
1.2 
Linear Programming 

1. INTRODUCTION 

The general linear programming problem is 

(LP) ZLP = max{cx: Ax ~ b, x E R~}, 

where the data are rational and are given by the m x n matrix A, the 1 x n matrix c, and the 
m x 1 matrix b. This notation is different from that of Section I.1.1 but is preferable here 
because of its widespread use in linear programming. Recall that, as we observed in 
Section 1.1.1, equality constraints can be represented by two inequality constraints. 

Problem LP is well-defined in the sense that if it is feasible and does not have 
unbounded optimal value, then it has an optimal solution. 

A good understanding of the theory and algorithms of linear programming is essential 
for understanding integer programming for several reasons that can be summed up by the 
statement that "one has to learn to walk before one can run". Integer programming is a 
much harder problem than linear programming, and neither the theory nor the computa­
tional aspects of integer programming are as developed as they are for linear program­
ming. So, first of all, the theory of linear programming serves as a guide and motivating 
force for developing results for integer programming. 

Computationally, linear programming algorithms are very often used as a subroutine in 
integer programming algorithms to obtain upper bounds on the value of the integer 
program. Let 

(IP) ZIP = max{cx: Ax ~ b, x E Z~} 

and observe that ZLP ~ ZIP since Z~ C R~. The upper bound ZLP sometimes can be used to 
prove optimality for IP; that is, if XO is a feasible solution to IP and cxo = Z LP, then XO is an 
optimal solution to IP. 

A deeper connection between linear and integer programming is that corresponding to 
any integer programming problem there is a linear programming problem max{cx: Ax 
~ b, A IX ~ b l , X E R~} that has the same answer as IP. 

Our presentation oflinear programming is by necessity very terse and is not intended as 
a substitute for a full treatment. The reader who has already studied linear programming is 
advised to scan this section to become familiar with our notation or, perhaps, to review an 
unfamiliar topic. 

In the next section, we consider the duality theory of linear programming which, 
among other things, provides necessary and sufficient optimality conditions. In the 
following two sections, we present algorithms for solving linear programs. 
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28 1.2. Linear Programming 

The simplex algorithms are used to prove the main duality theorem and also to show 
that every feasible instance of LP that is not unbounded has an optimal solution. But, 
more importantly, they are the practical algorithms that are part of linear programming 
software systems and many integer programming software systems as well. The perform­
ance of simplex algorithms, observed over years of practical experience, shows that they 
are very robust and efficient. Typically the number of iterations required is a small 
multiple of m. Although there exist simplex algorithms that converge finitely, these are 
inefficient; and the ones used in practice can fail to converge. Moreover, there are 
examples which show that finitely convergent simplex algorithms may require an expo­
nential number of iterations. But this bad behavior does not seem to occur in the solution 
of practical problems. 

Section 4 deals with subgradient optimization. There are convergent subgradient 
algorithms, but, as described, they are not finite. However, on certain classes of linear 
programs that arise in solving integer programs, they tend to produce good solutions very 
quickly. 

In Chapter 1.6, we consider two other linear programming algorithms. These have been 
deferred to a later chapter because some of the motivation for considering them concerns 
the theoretical complexity of computations, which is studied in Chapter 1.5. 

2. DUALITY 

Duality deals with pairs of linear programs and the relationships between their solutions. 
One problem is called the primal and the other the dual. 

We state the primal problem as 

(P) ZLP = max{ex: Ax ~ b, x E R~}. 

Its dual is defined as the linear program 

(D) WLP = min{ub: uA ~ e, u E R':}. 

It does not matter which problem is called the primal because: 

Proposition 2.1. The dual of the dual is the primal. 

Proof To take the dual of the dual, we need to restate it as a maximization problem 
with equal-to-or-Iess-than constraints. Once this is done, the result follows easily. We leave 
the details to the reader. • 

Feasible solutions to the dual provide upper bounds on ZLP and feasible solutions to the 
primal yield lower bounds on WLP. In particular: 

Proposition 2.2 (Weak Duality). If x* is primal feasible and u· is dual feasible, then 
ex* ~ ZLP ~ WLP ~ u*b. 

Proof ex* ~ u*Ax* ~ u*b, where the first inequality uses u*A ~ e andx* ~ 0, and the 
second uses Ax· ~ band u* ~ 0. Hence WLP ~ ex for all feasible solutions x to P, and 
ZLP ~ ub for all feasible solutions u to D, so that WLP ~ ZLP. • 

Corollary 2.3. If problem P has unbounded optimal value, then D is infeasible. 
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Proof By weak duality, WLP ;::: A for all A E R I. Hence D has no feasible solution. • 

We now come to the fundamental result oflinear programming duality, which says that 
if both problems are feasible their optimal values are equal. A constructive proof will be 
given in the next section. 

Theorem 2.4 (Strong Duality). If ZLP or WLP is finite, then both P and D have finite 
optimal value and ZLP = WLP. 

Corollary 2.5. There are only four possibilities for a dual pair of problems P and D. 

i. ZLP and WLP arefinite and equal. 
ii. ZLP = 00 and D is infeasible. 

111. WLP = -00 and P is infeasible. 

iv. Both P and D are infeasible. 

A problem pair with property iv is max{xi + X2: XI - X2 ~ -1, -Xl + X2 ~ -1, X E R~} and 
its dual. 

Another important property of primal-dual pairs is complementary slackness. Let 
s = b - Ax ;::: 0 be the vector of slack variables of the primal and let t = uA - c ;::: 0 be the 
vector of surplus variables of the dual. 

Proposition 2.6. If x* is an optimal solution ofP and u* is an optimal solution ofD, then 
x/,lj*= 0 for all j, and uisi= 0 for all i. 

