
FICOFICO R©R©Xpress OptimizationXpress Optimization

37.01
Last update 02 October 2020

REFERENCE MANUAL

FICO R© Xpress Optimizer

©1983–2020 Fair Isaac Corporation. All rights reserved. This documentation is the property of Fair IsaacCorporation ("FICO"). Receipt or possession of this documentation does not convey rights to disclose,reproduce, make derivative works, use, or allow others to use it except solely for internal evaluationpurposes to determine whether to purchase a license to the software described in this documentation, oras otherwise set forth in a written software license agreement between you and FICO (or a FICO affiliate).Use of this documentation and the software described in it must conform strictly to the foregoingpermitted uses, and no other use is permitted.
The information in this documentation is subject to change without notice. If you find any problems in thisdocumentation, please report them to us in writing. Neither FICO nor its affiliates warrant that thisdocumentation is error-free, nor are there any other warranties with respect to the documentation exceptas may be provided in the license agreement. FICO and its affiliates specifically disclaim any warranties,express or implied, including, but not limited to, non-infringement, merchantability and fitness for aparticular purpose. Portions of this documentation and the software described in it may contain copyrightof various authors and may be licensed under certain third-party licenses identified in the software,documentation, or both.
In no event shall FICO or its affiliates be liable to any person for direct, indirect, special, incidental, orconsequential damages, including lost profits, arising out of the use of this documentation or the softwaredescribed in it, even if FICO or its affiliates have been advised of the possibility of such damage. FICO andits affiliates have no obligation to provide maintenance, support, updates, enhancements, or modificationsexcept as required to licensed users under a license agreement.
FICO is a registered trademark of Fair Isaac Corporation in the United States and may be a registeredtrademark of Fair Isaac Corporation in other countries. Other product and company names herein may betrademarks of their respective owners.
Xpress Optimizer
Deliverable Version: A
Last Revised: 02 October 2020
Version 37.01

Contents

1 Introduction 11.1 The FICO Xpress Optimizer . 11.2 Starting the First Time . 21.2.1 Licensing . 21.2.2 Starting Console Optimizer . 21.2.3 Scripting Console Optimizer . 31.2.4 Interrupting Console Optimizer . 51.3 Manual Layout . 5
2 Basic Usage 62.1 Initialization . 62.2 The Problem Pointer . 72.3 Logging . 72.4 Problem Loading . 82.5 Problem Solving . 82.6 Interrupting the Solve . 92.7 Results Processing . 102.8 Function Quick Reference . 112.8.1 Administration . 112.8.2 Problem Loading . 112.8.3 Problem Solving . 112.8.4 Results Processing . 122.9 Summary . 12
3 Problem Types 133.1 Linear Programs (LPs) . 133.2 Mixed Integer Programs (MIPs) . 133.3 Quadratic Programs (QPs) . 143.4 Quadratically Constrained Quadratic Programs (QCQPs) 153.4.1 Algebraic and matrix form . 153.4.2 Convexity . 153.4.3 Characterizing Convexity in Quadratic Constraints 163.5 Second Order Cone problems (SOCPs) . 16
4 Solution Methods 184.1 Simplex Method . 184.1.1 Output . 194.2 Newton Barrier Method . 194.2.1 Crossover . 194.2.2 Output . 204.3 Branch and Bound . 204.3.1 Theory . 204.3.2 Variable Selection and Cutting . 224.3.3 Variable Selection for Branching . 224.3.4 Cutting Planes . 234.3.5 Node Selection . 23

Fair Isaac Corporation Confidential and Proprietary Information i

Contents

4.3.6 Adjusting the Cutoff Value . 244.3.7 Stopping Criteria . 244.3.8 Integer Preprocessing . 244.4 QCQP and SOCP Methods . 254.4.1 Convexity Checking . 254.4.2 Quadratically Constrained and Second Order Cone Problems 26
5 Advanced Usage 275.1 Problem Names . 275.2 Manipulating the Matrix . 275.2.1 Reading the Matrix . 285.2.2 Modifying the Matrix . 285.3 Working with Presolve . 295.3.1 (Mixed) Integer Programming Problems . 295.4 Working with LP Folding . 305.5 Working with Heuristics . 305.6 Analyzing and Handling Numerical Issues . 315.6.1 Analyzing Models for Numerical Issues . 325.6.2 Scaling . 325.6.3 Solution Refinement . 325.6.4 Other Ways to Handle Numerical Issues . 335.7 Common Causes of Confusion . 335.8 Using the Callbacks . 335.8.1 Output Callbacks . 345.8.2 LP Callbacks . 345.8.3 Global Search Callbacks . 345.9 Working with the Cut Manager . 355.9.1 Cuts and the Cut Pool . 355.9.2 Cut Management Routines . 355.9.3 User Cut Manager Routines . 365.10 Solving Problems Using Multiple Threads . 365.10.1 The concurrent solver . 375.11 Solving Large Models (the 64 bit Functions) . 385.12 Using the Tuner . 385.12.1 Basic Usage . 385.12.2 The Tuner Method . 395.12.3 The Tuner Output . 405.12.4 The Tuner Target . 405.12.5 Restarting the Tuner . 405.12.6 Tuner with Multiple Threads . 405.12.7 Tuner with Problem Permutations . 415.12.8 Tuning a Set of Problems . 415.12.9 Advanced Topics . 425.13 Remote Solving with Xpress Insight Compute Interface . 425.13.1 Authentication . 435.13.2 Callbacks . 435.13.3 Licensing . 435.13.4 Advanced Configuration . 43
6 Infeasibility, Unboundedness and Instability 446.1 Infeasibility . 446.1.1 Diagnosis in Presolve . 446.1.2 Diagnosis using Primal Simplex . 456.1.3 Irreducible Infeasible Sets . 456.1.4 The Infeasibility Repair Utility . 46

Fair Isaac Corporation Confidential and Proprietary Information ii

Contents

6.1.5 Integer Infeasibility . 476.2 Unboundedness . 486.3 Instability . 486.3.1 Scaling . 486.3.2 Accuracy . 49
7 Goal Programming 517.1 Overview . 517.2 Pre–emptive Goal Programming Using Constraints . 517.3 Archimedean Goal Programming Using Constraints . 527.4 Pre–emptive Goal Programming Using Objective Functions 527.5 Archimedean Goal Programming Using Objective Functions 53
8 Console and Library Functions 558.1 Console Mode Functions . 558.2 Layout for Function Descriptions . 57Function Name . 57Purpose . 57Synopsis . 57Arguments . 57Error Values . 57Associated Controls . 57Examples . 57Further Information . 57Related Topics . 58XPRS_bo_addbounds . 59XPRS_bo_addbranches . 60XPRS_bo_addcuts . 61XPRS_bo_addrows . 62XPRS_bo_create . 64XPRS_bo_destroy . 66XPRS_bo_getbounds . 67XPRS_bo_getbranches . 68XPRS_bo_getid . 69XPRS_bo_getlasterror . 70XPRS_bo_getrows . 71XPRS_bo_setpreferredbranch . 72XPRS_bo_setpriority . 73XPRS_bo_store . 74XPRS_bo_validate . 75XPRS_ge_addcbmsghandler . 76XPRS_ge_getcbmsghandler . 77XPRS_ge_getlasterror . 78XPRS_ge_removecbmsghandler . 79XPRS_ge_setcbmsghandler . 80XPRS_ge_setarchconsistency (SETARCHCONSISTENCY) . 81XPRS_nml_addnames . 82XPRS_nml_copynames . 83XPRS_nml_create . 84XPRS_nml_destroy . 85XPRS_nml_findname . 86XPRS_nml_getlasterror . 87XPRS_nml_getmaxnamelen . 88XPRS_nml_getnamecount . 89XPRS_nml_getnames . 90

Fair Isaac Corporation Confidential and Proprietary Information iii

Contents

XPRS_nml_removenames . 91XPRSaddcbbariteration . 92XPRSaddcbbarlog . 94XPRSaddcbcomputerestart . 95XPRSaddcbpresolve . 96XPRSaddcbchecktime . 97XPRSaddcbchgbranch . 98XPRSaddcbchgbranchobject . 99XPRSaddcbchgnode . 100XPRSaddcbcutlog . 101XPRSaddcbcutmgr . 102XPRSaddcbdestroymt . 103XPRSaddcbestimate . 104XPRSaddcbgapnotify . 105XPRSaddcbgloballog . 107XPRSaddcbinfnode . 108XPRSaddcbintsol . 109XPRSaddcblplog . 111XPRSaddcbmessage . 112XPRSaddcbmipthread . 114XPRSaddcbnewnode . 115XPRSaddcbnodecutoff . 116XPRSaddcboptnode . 117XPRSaddcbpreintsol . 118XPRSaddcbprenode . 120XPRSaddcbsepnode . 121XPRSaddcbusersolnotify . 123XPRSaddcols, XPRSaddcols64 . 124XPRSaddcuts, XPRSaddcuts64 . 126XPRSaddgencons, XPRSaddgencons64 . 127XPRSaddmipsol . 129XPRSaddnames . 130XPRSaddpwlcons, XPRSaddpwlcons64 . 131XPRSaddqmatrix, XPRSaddqmatrix64 . 133XPRSaddrows, XPRSaddrows64 . 134XPRSaddsets, XPRSaddsets64 . 136XPRSaddsetnames . 137XPRSalter (ALTER) . 138XPRSbasiscondition (BASISCONDITION) . 139XPRSbasisstability (BASISSTABILITY) . 140XPRSbtran . 141XPRScalcobjective . 142XPRScalcreducedcosts . 143XPRScalcslacks . 144XPRScalcsolinfo . 145CHECKCONVEXITY . 146XPRSchgbounds . 147XPRSchgcoef . 148XPRSchgcoltype . 149XPRSchgglblimit . 150XPRSchgmcoef, XPRSchgmcoef64 . 151XPRSchgmqobj, XPRSchgmqobj64 . 152XPRSchgobj . 153XPRSchgobjsense (CHGOBJSENSE) . 154XPRSchgqobj . 155

Fair Isaac Corporation Confidential and Proprietary Information iv

Contents

XPRSchgqrowcoeff . 156XPRSchgrhs . 157XPRSchgrhsrange . 158XPRSchgrowtype . 159XPRScopycallbacks . 160XPRScopycontrols . 161XPRScopyprob . 162XPRScreateprob . 163XPRScrossoverlpsol . 164XPRSdelcols . 165XPRSdelcpcuts . 166XPRSdelcuts . 167XPRSdelgencons . 168XPRSdelindicators . 169XPRSdelpwlcons . 170XPRSdelqmatrix . 171XPRSdelrows . 172XPRSdelsets . 173XPRSdestroyprob . 174XPRSdumpcontrols (DUMPCONTROLS) . 175EXIT . 176XPRSestimaterowdualranges . 177XPRSfeaturequery . 178XPRSfixglobals (FIXGLOBALS) . 179XPRSfree . 181XPRSftran . 182XPRSgetattribinfo . 183XPRSgetbanner . 184XPRSgetbasis . 185XPRSgetbasisval . 186XPRSgetcheckedmode . 187XPRSgetcoef . 188XPRSgetcolrange . 189XPRSgetcols, XPRSgetcols64 . 190XPRSgetcoltype . 191XPRSgetcontrolinfo . 192XPRSgetcpcutlist . 193XPRSgetcpcuts, XPRSgetcpcuts64 . 194XPRSgetcutlist . 196XPRSgetcutmap . 197XPRSgetcutslack . 198XPRSgetdaysleft . 199XPRSgetdblattrib . 200XPRSgetdblcontrol . 201XPRSgetdirs . 202XPRSgetdualray . 203XPRSgetgencons, XPRSgetgencons64 . 204XPRSgetglobal, XPRSgetglobal64 . 206XPRSgetiisdata . 208XPRSgetindex . 210XPRSgetindicators . 211XPRSgetinfeas . 212XPRSgetintattrib, XPRSgetintattrib64 . 214XPRSgetintcontrol, XPRSgetintcontrol64 . 215XPRSgetlastbarsol . 216

Fair Isaac Corporation Confidential and Proprietary Information v

Contents

XPRSgetlasterror . 217XPRSgetlb . 218XPRSgetlicerrmsg . 219XPRSgetlpsol . 220XPRSgetlpsolval . 221XPRSgetmessagestatus . 222XPRSgetmipsol . 223XPRSgetmipsolval . 224XPRSgetmqobj, XPRSgetmqobj64 . 225XPRSgetnamelist . 226XPRSgetnamelistobject . 228XPRSgetnames . 229XPRSgetobj . 230XPRSgetobjecttypename . 231XPRSgetpivotorder . 232XPRSgetpivots . 233XPRSgetpresolvebasis . 234XPRSgetpresolvemap . 235XPRSgetpresolvesol . 236XPRSgetprimalray . 237XPRSgetprobname . 238XPRSgetpwlcons, XPRSgetpwlcons64 . 239XPRSgetqobj . 241XPRSgetqrowcoeff . 242XPRSgetqrowqmatrix . 243XPRSgetqrowqmatrixtriplets . 244XPRSgetqrows . 245XPRSgetrhs . 246XPRSgetrhsrange . 247XPRSgetrowrange . 248XPRSgetrows, XPRSgetrows64 . 249XPRSgetrowtype . 250XPRSgetscale . 251XPRSgetscaledinfeas . 252XPRSgetstrattrib, XPRSgetstringattrib . 254XPRSgetstrcontrol, XPRSgetstringcontrol . 255XPRSgetub . 256XPRSgetunbvec . 257XPRSgetversion . 258XPRSglobal (GLOBAL) . 259XPRSgoal (GOAL) . 261HELP . 263IIS . 264XPRSiisall . 266XPRSiisclear . 267XPRSiisfirst . 268XPRSiisisolations . 269XPRSiisnext . 270XPRSiisstatus . 271XPRSiiswrite . 272XPRSinit . 273XPRSinitglobal . 274XPRSinterrupt . 275XPRSloadbasis . 276XPRSloadbranchdirs . 277

