELING WITH BINARY VARIABLES II: FACILITY LOCATION, 
FIXED-CHARGE NETWORK FLOW, AND TRAVELING SALESMAN 

The set-packing, set-partitioning, and set-covering models of the previous section illus-
trated how we can use linear constraints on binary variables to represent relationships 
among the variables or the events that they represent. A packing constraint, Lj Xj ~ 1, 
states that at most one of a set of events is allowed to occur. Similarly, covering and 
partitioning constraints state, respectively, that at least one and exactly one of the events 
can occur. Here we show how more complex relationships can be modeled with binary 
variables, and we also formulate some models that use these relationships. 

The relation that neither or both events 1 and 2 must occur is represented by the linear 
equality X2 - XI = 0 in the binary variables Xl and X2. Similarly, the relation that event 2 
can occur only if event 1 occurs is represented by the linear inequality X2 - Xl ~ O. More 
generally, consider an activity that can be operated at any level y, 0 ~ y ~ u. Now suppose 
that the activity can be undertaken only if some event represented by the binary variable x 
occurs. This relation is represented by the linear inequality y - ux ~ 0 since X = 0 implies 
y = 0 and x = 1 yields the original constraint y ~ u. We now consider two models that use 
this relationship. 

Facility Location Problems 

These problems, as does our illustration of the set-covering model, concern the location of 
facilities to serve clients economically. We are given a set N = {I, ... , n} of potential 
facility locations and a set of clients 1= {l, ... , m}. A facility placed at} costs Cj for} EN. 
This problem is more complicated than the set-covering application because each client 
has a demand for a certain good, and the total cost of satisfying the demand of client i from 
a facility at} is hi). The optimization problem is to choose a subset of the locations at which 
to place facilities and then to assign the clients to these facilities so as to minimize total 
cost. In the uncapacitated facility location problem, there is no restriction on the number 
of clients that a facility can serve. 

In addition to the binary variable Xj = 1, if a facility is placed at} and Xj = 0 otherwise, 
we introduce the continuous variable Yij, which is the fraction of the demand of client i 
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that is satisfied from a facility at }. The condition that each client's demand must be 
satisfied is given by 

(3.1) L Yij = 1 for i E I. 
JEN 

Moreover, since client i cannot be served from} unless a facility is placed at}, we have the 
constraints 

(3.2) Yij - Xj:::::; 0 for i E I and} EN. 

Hence the uncapacitated facility location problem is the MIP 

min L CjXj + L L hijYij 
JEN iEI JEN 

subject to the constraints (3.1), (3.2) and x E Bn, Y E R,:n. 
It may be unrealistic to assume that a facility can serve any number of clients. Suppose 

a facility located at} has a capacity of Uj and the ith client has a demand of bi. Now we let 
Y ij be the quantity of goods sent from facility} to client i and let h ij be the shipping cost per 
unit. To formulate the capacitated/acility location problem as an MIP, we replace (3.1) by 

(3.3) 

and (3.2) by 

(3.4) 

I Yij = hi for i E I, 
JEN 

L Yij - UjXj:::::; 0 for} EN. 
iEI 

The Fixed-Charge Network Flow Problem 

We are given a network (see Figure 3.1) with a set of nodes V (facilities) and a set of arcs d. 
An arc e = (i,}) that points from node i to node} means that there is a direct shipping 
route from node i to node}. Associated with each node i, there is a demand hi. Node i is a 
demand, supply, or transit point depending on whether bi is, respectively, positive, 
negative, or zero. We assume that the net demand is zero, that is, LiEV b i = O. Each arc (i,}) 
has a flow capacity U ii and a unit flow cost h ij. 

Let Y ij be the flow on arc (i, i). A flow is feasible if and only if it satisfies 

(3.5) 

(3.6) 

(3.7) 

Y E R'11 

Yo:::::; uij for (i,}) Ed 

L Yji - L Yij = bi for i E V. 
JEV JEV 

The constraints (3.7) are the flow conservation constraints. The problem 

(3.8) min{ L hijYij: Y satisfies (3.5), (3.6) and (3.7)} 
(i,j)Esd 

is known as the networkflow problem. It will be discussed in Chapter 1.3. 
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e = (i,j) j 

Figure 3.1 

The fixed-charge network flow problem is obtained by imposing a fixed cost of c ij if 
there is positive flow on arc (i,}). Now we introduce a binary variable xij to indicate 
whether arc (i,}) is used. The constraint Yij = 0 if Xij = 0 is represented by 

(3.9) Yij - uijxij ~ 0 for (i,}) E stl. 

Hence we obtain the formulation 

(3.10) min{ L (cijxij + hijYij): x E Bldl, Y E R':I satisfies (3.7), (3.9)}. 
(i,j)Ed 

The fixed-charge flow model is useful for a variety of design problems that involve 
material flows in networks. These include water supply systems, heating systems, and road 
networks. 

The formulations of the traveling salesman problem given below provide another 
example of the use of binary variables in the modeling of logical relations. They also 
exhibit another important property of integer programming formulations, namely, that it 
may be appropriate to use an extraordinarily large number of constraints in order to 
obtain a good formulation. 

The Traveling Salesman Problem 

We are again given a set of nodes V = {l, ... ,n} and a set ofarcsstl. The nodes represent 
cities, and the arcs represent ordered pairs of cities between which direct travel is possible. 
For (i,}) E stl, C ij is the direct travel time from city i to city}. The problem is to find a tour, 
starting at city 1, that (a) visits each other city exactly once and then returns to city 1 and 
(b) takes the least total travel time. 