Proof Using the definitions of s* and t*, we have 

cx* = (u*A - t*) x* = u*Ax* - t*x* 

= u*(b - s*) - t*x* = u*b - u*s* - t*x*. 

By Theorem 2.4, cx* = u*b. Hence u*s* + t*x* = 0 with u*, s*, t*, x* ;::: 0 so that the result 
follows. • 

Example 2.1. The dual of the linear program 

(P) 

is 

(D) 

ZLP = max 7xI + 2X2 

-XI + 2X2 ~ 4 

5Xl + X2 ~ 20 

-2Xl - 2X2 ~-7 

xER~ 

WLP = min 4uI + 20U2 - 7U3 

-u, + 5U2 - 2U3;::: 7 

2u I + U2 - 2U3 ;::: 2 

u ERI. 
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It is easily checked that x* = (if 1¥) is feasible in P, and hence Z LP ~ cx* = 30ft-. 
Similarly, u* = (n -if 0) is feasible in D, and hence, by weak duality, ZLP ~ u*b = 30n-. 
The two points together yield a proof of optimality, namely, x* is optimal for P and u* is 
optimal for D. 

Note also that the complementary slackness condition holds. The slack variables in P 
are (sT, s~, sj) = (0 0 6-&), and the surplus variables in Dare (tT, t~) = (0 0). Hence 
xjtj= 0 for} = 1,2 and u7s7= 0 for i = 1,2,3. • 

It is important to be able to verify whether a system of linear inequalities is feasible or 
not. Duality provides a very useful characterization of infeasibility. 

Theorem 2.7 (Farkas' Lemma). Either {x E R~: Ax ~ b} =1= 0 or (exclusively) there 
exists v ERr: such that vA ~ 0 and vb < O. 

Proof Consider the linear program ZLP = max{Ox: Ax ~ b, x E R~} and its dual 
WLP = min{vb: vA ~ 0, v E R':}. As v = 0 is a feasible solution to the dual problem, only 
possibilities i and iii of Corollary 2.5 can occur. 

i. ZLP = WLP = O. Hence {x E R~: Ax ~ b} =1= 0 and vb ~ 0 for all v ERr: with vA ~ 0; 

iii. ZLP = WLP = -00. Hence {x E R~: Ax ~ b} = 0 and there exists v ERr: with vA ~ 0 
and vb < O. • 

There are many other versions of Farkas' Lemma. Some are presented in the following 
proposition. 

Proposition 2.8. (Variants of Farkas' Lemma) 

a. Either {x E R~: Ax = b} =1= 0, or {v E Rm: vA ~ 0, vb < O} =1= 0. 

b. Either {x ERn: Ax ~ b} =1= 0, or {v E R':: vA = 0, vb < O} =1= 0. 

c. IfP = {r E R~: Ar = a}, either P \ {O} =1= 0, or {u E Rm: uA > O} =1= 0. 

3. THE PRIMAL AND DUAL SIMPLEX ALGORITHMS 

Here it is convenient to consider the primal linear program with equality constraints: 

(LP) ZLP = max{cx: Ax = b, x E R~}. 

Its dual is 

(DLP) WLP = min{ub: uA ~ c, u E Rm}. 

We suppose that rank(A) = m ~ n, so that all redundant equations have been removed 
from LP. 

Bases and Basic Solutions 

LetA = (a b a2, ... , an) where aj is the}th column of A. Since rank(A) = m, there exists an 
m x m nonsingular submatrix AB = (aB

I
, ••• ,aBJ. Let B = {B b '" ,Bm} and let N = 
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{l, ... , n} \ B. Now permute the columns of A so that A = (AB' AN). We can write Ax = b 
asABxB + ANxN = b, where x = (XB' XN). Then a solution to Ax = b is given by XB = Aiib 
andxN = O. 

Definition 3.1 

a. The m x m nonsingular matrix A B is called a basis. 

b. The solution XB = Ai1b, XN = 0 is called a basic solution of Ax = b. 
c. X B is the vector of basic variables and x N is the vector of nonbasic variables. 

d. If Ai1b ~ 0, then (XB' XN) is called a basic primalfeasible solution andAB is called a 
primal feasible basis. 

Now let C = (CB' CN) be the corresponding partition of c, that is, cx = CBXB + CNXN, and 
let u = cBAIl E Rm. This solution is complementary to x = (XB, XN), since 

andxN = O. Observe that u is a feasible solution to the dual ifand only if cBAi/AN - CN ~ O. 
This motivates the next definition. 

Definition 3.2. If C BA 11A N ~ C N, then A B is called a dual feasible basis. 

Note that a basis AB defines the point x = (XB' XN) = (Ai/b, 0) ERn and the point 
u = C BA i1 E R m • A B may be only primal feasible, only dual feasible, neither, or both. Bases 
that are both primal and dual feasible are of particular importance. 

Proposition 3.1. If AB is primal and dual feasible, then x = (XB, XN) = (ABI b, 0) is an 
optimal solution to LP and u = cBAB! is an optimal solution to DLP. 

Proof x = (AB1b, 0) is feasible to LP with value cx = cBAj/b. u = cBA B! is feasible in 
DLP and ub = cBAB!b. Hence the result follows from weak duality. • 

Changing the Basis 

We say that two bases AB and AS' are adjacent if they differ in only one column, that is 
IB \ B' I = IB' \ B I = 1. If AB and A B, are adjacent, the basic solutions they define are 
also said to be adjacent. The simplex algorithms to be presented in this section work by 
moving from one basis to another adjacent one. 

Given the basis A B , it is useful to rewrite LP in the form 

LP(B) 

ZLP = cBAB!b + max(cN - cBAB!AN)XN 

XB + A j/ANXN = Aj/b 

It is simple to show that problems LP(B) and LP have the same set of feasible solutions and 
objective values. 