Fair Isaac Corporation Confidential and Proprietary Information vi

Contents

XPRSloadcuts . 278XPRSloaddelayedrows . 279XPRSloaddirs . 280XPRSloadglobal, XPRSloadglobal64 . 281XPRSloadlp, XPRSloadlp64 . 284XPRSloadlpsol . 286XPRSloadmipsol . 287XPRSloadmodelcuts . 288XPRSloadpresolvebasis . 289XPRSloadpresolvedirs . 290XPRSloadqcqp, XPRSloadqcqp64 . 291XPRSloadqcqpglobal, XPRSloadqcqpglobal64 . 295XPRSloadqglobal, XPRSloadqglobal64 . 299XPRSloadqp, XPRSloadqp64 . 302XPRSloadsecurevecs . 305XPRSlpoptimize (LPOPTIMIZE) . 306XPRSmaxim, XPRSminim (MAXIM, MINIM) . 307XPRSmipoptimize (MIPOPTIMIZE) . 309XPRSobjsa . 310XPRSpivot . 311XPRSpostsolve (POSTSOLVE) . 312XPRSpresolverow . 313PRINTRANGE . 315PRINTSOL . 316QUIT . 317XPRSrange (RANGE) . 318XPRSreadbasis (READBASIS) . 319XPRSreadbinsol (READBINSOL) . 320XPRSreaddirs (READDIRS) . 321XPRSreadprob (READPROB) . 323XPRSreadslxsol (READSLXSOL) . 325XPRSrefinemipsol (REFINEMIPSOL) . 326XPRSremovecbbariteration . 327XPRSremovecbcomputerestart . 328XPRSremovecbpresolve . 329XPRSremovecbbarlog . 330XPRSremovecbchgbranch . 331XPRSremovecbchgbranchobject . 332XPRSremovecbchecktime . 333XPRSremovecbchgnode . 334XPRSremovecbcutlog . 335XPRSremovecbcutmgr . 336XPRSremovecbdestroymt . 337XPRSremovecbestimate . 338XPRSremovecbgapnotify . 339XPRSremovecbgloballog . 340XPRSremovecbinfnode . 341XPRSremovecbintsol . 342XPRSremovecblplog . 343XPRSremovecbmessage . 344XPRSremovecbmipthread . 345XPRSremovecbnewnode . 346XPRSremovecbnodecutoff . 347XPRSremovecboptnode . 348XPRSremovecbpreintsol . 349

Fair Isaac Corporation Confidential and Proprietary Information vii

Contents

XPRSremovecbprenode . 350XPRSremovecbsepnode . 351XPRSremovecbusersolnotify . 352XPRSrepairinfeas . 353XPRSrepairweightedinfeas . 355XPRSrepairweightedinfeasbounds (REPAIRINFEAS) . 357XPRSrestore (RESTORE) . 360XPRSrhssa . 361XPRSsave, XPRSsaveas (SAVE) . 362XPRSscale (SCALE) . 363XPRSsetbranchbounds . 364XPRSsetbranchcuts . 365XPRSsetcheckedmode . 366XPRSsetdblcontrol . 367XPRSsetdefaultcontrol (SETDEFAULTCONTROL) . 368XPRSsetdefaults (SETDEFAULTS) . 369XPRSsetindicators . 370XPRSsetintcontrol, XPRSsetintcontrol64 . 371XPRSsetlogfile (SETLOGFILE) . 372XPRSsetmessagestatus . 373XPRSsetprobname (SETPROBNAME) . 374XPRSsetstrcontrol . 375STOP . 376XPRSstorebounds . 377XPRSstorecuts, XPRSstorecuts64 . 378XPRSstrongbranch . 380XPRSstrongbranchcb . 381TUNE . 382XPRStune . 384XPRStunerreadmethod . 385XPRStunerwritemethod . 386XPRSunloadprob . 387XPRSwritebasis (WRITEBASIS) . 388XPRSwritebinsol (WRITEBINSOL) . 389XPRSwritedirs (WRITEDIRS) . 390XPRSwriteprob (WRITEPROB) . 391XPRSwriteprtrange (WRITEPRTRANGE) . 392XPRSwriteprtsol (WRITEPRTSOL) . 393XPRSwriterange (WRITERANGE) . 394XPRSwriteslxsol (WRITESLXSOL) . 396XPRSwritesol (WRITESOL) . 397
9 Control Parameters 3999.1 Retrieving and Changing Control Values . 399ALGAFTERCROSSOVER . 399ALGAFTERNETWORK . 400AUTOSCALING . 400AUTOPERTURB . 400BACKTRACK . 401BACKTRACKTIE . 401BARALG . 402BARCRASH . 402BARDUALSTOP . 403BARFREESCALE . 403BARGAPSTOP . 403

Fair Isaac Corporation Confidential and Proprietary Information viii

Contents

BARGAPTARGET . 404BARFAILITERLIMIT . 404BARINDEFLIMIT . 404BARITERLIMIT . 405BARKERNEL . 405BAROBJSCALE . 405BARORDER . 406BARORDERTHREADS . 406BAROUTPUT . 406BARPRESOLVEOPS . 407BARPRIMALSTOP . 407BARREGULARIZE . 407BARRHSSCALE . 408BARSOLUTION . 408BARSTART . 408BARSTARTWEIGHT . 409BARSTEPSTOP . 409BARTHREADS . 409BARCORES . 410BIGM . 410BIGMMETHOD . 410BRANCHCHOICE . 411BRANCHDISJ . 411BRANCHSTRUCTURAL . 412BREADTHFIRST . 412CACHESIZE . 412CALLBACKFROMMASTERTHREAD . 413CHOLESKYALG . 413CHOLESKYTOL . 414CLAMPING . 415COMPUTEEXECSERVICE . 415CONFLICTCUTS . 415CONCURRENTTHREADS . 416CORESPERCPU . 416COVERCUTS . 416CPUPLATFORM . 417CPUTIME . 417CRASH . 417CROSSOVER . 418CROSSOVERACCURACYTOL . 418CROSSOVERITERLIMIT . 419CROSSOVEROPS . 419CROSSOVERTHREADS . 419CSTYLE . 420CUTDEPTH . 420CUTFACTOR . 420CUTFREQ . 421CUTSTRATEGY . 421CUTSELECT . 421DEFAULTALG . 422DENSECOLLIMIT . 422DETERMINISTIC . 423DUALGRADIENT . 423DUALIZE . 423DUALIZEOPS . 424

Fair Isaac Corporation Confidential and Proprietary Information ix

Contents

DUALPERTURB . 424DUALSTRATEGY . 424DUALTHREADS . 425EIGENVALUETOL . 425ELIMFILLIN . 425ELIMTOL . 426ETATOL . 426EXTRACOLS . 426EXTRAELEMS . 426EXTRAMIPENTS . 427EXTRAPRESOLVE . 427EXTRAQCELEMENTS . 427EXTRAQCROWS . 427EXTRAROWS . 428EXTRASETELEMS . 428EXTRASETS . 428FEASIBILITYPUMP . 429FEASTOL . 429FEASTOLPERTURB . 429FEASTOLTARGET . 429FORCEOUTPUT . 430FORCEPARALLELDUAL . 430GENCONSABSTRANSFORMATION . 431GENCONSDUALREDUCTIONS . 431GLOBALFILEBIAS . 431GLOBALFILELOGINTERVAL . 431GOMCUTS . 432HEURBEFORELP . 432HEURDEPTH . 432HEURDIVEITERLIMIT . 433HEURDIVERANDOMIZE . 433HEURDIVESOFTROUNDING . 433HEURDIVESPEEDUP . 434HEURDIVESTRATEGY . 434HEURFORCESPECIALOBJ . 434HEURFREQ . 435HEURMAXSOL . 435HEURNODES . 435HEURSEARCHEFFORT . 435HEURSEARCHFREQ . 436HEURSEARCHROOTCUTFREQ . 436HEURSEARCHROOTSELECT . 436HEURSEARCHTREESELECT . 437HEURSTRATEGY . 438HEURTHREADS . 438HISTORYCOSTS . 438IFCHECKCONVEXITY . 439INDLINBIGM . 439INDPRELINBIGM . 439INVERTFREQ . 440INVERTMIN . 440KEEPBASIS . 440KEEPNROWS . 441L1CACHE . 441LINELENGTH . 441

Fair Isaac Corporation Confidential and Proprietary Information x

Contents

LNPBEST . 442LNPITERLIMIT . 442LPFLAGS . 442LPITERLIMIT . 443LPREFINEITERLIMIT . 443LOCALCHOICE . 443LPFOLDING . 443LPLOG . 444LPLOGDELAY . 444LPLOGSTYLE . 444LPTHREADS . 445MARKOWITZTOL . 445MATRIXTOL . 445MAXCHECKSONMAXCUTTIME . 445MAXCHECKSONMAXTIME . 446MAXMCOEFFBUFFERELEMS . 446MAXCUTTIME . 447MAXGLOBALFILESIZE . 447MAXIIS . 447MAXIMPLIEDBOUND . 448MAXLOCALBACKTRACK . 448MAXMEMORYHARD . 448MAXMEMORYSOFT . 449MAXMIPTASKS . 449MAXMIPSOL . 449MAXNODE . 450MAXPAGELINES . 450MAXSCALEFACTOR . 450MAXTIME . 451MIPABSCUTOFF . 451MIPABSGAPNOTIFY . 451MIPABSGAPNOTIFYBOUND . 452MIPABSGAPNOTIFYOBJ . 452MIPABSSTOP . 452MIPADDCUTOFF . 453MIPCOMPONENTS . 453MIPCONCURRENTNODES . 454MIPCONCURRENTSOLVES . 454MIPDUALREDUCTIONS . 455MIPFRACREDUCE . 455MIPKAPPAFREQ . 456MIPLOG . 456MIPPRESOLVE . 457MIPRAMPUP . 457MIPRESTART . 458MIPRESTARTGAPTHRESHOLD . 458MIQCPALG . 459MIPREFINEITERLIMIT . 459MIPRELCUTOFF . 459MIPRELGAPNOTIFY . 459MIPRELSTOP . 460MIPTERMINATIONMETHOD . 460MIPTHREADS . 461MIPTOL . 461MIPTOLTARGET . 461

Fair Isaac Corporation Confidential and Proprietary Information xi

Contents

MPS18COMPATIBLE . 461MPSBOUNDNAME . 462MPSECHO . 462MPSFORMAT . 462MPSOBJNAME . 463MPSRANGENAME . 463MPSRHSNAME . 463MUTEXCALLBACKS . 463NETCUTS . 464NODEPROBINGEFFORT . 464NODESELECTION . 464NUMERICALEMPHASIS . 465OBJSCALEFACTOR . 465OPTIMALITYTOL . 465OPTIMALITYTOLTARGET . 466OUTPUTCONTROLS . 466OUTPUTLOG . 466OUTPUTMASK . 467OUTPUTTOL . 467PENALTY . 467PERTURB . 467PIVOTTOL . 468PPFACTOR . 468PREANALYTICCENTER . 468PREBASISRED . 468PREBNDREDCONE . 469PREBNDREDQUAD . 469PRECOEFELIM . 469PRECOMPONENTS . 470PRECOMPONENTSEFFORT . 470PRECONEDECOMP . 470PRECONVERTSEPARABLE . 471PREDOMCOL . 471PREDOMROW . 472PREDUPROW . 472PREELIMQUAD . 472PREIMPLICATIONS . 473PRELINDEP . 473PREOBJCUTDETECT . 473PREPERMUTE . 474PREPERMUTESEED . 474PREPROBING . 475PREPROTECTDUAL . 475PRESOLVE . 475PRESOLVEMAXGROW . 476PRESOLVEOPS . 476PRESOLVEPASSES . 477PRESORT . 477PRICINGALG . 478PRIMALOPS . 478PRIMALPERTURB . 479PRIMALUNSHIFT . 479PSEUDOCOST . 479PWLDUALREDUCTIONS . 480PWLNONCONVEXTRANSFORMATION . 480

Fair Isaac Corporation Confidential and Proprietary Information xii

Contents

QCCUTS . 480QCROOTALG . 481QSIMPLEXOPS . 481QUADRATICUNSHIFT . 482RANDOMSEED . 482REFACTOR . 482REFINEOPS . 483RELAXTREEMEMORYLIMIT . 483RELPIVOTTOL . 484REPAIRINDEFINITEQ . 484REPAIRINFEASMAXTIME . 484RESOURCESTRATEGY . 485ROOTPRESOLVE . 485SBBEST . 485SBEFFORT . 486SBESTIMATE . 486SBITERLIMIT . 486SBSELECT . 487SCALING . 487SIFTING . 488SIFTSWITCH . 488SLEEPONTHREADWAIT . 489SOSREFTOL . 489SYMMETRY . 489SYMSELECT . 490THREADS . 490TRACE . 490TREECOMPRESSION . 491TREECOVERCUTS . 491TREECUTSELECT . 491TREEDIAGNOSTICS . 492TREEGOMCUTS . 492TREEMEMORYLIMIT . 492TREEMEMORYSAVINGTARGET . 493TREEPRESOLVE . 493TREEPRESOLVE_KEEPBASIS . 494TREEQCCUTS . 494TUNERHISTORY . 494TUNERMAXTIME . 495TUNERMETHOD . 495TUNERMETHODFILE . 496TUNERMODE . 496TUNEROUTPUT . 496TUNEROUTPUTPATH . 497TUNERPERMUTE . 497TUNERROOTALG . 497TUNERSESSIONNAME . 498TUNERTARGET . 498TUNERTHREADS . 499TUNERVERBOSE . 499USERSOLHEURISTIC . 499VARSELECTION . 500VERSION . 500
10 Problem Attributes 501