To formulate this problem, we introduce variables x ij = 1 if} immediately follows i on 
the tour, x ij = 0 otherwise. Hence 

(3.11) 

The requirements that each city is entered and left exactly once are stated as 

(3.12) 2: xij = 1 for} E V 
u: (i,j)Ed) 
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and 

(3.13) I Xu = 1 for i E V. 
U:(i,j)Ed) 

The constraints (3.11)-(3.13) are not sufficient to define the tours since they are also 
satisfied by subtours; for example for n = 6, X12 = X23 = X31 = X4S = XS6 = X64 = 1 satisfies 
(3.11)-(3.13) but does not correspond to a tour (see Figure 3.2). 

One way to eliminate subtours is to observe that in any tour there must be an arc that 
goes from {l, 2, 3} to {4, 5, 6} and an arc that goes from {4, 5, 6} to {l, 2, 3}. In general, for 
any V C V with 2 ~ I VI ~ I VI - 2, the constraints 

(3.14) I Xu ~ 1 
{(i,j)Ed: iEU,jEV\U) 

are satisfied by all tours, but every subtour violates at least one of them. Hence the 
traveling salesman problem can be formulated as 

(3.15) min{ I CijXU: x satisfies (3.1l)-(3.14)}. 
(i,j)Ed 

An alternative to the set of constraints (3.14) is 

(3.16) I x u ~ I V I - 1 for 2 ~ I V I ~ I V I - 2, 
{(i,j)Ed: iEU,jEU} 

which also excludes all subtours but no tours. 
However, regardless of whether we use (3.14) or (3.16), the number of these constraints 

is nearly 21Vl. This huge number of constraints might motivate us to seek a more compact 
formulation. In fact, we will give such a formulation in Section 1.1.5. But we will argue that 
the compact formulation is inferior and we will show, in Parts II and III, that a very large 
number of constraints can frequently be handled successfully. 

4. MODELING WITH BINARY VARIABLES III: NONLINEAR FUNCTIONS 
AND DISJUNCTIVE CONSTRAINTS 

In this section, we present two important uses of binary variables in the modeling of 
optimization problems. The first concerns the representation of nonlinear objective 
functions of the form Lj !j(Yj) using linear functions and binary variables. The second 
concerns the modeling of disjunctive constraints. In the usual statement of an optimiza-
tion problem, it is assumed that all of the constraints must be satisfied. But in some 
applications, only one ofa pair (or, more generally, k ofm) constraints must hold. In this 
case, we say that the constraints are disjunctive. 

4 

~----------------~ 6 

Figure 3.2 
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Piecewise Linear Functions 

A function of the formf(Yb ... ,Yp) = ''II}=I jj(yJ is said to be a separable function. Here we 
consider separable objective functions and suppose thatjj(Yj) is piecewise linear for each} 
(see Figure 4.1). Note that an arbitrary continuous function of one variable can be 
approximated by a piecewise linear function, with the quality of the approximation being 
controlled by the size of the linear segments. 

Suppose we have a piecewise linear function f(y) specified by the points 
(ai,f(ai)} for i = 1, ... ,r. Then, any al ~ Y ~ ar can be written as 

r r 

Y = I Ai ai, I Ai = 1, A = (AI, ••• , Ar) E R:. 
i=1 i=1 

The Ai are not unique, but if ai ~ Y ~ ai+1 and A is chosen so that Y = Aiai + Ai+lai+1 and 
Ai + Ai+1 = 1, then we obtainf(y) = A!(aJ + Ai+1 f(ai+I)' In other words, 

r r 

(4.1) fey) = I Aif(ai), I Ai = 1, A E R: 
i=1 i=1 

if at most two of the A/S are positive and if Aj and Ak are positive, then k = } - 1 or} + 1. 
This condition can be modeled using binary variables Xi for i = 1, ... , r - 1 (where 
Xi = 1 if ai ~ Y ~ ai+1 and Xi = 0 otherwise) and the constraints 

Al ~XI 

Ai ~ X i-I + Xi for i = 2, . . . , r - 1 

(4.2) 

X E B r
-

I • 

Note that if xi = 1, then ;\ = 0 for i =1= {j,j + I}. 
Piecewise linear functions that are convex (concave) can be minimized (maximized) by 

linear programming because the slope of the segments are increasing (decreasing) (see 
Figure 4.2). But general piecewise linear functions are neither convex nor concave, so 
binary variables are needed to select the correct segment for a given value of y. 

f(y) 

~--------~----~----~------~--~------~y 

Figure 4.1 



12 1.1. The Scope of Integer and Combinatorial Optimization 

fey) 

~----------------------------------~y 

Figure 4.2. A convex piecewise linear function. 

Disjunctive Constraints 

Disjunctive constraints arise naturally in many models. A simple illustration is when we 
need to define a variable equal to the minimum of two other variables, that is, 
y = min(ul' U2). This can be done with the two inequalities 

together with one of two inequalities 

A typical disjunctive set of constraints states that a point must satisfy at least k of m sets 
of linear constraints. The case of k = 1, m = 2 is shown in Figure 4.3, where the feasible 
region is shaded. 