We now define some additional notation that allows us to state things more concisely. 
Let AN = ABlAN' b = ABlb, and eN = CN - cBAi/AN so that 



32 

LP(B) 

Also, for j EN, we let aj = ARlaj and Cj = Cj - CBa) so that 

LP(B) 

ZLP = cBb + max L CjXj 
JEN 

XB + L ajxj = b 
JEN 

X B ~ 0, Xj ~ ° for j E N. 

Finally, we sometimes write the equations of LP(B) as 

XB; + L aijxj = bi for i = 1, ... , m, 
JEN 

1.2. Linear Programming 

that is, aj = (alj, ... , amj) and b = (bb ... , bm ). 

Let CN = CN - cBAN be the reduced price vector for the nonbasic variables. Then, by 
Definition 3.2, dual feasibility of basis AB is equivalent to CN ~ 0. 

Now given the representation LP(B), we show how to move from one basic primal 
feasible solution to another in a systematic way. 

Definition 3.3. A primal basic feasible solution x B = b, X N = ° is degenerate if b i = ° for 
some i. 

Proposition 3.2. Suppose all primal basic feasible solutions are nondegenerate. If AB is a 
primalfeasible basis and ar is any column of AN, then matrix (AB' ar) contains, at most, one 
primal feasible basis other than AB. 

Proof We consider the system 

(3.1) 
XB + arxr = b 

XB ~ 0, Xr ~ 0, 

that is, all components of XN except Xr equal zero. 
Case 1. ar ~ 0. Suppose Xr = A > 0. Then for all A> ° we obtain 

- -
xB = b - a

r 
A ;::: b> O. 

Thus for every feasible solution to (3.1) with Xr > 0, we have XB > ° so that AB is the only 
primal feasible basis contained in (AB,a r). 

Case 2. At least one component ofar is positive. Let 

(3.2) 1 • fbi - o} bs 
Ilr = mIn =-: air> = =-. 

air a sr 
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Hence b - arAr ~ 0 and bs - asrAr = O. So we obtain an adjacent primal feasible basis AB(r) 
by deleting Bs from B and replacing it with r, that is, B(r) = B U {r} \ {Bs}' Note that the 
nondegeneracy assumption implies that bi - airAr > 0 for i =1= S so that the minimum in 
(3.2) is unique. Consequently, any basis AB with B = B U {r} \ {k} for k E B \ {B s} is not 
primal feasible. • 

The new solution is calculated by: 
1. Dividing 

XBs + asrxr + I aSjXj = bs jEN\{r} 

by asr, which yields 

(3.3) 

2. Eliminating Xr from the remaining equations by adding -air multiplied by (3.3) to 

XB j + airXr + I aijXj = bi for i =1= S 
jEN\{r} 

and eliminating Xr from the objective function. 
This transformation is called a pivot. It corresponds precisely to a step in the well­

known Gaussian elimination technique for solving linear equations. The coefficient asr is 
called the pivot element. 

Corollary 3.3. Suppose AB is a primal feasible nondegenerate basis that is not dual 
feasible and cr > O. 

a. If ar ~ 0, then ZLP = 00. 

b. If at least one component of ar is positive, then A B(r), the unique primal feasible basis 
adjacent to AB that contains a" is such that CB(r)XB(r) > CBXB. 

Proof 

a. x B = b - a rA, x r = A, Xj = 0 otherwise is feasible for all A > 0 and 

b. 

where the inequality holds since Ar defined by (3.2) is positive and c, > 0 by 
hypothesis. • 

Primal Simplex Algorithm 

We are now ready to describe the main routine of the primal simplex method called Phase 
2. It begins with a primal feasible basis and then checks for dual feasibility. If the basis is 
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not dual feasible, either an adjacent primal feasible basis is found with (in the absence of 
degeneracy) a higher objective value or ZLP = 00 is established. 

Phase 2 

Step 1 (Initialization): Start with a primal feasible basis A B• 

Step 2 (Optimality Test): If AB is dual feasible (i.e., CN < 0), stop. XB = b, XN = 0 is an 
optimal solution. Otherwise go to Step 3. 

Step 3 (Pricing Routine): Choose an r E N with cr > O. 

a. Unboundedness test. Ifar ~ 0, ZLP = 00. 

b. Basis change. Otherwise, find the unique adjacent primal feasible basis A B(r) that 
contains ar • Let B ~ B(r) and return to Step 2. 

Note that in Step 3, we can choose any j EN with Cj > O. A pricing rule commonly used 
is to choose r = arg(maXjENCj), since it gives the largest increase in the objective function 
per unit increase of the variable that becomes basic. But this computation can be time 
consuming when n is large, so that various modifications of it are used in practice. 

Theorem 3.4. Under the assumption that all basic feasible solutions are nondegenerate, 
Phase 2 terminates in a finite number of steps either with an unbounded solution or with a 
basis that is primal and dual feasible. 

Proof At each step the value of the basic feasible solution increases. Thus no basis can 
be repeated. Because there is only a finite number of bases, this procedure must terminate 
finitely. • 

When basic solutions are degenerate, and this happens often in practice, Proposition 
3.2 and Corollary 3.3 are not true. Consequently, the finiteness argument given in the 
proof of Theorem 3.4 does not apply. 

Note that when the basic feasible solution is degenerate, the arg(min) of (3.2) may not 
be unique. In this case, (AB' a r ) contains more than one primal feasible basis adjacent to 
A B, and in Step 3b of the algorithm an arbitrary choice is made. A complication arises 
when Ar = 0 in (3.2) since each primal feasible basis in (AB' ar) defines the same solution, 
namely, x B = b and x N = O. A sequence of such degenerate changes of basis can, although it 
rarely happens in practice, lead back to the original basis. This phenomenon is called 
cycling. 