Fair Isaac Corporation Confidential and Proprietary Information xiii

Contents

10.1 Retrieving Problem Attributes . 501ACTIVENODES . 501ALGORITHM . 501ATTENTIONLEVEL . 502AVAILABLEMEMORY . 502BARAASIZE . 502BARCGAP . 502BARCONDA . 503BARCONDD . 503BARCROSSOVER . 503BARDENSECOL . 503BARDUALINF . 503BARDUALOBJ . 504BARITER . 504BARLSIZE . 504BARPRIMALINF . 504BARPRIMALOBJ . 504BARSING . 505BARSINGR . 505BESTBOUND . 505BOUNDNAME . 505BRANCHVALUE . 505BRANCHVAR . 506CALLBACKCOUNT_CUTMGR . 506CALLBACKCOUNT_OPTNODE . 506CHECKSONMAXCUTTIME . 506CHECKSONMAXTIME . 507COLS . 507COMPUTEEXECUTIONS . 507CONEELEMS . 507CONES . 508CORESDETECTED . 508CORESPERCPUDETECTED . 508CPUSDETECTED . 509CURRENTMEMORY . 509CURRENTNODE . 509CURRMIPCUTOFF . 509CUTS . 510DUALINFEAS . 510ELEMS . 510ERRORCODE . 510GENCONCOLS . 511GENCONS . 511GENCONVALS . 511GLOBALFILESIZE . 511GLOBALFILEUSAGE . 512INDICATORS . 512LPOBJVAL . 512LPSTATUS . 512MATRIXNAME . 513MAXABSDUALINFEAS . 513MAXABSPRIMALINFEAS . 513MAXKAPPA . 514MAXMIPINFEAS . 514MAXPROBNAMELENGTH . 514

Fair Isaac Corporation Confidential and Proprietary Information xiv

Contents

MAXRELDUALINFEAS . 514MAXRELPRIMALINFEAS . 514MIPBESTOBJVAL . 515MIPENTS . 515MIPINFEAS . 515MIPOBJVAL . 515MIPSOLNODE . 516MIPSOLS . 516MIPSTATUS . 516MIPTHREADID . 516NAMELENGTH . 517NODEDEPTH . 517NODES . 517NUMIIS . 517OBJNAME . 518OBJRHS . 518OBJSENSE . 518ORIGINALCOLS . 518ORIGINALGENCONS . 519ORIGINALGENCONCOLS . 519ORIGINALGENCONVALS . 519ORIGINALINDICATORS . 519ORIGINALMIPENTS . 519ORIGINALPWLS . 520ORIGINALPWLPOINTS . 520ORIGINALQCONSTRAINTS . 520ORIGINALQCELEMS . 520ORIGINALQELEMS . 521ORIGINALSETMEMBERS . 521ORIGINALSETS . 521ORIGINALROWS . 521PARENTNODE . 522PEAKMEMORY . 522PEAKTOTALTREEMEMORYUSAGE . 522PENALTYVALUE . 522PHYSICALCORESDETECTED . 522PHYSICALCORESPERCPUDETECTED . 523PREDICTEDATTLEVEL . 523PRESOLVEINDEX . 523PRESOLVESTATE . 524PRIMALDUALINTEGRAL . 524PRIMALINFEAS . 524PWLCONS . 525PWLPOINTS . 525QCELEMS . 525QCONSTRAINTS . 525QELEMS . 526RANGENAME . 526RHSNAME . 526ROWS . 526SIMPLEXITER . 527SETMEMBERS . 527SETS . 527SPARECOLS . 527SPAREELEMS . 528

Fair Isaac Corporation Confidential and Proprietary Information xv

Contents

SPAREMIPENTS . 528SPAREROWS . 528SPARESETELEMS . 528SPARESETS . 528STOPSTATUS . 529SUMPRIMALINF . 529SYSTEMMEMORY . 529TIME . 530TOTALMEMORY . 530TREECOMPLETION . 530TREEMEMORYUSAGE . 530TREERESTARTS . 530UUID . 531XPRESSVERSION . 531
11 Return Codes and Error Messages 53211.1 Optimizer Return Codes . 53211.2 Optimizer Error and Warning Messages . 533

Appendix 565

A Log and File Formats 566A.1 File Types . 566A.2 XMPS Matrix Files . 567A.2.1 NAME section . 567A.2.2 ROWS section . 567A.2.3 COLUMNS section . 568A.2.4 QUADOBJ / QMATRIX section (Quadratic Programming only) 568A.2.5 QCMATRIX section (Quadratic Constraint Programming only) 569A.2.6 DELAYEDROWS section . 570A.2.7 MODELCUTS section . 570A.2.8 INDICATORS section . 571A.2.9 SETS section (Integer Programming only) . 571A.2.10 RHS section . 572A.2.11 RANGES section . 572A.2.12 BOUNDS section . 572A.2.13 GENCONS section . 573A.2.14 ENDATA section . 575A.2.15 Compatibility . 575A.2.16 PWLOBJ section . 575A.2.17 PWLNAM section . 576A.2.18 PWLCON section . 576A.3 LP File Format . 577A.3.1 Rules for the LP file format . 577A.3.2 Comments and blank lines . 578A.3.3 File lines, white space and identifiers . 578A.3.4 Sections . 578A.3.5 Variable names . 579A.3.6 Linear expressions . 579A.3.7 Objective function . 579A.3.8 Constraints . 580A.3.9 Delayed rows . 580A.3.10 Model cuts . 580A.3.11 Indicator contraints . 581

Fair Isaac Corporation Confidential and Proprietary Information xvi

Contents

A.3.12 Bounds . 581A.3.13 Generals, Integers and binaries . 582A.3.14 Semi-continuous and semi-integer . 582A.3.15 Partial integers . 583A.3.16 Special ordered sets . 584A.3.17 Quadratic programming problems . 584A.3.18 Quadratic Constraints . 584A.3.19 General Constraints . 585A.3.20 Extended naming convention . 586A.3.21 Compatibility to other extensions . 586A.4 ASCII Solution Files . 586A.4.1 Solution Header .hdr Files . 587A.4.2 CSV Format Solution .asc Files . 587A.4.3 Fixed Format Solution (.prt) Files . 588A.4.4 ASCII Solution (.slx) Files . 590A.5 ASCII Range Files . 590A.5.1 Solution Header (.hdr) Files . 590A.5.2 CSV Format Range (.rsc) Files . 591A.5.3 Fixed Format Range (.rrt) Files . 591A.6 The Directives (.dir) File . 593A.7 IIS description file in CSV format . 593A.8 The Matrix Alteration (.alt) File . 594A.8.1 Changing Upper or Lower Bounds . 594A.8.2 Changing Right Hand Side Coefficients . 595A.8.3 Changing Constraint Types . 595A.9 The Tuner Method (.xtm) File . 595A.9.1 The fixed controls . 596A.9.2 The tunable controls . 596A.10 The Simplex Log . 596A.11 The Barrier Log . 597A.12 The Global Log . 597A.13 The Tuner Log . 599A.14 The Remote Solving Configuration file . 599A.14.1 caCertsPath . 600A.14.2 cleanupJobs . 600A.14.3 executionService . 600A.14.4 logLevel . 600A.14.5 maxRetries . 601A.14.6 trustSrv . 601
B Contacting FICO 602Product support . 602Product education . 602Product documentation . 602Sales and maintenance . 603Related services . 603FICO Community . 603About FICO . 603

Index 604

Fair Isaac Corporation Confidential and Proprietary Information xvii

CHAPTER 1

Introduction

The FICO Xpress Optimization Suite is a powerful mathematical optimization framework well–suited toa broad range of optimization problems. The core solver of this suite is the FICO Xpress Optimizer,which combines ease of use with speed and flexibility. It can be interfaced via the command lineConsole Optimizer, via the graphical interface application IVE and through a callable library that isaccessible from all the major programming platforms. It combines flexible data access functionalityand optimization algorithms, using state–of–the–art methods, which enable the user to handle theincreasingly complex problems arising in industry and academia.
The Console Optimizer provides a suite of ’Console Mode’ Optimizer functionality. Using the ConsoleOptimizer the user can load problems from widely used problem file formats such as the MPS and LPformats and solve them using any of the algorithms supported by the Optimizer. The results may thenbe processed and viewed in a variety of ways. The Console Mode provides full access to the Optimizercontrol variables allowing the user to customize the optimization algorithms to tune the solvingperformance on the most demanding problems.
The FICO Xpress Optimizer library provides full, high performance access to the internal data structuresof the Optimizer and full flexibility to manipulate the problem and customize the optimization process.For example, the Cut Manager framework allows the user to exploit their detailed knowledge of theproblem to generate specialized cutting planes during branch and bound that may improve solvingperformance of Mixed Integer Programs (MIPs).
Of most interest to the library users will be the embedding of the Optimizer functionality within theirown applications. The available programming interfaces of the library include interfaces for C/C++,.NET and Java. Note that the interface specifications in the following documentation are givenexclusively in terms of the C/C++ language. Short examples of the interface usage using otherlanguages may be found in the FICO Xpress Getting Started manual.

1.1 The FICO Xpress Optimizer

The FICO Xpress Optimizer is a mathematical programming framework designed to provide highperformance solving capabilities. Problems can be loaded into the Optimizer via matrix files such asMPS and LP files and/or constructed in memory and loaded using a variety of approaches via thelibrary interface routines. Note that in most cases it is more convenient for the user to construct theirproblems using FICO Xpress Mosel or FICO Xpress BCL and then solve the problem using theinterfaces provided by these packages to the Optimizer.
The solving algorithms provided with the Optimizer include the primal simplex, the dual simplex and theNewton barrier algorithms. For solving Mixed Integer Programs (MIPs) the Optimizer provides apowerful branch and bound framework. The various types of problems the Optimizer can solve areoutlined in Chapter 3.
Solution information can be exported to file using a variety of ASCII and binary formats or accessed viamemory using the library interface. Advanced solution information, such as solution bases, can be both

Fair Isaac Corporation Confidential and Proprietary Information 1

Introduction

exported and imported either via files or via memory, using the library interface. Note that bases can beuseful for so called ’warm–starting’ the solving of Linear Programming (LP) problems.

1.2 Starting the First Time

We recommend that new FICO Xpress Optimizer users first try running the Console Optimizer’optimizer’ executable from the command prompt before using the other interfaces of Optimizer. This isbecause (i) it is the easiest way to confirm the license status of the installation and (ii) it is anintroduction to a powerful tool with many uses during the development cycle of optimizationapplications. For this reason we focus mainly on discussing the Console Optimizer in this section as anintroduction to various basic functions of the Optimizer.
1.2.1 Licensing

To run the Optimizer from any interface it is necessary to have a valid licence file, xpauth.xpr. TheFICO Xpress licensing system is highly flexible and is easily configurable to cater for the user’srequirements. The system can allow the Optimizer to be run on a specific machine, on a machine with aspecific ethernet address or on a machine connected to an authorized hardware dongle.
If the Optimizer fails to verify a valid license then a message can be obtained that describes thereasons for the failure and the Optimizer will be unusable. When using the Console Optimizer thelicensing failure message will be displayed on the console. Library users can call the function
XPRSgetlicerrmsg to get the licensing failure message.
On Windows operating systems the Optimizer searches for the license file in the directory containingthe Xpress libraries, which are installed by default into the C:\xpressmp\bin folder. To avoidunnecessary licensing problems, it is recommended that the XPAUTH_PATH environment variable isnot set on Windows.
On Unix systems it is necessary to set the XPAUTH_PATH environment variable to the full path to thelicense file. For ease of support it is recommended that the license file is placed in the bin directorywithin your Xpress installation and the XPAUTH_PATH environment variable is set accordingly, e.g.,
/opt/xpressmp/bin/xpauth.xpr.

1.2.2 Starting Console Optimizer

Console Optimizer is an interactive command line interface to the Optimizer. Console Optimizer isstarted from the command line using the following syntax:
C:\> optimizer [problem_name] [@filename]

From the command line an initial problem name can be optionally specified together with an optionalsecond argument specifying a text "script" file from which the console input will be read as if it hadbeen typed interactively.
Note that the syntax example above shows the command as if it were input from the WindowsCommand Prompt (i.e., it is prefixed with the command prompt string C:\>). For Windows usersConsole Optimizer can also be started by typing optimizer into the "Run ..." dialog box in the Startmenu.
The Console Optimizer provides a quick and convenient interface for operating on a single problemloaded into the Optimizer. Compare this with the more powerful library interface that allows one ormore problems to co–exist in a process. The Console Optimizer problem contains the problem data aswell as (i) control variables for handling and solving the problem and (ii) attributes of the problem andits solution information.