Suppose pi = {y ER~:Aiy ~ bi, y ~ d} for i = 1, ... , m. Notethatthereisa vectorw 
such that, for all i, A iy ~ bi + w is satisfied for any y, 0 ~ y ~ d. Hence there is a y 
contained in at least k of the sets pi if and only if the set 

(4.3) 

y~d 

Figure 4.3 
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is nonempty. This follows since Xi = 1 yields the constraint A iy ~ bi while Xi = 0 yields the 
redundant constraints A iy ~ bi + ro. 

When k = 1, an alternative formulation is 

A iyi ~ Xibi for i = 1, ... , m 

yi ~ X id for i = 1, ... , m 

(4.4) 

X E Bm, y E R~, yi E R~ for i = 1, ... ,m. 

Now we claim that UZ!,l pi =1= 0 if and only if(4.4) is nonempty. First, given thaty E UZ!,l pi, 
suppose without loss of generality that y E pl. Then a solution to (4.4) is Xl = 1, Xi = 0 
otherwise, yl = y, and yi = 0 otherwise. On the other hand, suppose (4.4) has a solution 
and, without loss of generality, suppose Xl = 1 and Xi = 0 otherwise. Then we obtain 
yi = 0 for i = 2, ... , m and y = yl. Thus y E pl and UZ!,l pi.=I= 0. 

The models (4.3) and (4.4) are quite different formulations of the same problem. This 
choice of formulation is typical. A significant issue to be discussed in the next section is 
what constitutes a good formulation? 

A Scheduling Problem 

Disjunctive constraints arise naturally in scheduling problems where several jobs have to 
be processed on a machine and where the order in which they are to be processed is not 
specified. Thus we obtain disjunctive constraints of the type either "job k precedesjob} on 
machine i" or vice versa. 

Suppose there are n jobs and m machines and each job must be processed on each 
machine. For each job, the machine order is fixed, that is, job} must first be processed on 
machine}(l) and then on machine}(2), and so on. A machine can only process one job at 
a time, and once a job is started on any machine it must be processed to completion. The 
objective is to minimize the sum of the completion times of all the jobs. The data that 
specify an instance of the problem are (a) m, n, andpij for} = 1, ... ,n and i = 1, ... ,m, 
which is the processing time of job} on machine i, and (b) the machine order, }(l), ... , 
}(m), for each job}. 

Let tij be the start time of job} on machine i. Since the (r + l)stoperation onjob) cannot 
start until the rth operation has been completed, we have the constraints 

(4.5) t}(r+l),} ~ t}(r),} + P}(r),} for r = 1, ... , m - 1 and all}. 

To represent the disjunctive constraints for jobs} and k on machine i, let X ilk = 1 if job} 
precedes job k on machine i andxi}k = 0 otherwise where} < k. Thus 
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and 

Given an upper-bound OJ on tij - tik + Pij for all i, j, and k, we obtain the disjunctive 
constraints 

(4.6) 
tij - tik ~ -Pij + W(l-Xijk) 

tik - tij ~ -Pik + OJXijk for all i,j and k. 

Hence the problem is to minimize L}=l tj(m),j subject to (4.5), (4.6), tij ~ 0 for all i andj and 
Xijk E {a, 1} for all i,j, and k. 

This model requires m G) binary variables. In contrast to the integer programming 
models introduced previously, this mixed-integer programming model has not been 
successfully solved for values of m and n that are of practical interest. This formulation, 
which is based on (4.3), is cumbersome partly because of the large number of binary 
variables needed to represent the large number of disjunctions. Note that a formulation 
based on (4.4) would also have a large number of binary variables. In fact, a large number 
of binary variables may be unavoidable for this scheduling problem. 

Good formulations are essential to solving integer programming problems efficiently. 
In the next section, we will give some reasons why some formulations may be better than 
others; we will also suggest how formulations can be improved. 

5. CHOICES IN MODEL FORMULATION 

We have formulated several integer optimization problems in this chapter to motivate the 
richness and variety of applications. Although a formulation may give insight into the 
structure of the problem, our goal is to solve the problem for an optimal or nearly optimal 
solution. As we have already indicated, most integer programming problems can be 
formulated in several ways. Moreover, in contrast to linear programming: 

In integer programming, formulating a "good" model is of crucial importance to 
solving the model. 

Indirectly, the subject of "good" model formulation is a major topic of this book and is 
closely related to the algorithms themselves (see Chapters 11.2 and 11.5). 

A model is specified by the variables, objective function, and constraints. Typically, 
defining the variables is the first question addressed in formulating a model. Often the 
variables are chosen simply from the definition of a solution. That is a solution specifies 
the values of certain unknowns, and we define a variable for each unknown. Once the 
variables and an objective function have been defined, say in an IP, we can speak of an 
implicit representation of the problem 

max{cx: xES C Z~}, 

where S represents the set of feasible points in Z~. Now we say that 
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max{ex: Ax ~ b, X E Z~} 

is a valid IP formulation if S = {x E Z1: Ax ~ b}. 
In general, when there is a valid formulation, there are many choices of (A, b), and it is 

usually easy to find some (A, b) that yields one. But an obvious choice may not be a good 
one when it comes to solving the problem. We believe that the most important aspect of 
model formulation is the choice of (A, b). 

The following example illustrates different representations of an S ~ Z1 by linear 
inequality and integrality restrictions. 

Example 5.1 

S = {(OOOO), (l000), (0100), (0010), (0001), (0110), (0101), (001l)} ~ B4. 