Two methods for eliminating the possibility of cycling are known. One involves a 
lexicographic rule for breaking ties in (3.2), and the other involves both the choice of r in 
Step 3 and a tie-breaking rule for (3.2). By eliminating cycling, these algorithms establish 
the finiteness of Phase 2 for any linear programming problem. Hence there are primal 
simplex methods for which Theorem 3.4 holds without a nondegeneracy assumption. 

Example 3.1 

ZLP = max 7Xl + 2X2 

-Xl + 2X2 + X3 4 

20 
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x ~O. 

Step 1 (Initialization): The basisA B = (a3, a4, al) with 

yields the primal feasible solution 

and xN = (X2' xs) = (0 0), 

Iteration 1 

Step 2: 

Ali = (00
1 

~ 1) 
o -1 

+ X5 = -7 

AN = (a" as) = A.IAN = (-~ J). 
eN = Cr cRAN = (2 0) - (0 0 7)AN = (-5 n 

Thus LP(B) can be stated as 

1 
- 4X2 + 22xs 

1 
X2 - 2X5 

X~O. 

Step 3: The only choice for a new basic variable is X5. By (3.2), 

{ 
2! } 

A.s = min -, 21, - = 1. 

Hence X4 is the leaving variable. 

= 7! 
2 

= 2! 
2 

1 
+ Xl = 32 

35 
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Iteration 2 

Step2: All = (~ 
1 
5 
2 
5 
1 
5 !} 4), 

X 2 is the entering variable. 

Step 3: a2 = (¥ -~ !). By (3.2), ,12 = min(,ts, -, '/5) = 1¥. Hence X3 is the leaving variable. 
As +- (a2' a5, a,). 

Iteration 3 

( 

..i J.. 0) 11 I' 

Step 2: A Ii = 1 1 01 , 
-11 11 

- - -) (3 16) 0 
CN = (C3, C4 = - IT - IT ~ . 

Hence x = (Xl, X2, X3, X4, X5) = (if 1¥ 0 0 if) is an optimal solution to LP, and 
U = cBAli = err -W 0) is an optimal solution to DLP. 

We have shown that ifLP has a basic primal feasible solution, it either has unbounded 
optimal value or it has an optimal basic solution. It remains to show that if it has a feasible 
solution, then it has a basic feasible solution. This is accomplished by Phase 1 of the 
simplex algorithm. 

Phase 1. By changing signs in each row if necessary, write LP as max{cx: Ax = b, x E R1} 
with b ;?; O. Now introduce artificial variables xf for i = 1, ... , m, and consider the linear 
program 

Za = max { - ~ x7: Ax + Ixa = b, (x, x a) E R~+m l 
1. Lpa is a feasible linear program for which a basic feasible solution x a = b, x = 0 is 

available. Hence Lpa can be solved by the Phase 2 simplex method. Moreover Z a ~ 0 
so that Lpa has an optimal solution. 

2. i) A feasible solution (x, x a) to Lpa yields a feasible solution x to LP if and only if 
x a = O. Thus if Za < 0, Lpa has no feasible solution with x a = 0 and hence LP is 
infeasible. 

ii) If Za = 0, then any optimal solution to Lpa has x a = 0 and hence yields a feasible 
solution to LP. In particular, if all the artificial variables are nonbasic in some 
basic optimal solution to Lpa, a basic feasible solution for LP has been found. 

On the other hand, if one or more artificial variables are basic, it may be possible to 
remove them from the basis by degenerate basis changes. When this is not possible it can 
be shown that certain constraints in the original problem are redundant, and the equations 
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with basic artificial variables can be dropped. Again this leads to a basic feasible solution to 
LP. 

By combining Phases 1 and 2, we obtain a finite algorithm for solving any linear 
program. This establishes Theorem 2.4 and also Theorem 3.5: 

Theorem 3.5 

a. If LP is feasible, it has a basic primal feasible solution. 
b. If LP has a finite optimal value, it has an optimal basic feasible solution. 

Example 3.1 (continued). We will use Phase 1 to construct the initial basis (a3, a4, a I) 
that we used previously. The Phase 1 problem is 

Za = max 

- XI + 2X2 + X3 

5xI + X2 + X4 

- Xl - x~ - x~ 

+ x~ 

4 

20 

- X5 + x~ = 7 

Observe, however, that because X 3, X4 are slack variables and b I and b2 are nonnegative, 
the artificial variables xf and x~ are unnecessary. Hence we can start with (x 3, X4, xD as 
basic variables. Since - X~ = -7 + 2x I + 2x 2 - X 5, the Phase 1 problem is 

Z a = max - 7 + 2x I + 2X2 

- XI + 2X2 + X3 = 4 

5xI + X2 + X4 20 

- X5 + X~ = 7 

x ;?; 0, X3 ;?; o. 

Using the simplex algorithm (Phase 2) we introduce X I into the basis, and x~ leaves. The 
resulting basis (a3, a4, a 1) is a feasible basis for the original problem. 

Dual Simplex Algorithm 

The primal simplex algorithm works by moving from one primal feasible basis to another. 
In contrast, the dual simplex algorithm works by moving from one dual feasible basis to 
another. This latter approach is useful when we know a basic dual feasible solution but not 
a primal one. This occurs, for example, when we have an optimal solution to a linear 
programming problem that becomes infeasible because additional constraints have been 
added. 