Fair Isaac Corporation Confidential and Proprietary Information 2

Introduction

Useful features of Console Optimizer include a help system, auto–completion of command names andintegration of system commands.
Typing "help" will list the various options for getting help. Typing "help commands" will list availablecommands. Typing "help attributes" and "help controls" will list the available attributes andcontrols, respectively. Typing "help" followed by a command name or control/attribute name will listthe help for this item. For example, typing "help lpoptimize" will get help for the LPOPTIMIZEcommand.
The Console Optimizer auto–completion feature is a useful way of reducing key strokes when issuingcommands. To use the auto–completion feature, type the first part of an optimizer command namefollowed by the Tab key. For example, by typing "lpopt" followed by the Tab key Console Optimizer willcomplete to the LPOPTIMIZE command. Note that once you have finished inputting the commandname portion of your command line, Console Optimizer can also auto–complete on file names. Forexample, if you have a matrix file named hpw15.mps in the current working directory then by typing"readprob hpw" followed by the Tab key the command should auto–complete to the string"readprob hpw15.mps". Note that the auto–completion of file names is case–sensitive.
Console Optimizer also features integration with the operating system’s shell commands. For example,by typing "dir" (or "ls" under Unix) you will directly run the operating system’s directory listingcommand. Using the "cd" command will change the working directory, which will be indicated in theprompt string:

[xpress bin] cd \
[xpress C:\]

Finally, note that when the Console Optimizer is first started it will attempt to read in an initialization filenamed optimizer.ini from the current working directory. This is an ASCII file that may contain anylines that can normally be entered at the console prompt, such as commands or control parametersettings. The lines of the optimizer.ini file are run with at start up, and can be useful for setting upa customized default Console Optimizer environment for the user (e.g., defining custom controlssettings on the Console Optimizer problem).
1.2.3 Scripting Console Optimizer

The Console Optimizer interactive command line hosts a TCL script parser (http://www.tcl.tk). WithTCL scripting the user can program flow control into their Console Optimizer scripts. Also TCL scriptingprovides the user with programmatic access to a powerful suite of functionality in the TCL library. Withscripting support the Console Optimizer provides a high level of control and flexibility well beyond thatwhich can be achieved by combining operating system batch files with simple piped script files. Indeed,with scripting support, Console Optimizer is ideal for (i) early application development, (ii) tuning ofmodel formulations and solving performance and (iii) analyzing difficulties and bugs in models.
Note that the TCL parser has been customized and simplified to handle intuitive access to the controlsand attributes of the Optimizer. The following example shows how to proceed with write and readaccess to the MIPLOG Optimizer control:

[xpress C:\] miplog=3
[xpress C:\] miplog
3

The following shows how this would usually be achieved using TCL syntax:
[xpress C:\] set miplog 3
3
[xpress C:\] $miplog
3

Fair Isaac Corporation Confidential and Proprietary Information 3

http://www.tcl.tk/

Introduction

The following set of examples demonstrate how with some simple TCL commands and some basicflow control constructs the user can quickly and easily create powerful programs.
The first example demonstrates a loop through a list of matrix files where a simple regular expressionon the matrix file name and a simple condition on the number of rows in the problem decide whether ornot the problem is solved using lpoptimize. Note the use of:

� the creation of a list of file names using the TCL glob command
� the use of the TCL square bracket notation ([]) for evaluating commands to their string resultvalue
� the TCL foreach loop construct iterating over the list of file names
� dereferencing the string value of a variable using ’$’
� the use of the TCL regexp regular expression command
� the two TCL if statements and their condition statements
� the use of the two Optimizer commands READPROB and MINIM
� the TCL continue command used to skip to the next loop iteration

set filelist [glob ⁎.mps]
foreach filename $filelist {
if { [regexp -all {large_problem} $filename] } continue
readprob $filename
if { $rows > 200 } continue
lpoptimize

}

The second example demonstrates a loop though some control settings and the tracking of the controlsetting that gave the best performance. Note the use of:
� the TCL for loop construct iterating over the values of variable i from --1 to 3
� console output formatting with the TCL puts command
� setting the values of Optimizer controls CUTSTRATEGY and MAXNODE
� multiple commands per line separated using a semicolon
� use of the MIPSTATUS problem attribute in the TCL if statement
� comment lines using the hash character ’#’

set bestnodes 10000000
set p hpw15
for { set i -1 } { $i <= 3 } { incr i } {
puts "Solving with cutstrategy : $i"
cutstrategy=$i; maxnode=$bestnodes
readprob $p
mipoptimize
if { $mipstatus == 6 } {
Problem was solved within $bestnodes
set bestnodes $nodes; set beststrat $i

}
}
puts "Best cutstrategy : $beststrat : $bestnodes"

Fair Isaac Corporation Confidential and Proprietary Information 4

Introduction

1.2.4 Interrupting Console Optimizer

Console Optimizer users may interrupt the running of the commands (e.g., lpoptimize) by typingCtrl–C. Once interrupted Console Optimizer will return to its command prompt. If an optimizationalgorithm has been interrupted in this way, any solution process will stop at the first ’safe’ place beforereturning to the prompt. Optimization iterations may be resumed by re–entering the interruptedcommand. Note that by using this interrupt–resume functionality the user has a convenient way ofdynamically changing controls during an optimization run.
When Console Optimizer is being run with script input then Ctrl–C will not return to the commandprompt and the Console Optimizer process will simply stop.
Lastly, note that "typing ahead" while the console is writing output to screen can cause Ctrl–C input tofail on some operating systems.

1.3 Manual Layout

So far the manual has given a basic introduction to the FICO Xpress Optimization Suite. The readershould be able to start the Console Optimizer command line tool and have the license verified correctly.They should also be able to enter some common commands used in Console Optimizer (e.g.,
READPROB and LPOPTIMIZE) and get help on command usage using the Console Optimizer helpfunctionality.
The remainder of this manual is divided into two parts. These are the first chapters up to but notincluding Chapter 8 and the remaining chapters from Chapter 8.
The first part of the manual, beginning with Chapter 2, provides a brief overview of common Optimizerusage, introducing the various routines available and setting them in the typical context they are used.This is followed in Chapter 3 by a brief overview of the types of problems that the FICO XpressOptimizer can be used to solve. Chapter 4 provides a description of the solution methods and some ofthe more frequently used parameters for controlling these methods along with some ideas of how theymay be used to enhance the solution process. Finally, Chapter 5 details some more advanced topics inOptimizer usage.
The second half of the manual is the main reference section. Chapter 8 details all functions in both theConsole and Advanced Modes alphabetically. Chapters 9 and 10 then provide a reference for thevarious controls and attributes, followed by a list of Optimizer error and return codes in Chapter 11. Adescription of several of the file formats is provided in Appendix A.

Fair Isaac Corporation Confidential and Proprietary Information 5

CHAPTER 2

Basic Usage

The FICO Xpress Optimization Suite is a powerful and flexible framework catering for the developmentof a wide range of optimization applications. From the script–based Console Optimizer providing rapiddevelopment access to a subset of Optimizer functionality (Console Mode) to the more advanced, highperformance access of the full Optimizer functionality through the library interface.
In the previous section we looked at the Console Optimizer interface and introduced some basicfunctions that all FICO Xpress Optimizer users should be familiar with. In this section we expand on thediscussion and include some basic functions of the library interface.

2.1 Initialization

Before the FICO Xpress Optimization Suite can be used from any of the interfaces the Optimizer librarymust be initialized and the licensing status successfully verified. Details about licensing yourinstallation can be found in FICO Xpress Installation Guide.
When Console Optimizer is started from the command line the initialization and licensing securitychecks happen immediately and the results are displayed with the banner in the console window. Forthe library interface users, the initialization and licensing are triggered by a call to the library function
XPRSinit, which must be made before any of the other Optimizer library routines can be successfullycalled. If the licensing security checks fail to check out a license then library users can obtain a stringmessage explaining the issue using the function XPRSgetlicerrmsg.
Note that it is recommended that the users having licensing problems use the Console Optimizer as ameans of checking the licensing status while resolving the issues. This is because it is the quickestand easiest way to check and display the licensing status.
Once the Optimizer functionality is no longer required the license and any system resources held by theOptimizer should be released. The Console Optimizer releases these automatically when the user exitsthe Console Optimizer with the QUIT or STOP command. For library users the Optimizer can betriggered to release its resources with a call to the routine XPRSfree, which will free the licensechecked out in the earlier call to XPRSinit.

{
if(XPRSinit(NULL)) printf("Problem with XPRSinit\n");
XPRSfree();

}

In general, library users will call XPRSinit once when their application starts and then call XPRSfreebefore it exits. This approach is recommended since calls to XPRSinit can have non–negligible(approx. 0.5 sec) overhead when using floating network licensing.
Although it is recommended that the user writes their code such that XPRSinit and XPRSfree arecalled only in sequence note that the routine XPRSinitmay be called repeatedly before a call to

Fair Isaac Corporation Confidential and Proprietary Information 6

Basic Usage

XPRSfree. Each subsequent call to XPRSinit after the first will simply return without performing anytasks. In this case note that the routine XPRSfreemust be called the same number of times as thecalls to XPRSinit to fully release the resources held by the library. Only on the last of these calls to
XPRSfree will the library be released and the license freed.

2.2 The Problem Pointer

The Optimizer provides a container or problem pointer to contain an optimization problem and itsassociated controls, attributes and any other resources the user may attach to help construct and solvethe problem. Console Optimizer has one of these problem pointers that it uses to provide the user withloading and solving functionality. This problem pointer is automatically initialized when ConsoleOptimizer is started and release again when it is stopped.
In contrast to Console Optimizer, library interface users can have multiple problem pointers coexistingsimultaneously in a process. The library user creates and destroys a problem pointer using the routines
XPRScreateprob and XPRSdestroyprob, respectively. In the C library interface, the user passes theproblem pointer as the first argument in routines that are used to operate on the problem pointer’s data.Note that it is recommended that the library user destroys all problem pointers before calling
XPRSfree.

{
XPRSprob prob;
XPRScreateprob(&prob);
XPRSdestroyprob(prob);

}

2.3 Logging

The Optimizer provides useful text logging messages for indicating progress during the optimizationalgorithms and for indicating the status of certain important commands such as XPRSreadprob. Themessages from the optimization algorithms report information on iterations of the algorithm. The mostimportant use of the logging, however, is to convey error messages reported by the Optimizer. Note thatonce a system is in production the error messages are typically the only messages of interest to theuser.
Conveniently, Console Optimizer automatically writes the logging messages for its problem pointer tothe console screen. Although message management for the library users is more complicated than forConsole Optimizer users, library users have more flexibility with the handling and routing of messages.The library user can route messages directly to file or they can intercept the messages via callback andmarshal the message strings to appropriate destinations depending on the type of message and/or theproblem pointer from which the message originates.
To write the messages sent from a problem pointer directly to file the user can call XPRSsetlogfilewith specification of an output file name. To get messages sent from a problem pointer to the libraryuser’s application the user will define and then register a messaging callback function with a call to the
XPRSaddcbmessage routine.

{
XPRSprob prob;
XPRScreateprob(&prob);
XPRSsetlogfile(prob, "logfile.log");
XPRSdestroyprob(prob);

}

Note that a high level messaging framework is also available — which handles messages from allproblem pointers created by the Optimizer library and messages related to initialization of the library

Fair Isaac Corporation Confidential and Proprietary Information 7

Basic Usage

itself — by calling the XPRS_ge_setcbmsghandler function. A convenient use of this callback,particularly when developing and debugging an application, is to trap all messages to file. The followingline of code shows how to use the library function XPRSlogfilehandler together with
XPRS_ge_setcbmsghandler to write all library message output to the file log.txt.

XPRS_ge_setcbmsghandler(XPRSlogfilehandler, "log.txt");

Details about the use of callback functions can be found in section 5.8.

2.4 Problem Loading

Once a problem pointer has been created, an optimization problem can be loaded into it. The problemcan be loaded either from file or from memory via the suite of problem loading and problemmanipulation routines available in the Optimizer library interface. The simplest of these approaches,and the only approach available to Console Optimizer users, is to read a matrix from an MPS or LP fileusing XPRSreadprob (READPROB).
{
XPRSprob prob;
XPRScreateprob(&prob);
XPRSsetlogfile(prob, "logfile.log");
XPRSreadprob(prob, "hpw15", "");
XPRSdestroyprob(prob);

}

Library users can construct the problem in their own arrays and then load this problem specificationusing one of the functions XPRSloadlp, XPRSloadqp, XPRSloadqcqp, XPRSloadglobal,
XPRSloadqglobal or XPRSloadqcqpglobal. During the problem load routine the Optimizer will usethe user’s data to construct the internal problem representation in new memory that is associated withthe problem pointer. Note, therefore, that the user’s arrays can be freed immediately after the call. Oncethe problem has been loaded, any subsequent call to one of these load routines will overwrite theproblem currently represented in the problem pointer.
The names of the problem loading routines indicate the type of problem that can be represented usingthe routine. The following table outlines the components of an optimization problem as denoted by thecodes used in the function names.
Code Problem Content
lp Linear Program (LP) (linear constraints and linear objective)
qp Quadratic Program (LP with quadratic objective)
global Global Constraints (LP with discrete entities e.g., binary variables)
qc Quadratic Constraints (LP with quadratic constraints)

Many of the array arguments of the load routines can optionally take NULL pointers if the associatedcomponent of the problem is not required to be defined. Note, therefore, that the user need only use the
XPRSloadqcqpglobal routine to load any problem that can be loaded by the other routines.
Finally, note that the names of the rows and columns of the problem are not loaded together with theproblem specification. These may be loaded afterwards using a call to the function XPRSaddnames.

2.5 Problem Solving

With a problem loaded into a problem pointer the user can run the optimization algorithms on theproblem to solve it.

Fair Isaac Corporation Confidential and Proprietary Information 8

Basic Usage

The two main commands to run the optimization algorithms on a problem are
XPRSmipoptimize(MIPOPTIMIZE) and XPRSlpoptimize(LPOPTIMIZE) depending on whether theproblem needs to be solved with or without global entities. The XPRSlpoptimize function will solveLPs, QPs and QCQPs or the initial continuous relaxation of a MIP problem, depending on the type ofproblem loaded in the problem pointer. The XPRSmipoptimize function will solve MIPs, MIQPs andMIQCQPs.
For problems with global entities the Optimizer can be told to stop after having solved the initialrelaxation by passing the ’l’ flag to the XPRSmipoptimize function. The remaining MIP search can berun by calling the XPRSmipoptimize function without the ’l’ flag.