The reader can easily check that 

(a) 

gives a valid formulation. Two other formulations that are easily established to be valid 
are: 

(b) S = {x E B4: 2XI + X2 + X3 + X4 ~ 2} 

(c) S = {x E B4: 2XI + X2 + X3 + X4 ~ 2 

Xl + X2 ~ 

Xl + X3 ~ 

Xl + X4 ~ 1}. 

We will see that, in a certain sense, formulation (b) is better than (a), and (c) is better than 
(b). 

How should we compare different formulations? Later we will see that most integer 
programming algorithms require an upper bound on the value of the objective function, 
and the efficiency of the algorithm is very dependent on the sharpness of the bound. An 
upper bound is determined by solving the linear program 

ZLP = {max ex: Ax ~ b, X E R1} 

since P = {x E R1 :Ax ~ b} 2 S. Now given two valid formulations, defined by (A i, bi) 
for i = 1, 2, let pi = {X E R1:A iX ~ bi} and zLp = max{ex: X E Pi}. Note that if pI ~ p2, 

then z Lp ~ Z[p. Hence we get the better bound from the formulation based on (A I, b I) and 
we say that it is the better formulation. We leave it to the reader to check that in Example 
5.1, formulation (c) gives a better bound than (b), which, in turn, gives a better bound than 
(a). 

A striking example of one formulation being better than another, in the sense just 
described, is provided by the uncapacitated facility location problem. We obtain a 
formulation with fewer constraints than the one given in Section 3 by replacing (3.2) with 

(5.1) 2 Yij - mXj ~ 0 for all} EN. 
iEI 
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When Xj = 0, (5.1) says that no clients can be served from facility); and when Xj = 1, there 
is no restriction on the number of clients that can be served from facility). In fact, by 
summing (3.2) over i E I for each), we obtain (5.1). Although with x E Bn

, (3.2) and (5.1) 
give the same set offeasible solutions, with x E R~, (3.2) gives a much smaller feasible set 
than (5.1). Our ability to solve the formulation with (3.2) is remarkably better than with 
the more compact formulation that uses (5.1). 

We belabor this point because it is instinctive to believe that computation time 
increases and computational feasibility decreases as the number of constraints increases. 
But, trying to find a formulation with a small number of constraints is often a very bad 
strategy. In fact, one of the main algorithmic approaches involves the systematic addition 
of constraints, known as cutting planes (see Part II). 

A nice illustration of the suitability of choosing (A, b) with a very large number of rows 
concerns the traveling salesman problem. In Section 3, we gave two different sets of 
constraints, (3.14) and (3.16), for eliminating subtours. Both formulations contain a huge 
number of constraints, far too many to write down explicitly. Nevertheless, algorithms for 
the traveling salesman problem that solve these formulations have been successful on 
problems with more than 2000 cities. On the other hand, there is a more subtle way of 
eliminating subtours that only requires a small number of constraints. 

Let U E Rn
-

l and consider the constraints 

(5.2) 

Ifx E Bldl satisfies (3.12) and (3.13) and does not represent a tour, then x represents at least 
two subtours, one of which does not contain node 1. By summing (5.2) over the arc setd' 
of some subtour that does not contain node 1, we obtain 

(5.3) I Xij ~ 1.91' I· (1 - lIn). 
(i,j)Ed' 

Thus (5.2) excludes all subtours that do not contain node 1 and hence excludes all 
solutions that contain subtours. 

Now we prove that no tours are excluded by (5.2) by showing that for any tour there 
exists a corresponding U satisfying (5.2). In particular, we set Uj = k, where k is the position 
(2 ~ k ~ n) of node i in the tour. Now if xij = 0, Uj - Uj + nXij ~ n - 2, while if 
xij = 1, Uj = k and Uj = k + 1 for some k, and so Uj - Uj + nXij = n - 1. Hence {x E Bldl: x 
satisfies (3.12), (3.13), and (5.2)} is the set of incidence vectors of tours. 

Now let pI = {x E Rifl: x satisfies (3.12), (3.13), (3.16)} and p2 = {x E Rif': x satisfies 
(3.12), (3.13), and (5.2) for some u}. It is easy to see that p2 $: pl. For example, if n ~ 4, 
then U2 = U3 = U4 = 0 and X23 = X34 = X42 = (n - l)/n > j satisfies (5.2) but not (3.16). In 
fact, it can be shown that pI ~ p2. 

We have emphasized the choice of constraints in obtaining a good formulation, given 
that the variables have already been defined, because for most problems this is the part of 
the formulation where there is the greatest freedom of choice. There are, however, 
problems in which the quality of the formulation depends on the choice of variables. 

In our formulation of network flow problems, we defined the variables to be the arc 
flows. However, in certain situations it is more advantageous to define variables that 
represent the flow on each path between two given nodes. Such a formulation involves 
many more variables but eliminates the need for some flow conservation constraints and 
can be preferable for finding integral solutions. 

We now give two radically different formulations of a production lot-sizing problem 
that depend on the choice of variables. The object is to minimize the sum of the costs of 
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production, storage, and set-up, given that known demands in each of T periods must be 
satisfied. For t = 1, ... , T, let dt be the demand in period t, and let Ct, Pt,and ht be the set-
up, unit production, and unit storage costs, respectively, in period t. 