Proposition 3.6. Let An be a dual feasible basis with bs < O. 

a. If as} ;?; 0 for all j E N, then LP is infeasible. 
b. Otherwise there is an adjacent dualfeasible basis AB(r), where B(r) = B U {r} \ {Bs} 

and r E N satisfies asr < 0 and 
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. {Cj _ } r = arg ~ln =-: a sj < 0 . 
JEN asj 

Proof 

a. XBs + LjEN asjXj = bs < O. Hence if asj ~ 0 for all} EN, every solution to Ax = b 
with Xj ~ 0 for all} EN has XBs < O. 

b. If Xr enters the basis and XBs leaves we have 

z = cBb + I CjXj - A(XBs + I aSjxJ + Abs 
jEN jEN 

= cBb + Abs + I (Cj - Aasj)Xj - AxBs, 
jEN 

where A = ~r ~ O. The basis AB(r) is dual feasible since A ~ 0, Cj - A asj ~ Cj for all} 
a sr 

with aSj ~ 0, and Cj - A aSj ~ 0 for all} with aSj < 0 by the choice of r. • 

Dual Simplex Algorithm (Phase 2) 

Step 1 (Initialization): A dual feasible basis A B. 

Step 2 (Optimality Test): If AB is primal feasible, that is, b = AI} b ~ 0, then XB = band 
x N = 0 is an optimal solution. Otherwise go to Step 3. 

Step 3 (Pricing Routine): Choose an s with bs < O. 

a. Feasibility Test. Ifasj ~ 0 for all} EN, LP is infeasible. 

b. Basis change. Otherwise let 

r = arg ~in{~j : aSj < O} 
JEN asj 

and B(r) = B U (r) \ (Bs)' Return to Step 2 with B <'- B(r). 

In contrast to the primal algorithm, in the dual simplex algorithm the objective 
function is nonincreasing. The magnitude of the decrease at each step is Icrbs/ars I. In the 
absence of dual degeneracy, cr < 0 and the decrease is strict. As with the primal algorithm, 
it is possible to give more specific rules that guarantee finiteness. Such an algorithm is 
presented in Section IIA.3. A Phase 1 may be required to find a starting dual feasible basic 
solution. 

Example 3.1 (continued). We apply the dual simplex algorithm. 

Step 1 (Initialization): Consider the basis AB = (a3, a2, as), which is dual feasible since 
CN = (cJ, (4) = (-3 -2). 

Iteration 1 

Step 2: The basis is not primal feasible since XB = (X3, X2, xs) = (-36 20 33). 

Step 3: The only possible choice is s = 1. We have all = -11, a14 = -2, and min(n, ~) = rr. 
Hence XB, = x3leaves the basis, Xl enters the basis, andA B ~ (ar, a2, as). 
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Iteration 2. We have seen earlier that A B is primal and dual feasible and hence optimal. 

The Simplex Algorithm with Simple Upper Bounds 

It is desirable for computational purposes to distinguish between upper-bound constraints 
of the form Xj ~ h j and other more general constraints. Hence we consider the problem 

(ULP) ZLP = max{cx: Ax = b, ° ~ Xj ~ hj for j E {l, ... , n}). 

Whereas the primal simplex algorithm described earlier would treat ULP as a problem 
with m + n constraints, the simplex algorithm with upper bounds treats it as a problem 
with m constraints. 

Now the columns of A are permuted so that A = (AB' ANI' AN)' where AB is a basis 
matrix as before, but the index set of the nonbasic variables N is partitioned into two sets 
Nl and N 2. Nl is the index set of variables at their lower bound (Xj = 0), and N2 is the index 
set of variables at their upper bound (Xj = hj ). 

Now we need to modify Definition 3.1. 

Definition 3.4 

a. The m x m nonsingular matrix A B is called a basis. 
b. For each partition Nt, N2 of N, we associate the basic solution XB = 

AIl(b - AN2hN) = b - AN2hN2' XNI = 0, XN2 = hN2. 

c. If ° ~ b - AN2hN2 ~ hB, then (XB, XNI, XN) is a basic primal feasible solution, and 
(B, Nt, N 2) indexes a primal feasible basis. 

Now consider the dual of ULp, 

min ub + vh 

uA+v~c 

v ~o, 

and let v = (VB, VNI, VN2) and c = (CB, CNI, CN). The dual basic solution complementary 
to (XB, XNI, XN2) is (u, VB, VNI, VN) = (cBAll, 0, 0, CN2 - cBANJ Observe that (u, v) is a 
feasible solution to the dual if and only ifcNI = eNl - cBANl ~ ° and CN2 = CN2 - cBA N2 ~ 0. 

Proposition 3.7. If (AB, ANI' AN2 ) is primal and dual feasible, then x = (XB, XNl, XNJ = 

(b -~N h
N2

, 0, hN) is an optimal solution to ULP and (u, vBl ' VNl ' vN2 ) = (c~Bl, 0,0, cN2 
- C BA N) is an optimal solution to its dual. 

The modifications to the simplex algorithms are straightforward. BasesAB andAB" are 
adjacent if (i) IB \ B' I = -IB' \ B I = 1 or (ii) B = B', and in both cases 
IN~ \ NIl + IN2 \ N21 = 1. In the latter case, one nonbasic variable changes from its 
lower to its upper bound, or vice versa. It is then easy to write out the rules for the choice of 
entering and leaving variable, leading to primal and dual simplex algorithms for ULP. 
Note that these algorithms choose the same pivots as the standard simplex algorithms, so 
the advantage lies in handling a basis that is m x m rather than (m + n) x (m + n). 

Addition of Constraints or Variables 

After solving LP to optimality, it is common that one or more new constraints or 
columns have to be added. In Part II, we will discuss cutting-place algorithms that add a 
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constraint cutting off the optimal solution ofLP; we will also discuss problems having such 
a large number of variables that we do not wish to introduce them all a priori. 