{
XPRSprob prob;
XPRScreateprob(&prob);
XPRSsetlogfile(prob, "logfile.log");
XPRSreadprob(prob, "hpw15", "");
XPRSmipoptimize(prob, "");
XPRSdestroyprob(prob);

}

2.6 Interrupting the Solve

It is common that users need to interrupt iterations before a solving algorithm is complete. This isparticularly common when solving MIP problems since the time to solve these to completion can belarge and users are often satisfied with near–optimal solutions. The Optimizer provides for this withstructured interrupt criteria using controls and with user–triggered interrupts.
As described previously in section 1.2.4 Console Optimizer can receive a user–triggered interrupt fromthe keyboard Ctrl–C event. It was also described in this previous section how interrupted commandscould be resumed by simply reissuing the command. Similarly, optimization runs started from thelibrary interface and interrupted by either structured or user–triggered interrupts, will return from thecall in such a state that the run may be resumed with a follow–on call.
To setup structured interrupts the user will need to set the value of certain controls. Controls are scalarvalues that are accessed by their name in Console Optimizer and by their id number via the libraryinterface using functions such as XPRSgetintcontrol and XPRSsetintcontrol. These particularlibrary functions are used for getting and setting the values of integer controls. Similar library functionsare used for accessing double precision and string type controls.
Some types of structured interrupts include limits on iterations of the solving algorithms and a limit onthe overall time of the optimization run. Limits on the simplex algorithms’ iterations are set using thecontrol LPITERLIMIT. Iterations of the Newton barrier algorithm are limited using the control
BARITERLIMIT. A limit on the number of nodes processed in the branch and bound search whensolving MIP problems is provided with the MAXNODE control. The integer control MAXTIME is used tolimit the overall run time of the optimization run.
Note that it is important to be careful when using interrupts, to ensure that the optimization run is notbeing unduly restricted. This is particularly important when using interrupts on MIP optimization runs.Specific controls to use as stopping criteria for the MIP search are discussed in section 4.3.7.

{
XPRSprob prob;
XPRScreateprob(&prob);
XPRSsetlogfile(prob, "logfile.log");
XPRSreadprob(prob, "hpw15", "");
XPRSsetintcontrol(prob, XPRS_MAXNODE, 20000);
XPRSmipoptimize(prob, "");
XPRSdestroyprob(prob);

}

Fair Isaac Corporation Confidential and Proprietary Information 9

Basic Usage

Finally note that library users can trigger an interrupt on an optimization run (in a similar way to theCtrl–C interrupt in Console Optimizer) using a call to the function XPRSinterrupt. It is recommendedthat the user call this function from a callback during the optimization run. See section 5.8 for detailsabout using callbacks.

2.7 Results Processing

Once the optimization algorithms have completed, either a solution will be available, or else theproblem will have been identified as infeasible or unbounded. In the latter case, the user might want toknow what caused this particular outcome and take steps to correct it. How to identify the causes ofinfeasibility and unboundedness are discussed in Chapter 6. In the former case, however, the usertypically wants to retrieve the solution information into the required format.
The FICO Xpress Optimizer provides a number of functions for accessing solution information. AnASCII solution file can be obtained by XPRSwriteslxsol (WRITESLXSOL). The .slx format is similarformat to the .mps format for MIP models and to the .sol format. Files in .slx format can be readback into the optimizer using the XPRSreadslxsol function. An extended solution file with additionalinformation per column may be obtained as an ASCII file using either of XPRSwritesol (WRITESOL)or XPRSwriteprtsol(WRITEPRTSOL).
Library interface users may additionally access the current LP, QP or QCQP solution information viamemory using XPRSgetlpsol. By calling XPRSgetlpsol the user can obtain copies of the doubleprecision values of the decision variables, the slack variables, dual values and reduced costs. Libraryinterface users can obtain the last MIP solution information with the XPRSgetmipsol function.
In addition to the arrays of solution information provided by the Optimizer, summary solutioninformation is also available through problem attributes. These are named scalar values that can beaccessed by their id number using the library functions XPRSgetintattrib, XPRSgetdblattriband XPRSgetstrattrib. Examples of attributes include LPOBJVAL and MIPOBJVAL, which returnthe objective function values for the current LP, QP or QCQP solution and the last MIP solution,respectively. A full list of attributes may be found in Chapter 10.
When the optimization routine returns it is recommended that the user check the status of the run toensure the results are interpreted correctly. For continuous optimization runs (started with
XPRSlpoptimize) the status is available using the LPSTATUS integer problem attribute. For MIPoptimization runs (started with XPRSmipoptimize) the status is available using the MIPSTATUSinteger problem attribute. See the attribute’s reference section for the definition of their values.

{
XPRSprob prob;
int nCols;
double ⁎x;
XPRScreateprob(&prob);
XPRSsetlogfile(prob, "logfile.log");
XPRSreadprob(prob, "hpw15", "");
XPRSgetintattrib(prob, XPRS_COLS, &nCols);
XPRSsetintcontrol(prob, XPRS_MAXNODE, 20000);
XPRSmipoptimize(prob, "");
XPRSgetintattrib(prob, XPRS_MIPSTATUS, &iStatus);
if(iStatus == XPRS_MIP_SOLUTION || iStatus == XPRS_MIP_OPTIMAL) {

x = (double ⁎) malloc(sizeof(double) ⁎ nCols);
XPRSgetmipsol(prob, x, NULL);

}
XPRSdestroyprob(prob);

}

Note that, unlike for LP, QP or QCQP solutions, dual solution information is not provided with the call to
XPRSgetmipsol and is not automatically generated with the MIP solutions. Only the decision andslack variable values for a MIP solution are obtained when calling XPRSgetmipsol. The reason for

Fair Isaac Corporation Confidential and Proprietary Information 10

Basic Usage

this is that MIP problems do not satisfy the theoretical conditions by which dual information is derived(i.e., Karush–Kuhn–Tucker conditions). In particular, this is because the MIP constraint functions are, ingeneral, not continuously differentiable (indeed, the domains of integer variables are not continuous).
Despite this, some useful dual information can be generated if a MIP has continuous variables and wesolve the resulting LP problem generated by fixing the non–continuous component of the problem totheir solution values. Because this process can be expensive it is left to the user to perform this in apost solving phase where the user will simply call the function XPRSfixglobals followed with a callto the optimization routine XPRSlpoptimize.

2.8 Function Quick Reference

2.8.1 Administration

XPRSinit Initialize the Optimizer.
XPRScreateprob Create a problem pointer.
XPRSsetlogfile Direct all Optimizer output to a log file.
XPRSaddcbmessage Define a message handler callback function.
XPRSgetintcontrol Get the value of an integer control,
XPRSsetintcontrol Set the value of an integer control.
XPRSinterrupt Set the interrupt status of an optimization run.
XPRSdestroyprob Destroy a problem pointer.
XPRSfree Release resources used by the Optimizer.

2.8.2 Problem Loading

XPRSreadprob Read an MPS or LP format file.
XPRSloadlp Load an LP problem.
XPRSloadqp Load a quadratic objective problem.
XPRSloadqcqp Load a quadratically constrained, quadratic objective problem.
XPRSloadglobal Load a MIP problem.
XPRSloadqglobal Load a quadratic objective MIP problem.
XPRSloadqcqpglobal Load a quadratically constrained, quadratic objective MIP problem.
XPRSaddnames Load names for a range of rows or columns in a problem.

2.8.3 Problem Solving

XPRSreadbasis Read a basis from file.
XPRSloadbasis Load a basis from user arrays.
XPRSreaddirs Read a directives file.
XPRSlpoptimize Solve the problem without global entities.
XPRSmipoptimize Run the problem with global entities.
XPRSfixglobals Fix the discrete variables in the problem to the values of the current

MIP solution stored with the problem pointer.
XPRSgetbasis Copy the current basis into user arrays.
XPRSwritebasis Write the current basis to file.

Fair Isaac Corporation Confidential and Proprietary Information 11

Basic Usage

2.8.4 Results Processing

XPRSwritesol Write the current solution to ASCII files.
XPRSwriteprtsol Write the current solution in printable format to file.
XPRSgetlpsol Copy the current LP solution values into user arrays.
XPRSgetmipsol Copy the values of the last MIP solution into user arrays.
XPRSgetintattrib Get the value of an integer problem attribute e.g., by passing the id

MIPSOLS the user can get the number of MIP solutions found.
XPRSgetdblattrib Get the value of a double problem attribute e.g., by passing the id

MIPOBJVAL the user can get the objective value of the last MIP
solution.

XPRSgetstrattrib Get the value of a string problem attribute.

2.9 Summary

In the previous sections a brief introduction is provided to the most common features of the FICOXpress Optimizer and its most general usage. The reader should now be familiar with the main routinesin the Optimizer library. These routines allow a user to create problem pointers and load problems intothese problem pointers. The reader should be familiar with the requirements for setting up messagehandling with the Optimizer library. Also the reader should know how to run the optimization algorithmson the loaded problems and be familiar with the various ways that results can be accessed.
Examples of using the Optimizer are available from a number of sources, most notably from FICOXpress Getting Started manual. This provides a straight forward, "hands–on" approach to the FICOXpress Optimization Suite and it is highly recommended that users read the relevant chapters beforeconsidering the reference manuals. Additionally, more advanced, examples may be downloaded fromthe website.

Fair Isaac Corporation Confidential and Proprietary Information 12

CHAPTER 3

Problem Types

The FICO Xpress Optimization Suite is a powerful optimization tool for solving MathematicalProgramming problems. Users of FICO Xpress formulate real–world problems as MathematicalProgramming problems by defining a set of decision variables, a set of constraints on these variablesand an objective function of the variables that should be maximized or minimized. Our FICO Xpressusers have applications that define and solve important Mathematical Programming problems inacademia and industry, including areas such as production scheduling, transportation, supply chainmanagement, telecommunications, finance and personnel planning.
Mathematical Programming problems are usually classified according to the types of decisionvariables, constraints and objective function in the problem. Perhaps the most popular application ofthe FICO Xpress Optimizer is for the class of Mixed Integer Programs (MIPs). In this section we willbriefly introduce some important types of problems.

3.1 Linear Programs (LPs)

Linear Programming (LP) problems are a very common type of optimization problems. In this type ofproblem all constraints and the objective function are linear expressions of the decision variables. Eachdecision variable is restricted to some continuous interval (typically non–negative). Although themethods for solving these types of problems are well known (e.g., the simplex method), only a fewefficient implementations of these methods (and additional specialized methods for particular classesof LPs) exists, and these are often crucial for solving the increasingly large instances of LPs arising inindustry.

3.2 Mixed Integer Programs (MIPs)

Many problems can be modeled satisfactorily as Linear Programs (LPs), i.e., with variables that areonly restricted to having values in continuous intervals. However, a common class of problems requiresmodeling using discrete variables. These problems are called Mixed Integer Programs (MIPs). MIPproblems are often hard to solve and may require large amounts of computation time to obtain evensatisfactory, if not optimal, results.
Perhaps the most common use of the FICO Xpress Optimization Suite is for solving MIP problems andit is designed to handle the most challenging of these problems. Besides providing solution support forMIP problems the Optimizer provides support for a variety of popular MIP modeling constructs:

Binary variables – decision variables that have value either 0 or 1, sometimes called 0/1variables;
Integer variables – decision variables that have integer values;

Fair Isaac Corporation Confidential and Proprietary Information 13

Problem Types

Semi–continuous variables – decision variables that either have value 0, or a continuous valueabove a specified non–negative limit. Semi–continuous variables are useful for modeling caseswhere, for example, if a quantity is to be supplied at all then it will be supplied starting from someminimum level (e.g., a power generation unit);
Semi–continuous integer variables – decision variables that either have value 0, or an integervalue above a specified non–negative limit;
Partial integer variables – decision variables that have integer values below a specified limit andcontinuous values above the limit. Partial integer variables are useful for modeling cases wherea supply of some quantity needs to be modeled as discrete for small values but we areindifferent whether it is discrete when the values are large (e.g., because, say, we do not need todistinguish between 10000 items and 10000.25 items);
Special ordered sets of type one (SOS1) — a set of decision variables ordered by a set ofspecified continuous values (or reference values) of which at most one can take a nonzero value.SOS1s are useful for modeling quantities that are taken from a specified discrete set ofcontinuous values (e.g., choosing one of a set of transportation capacities);
Special ordered sets of type two (SOS2) – a set of variables ordered by a set of specifiedcontinuous values (or reference values) of which at most two can be nonzero, and if two arenonzero then they must be consecutive in their ordering. SOS2s are useful for modeling apiecewise linear quantity (e.g., unit cost as a function of volume supplied);
Indicator constraints – constraints each with a specified associated binary ’controlling’ variablewhere we assume the constraint must be satisfied when the binary variable is at a specifiedbinary value; otherwise the constraint does not need to be satisfied. Indicator constraints areuseful for modeling cases where supplying some quantity implies that a fixed cost is incurred;otherwise if no quantity is supplied then there is no fixed cost (e.g., starting up a productionfacility to supply various types of goods and the total volume of goods supplied is boundedabove).
Piecewise linear constraints – constraints that define a piecewise linear relationship betweentwo variables. These are defined via a set of breakpoints with linearly interpolated valuesbetween and beyond them (with the slope before the first and after the last point continuing theslope between the first/last two points). The piecewise linear functions are allowed to bediscontinuous by defining multiple points with the same value of the input variable x, in whichcase the output variable y is allowed to take any value between the corresponding y-values ofthese breakpoints, while the first of them will define the slope before and the last will define theslope after this x-value. Piecewise linear constraints are useful to model e.g. transportationcosts that are constant/linear in specific intervals but may jump between the different brackets.
General constraints – specific type of MIP constraints to model min, max, and, or, and
absolute value relationships between two or more variables.

All of the above MIP variable types are collectively referred to as global entities.