One formulation is obtained by defining Y t, S t as the production and end storage in 
period t and by defining a binary variable x t, indicating whether Y t > 0 or not. This leads to 
the model 

(5.4) 

T 

minI (PIYt + htSt + CtXt) 
t=1 

Yl=d 1 +S1 

St-I+Yt=dt+st fort=2, ... , T 

for t = 1, ... , T 

where w = 'LT::1 dt is an upper bound on Y t for all t. 
A second possibility is to define q it as the quantity produced in period i to satisfy the 

demand in period t ~ i, and X t as above. Now we obtain the model 

T t T 

minI I (Pi + hi + hi+l + ... + ht- 1)qit + I CtXt 
(=1 i=1 (=1 

(5.5) 
for t = 1, ... , T 

qit ~ dtXi for i = 1, ... , T and t = i, ... , T 

In (5.5) if we replace x E BT by 0 ~ X t ~ 1 for all t, then the resulting linear program-
ming problem has an optimal solution with x E jjT. But this is not necessarily the case 
for (5.4), which is the inferior formulation for soliving the problem by certain integer 
programming techniques. It is interesting to observe that (5.5) is a special case of the 
uncapacitated facility location problem. This can be seen by substituting Yit = q it/dt for all 
i and t ~ i. 

There is a similar result for the formulations (4.3) and (4.4) for finding a point that 
satisfies one of m sets oflinear constraints. In (4.4), one can replace the condition x E B m 

with 0 ~ x ~ 1 and use linear programming to find a point in one of the pi. But this is not 
true for (4.3), which is therefore considered to be the inferior formulation. 

6. PREPROCESSING 

Given a formulation, preprocessing refers to elementary operations that can be performed 
to improve or simplify the formulation by tightening bounds on variables, fixing values, 
and so on. Preprocessing can be thought of as a phase between formulation and solution. It 
can greatly enhance the speed of a sophisticated algorithm that might, for example, be 
unable to recognize the fact that some variable can be fixed and then eliminated from the 
model. Occasionally a small problem can be solved in the preprocessing phase or by 
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combining preprocessing with some enumeration. Although this approach had been 
advocated as a solution technique in the early development of integer programming, 
under the name of implicit enumeration, this is not the important role of these simple 
techniques. Their main purpose is to prepare a formulation quickly and automatically for 
a more sophisticated algorithm. Unfortunately, it has taken a long time for researchers to 
recognize the fact that there is generally a need for both phases in the solution of practical 
problems. 

Tightening Bounds 

We have seen that a common constraint in MIPs is Yj ~ Ujxj, where Uj is an upper bound 
on Yj and Xj is a binary variable. Provided thatxj E CO, 1}, the tightness of the upper bound 
doesn't matter. But if we replace Xj E CO, 1} by 0 ~ Xj ~ 1, it becomes important to have a 
tight bound. Suppose, for example, that the largest feasible value of Yj is u; < U j and that 
there is a fixed costjj > 0 associated with Xj' If Yj = u; in an optimal solution, and we use 
the constraint Yj ~ Ujxj, we will obtain Xj = u;/Uj < 1. On the other hand, if we use the 
constraint Yj ~ U ;Xj' we obtain Xj = 1. 

In some cases, good bounds can be determined analytically. For example, in the lot-
sizing problem, rather than using a common bound for each Y t, it is more efficient to use 
the bounds Yt ~ Cr.!::t dJxt. In general, tight bounds can be determined by solving a linear 
program with the objective of maximizing Yj. Doing this for each variable with an upper 
bound constraint may be prohibitively time consuming, so a good compromise is to 
approximate the upper bounds heuristically. 

Example 6.1. We show a fixed-charge model in Figure 6.1 with the accompanying 
formulation: 

= 1.46 

= 0.72 

- Y2 - Y3 + Ys =0 

Y6 = 0.32 

- Ys - Y6 + Y7 = 0 

where (j) is a large positive number because the arcs do not have capacity constraints. 
It is easy to tighten the bounds, giving 

Yl ~ 1.46xI, Y2 ~ 1.46x2 

Y3 ~ 0.72x3, Y4 ~ 0.72x4 

Ys ~ (1.46 + 0.72)xs 

Y6 = 0.32 

Y7 ~ (1.46 + 0.72 + 0.32)X7' 

In addition, we can set X6 = X7 = 1 because the flow into node 7 must use these arcs. 
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1.46 

0.72 
Y2 

Y3 
3~--~ 

0.32 

Figure 6.1 

Adding Logical Inequalities, Fixing Variables, and Removing Redundant Constraints 

Preprocessing of this sort is most useful for binary IPs. Consider a single inequality in 
binary variables, that is, S = {x E Bn: LjEN ajxj ::S; b}. If aj < 0, we can replace Xj by 1 - x; 

and obtain the constraint LjEN:aj>o ajxj + LjEN:aj<O I aj I xj ~ b - LjEN:aj<O aj. Thus without 
loss of generality, we can assume that aj > ° for j EN. Now if LjEC aj > b for C ~ N, we 
obtain the inequality 

(6.1) I Xj::S; ICI - 1. 
jEe 

Obviously, the best inequalities of this type are obtained when LjEC\{k} aj ::S; b for all k E C. 
Once some inequalities of this type have been obtained, it may be possible to combine 

some of them to fix variables. For example, XI + X2 ::S; 1 andxl + (l - X2) ~ 1 yield XI = 0. 
The application of these simple ideas is easy to see by considering an example. 