If LP has been solved by a simplex algorithm, there is a straightforward way to use the 
current optimal basisA B to solve the new problem. Suppose an inequality Ll=l djxj ~ do is 
added that is violated by the optimal solution (XB, XN) = (A1ib, 0). Now if Xn+l is the slack 
variable of the new constraint, then B' = B U {n + 1} indexes a new basis, and we obtain 
LP(B'): 

XB +ANXN = b 

Xn+l + (dN - dBAN)xN = do - dBb 

since 

We see immediately that this basis is dual feasible and that it is primal feasible in all but the 
last row, that is, d Bb > do. It is therefore desirable to reoptimize using the dual simplex 
algorithm. Since the current solution is "nearly" primal feasible, it is likely that only a few 
iterations will be required. 

The procedure to be followed in adding new columns is dual to that described above. 
Given a new variable Xn+l with column (~:::), we calculate its reduced price 
Cn+l = Cn+l - cBA1ian+1 to check if the basis AB remains optimal. If Cn+l ~ 0, AB is still 
optimal and the solution is unchanged. If Cn+l > 0, we can use the primal simplex 
algorithm as A B remains primal feasible. 

Example 3.1 (continued). We add the upper-bound constraint x I ~ 3, cutting off the 
optimal solution x = ("* WOO H). Let Xl + X6 = 3, so that X6 is the new basic 
variable. Starting from the optimal basis AB = (a2, as, at), we have dB = (0 0 1), 
dN = (0 0), do = 3, andA B , = (a2' as, at, a6). 

Iteration 1 

Step 2: XB' = (W H "* -n). 
Step 3: x6leaves the basis 

min{- 16j2} = 8. 
'11 11 

Iteration 2 
Step 2: XB' = G 6 3 ~) ~ O. Hence X = (3 ~ 0 ~ 6 0) is an optimal solution to 

the revised problem. 
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Noting that the added constraint is an upper-bound constraint means that we can also 
reoptimize without increasing the size of the basis by using the dual simplex algorithm 
with upper bounds. In this case we have: 

Iteration 1 

so the basis is dual feasible. 

XB = (40 
11 

75 
11 

36). 
11 

Because XB
I 

= Xl> hI, the basis is not primal feasible. 
The dual simplex algorithm then removes X 1 from the basis at its upper bound and 

calculates (as above) that X4 enters the basis. 

Iteration 2 

AB = (a2' as, a4), ANI = (a3), AN2 = (al)' 

CNI = (-1) ~ 0, CN
2 
= (8) ;>- 0, 

so the basis remains dual feasible. 
X B = (~ 6 ~). Because 0 ~ x ~ h B, the basis is primal feasible and hence optimal. 

4. SUBGRADIENT OPTIMIZATION 

Here we consider an algorithm for solving linear programs whose roots are in non­
linear, nondifferentiable optimization. Consider the linear program 

I 

C= min I Ajdj 
j=l 

I 

I Aig ij = Cj for j = 1, ... , n 
i=l 

o ~ Ai ~ hi for i = 1, ... , I. 

By duality it can be shown (see Section II.3.6) that this problem can be restated as 

Now to solve the inner optimization problem for fixed x, we can set Ai = 0 if 
di - Ll=l gijXj > 0, and Ai = hi otherwise. Thus there are a finite number of candidate 
solutions Ak E R~, k E K, where A7 E CO, hJ. So we can rewrite the problem as 
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or more generally as 

(4.1) ,= max/(x), 
xERn 

where 

(4.2) I(x) = min (aix - bi) and 1= {l, ... ,m} is a finite set. 
iEl 

In other words a general linear program can be transformed to the nonlinear optimiza­
tion problem (4.1), where typically m is much larger than n. In this section, we present an 
algorithm for problem (4.1). 

Figure 4.1 illustrates I given by (4.2) for n = 1. The heavy lines give I(x), and point B is 
the optimum solution x* with value' = I(x*). 

We now develop an important property of the function! 

Definition 4.1. A function g: Rn ..,. R I is concave if 

g(ax l + (1 - a)x2) ~ ag(xl) + (1 - a) g(X2) for all Xl, x 2 ERn 
and all 0 ~ a ~ 1. 

Note that the definition simply states that the function is underestimated by linear 
interpolation (see Figure 4.2). 

This suggests the following proposition. 

Proposition 4.1. Let/(x) = mini=!, ... , m (aix - bJ Then/(x) is concave. 

• 

~----------------------------~~x 

Figure 4.1 
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/(X) 

~--~----------------~--------~X 

Figure 4.2 

An alternative characterization of concave functions is given by the following proposi­
tion. 

Proposition 4.2. A/unction g: R n ~ R I is concave if and only iffor any x* E Rn there exists 
an s E R n such that g(x*) + sex - x*) ~ g(x) for all x ERn. 

The characterization is illustrated in Figure 4.3. Note that s is the slope of the 
hyperplane that supports the set {(x, z) E R n

+
l
: z ~ g(x)} at (x, z) = (x*, g(x*)). 

Comparing Figures 4.1 and 4.3, we see that in Figure 4.1 there is not a unique supporting 
hyperplane at the points A, B, and C, while for the smooth function g in Figure 4.3, the 
supporting hyperplane is unique at each point. 

Figure 4.4 illustrates Proposition 4.2 for x E R2. Contours of {x: g(x) = c} are shown 
for different values of c along with the supporting hyperplane given by sex - x*) = O. By 
Proposition 4.2, if x satisfies sex - x*) ~ 0, then g(x) ~ g(x*). In other words, if 
g(x) > g(x*), then sex - x*) > O. Thus if we are at the point x* and want to increase g(x), 
we should move to a point x' with sex' - x*) > O. One possibility is to move in a direction 
normal to the hyperplane sex - x*) = O. This direction is given by the vector s, which is, 
when g is differentiable at x*, the gradient vector \l g(x*) = (ag(x*)j ax 1, ••• , ag(x*)j ax n) at 
x = x*. It is well known that the gradient vector is the local direction of maximum increase 
of g(x), and \lg(x*) = 0 implies that x* solves max{g(x): x ERn}. 