3.3 Quadratic Programs (QPs)

Quadratic Programming (QP) problems are an extension of Linear Programming (LP) problems wherethe objective function may include a second order polynomial. An example of this is where the userwants to minimize the statistical variance (a quadratic function) of the solution values.
The FICO Xpress Optimizer can be used directly for solving QP problems with support for quadratic

Fair Isaac Corporation Confidential and Proprietary Information 14

Problem Types

objectives in the MPS and LP file formats and library routines for loading QPs and manipulatingquadratic objective functions. Note that the Optimizer requires the quadratic function to be convexsee section 3.4.2 for a description about convexity)

3.4 Quadratically Constrained Quadratic Programs (QCQPs)

Quadratically Constrained Quadratic Programs (QCQPs) are an extension of the QuadraticProgramming (QP) problem where the constraints may also include second order polynomials.
A QCQP problem may be written as:
minimize: c1x1+...+cnxn+xTQ0xsubject to: a11x1+...+a1nxn+xTQ1x ≤ b1...

am1x1+...+amnxn+xTQmx ≤ bml1 ≤ x1 ≤ u1,...,ln ≤ xn ≤ un
where any of the lower or upper bounds li or ui may be infinite.
The FICO Xpress Optimizer can be used directly for solving QCQP problems with support for quadraticconstraints and quadratic objectives in the MPS and LP file formats and library routines for loadingQCQPs and manipulating quadratic objective functions and the quadratic component of constraints.
Properties of QCQP problems are discussed in the following few sections.

3.4.1 Algebraic and matrix form

Each second order polynomial can be expressed as xTQx where Q is an appropriate symmetric matrix:the quadratic expressions are generally either given in the algebraic form
a11x21 + 2a12x1x2 + 2a13x1x3 + ... + a22x22 + 2a23x2x3 + ...

like in LP files, or in the matrix form xTQx where

Q =

a11 a12 · · · a1n
a21 a22... . . .
an1 an2 · · · ann

like in MPS files. As symmetry is always assumed, aij = aji for all index pairs (i, j).

3.4.2 Convexity

A fundamental property for nonlinear optimization problems, thus in QCQP as well, is convexity. Aregion is called convex if for any two points from the region the connecting line segment is also part ofthe region.
The lack of convexity may give rise to several unfavorable model properties. Lack of convexity in theobjective may introduce the phenomenon of locally optimal solutions that are not global ones (a localoptimal solution is one for which a neighborhood in the feasible region exists in which that solution isthe best). While the lack of convexity in constraints can also give rise to local optima, they may evenintroduce non–connected feasible regions as shown in Figure 3.1.
In this example, the feasible region is divided into two parts. In region B, the objective function has twoalternative locally optimal solutions, while in region A the objective function is not even bounded.

Fair Isaac Corporation Confidential and Proprietary Information 15

Problem Types

Figure 3.1: Non-connected feasible regions

For convex problems, each locally optimal solution is a global one, making the characterization of theoptimal solution efficient.
3.4.3 Characterizing Convexity in Quadratic Constraints

A quadratic constraint of the form
a1x1 + ... + anxn + xTQx ≤ b

defines a convex region if and only if Q is a so–called positive semi–definite (PSD) matrix.
A square matrix Q is PSD by definition if for any vector (not restricted to the feasible set of a problem) xit holds that xTQx ≥ 0.
It follows that for greater-than or equal constraints

a1x1 + ... + anxn + xTQx ≥ b

the negative of Q must be PSD.
A nontrivial quadratic equality constraint (one for which not every coefficient is zero) always defines anonconvex region (or in other words, if both Q and its negative is PSD, then Q must be equal to the 0matrix). Therefore, quadratic equality constraints are not allowed by the Optimizer.
Determining whether a matrix is PSD is not always obvious nor trivial. There are certain constructs,however, that can easily be recognized as being non convex:

1. the product of two variables, say xy, without having both x2 and y2 present;
2. having –x2 in any quadratic expression in a less–than or equal constraint, or having x2 in anygreater– than or equal constraint.

3.5 Second Order Cone problems (SOCPs)

Second order cone problems (SOCP) are a special class of quadratically constrained problems, wherethe quadratic matrix Q is not required to be semi–definite.
The FICO Xpress Optimizer supports (mixed integer) second order cone problems that satisfy thefollowing requirements.

Fair Isaac Corporation Confidential and Proprietary Information 16

Problem Types

Each quadratic constraint satisfies one of the following two forms:
1. Second order (or Lorentz) cone: x21 + x21 + ... + x2k – t2 ≤ 0 where t ≥ 0
2. Rotated second order (or Lorentz) cone: x21 + x21 + ... + x2k – 2t1t2 ≤ 0 where t1, t2 ≥ 0

All of the cone coefficients must be exactly one, except for the coefficient of 2 for the t1t2product. Constants or linear terms are not allowed.
Cones cannot be overlapping. That is, a variable x can appear in at most one second–order coneconstraint.

Second order cone problems are loaded using the same API functions as for quadratic constraints, andthe conic constraints are auto–detected by the optimizer at run time.

Fair Isaac Corporation Confidential and Proprietary Information 17

CHAPTER 4

Solution Methods

The FICO Xpress Optimization Suite provides three fundamental optimization algorithms for LP or QPproblems: the primal simplex, the dual simplex and the Newton barrier algorithm (QCQP and SOCPproblems are always solved with the Newton barrier algorithm). Using these algorithms the Optimizerimplements solving functionality for the various types of continuous problems the user may want tosolve.
Typically the user will allow the Optimizer to choose what combination of methods to use for solvingtheir problem. For example, by default, the FICO Xpress Optimizer uses the dual simplex method forsolving LP problems and the barrier method for solving QP problems. For the initial continuousrelaxation of a MIP, the defaults will be different and depends both on the number of solver threadsused, the type of the problem and the MIP technique selected.
For most users the default behavior of the Optimizer will provide satisfactory solution performance andthey need not consider any customization. However, if a problem seems to be taking an unusually longtime to solve or if the solving performance is critical for the application, the user may consider, as a firstattempt, to force the Optimizer to use an algorithm other than the default.
The main points where the user has a choice of what algorithm to use are (i) when the user calls theoptimization routine XPRSlpoptimize (LPOPTIMIZE) and (ii) when the Optimizer solves the noderelaxation problems during the branch and bound search. The user may force the use of a particularalgorithm by specifying flags to the optimization routine XPRSlpoptimize (LPOPTIMIZE). If the userspecifies flags to XPRSmipoptimize (MIPOPTIMIZE) to select a particular algorithm then thisalgorithm will be used for the initial relaxation only. To specify what algorithm to use when solving thenode relaxation problems during branch and bound use the special control parameter, DEFAULTALG.
As a guide for choosing optimization algorithms other than the default consider the following. As ageneral rule, the dual simplex is usually much faster than the primal simplex if the problem is neitherinfeasible nor near–infeasible. If the problem is likely to be infeasible or if the user wishes to getdiagnostic information about an infeasible problem then the primal simplex is the best choice. This isbecause the primal simplex algorithm finds a basic solution that minimizes the sum of infeasibilitiesand these solutions are typically helpful in identifying causes of infeasibility. The Newton barrieralgorithm can perform much better than the simplex algorithms on certain classes of problems. Thebarrier algorithm will, however, likely be slower than the simplex algorithms if, for a problem coefficientmatrix A, ATA is large and dense.
In the following few sections, performance issues relating to these methods will be discussed in moredetail. Performance issues relating to the search for MIP solutions will also be discussed.

4.1 Simplex Method

The simplex method was the first efficient method devised for solving Linear Programs (LPs). Thismethod is still commonly used today and there are efficient implementations of the primal and dualsimplex methods available in the Optimizer. We briefly outline some basic simplex theory to give the

Fair Isaac Corporation Confidential and Proprietary Information 18

Solution Methods

user a general idea of the simplex algorithm’s behavior and to define some terminology that is used inthe reference sections.
A region defined by a set of constraints is known in Mathematical Programming as a feasible region.When these constraints are linear the feasible region defines the solution space of a LinearProgramming (LP) problem. Each value of the objective function of an LP defines a hyperplane or a
level set. A fundamental result of simplex algorithm theory is that an optimal value of the LP objectivefunction will occur when the level set grazes the boundary of the feasible region. The optimal level seteither intersects a single point (or vertex) of the feasible region (if such a point exists), in which casethe solution is unique, or it intersects a boundary set of the feasible region in which case there is aninfinite set of solutions.
In general, vertices occur at points where as many constraints and variable bounds as there arevariables in the problem intersect. Simplex methods usually only consider solutions at vertices, or
bases (known as basic solutions) and proceed or iterate from one vertex to another until an optimalsolution has been found, or the problem proves to be infeasible or unbounded. The number of iterationsrequired increases with model size, and typically goes up slightly faster than the increase in the numberof constraints.
The primal and dual simplex methods differ in which vertices they consider and how they iterate. Thedual is the default for LP problems, but may be explicitly invoked using the d flag with
XPRSlpoptimize (LPOPTIMIZE).

4.1.1 Output

While the simplex methods iterate, the Optimizer produces iteration logs. Console Optimizer writesthese logging messages to the screen. Library users can setup logging management using the variousrelevant functions in the Optimizer library e.g., XPRSsetlogfile, XPRSaddcbmessage or
XPRSaddcblplog. The simplex iteration log is produced for every LPLOG simplex iteration. WhenLPLOG is set to 0, a log is displayed only when the optimization run terminates. If it is set to a positivevalue, a summary style log is output; otherwise, a detailed log is output.

4.2 Newton Barrier Method

In contrast to the simplex methods that iterate through boundary points (vertices) of the feasibleregion, the Newton barrier method iterates through solutions in the interior of the feasible region andwill typically find a close approximation of an optimal solution. Consequently, the number of barrieriterations required to complete the method on a problem is determined more so by the requiredproximity to the optimal solution than the number of decision variables in the problem. Unlike thesimplex method, therefore, the barrier often completes in a similar number of iterations regardless ofthe problem size.
The barrier solver can be invoked on a problem by using the ’b’ flag with XPRSlpoptimize(LPOPTIMIZE). This is used by default for QP problems, whose quadratic objective functions in generalresult in optimal solutions that lie on a face of the feasible region, rather than at a vertex.

4.2.1 Crossover

Typically the barrier algorithm terminates when it is within a given tolerance of an optimal solution.Since this solution will not lie exactly on the boundary of the feasible region, the Optimizer can beoptionally made to perform a, so–called, ’crossover’ phase to obtain an optimal solution on theboundary. The nature of the ’crossover’ phase results in a basic optimal solution, which is at a vertex ofthe feasible region. In the crossover phase the simplex method is used to continue the optimizationfrom the solution found by the barrier algorithm. The CROSSOVER control determines whether theOptimizer performs crossover. When set to 1 (the default for LP problems), crossover is performed. If

Fair Isaac Corporation Confidential and Proprietary Information 19

Solution Methods

CROSSOVER is set to 0, no crossover will be attempted and the solution provided will be thatdetermined purely by the barrier method. Note that if a basic optimal solution is required, then the
CROSSOVER option must be activated before optimization starts.

4.2.2 Output

While the barrier method iterates, the Optimizer produces iteration log messages. Console Optimizerwrites these log messages to the screen. Library users can setup logging management using thevarious relevant functions in the Optimizer library, e.g. XPRSsetlogfile, XPRSaddcbmessage or
XPRSaddcbbarlog. Note that the amount of barrier iteration logging is dependent on the value of the
BAROUTPUT control.

4.3 Branch and Bound

The FICO Xpress Optimizer uses the approach of LP based branch and bound with cutting planes forsolving Mixed Integer Programming (MIP) problems. That is, the Optimizer solves the optimizationproblem (typically an LP problem) resulting from relaxing the discreteness constraints on the variablesand then uses branch and bound to search the relaxation space for MIP solutions. It combines this withheuristic methods to quickly find good solutions, and cutting planes to strengthen the LP relaxations.
The Optimizer’s MIP solving methods are coordinated internally by sophisticated algorithms so theOptimizer will work well on a wide range of MIP problems with a wide range of solution performancerequirements without any user intervention in the solving process. Despite this the user should notethat the formulation of a MIP problem is typically not unique and the solving performance can be highlydependent on the formulation of the problem. It is recommended, therefore, that the user undertakecareful experimentation with the problem formulation using realistic examples before committing theformulation for use on large production problems. It is also recommended that users have small scaleexamples available to use during development.
Because of the inherent difficulty in solving MIP problems and the variety of requirements users haveon the solution performance on these problems it is not uncommon that users would like to improveover the default performance of the Optimizer. In the following sections we discuss aspects of thebranch and bound method for which the user may want to investigate when customizing theOptimizer’s MIP search.

4.3.1 Theory

In this section we present a brief overview of branch and bound theory as a guide for the user on whereto look to begin customizing the Optimizer’s MIP search and also to define the terminology used whendescribing branch and bound methods.
To simplify the text in the following, we limit the discussion to MIP problems with linear constraints anda linear objective function. Note that it is not difficult to generalize the discussion to problems withquadratic constraints and a quadratic objective function.
The branch and bound method has three main concepts: relaxation, branching and fathoming.
The relaxation concept relates to the way discreteness or integrality constraints are dropped or’relaxed’ in the problem. The initial relaxation problem is a Linear Programming (LP) problem which wesolve resulting in one of the following cases:
(a) The LP is infeasible so the MIP problem must also be infeasible;
(b) The LP has a feasible solution, but some of the integrality constraints are not satisfied – the MIPhas not yet been solved;

Fair Isaac Corporation Confidential and Proprietary Information 20

Solution Methods

(c) The LP has a feasible solution and all the integrality constraints are satisfied so the MIP has alsobeen solved;
(d) The LP is unbounded.