Example 6.2 

3x~ + 2x~ ::S; 3) 

-4xl - 3xz - 3X3 ~ -6 (4xi + 3xz + 3X3 ~ 4) 

2Xl - 2Xl + 6X3::S; 5 (2Xl + 2Xl + 6X3 ~ 7) 

xEB3. 

The first constraint yields Xl + x~ ~ 1 or Xz + X3 ~ 1. The third constraint yields 
Xl + X3 ~ 1 or X3 ~ Xl. Combining these two yields Xl = 1. Now the first constraint is 
redundant and the second and third reduce to 4x~ + 3X3 ~ 4 and 2xr + 6X3 < 7. From 
these two, we obtain Xl + X3 ::S; 1 and Xl + X 3 ::S; 1, or Xl + X 3 = 1. Thus, by substitution, we 
can eliminate either X 1 or X 3. 
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Other simplifications of this type are considered as exercises. 
A second stage of preprocessing can be carried out after an upper bound has been 

obtained by linear programming. In particular, variables can be fixed by using the reduced 
prices that are obtained from a linear programming solution (see Section 11.5.2). 

7. NOTES 

Section 1.1.1 

Here we list bibliographies, other books, proceedings, and some of the main journals that 
contain a great deal of material on integer programming and/or combinatorial optimiza-
tion. Four volumes of comprehensive bibliographies on integer programming have been 
prepared at Bonn University [see Kastning (1976), Hausmann (1978) and von Randow 
(1982, 1985)]. Each volume contains an alphabetical listing by authors, a subject classifica-
tion, and a third part that enables one to find items by an author who is not listed first. The 
first volume contains items published through 1975 and includes 4704 entries classified 
under 41 subject headings. The last volume covers items published in the period 1981-
1984 and contains 4751 entries classified under 50 subject headings. A much briefer, but 
annotated, bibliography is the subject ofO'hEigertaigh et al. (1985). 

Several books on integer programming and combinatorial optimization have appeared 
in the 1980s. In chronological order, these are Papadimitriou and Steiglitz (1982), Gondran 
and Minoux (1984), Lawler, Lenstra et al. (1985), Schrijver (1986a), and Grotschel, Lovasz, 
and Schrijver (1988). Papadimitriou and Steiglitz emphasize algorithms and computa-
tional complexity from the point of view of computer scientists. Gondran and Minoux 
also stress algorithms and focus on problems associated with graphs. Lawler et al. is 
restricted to the traveling salesman problem, but we mention it here because of the 
prominent role played by the traveling salesman problem as a generic difficult combina-
torial optimization problem. Schrijver gives an encyclopedic treatment of the theory of 
linear and integer programming from the polyhedral point of view. Grotschel et al. is a 
monograph whose subject matter is motivated by the consequences of ellipsoid algorithms 
in combinatorial optimization. It also contains information on algorithmic approaches to 
problems in geometric number theory. The applications of this branch of mathematics in 
discrete optimization have just begun to be investigated. 

Earlier general textbooks on integer programming are Hu (1969), Greenberg (1971), 
Garfinkel and Nemhauser (1972a), Salkin (1975), and Taha (1975). Lawler (1976) 
emphasizes the roles of network flows and matroids in combinatorial optimization. 
Christofides (1975a) studies a variety of combinatorial optimization problems associated 
with graphs. Johnson (1980a) is a monograph on integer programming theory that 
emphasizes subadditivity and group theory. 

Beale (1968) and Williams (1978a) are general texts on mathematical programming that 
are of some interest here because they emphasize modeling and problem formulation. 

General survey articles appeared early in the development of the field [see Beale (1965), 
Balinski (1965, 1967, 1970a), Balinski and Spielberg (1969), Garfinkel and Nemhauser 
(1973), Geoffrion and Marsten (1972) and Geoffrion (1976)]. Some recent surveys on 
combinatorial optimization are by Klee (1980), Pulleyblank (1983), Schrijver (1983a), and 
Grotschel (1984); Grotschel (1985) gives an annotated bibliography. More specialized 
surveys will be cited in the appropriate chapters. 

Numerous proceedings and study volumes have been devoted to integer and combina-
torial optimization. These include Balinski (1974), Hammer, Johnson, Korte, and 
Nemhauser (1977), Balinski and Hoffman (1978), Hammer, Johnson, and Korte 
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(1979a,b), Christofides, Mingozzi et al. (1979), Padberg (1980a), Hansen (1981), Pulley-
blank (1984), and Monma (1986). The Hammer, Johnson, and Korte volumes and the 
book by Christofides et al. are collections of surveys. For the most part, the others are 
collections of research articles that complement the journals that contain a substantial 
number of papers on integer programming and combinatorial optimization. 

Some of the more prominent j ournals published in English are Mathematical Program-
ming, Mathematical Programming Studies, Operations Research, Operations Research 
Letters, Annals of Operations Research, Networks, SIAM Journal on Algebraic and 
Discrete Methods, Discrete Mathematics, Discrete Applied Mathematics, Annals of 
Discrete Mathematics, Combinatorica, Journal of the Associationfor Computing Machin-
ery, Management Science, Operational Research Quarterly, The European Journal of 
Operations Research, Naval Research Logistics Quarterly, lIE Transactions, and Trans-
portation Science. 