The classical steepest ascent method for maximizing g(x) is given by the sequence of 
iterations 

~----------~~----------------~x 

x* 

Figure 4.3 
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~~--g(x)=c=g(x*) 

~-+-+---g(x) =c+ 1 
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Supporting hyperplane at x*: 8(X -x*) = 0 

~---Normal direction atx* 

~-------------------------------------------------~~x1 

Figure 4.4 

With appropriate assumptions on the sequence of step sizes {eJf }, the iterates {Xl} converge 
to a maximizing point. 

The potential problems that arise in applying this idea to a nondifferentiable concave 
function are illustrated in Example 4.1. 

Example 4.1 

The contours!(x) = c for c = 0, -1, and -2 are shown in Figure 4.5. 

f(x) = -2 

8 2 = (1,2) 
f(x) = -1 

f(x) = 0 

sl = (1, - 2) 

Figure 4.5 
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In addition, at the point x* = (-2 0) we show the supporting hyperplanes Si(X - x*) = 0, 
for i = 1, 2 where s 1 = (l - 2) and S2 = (l 2). 

Now consider what happens when we move from x* in the direction s 1. We have 

f(x* + 8s 1
) =f(-2 + 8, 0 - 28) = min{2 - 8, - 2 + 58, - 2 - 3 8} 

= - 2 - 3 8 for all 8 ~ O. 

Hencef(x* + 8s l
) <f(x*) for all 8> O. Similar behavior is observed for S2. 

The example illustrates the nonuniqueness of the supporting hyperplanes and also 
shows that a direction normal to a supporting hyperplane may not be a direction of 
increase. 

There is, however, an alternative point of view, which provides the intuitive justifica­
tion for moving in a direction normal to any supporting hyperplane at x*. As we have 
already noted, if s(x - x*) = 0 is any supporting hyperplane at x*, then any point with a 
larger objective value than x* is contained in the half-space s(x - x*) > O. Now it is a 
simple geometric exercise to show that if x is an optimal solution, a small move in the direc­
tion s gives a point that is closer to x. In particular, there exists 8 such that for any 0 < 8 < 8, 

IIx - (x* + 8s)1I < IIx - x*11 

(see Figure 4.6.). The notation \lull, u ERn, represents the euclidean distance from 0 to u, 

that is, .J uT u. 
We now formalize the discussion given above. 

Definition 4.2. rfg: Rn ~ Rl is concave, s ERn is asubgradientofg atx* ifs(x-x*) ~ 

g(x) - g(x*) for all x E Rn. 

Definition 4.3. The set ag(x) = {s ERn: s is a subgradient of g at x} is called the 
subdifferential of g at x. 

Note that by Proposition 4.2, ag(x) =1= 0. 

Proposition 4.3. Ifg is concave on Rn, x* is an optimal solution ofmax{g(x): x ERn} if 
and only if 0 E ag(x*). 

x*+ 8s 

Figure 4.6 

A 
X 
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Proof 0 E ag(x*) if and only ifO(x - x*) ~ g(x) - g(x*) for all x ERn if and only if 
g(x) ~ g(x*) for all x ERn. • 

Now we characterize the subdifferential off(x) given by (4.2). 

Proposition 4.4. Letf(x) = mini=I. ... ,m (dx - bi) and let I(x*) = U:f(x*) = dx* - bJ 

1. a i is a subgradient off at x* for all i E I(x*). 

2. af(x*) = {s ERn: S = LiEI(x*) Aiai, LiEI(x*) Ai = 1, Ai ~ Ofor i E I(x*)}. 

Proof 

1. Ifi E I(x*), then ai(x - x*) = (aix - bi) - (aix* - bi) ~ f(x) - f(x*) for all x ERn, so 
that ai E af(x*). 

2. A proof is obtained by using statement 1 of Proposition 4.4 along with the Farkas 
lemma. • 

The following algorithm can use any subgradient at each step, but for computational 
purposes one of the extreme directions a i will be chosen. 

The Subgradient Algorithm for (4.1) 

Step 1 (Initialization): Choose a starting point Xl and let t = 1. 
Step 2: Given xt, choose any subgradient Sf E af(xt). If st = 0, then xt is an optimal 

solution. Otherwise go to Step 3. 
Step 3: Let xt+l = Xl + Otst for some Ot> O. (Procedures for selecting Ot are given below.) 

Let t ~ t + 1 and return to Step 2. 

Two schemes for selecting {Ot} are the following: 

i. A divergent series: L~I Ot -+ 00, Ot -+ 0 as t -+ 00. 

ii. A geometric series: at = aopt, or at = [[ - J(xt)]pt/llstjj2 where ° < p < 1 andfis a 
target, or upper bound on the optimal value' of(4.1). 

Series i is satisfactory theoretically, since it converges to an optimal point. But in 
practice the convergence is much too slow. Series ii, which is recommended in practice, is 
less satisfactory theoretically. The convergence is "geometric", but the limit point is only 
an optimal point if the initial choices of (0o, p) or (j, p) are sufficiently large. In practice, 
appropriate values can typically be found after a little testing, and step sizes closely related 
to a geometric series of type ii will be used in our applications of the subgradient algorithm 
in Part II. 

Ideally the subgradient algorithm can be stopped when, on some iteration t, we find 
st = 0 E af(xt

). However, in practice this rarely happens, since the algorithm just chooses 
one subgradient st and has no way of showing 0 E af(xt) as a convex combination of 
subgradients. Hence the typical stopping rule is either to stop after a fixed number of 
iterations or to stop if the function has not increased by at least a certain amount within a 
given number of iterations. 