Case (d) is a special case. It can only occur when solving the initial relaxation problem and in thissituation the MIP problem itself is not well posed (see Chapter 6 for details about what to do in thiscase). For the remaining discussion we assume that the LP is not unbounded.
Outcomes (a) and (c) are said to ’fathom’ the particular MIP, since no further work on it is necessary.For case (b) more work is required, since one of the unsatisfied integrality constraints must be selectedand the concept of separation applied.
To illustrate the branching concept suppose, for example, that the optimal LP value of an integervariable x is 1.34, a value which violates the integrality constraint. It follows that in any solution to theoriginal problem either x ≤ 1.0 or x ≥ 2.0. If the two resulting MIP problems are solved (with theintegrality constraints), all integer values of x are considered in the combined solution spaces of thetwo MIP problems and no solution to one of the MIP problems is a solution to the other. In this way wehave branched the problem into two disjoint sub–problems.

If both of these sub–problems can be solved and the better of the two is chosen, then the MIP issolved. By recursively applying this same strategy to solve each of the sub–problems and given that inthe limiting case the integer variables will have their domains divided into fixed integer values then wecan guarantee that we solve the MIP problem.
Branch and bound can be viewed as a tree–search algorithm. Each node of the tree is a MIP problem. AMIP node is relaxed and the LP relaxation is solved. If the LP relaxation is not fathomed, then the nodeMIP problem is partitioned into two more sub–problems, or child nodes. Each child MIP will have thesame constraints as the parent node MIP, plus one additional inequality constraint. Each node istherefore either fathomed or has two children or descendants.
We now introduce the concept of a cutoff, which is an extension of the fathoming concept. Tounderstand the cutoff concept we first make two observations about the behavior of the node MIPproblems. Firstly, the optimal MIP objective of a node problem can be no better than the optimalobjective of the LP relaxation. Secondly, the optimal objective of a child LP relaxation can be no betterthan the optimal objective of its parent LP relaxation. Now assume that we are exploring the tree andwe are keeping the value of the best MIP objective found so far. Assume also that we keep a ’cutoffvalue’ equal to the best MIP objective found so far. To use the cutoff value we reason that if the optimalLP relaxation objective is no better than the cutoff then any MIP solution of a descendant can be nobetter than the cutoff and the node can be fathomed (or cutoff) and need not be considered further inthe search.
The concept of a cutoff can be extended to apply even when no integer solution has been found insituations where it is known, or may be assumed, from the outset that the optimal solution must bebetter than some value. If the relaxation is worse than this cutoff, then the node may be fathomed. Inthis way the user can reduce the number of nodes processed and improve the solution performance.Note that there is the possibility, however, that all MIP solutions, including the optimal one, may bemissed if an overly optimistic cutoff value is chosen.
The cutoff concept may also be extended in a different way if the user intends only to find a solutionwithin a certain tolerance of the overall optimal MIP solution. Assume that we have found a MIP

Fair Isaac Corporation Confidential and Proprietary Information 21

Solution Methods

solution to our problem and assume that the cutoff is maintained at a value 100 objective units betterthan the current best MIP solution. Proceeding in this way we are guaranteed to find a MIP solutionwithin 100 units of the overall MIP optimal since we only cutoff nodes with LP relaxation solutionsworse than 100 units better than the best MIP solution that we find.
If the MIP problem contains SOS entities then the nodes of the branch and bound tree are determinedby branching on the sets. Note that each member of the set has a double precision reference row entryand the sets are ordered by these reference row entries. Branching on the sets is done by choosing aposition in the ordering of the set variables and setting all members of the set to 0 either above orbelow the chosen point. The optimizer used the reference row entries to decide on the branchingposition and so it is important to choose the reference row entries which reflect the cost of setting theset member to 0. In some cases it maybe better to model the problem with binary variables instead ofspecial ordered sets. This is especially the case if the sets are small.

4.3.2 Variable Selection and Cutting

The branch and bound technique leaves many choices open to the user. In practice, the success of thetechnique is highly dependent on several key choices.
(a) Deciding which variable to branch on is known as the variable selection problem and is often themost critical choice.
(b) Cutting planes are used to strengthen the LP relaxation of a sub problem, and can often bring asignificant reduction in the number of sub–problems that must be solved

The Optimizer incorporates a default strategy for both choices which has been found to workadequately on most problems. Several controls are provided to tailor the search strategy to a particularproblem.
4.3.3 Variable Selection for Branching

Each global entity has a priority for branching, or one set by the user in the directives file. A low priorityvalue means that the variable is more likely to be selected for branching. The Optimizer uses a priorityrange of 400–500 by default. To guarantee that a particular global entitity is always branched first, theuser should assign a priority value less than 400. Likewise, to guarantee that a global entity is onlybranched on when it is the only candidate left, a priority value above 500 should be used.
The Optimizer uses a wide variety of information to select among those entities that remain unsatisifedand which belong to the lowest valued priority class. A pseudo cost is calculated for each candidateentity, which is typically an estimate of how much the LP relaxation objective value will change(degradationas a result of branching on this particular candidate. Estimates are calculated separatelyfor the up and down branches and combined according to the strategy selected by the VARSELECTIONcontrol.
The default strategy is based on calculating pseudo costs using the method of strong branching. Withstrong brancing, the LP relaxations of the two potential sub problems that would result from branchingon a candidate global entity, are solved partially. Dual simplex is applied for a limited number ofiterations and the change in objective value is recorded as a pseudo cost. This can be very expensive toapply to every candidate for every node of the branch and bound search, which is why the Optimizer bydefault will reuse pseudo costs collected from one node, on subsequent nodes of the search.
Selecting a global entity for branching is a multi–stage process, which combines estimates that arecheap to compute, with the more expensive strong branching based pseudo costs. The basic selectionprocess is given by the following outline, together with the controls that affect each step:

1. Pre–filter the set of candidate entities using very cheap estimates.
SBSELECT: determine the filter size.

Fair Isaac Corporation Confidential and Proprietary Information 22

Solution Methods

2. Calculate simple estimates based on local node information and rank the selected candidates.
SBESTIMATE: local ranking function.

3. Calculate strong–branching pseudo costs for candidates lacking such information.
SBBEST: number of variables to strong branch on.
SBITERLIMIT: LP iteration limit for strong branching.

4. Select the best candidate using a combination of pseudo costs and the local ranking functions.
The overall amount of effort put into this process can be adjusted using the SBEFFORT control.

4.3.4 Cutting Planes

Cutting planes are valid constraints used for tightening the LP relaxation of a MIP problem, withoutaffecting the MIP solution space. They can be very effective at reducing the amount of sub problemsthat the branch and bound search has to solve. The Optimizer will automatically create many differentwell–known classes of cutting planes, such as mixed integer Gomory cuts, lift–and–project cuts, mixed
integer rounding (MIR) cuts, clique cuts, implied bound cuts, flow–path cuts, zero–half cuts, etc. Theseclasses of cuts are grouped together into two groups that can be controlled separately. The followingtable lists the main controls and the related cut classes that are affected by those control:
COVERCUTS Mixed integer rounding cuts
TREECOVERCUTS Lifted cover cuts

Clique cuts
Implied bound cuts
Flow–path cuts
Zero–half cuts

GOMCUTS Mixed integer Gomory cuts
TREEGOMCUTS Lift–and–project cuts

The controls COVERCUTS and GOMCUTS sets an upper limit on the number of rounds of cuts to createfor the root problem, for their respective groups. Correspondingly, TREECOVERCUTS and
TREEGOMCUTS sets an upper limit on the number of rounds of cuts for any sub problem in the tree.
An important aspect of cutting is the choice of how many cuts to add to a sub problem. The more cutsthat are added, the harder it becomes to solve the LP relaxation of the node problem. The tradeoff istherefore between the additional effort in solving the LP relaxation versus the strengthening of the subproblem. The CUTSTRATEGY control sets the general level of how many cuts to add, expressed as avalue from 0 (no cutting at all) to 3 (high level of cuts).
Another important aspect of cutting is how often cuts should be created and added to a sub problem.The Optimizer will automatically decide on a frequency that attempts to balance the effort of creatingcuts versus the benefits they provide. It is possible to override this and set a fixed strategy using the
CUTFREQ control. When set to a value k, cutting will be applied to every k’th level of the branch andbound tree. Note that setting CUTFREQ = 0 will disable cutting on sub problems completely, leavingonly cutting on the root problem.

4.3.5 Node Selection

The Optimizer applies a search scheme involving best–bound first search combined with dives. Subproblems that have not been fathomed or which have not been branched further into new sub problemsare referred to as active nodes of the branch and bound search tree. Such activate nodes aremaintained by the Optimizer in a pool.

Fair Isaac Corporation Confidential and Proprietary Information 23

Solution Methods

The search process involves selecting a sub problem (or node) from this active nodes pool andcommencing a dive. When the Optimizer branches on a global entity and creates the two sub problems,it has a choice of which of the two sub problems to work on next. This choice is determined by the
BRANCHCHOICE control. The dive is a recursive search, where it selects a child problem, branches on itto create two new child problems, and repeats with one of the new child problems, until it ends with asub problem that should not be branched further. At this point it will go back to the active nodes pooland pick a new sub problem to perform a dive on. This is called a backtrack and the choice of node isdetermined by the BACKTRACK control. The default backtrack strategy will select the active node withthe best bound.

4.3.6 Adjusting the Cutoff Value

The parameter MIPADDCUTOFF determines the cutoff value set by the Optimizer when it has identifieda new MIP solution. The new cutoff value is set as the objective function value of the MIP solution plusthe value of MIPADDCUTOFF. If MIPADDCUTOFF has not been set by the user, the value used by theOptimizer will be calculated after the initial LP optimization step as:
max (MIPADDCUTOFF, 0.01 · MIPRELCUTOFF · LP_value)

using the initial values for MIPADDCUTOFF and MIPRELCUTOFF, and where LP_value is the optimalobjective value of the initial LP relaxation.
4.3.7 Stopping Criteria

Often when solving a MIP problem it is sufficient to stop with a good solution instead of waiting for apotentially long solve process to find an optimal solution. The Optimizer provides several stoppingcriteria related to the solutions found, through the MIPRELSTOP and MIPABSSTOP parameters. If
MIPABSSTOP is set for a minimization problem, the Optimizer will stop when it finds a MIP solutionwith an objective value equal to or less than MIPABSSTOP. The MIPRELSTOP parameter can be used tostop the solve process when the found solution is sufficiently close to optimality, as measure relative tothe best available bound. The optimizer will stop due to MIPRELSTOP when the following is satisfied:

| MIPOBJVAL – BESTBOUND |≤ MIPRELSTOP ·max(| BESTBOUND |, | MIPOBJVAL |)
It is also possible to set limits on the solve process, such as number of nodes (MAXNODE), time limit(MAXTIME) or on the number of solutions found (MAXMIPSOL). If the solve process is interrupted due toany of these limits, the problem will be left in its unfinished state. It is possible to resume the solvefrom an unfinished state by calling XPRSmipoptimize (MIPOPTIMIZE) again.
To return an unfinished problem to its starting state, where it can be modified again, the user shoulduse the function XPRSpostsolve (POSTSOLVE). This function can be used to restore a problem froman interrupted global search even if the problem is not in a presolved state.

4.3.8 Integer Preprocessing

If MIPPRESOLVE has been set to a nonzero value before solving a MIP problem, integer preprocessingwill be performed at each node of the branch and bound tree search (including the root node). Thisincorporates reduced cost tightening of bounds and tightening of implied variable bounds afterbranching. If a variable is fixed at a node, it remains fixed at all its child nodes, but it is not deleted fromthe matrix (unlike the variables fixed by presolve).
MIPPRESOLVE is a bitmap whose values are acted on as follows:

Fair Isaac Corporation Confidential and Proprietary Information 24

Solution Methods

Bit Value Action
0 1 Reduced cost fixing;
1 2 Integer implication tightening.
2 4 Unused
3 8 Tightening of implied continuous variables.
4 16 Fixing of variables based on dual (i.e. optimality) implications.

So a value of 1+2=3 for MIPPRESOLVE causes reduced cost fixing and tightening of implied bounds oninteger variables.

4.4 QCQP and SOCP Methods

Continuous QCQP and SOCP problems are always solved by the Xpress Newton–barrier solver. ForQCQP, SOCP and QP problems, there is no solution purification method applied after the barrier (suchas the crossover for linear problems). This means that solutions tend to contain more active variablesthan basic solutions, and fewer variables will be at or close to one of their bounds.
When solving a linearly constrained quadratic program (QP) from scratch, the Newton barrier method isusually the algorithm of choice. In general, the quadratic simplex methods are better if a solution with alow number of active variables is required, or when a good starting basis is available (e.g., whenreoptimizing).

4.4.1 Convexity Checking

The Optimizer requires that the quadratic coefficient matrix in each constraint or in the objectivefunction is either positive semi–definite or negative semi–definite, depending on the sense of forconstraints or the direction of optimization for the objective. The only exception is when a quadraticconstraint describes a second order cone. Quadratic constraints and a quadratic objective is thereforeautomatically checked for convexity. Note that this convexity checker will reject any problem where thisrequirement is violated by more than a small tolerance.
Each constraint is checked individually for convexity. In certain cases it is possible that the problemitself is convex, but the representation of it is not. A simple example would be
minimize: x
subject to: x2–y2+2xy ≤ 1

y=0
The optimizer will deny solving this problem if the automatic convexity check is on, although theproblem is clearly convex. The reason is that convexity of QCQPs is checked before any presolve takesplace. To understand why, consider the following example:
minimize: y
subject to: y–x2 ≤ 1

y=2
This problem is clearly feasible, and an optimal solution is (x, y) = (1, 2). However, when presolving theproblem, it will be found infeasible, since assuming that the quadratic part of the first constraint isconvex the constraint cannot be satisfied (remember that if a constraint is convex, then removing thequadratic part is always a relaxation). Thus since presolve makes use of the assumption that theproblem is convex, convexity must be checked before presolve.