The scope of each of these journals relative to their coverage of integer and combina-
torial optimization is difficult to specify. A rough guideline is the following. The first five 
purport to cover the subject broadly, although there is unfortunately a dearth of papers on 
applications. The same can be said for Networks within its more narrowly defined scope of 
problems. The next five emphasize theory. The remainder contain some methodology 
oriented toward specific models and a few applications. 

The periodical Interfaces publishes an annual issue on successful case studies in 
operations research and management science. Some of these studies involve the use of 
integer programming techniques. Applications of integer programming are also discussed 
in journals of finance, marketing, production, economics, and the various branches of 
engineering. 

Sections 1.1.2-1.1.4 

Dantzig (1957, 1960) formulated several integer programming models and showed how a 
variety of nonlinear and nonconvex optimization problems could be formulated as 
mixed-integer programs. References on the models presented in these sections will be 
given in the notes for the chapters in which the models are discussed in detail. In 
particular, knapsack problems are considered in Sections 11.2.2 and 11.6.1, matching 
problems are discussed in Chapter 111.2, set covering is presented in Section 11.6.2 and 
Chapter II1.1, fixed-charge network problems are considered in Sections 11.2.4 and 11.6.4, 
and the traveling salesman problem is discussed in Sections 11.2.3 and 11.6.3. 

Section 1.1.5 

Strong formulations is one of the major themes of this book. See Williams (1974, 1978b) 
and Jeroslow and Lowe (1984) for a comparison of alternative formulations for some 
general integer programs. 

Systematic reformulation of knapsack problems was treated by Bradley et al. (1974). 
Formulation (5.2) appears in Miller et al. (1960). The strength of reformulation (5.5) was 
shown by Krarup and Bilde (1977), and that of the disjunctive formulation (4.4) was 
shown by Balas (1979). Many other citations will be made in the notes for Chapters 11.2, 
11.5, and 11.6. 

Section 1.1.6 

Preprocessing techniques are frequently attributed to folklore because the references are 
difficult to pin down. Bound tightening, variable fixing, and row elimination schemes 
used in mathematical programming systems are discussed in Brearley et al. (1975). 
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Preprocessing techniques that use boolean inequalities have been studied by Guignard 
and Spielberg (1977, 1981). Also see Guignard (1982), Johnson and Suhl (1980), Crowder, 
Johnson, and Padberg (1983), Johnson and Padberg (1983), and Johnson, Kostreva, and 
Suhl (1985). 

8. EXERCISES 

1. Show that the integer program with irrational data max{x 1 - (2)1/2X2: 
Xl ~ (2)1/2x2, Xl ~ 1, X E Z~) has no optimal solution, even though there exist 
feasible solutions with value arbitrarily close to zero. 

2. The BST Delivery Company must make deliveries to 10 customers whose respective 
demands are dj for} = 1, ... , 10. The company has four trucks available with 
capacities Lk and daily operating costs Ck for k = 1, ... ,4. A single truck cannot 
deliver to more than five customers, and customer pairs {l, 7}, {2, 6}, and {2, 9} 
cannot be visited by the same truck. Formulate a model to determine which trucks to 
use so as to minimize the cost of delivering to all the customers. 

3. An airline has fixed its daily timetable for flights between five cities. It now has the 
problem of scheduling the crews. There are certain legal limits on how much time 
each crew can work within any 24-hour period. The problem is to propose a crew 
schedule using the minimum number of crews in which each flight leg is covered. 
Formulate a generic problem of this type as a set covering problem. 

4. The DuFour Bottling Company has two machines for its bottle production. The 
problem each year is to devise a maintenance schedule. Maintenance of each 
machine lasts 2 months. In addition, only half the workforce is available in July and 
August, so that only one machine can be used during that period. Monthly demands 
for bottles are dt , t = 1, ... , 12. Machine k, k = 1, 2, produces bottles at the rate of 
ak bottles per month but can produce less. There is also a labor constraint. Machine 
k requires h labor days to produce ak, and the total available days per month are L t 

for t = 1, ... , 12. Formulate the problem offinding a feasible maintenance schedule 
in which all demands are satisfied. Modify your formulation to handle the following 
objectives. 

i) Minimize the sum of the monthly fluctuations in labor utilization. 

ii) Minimize the largest monthly fluctuation. 

5. Integer and mixed-integer programming models are used on Wall Street to select 
bond portfolios. The idea is to pick a mix of bonds to maximize average yield subject 
to constraints on quality, length of maturity, industrial and government percentages, 
and total budget. Integrality arises because certain bonds only come in 100-unit lots. 
Formulate a model for this generic problem. 

6. A company has two products k = 1, 2, one factory, two distribution centers i = 1, 2, 
and five major clients} = 1, ... , 5 whose product demands djk are known. The 
company must decide which products should be handled by each center and how 
each client should be serviced. The problem is to minimize total costs, where the 
costs include: 

i) a fixed costhk if product k is handled by distribution center i; 

ii) fixed coStShjk if the demand of client} for product k is satisfied by center i; and 
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iii) unit shipping costs C ijk per unit of product k shipped to client} via center i. 

How does your model change if demands can be split between distribution centers? 

7. Formulate the traveling salesman problem using the variables Xijb where Xijk = 1 if 
(i, }) is the kth arc of the tour and x ijk = 0 otherwise. 