4. Subgradient Optimization 

Example 4.2. Consider maxlf(x): x E R2}, where 

and 

f(x) = min{h(x): i = 1, ... , 5} 

fl(X) = Xl - 2X2 + 4 

f2(X) = - 5x 1 - X2 + 20 

f3(X) = 2XI + 2X2 - 7 

f4(X) = Xl 

fs(X) = X2· 

47 

We apply the subgradient algorithm with Ot = (0.9Y and initial point Xl = (0 0). The 
results of25 iterations are shown in Table 4.1, in which the last column, i(t), gives the index 
of the function that defines the subgradient. The best solution of value 2.30 is found at 
iteration 13. The optimal solution is (Xl X2) = (~ ~) of value ~ = 2.353. 

Table 4.1. 

XII x~ I(x l
) pI i(t) 

1 0.000 0.000 -7.000 0.900 3 
2 1.800 1.800 0.200 0.810 3 
3 3.420 3.420 -0.520 0.729 2 
4 -0.225 2.691 -2.068 0.656 3 
5 1.087 4.003 -2.919 0.590 1 
6 1.678 2.822 0.033 0.531 1 
7 2.209 1.759 0.937 0.478 3 
8 3.166 2.716 1.455 0.430 2 
9 1.013 2.285 -0.402 0.387 3 

10 1.788 3.060 -0.332 0.349 1 
11 2.137 2.363 1.411 0.314 1 
12 2.451 1.735 1.372 0.282 3 
13 3.016 2.300 2.300 0.254 5 
14 3.016 2.554 1.907 0.229 1 
15 3.244 2.097 1.681 0.206 2 
16 2.215 1.891 1.212 0.185 3 
17 2.585 2.262 2.062 0.167 1 
18 2.752 1.928 1.928 0.150 5 
19 2.752 2.078 2.078 0.135 5 
20 2.752 2.213 2.213 0.122 5 
21 2.752 2.335 2.083 0.109 1 
22 2.862 2.116 2.116 0.098 5 
23 2.862 2.214 2.214 0.089 5 
24 2.862 2.303 2.256 0.080 1 
25 2.941 2.144 2.144 0.072 5 
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~--------------------------------~----~~Xl 

Figure 4.7 

We can also view the problem as one of finding (x 1, x 2) such that the smallest slack 
variable Y i of the constraints 

4 

+ Y2 20 

+ Y3 - 7 

+ Y4 0 

+ Ys = 0 

is as large as possible (see Figure 4.7). With this geometry, each subgradient step is in the 
direction of the normal to the constraint whose slack variable is smallest. 

Because the magnitudes of the constraint coefficients are different, the five subgra­
dients have different magnitudes which can substantially bias the progress of the algo­
rithm. This suggests the use of normalized subgradients slllsil in the subgradient algo­
rithm. For Example 4.2, this gives the iterations shown in Table 4.2. Note that more rapid 
convergence is achieved using normalized subgradients. 

Finally suppose that x ERn must satisfy some linear constraints, say x E C. Thus we 
have the problem 

(4.3) 11 = max{f(x): x E C}, where/ex) = . min (aix - bJ. 
/=1, ... ,m 

The subgradient algorithm for (4.3) is as before, except that Step 3 is modified to maintain 
feasibility. 



5. Notes 49 

Table 4.2. 

xi x~ f(x t
) pt i(t) 

1 0.000 0.000 -7.000 0.900 3 
2 0.636 0.636 -4.454 0.810 3 
3 1.209 1.209 -2.163 0.729 3 
4 1.725 1.725 -0.101 0.656 3 
5 2.189 2.189 1.754 0.590 3 
6 2.606 2.606 1.394 0.531 1 
7 2.844 2.131 2.131 0.478 5 
8 2.844 2.609 1.626 0.430 1 
9 3.036 2.224 2.224 0.387 5 

10 3.036 2.611 1.813 0.349 1 
11 3.192 2.300 1.739 0.314 2 
12 2.885 2.238 2.238 0.282 5 
13 2.885 2.520 1.844 0.254 1 
14 2.998 2.293 2.293 0.229 5 
15 2.998 2.522 1.954 0.206 1 
16 3.090 2.338 2.211 0.185 2 
17 2.909 2.301 2.301 0.167 5 
18 2.909 2.468 1.972 0.150 1 
19 2.976 2.334 2.308 0.135 1 
20 3.036 2.213 2.213 0.122 5 
21 3.036 2.335 2.335 0.109 5 
22 3.036 2.444 2.148 0.098 1 
23 3.080 2.356 2.243 0.089 2 
24 2.993 2.339 2.316 0.080 1 
25 3.029 2.267 2.267 0.072 5 

Step 3': Let yt+l = Xl + Otst for some Ot > ° and let xt+1 = arg minxEc /Ix _ yt+lll. 

In other words, Xt+1 is the projection of yt+1 onto the feasible region C. A typical 
application is to have C = R~, in which case Xj+1 = max(x; + OtS;, 0) for j = 1, ... , n 

5. NOTES 

Sections 1.2.1-1.2.3. 

Chvatal (1983) gave a modern and comprehensive treatment oflinear programming, with 
the exception of the significant post-1983 developments covered in Sections 1.6.2-1.6.4. 
Some earlier books are Charnes and Cooper (1961), Dantzig (1963), Gass (1975), Hadley 
(1962), and Murty (1976). 

Section 1.2.4 

The use of subgradient directions in the solution of large-scale linear programs that arise 
from combinatorial optimization problems was instigated by Held and Karp (1970, 1971) 
in a study of the traveling salesman problem. Held et al. (1974) investigated the behavior of 
a subgradient algorithm in a variety of combinatorial problems. A theoretical analysis of 
the convergence of subgradient algorithms is given by Goffin (1977). Subgradients and 
subgradient algorithms are also discussed by Grinold (1970, 1972), Camerini et al. (1975), 
Shapiro (1979a, b), and Sandi (1979). 
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