8. a) Given a graph G = (V, E) with weights We for e E E, formulate the following 
problems (see Chapter 1.3 for some of the definitions) as integer programs. 

i) Find a maximum-weight tree. 

ii) Find a maximum-weight s-t cut. 

iii) Find a minimum-weight covering of nodes by edges. 

iv) Find a maximum-weight cycle with an odd number of edges. 

v) Find a maximum-weight bipartite subgraph. 

vi) Find a maximum-weight eulerian subgraph. 

b) Given a graph G = (V, E) with weights Cj for} E V, formulate the following 
problems. 

i) Find a maximum-weight clique. 

ii) Find a minimum-weight dominating set (a set of nodes U ~ V such that 
every node of V is adjacent to some node in U). 

9. Suppose k trucks can be used to serve n clients from a single depot. Each client must 
be visited once. The time for truck k to travel from i to} is C ijk. The tour of each truck 
cannot take longer than L k• Formulate the problem of finding a feasible schedule. 

10. Consider the quadratic 0-1 knapsack problem 

By introducing a variable Yij to represent XiXj, reformulate the problem as a linear 
mixed-integer programming problem. 

11. Show that the BIP max{cx: Ax ~ b, x E En} may be solved by solving the quadratic 
program 

max{cx - MxT(l - x): Ax ~ b, 0 ~ Xj ~ 1 for all}}, 

where M is a large positive number. Given A, b, c, how large should M be? 

12. Let H E R'J!xn and C E R~. Let [!F be the collection of all the nonempty subsets of 
{l, 2, ... , n}. For FE [!F define 

m 

z(F) = I IJ?ax h ij - I Cj. 
i=l JEE jEF 

i) Show that the problem max{z(F): FE [!F} can be formulated as the following 
integer program: 
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m n n 

max I I hijYij - I CjXj 
i=1 j=1 j=1 

m 

I Y ij = 1 for i = 1, ... , m 
j=1 

Y ij ~ Xj for i = 1 , ... , m and j = 1, ... , n 

ii) Show that the problem max{z(F): F E ~) can also be formulated as the integer 
program: 

m n 

max I U i-I CjXj 
i=1 j=1 

n 

Ui ~ hik + I (hi} - hiktXj for k = 0, ... , nand i = 1, ... , m 
j=' 

U E R'J}, 

where a+ denotes max(O, a) and h iO = ° for i = 1, ... , m. 

13. Consider the scheduling problem of Section 4 with only one machine. Each job has 
processing time Ph a deadline dh and a weight Wj > 0. 

i) Formulate the problem of finding a feasible schedule in which the weighted sum 
of completion times is minimized. Avoid using ()) as in (4.6) by writing an exact 
expression for the finish time of job j. 

ii) Give an alternative formulation using the variables Xjl' where Xjl = 1 if job j is 
completed at time t. (Assume Ph dj are integers). 

14. Suppose the departure times of trucks A and B have to be scheduled. Each truck can 
leave at 1, 2, 3, or 4 p.m. Truck B cannot leave until at least 1 hour after truck A. Let 
Xi (Yi) = 1 if truck A (B) leaves at time i. Give two formulations of the feasible region 
and compare them. 

15. Show that 

s = {x E B4: 97x, + 32x2 + 25x3 + 20X4 ~ 139) 

= {x E B4: 2x I + X 2 + X 3 + X4 ~ 3) 

X,+ X2+ X3 
XI + X3+ 
XI+ X2+ + 

Which formulation do you think is most effective for solving max{cx: xES}? 
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16. Consider the 0-1 feasible region 

s = { x E En: j~ ajXj ,,; b} with aj, b E Zl for j E N. 

Formulate as an integer program the problem of finding weights cj, d E zl such that 

and d is minimized. Formulate and solve the example with 

17. Consider the two formulations of the traveling salesman problem in Section 5. Show 
that PI C P2• 

18. To show that (4.4) gives a tight formulation ofU7!l Pi when 

let 

and 

i) Show that ify* E U~l Pi, there exists (yi, x) such that (yi, y*, x) E T**. 

ii) Show that if (yi, y*, x) E T**, then y* E U~l Pi. 

iii) Show that if(yi, y*, x) E T*, then y* E conv(U~l Pi)' 

iv) What difficulties can arise if the polyhedra Pi are unbounded, that is, the 
constraints z ~ d are not present? 

19. Given a linear inequality in 0-1 variables and the region 

s = {x E B/N I/+/N2
/. " ax· - " ax· ~ b} 'L)) L)) 

JEN1 jEN2 

where aj > 0 for j EN} U N 2, write necessary and sufficient conditions for 

i) S = 0, 

ii) S = En, 

iii) Xj = 0 

iv) Xj = 1 

for all xES, 

for all xES, 



26 1.1. The Scope of Integer and Combinatorial Optimization 

v) Xi + X) ~ 1 for all xES, 

vi) Xi ~ Xi for all xES, and 

vii) Xi + Xi ~ 1 for all xES. 

20. If x E Bn, what is implied by 

i) Xi + x) ~ 1 and X i ~ xh 

ii) Xi + Xi ~ 1 and Xi + Xi ~ 1, and 

iii) Xi ~ x) and Xj + Xk ~ 1 ? 

21. Use the results of Exercises 19 and 20 to solve the following problem without having 
recourse to enumeration: 

max 2x, - 2X2 + 3X3 + lx4 + 2X5 

7x, + 3X2 + 9X3 - 2X4 + 2X5 ~ 7 

-6x, + 2X2 - 3X3 + 4X4 + 9X5 ~ -2 

xEB5. 
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