Fair Isaac Corporation Confidential and Proprietary Information 25

Solution Methods

Note that for quadratic programming (QP) and mixed integer quadratic programs (MIQP) where thequadratic expressions appear only in the objective, the convexity check takes place after presolve,making it possible to accept matrices that are not PSD, but define a convex function over the feasibleregion (note that this is only a chance).
It is possible to turn the automatic convexity check off. By doing so, one may save time when solvingproblems that are known to be convex, or one might even want to experiment trying to solvenon–convex problems. For a non–convex problem, any of the following might happen:

1. the algorithm converges to a local optimum which it declares optimal (and which might or mightnot be the actual optimum);
2. the algorithm doesn’t converge and stops after reaching the iteration limit;
3. the algorithm cannot make sufficient improvement and stops;
4. the algorithm stops because it cannot solve a subproblem (in this case it will declare the matrixnon semidefinite);
5. presolve declares a feasible problem infeasible;
6. presolve eliminates variables that otherwise play an important role, thus significantly change themodel;
7. different solutions (even feasibility/infeasibility) are generated to the same problem, only byslightly changing its formulation.

There is no guarantee on which of the cases above will occur, and as mentioned before, thebehavior/outcome might be formulation dependent. One should take extreme care when interpretingthe solution information returned for a non–convex problem.
4.4.2 Quadratically Constrained and Second Order Cone Problems

Quadratically constrained and second order cone problems are solved by the barrier algorithm.
Mixed integer quadratically constrained (MIQCQP) and mixed integer second order problems (MISOCP)are solved using traditional branch and bound using the barrier to solve the node problems, or bymeans of outer approximation, as defined by control MIQCPALG.
It is sometimes beneficial to solve the root node of an MIQCQP or MISOCP by the barrier, even if outerapproximation is used later; controlled by the QCROOTALG control. The number of cut rounds on theroot for outer approximation is defined by QCCUTS.

Fair Isaac Corporation Confidential and Proprietary Information 26

CHAPTER 5

Advanced Usage

5.1 Problem Names

Problems loaded in the Optimizer have a name. The name is either taken from the file name if theproblem is read into the optimizer or it is specified as a string in a function call when a problem isloaded into the Optimizer using the library interface. Once loaded the name of the problem can bequeried and modified. For example, the library provides the function XPRSsetprobname for changingthe name of a problem.
When reading a problem from a matrix file the user can optionally specify a file extension. The searchorder used for matrix files in the case where the file extension is not specified is described in thereference for the function XPRSreadprob. In this case, the problem name becomes the file name,including the full path, but without the file extension.
Note that matrix files can be read directly from a gzip compressed file. Recognized names of matrixfiles stored with gzip compression have an extension that is one of the usual matrix file formatextensions followed by the .gz extension. For example, hpw15.mps.gz.
The problem name is used as a default base name for the various file system interactions that theOptimizer may make when handling a problem. For example, when commanded to read a basis file fora problem and the basis file name is not supplied with the read basis command the Optimizer will try toopen a file with the problem name appended with the .bss extension.
It is useful to note that the problem name can include file system path information. For example,
c:/matrices/hpw15. Note the use of forward slashes in the Windows path string. It isrecommended that Windows users use forward slashes as path delimiters in all file namespecifications for the Optimizer since (i) this will work in all situations and (ii) it avoids any problemswith the back slash being interpreted as the escape character.

5.2 Manipulating the Matrix

In general, the basic usage of the FICO Xpress Optimizer described in the previous chapters will besufficient for most users’ requirements. Using the Optimizer in this way simply means load theproblem, solve the problem, get the results and finish.
In some cases, however, it is required that the problem is first solved, then modified, and solved again.We may want to do this, for example, if a problem was found to be infeasible. In this case, to find afeasible subset of constraints we iteratively remove some constraints and re–solve the problem.Another example is when a user wants to ’generate’ columns using the optimal duals of a ’restricted’ LPproblem. In this case we will first need to load a problem and then we will need to add columns to thisproblem after it has been solved.
For library users, FICO Xpress provides a suite of functions providing read and modify access to thematrix.

Fair Isaac Corporation Confidential and Proprietary Information 27

Advanced Usage

5.2.1 Reading the Matrix

The Optimizer provides a suite of routines for read access to the optimization problem includingaccess to the objective coefficients, constraint right hand sides, decision variable bounds and thematrix coefficients.
It is important to note that the information returned by these functions will depend on whether or notthe problem has been run through an optimization algorithm or if the problem is currently being solvedusing an optimization algorithm, in which case the user will be calling the access routines from acallback (see section 5.8 for details about callbacks). Note that the dependency on when the accessroutine is called is mainly due to the way "presolve" methods are applied to modify the problem. Howthe presolve methods affect what the user accesses through the read routines is discussed in section5.3.
The user can access the names of the problem’s constraints, or ’rows’, as well as the decision variables,or ’columns’, using the XPRSgetnames routine.
The linear coefficients of the problem constraints can be read using XPRSgetrows. Note that for thecases where the user requires access to the linear matrix coefficients in the column–wise sense theOptimizer includes the XPRSgetcols function. The type of the constraint, the right hand side and theright hand side range are accessed using the functions XPRSgetrowtype, XPRSgetrhs and
XPRSgetrhsrange, respectively.
The coefficients of the objective function can be accessed using the XPRSgetobj routine, for thelinear coefficients, and XPRSgetqobj for the quadratic objective function coefficients. The type of acolumn (or decision variable) and its upper and lower bounds can be accessed using the routines
XPRSgetcoltype, XPRSgetub and XPRSgetlb, respectively.
The quadratic coefficients in constraints can be accessed either in matrix form, using the
XPRSgetqrowqmatrix routine, or as a list of quadratic coefficients with the
XPRSgetqrowqmatrixtriplets.
Note that the reference section in Chapter 8 of this manual provides details on the usage of thesefunctions.

5.2.2 Modifying the Matrix

The Optimizer provides a set of routines for manipulating the problem data. These include a set ofroutines for adding and deleting problem constraints (’rows’) and decision variables (’columns’). A setof routines is also provided for changing individual coefficients of the problem and for changing thetypes of decision variables in the problem.
Rows and columns can be added to a problem together with their linear coefficients using
XPRSaddrows and XPRSaddcols, respectively. Rows and columns can be deleted using
XPRSdelrows and XPRSdelcols, respectively.
The Optimizer provides a suite of routines for modifying the data for existing rows and columns. Thelinear matrix coefficients can be modified using XPRSchgcoef (or use XPRSchgmcoef if a batch ofcoefficients are to be changed). Row and column types can be changed using the routines
XPRSchgrowtype and XPRSchgcoltype, respectively. Right hand sides and their ranges may bechanged with XPRSchgrhs and XPRSchgrhsrange. The linear objective function coefficients may bechanged with XPRSchgobj while the quadratic objective function coefficients are changed using
XPRSchgqobj (or use XPRSchgmqobj if a batch of coefficients are to be changed). Likewise,quadratic coefficients in constraints are changed with XPRSchgqrowcoeff.
Examples of the usage of all the above functions and their syntax may be found in the referencesection of this manual in Chapter 8.
Finally, it is important to note that it is not possible to modify a matrix when it has been ’presolved’ andhas not been subsequently ’postsolved’. The following section 5.3 discusses some important points

Fair Isaac Corporation Confidential and Proprietary Information 28

Advanced Usage

concerning reading and modifying a problem that is "presolved".

5.3 Working with Presolve

The Optimizer provides a number of algorithms for simplifying a problem prior to the optimizationprocess. This elaborate collection of procedures, known as presolve, can often greatly improve theOptimizer’s performance by modifying the problem matrix, making it easier to solve. The presolvealgorithms identify and remove redundant rows and columns, reducing the size of the matrix, for whichreason most users will find it a helpful tool in reducing solution times. However, presolve is included asan option and can be disabled if not required by setting the PRESOLVE control to 0. Usually this is set to
1 and presolve is called by default.
For some users the presolve routines can result in confusion since a problem viewed in its presolvedform will look very different to the original model. Under standard use of the Optimizer this may causeno difficulty. On a few occasions, however, if errors occur or if a user tries to access additionalproperties of the matrix for certain types of problem, the presolved values may be returned instead. Inthis section we provide a few notes on how such confusion may be best avoided. If you are unsure ifthe matrix is in a presolved state or not, check the PRESOLVESTATE attribute
It is important to note that when solving a problem with presolve on, the Optimizer will take a copy ofthe matrix and modify the copy. The original matrix is therefore preserved, but will be inaccessible tothe user while the presolved problem exists. Following optimization, the whole matrix is automatically
postsolved to recover a solution to the original problem and restoring the original matrix. Consequently,either before or after, but not during, a completed optimization run, the full matrix may be viewed andaltered as described above, being in its original form.
A problem might be left in a presolved state if the solve was interrupted, for example due to the Ctrl–Ckey combination, or if a time limit (set by MAXTIME) was reached. In such a case, the matrix can alwaysbe returned to its original state by calling XPRSpostsolve (POSTSOLVE). If the matrix is already in theoriginal state then XPRSpostsolve (POSTSOLVE) will return without doing anything.
While a problem is in a presolved state it is not possible to make any modifications to it, such as addingrows or columns. The problem must first be returned to its original state by calling XPRSpostsolvebefore it can be changed.

5.3.1 (Mixed) Integer Programming Problems

If a model contains global entities, integer presolve methods such as bound tightening and coefficienttightening are applied to tighten the LP relaxation. As a simple example of this might be if the matrixhas a binary variable x and one of the constraints of the matrix is x ≤ 0.2. It follows that x can be fixedat zero since it can never take the value 1. If presolve uses the global entities to alter the matrix in thisway, then the LP relaxation is said to have been tightened. For Console users, notice of this is sent tothe screen; for library users it may be sent to a callback function, or printed to the log file if one hasbeen set up. In such circumstances, the optimal objective function value of the LP relaxation for apresolved matrix may be different from that for the unpresolved matrix.
The strict LP solution to a model with global entities can be obtained by calling the XPRSlpoptimize(LPOPTIMIZE) command. This removes the global constraints from the variables, preventing the LPrelaxation from being tightened and solves the resulting matrix. In the example above, x would not befixed at 0, but allowed to range between 0 and 0.2.
When XPRSmipoptimize (GLOBAL) finds an integer solution, it is postsolved and saved in memory.The solution can be read with the XPRSgetmipsol function. A permanent copy can be saved to asolution file by calling XPRSwritebinsol (WRITEBINSOL), or XPRSwriteslxsol (WRITESLXSOL)for a simpler text file. This can be retrieved later by calling XPRSreadbinsol (READBINSOL) or
XPRSreadslxsol (READSLXSOL), respectively.

Fair Isaac Corporation Confidential and Proprietary Information 29

Advanced Usage

After calling XPRSmipoptimize (MIPOPTIMIZE), the matrix will be postsolved whenever the MIPsearch has completed. If the MIP search hasn’t completed the matrix can be postsolved by calling the
XPRSpostsolve (POSTSOLVE) function.

5.4 Working with LP Folding

In addition to presolve procedures, the Optimizer provides an algorithm called LP folding that canfurther simplify LP problems. The LP folding is applicable to LP problems that can be partitioned into
equitable partitions, and it works by aggregating matrix columns of equitable partitions and thenreducing the problem size.
Solutions for the folded problem are also valid for the original problem. While it is straightforward totransfer a solution from the folded problem to the original problem, it is non–trivial to do so for thebasis. When an LP problem is solved to optimality and a basis is needed, the LP unfolding will use thecrossover algorithm to provide one. When the folded LP problem is unbounded or infeasible, or whenthe solving process is stopped due to time or iteration limit, the basis will not be available. Please notethat LP folding tends to provide solutions with a larger support (number of variables that are not at anyof their bounds).
LP folding is applied automatically when appropriate. It can be enabled or disabled by setting the
LPFOLDING control.

5.5 Working with Heuristics

The Optimizer contains several primal heuristics that help to find feasible solutions during a globalsearch. These heuristics fall broadly into one of three classes:
1. Simple rounding heuristicsThese take the continuous relaxation solution to a node and, through simple roundings of thesolution values for global entities, try to construct a feasible MIP solution. These are typically runon every node.
2. Diving heuristicsThese start from the continuous relaxation solution to a node and combines rounding and fixingof global entities with occasional reoptimization of the continuous relaxation to construct a betterquality MIP solution. They are run frequently on both the root node and during the branch andbound tree search.
3. Local search heuristicsThe local search heuristics are generally the most expensive heuristics and involve solving one ormore smaller MIPs whose feasible regions describe a neighborhood around a candidate MIPsolution. These heuristics are run at the end of the root solve and typically on every 500–1000nodes during the tree search.

Some simple heuristics and a few fast diving heuristics, which do not require a starting solution, will betried before the initial continuous relaxation of a MIP is solved. On very simple problems, it is possiblethat an optimal MIP solution will be found at this point, which can lead to the initial relaxation being cutoff. These heuristics can be enabled or disabled using the HEURBEFORELP control.
There are a few controls that affect all of the heuristics:
HEURSTRATEGY Determines the level of heuristics to use. A value of 3 will allow allheuristics to be run and a value of 1 will only allow the faster rounding anddiving heuristics to be run. Setting HEURSTRATEGY to 0 will disable allheuristics.

Fair Isaac Corporation Confidential and Proprietary Information 30

Advanced Usage

HEURTHREADS The number of additional heuristic threads to start in parallel with cuttingon the root node. If set to zero, heuristics will be run interleaved withcutting.
The simple rounding heuristics do not have any controls associated with them. The diving heuristicshave the following controls:
HEURFREQ The frequency at which to run a diving heuristic during the branch andbound tree search. If HEURFREQ=k, a diving heuristic will be appliedwhen at least k nodes of the tree search have been solved since the lastrun. Set this control to zero to disable diving heuristics during the treesearch. With a default setting of -1, the Optimizer will automaticallyselect a frequency that depends on how expensive it is to run and howmany integer variables need to be rounded. Typically, this results in adiving heuristic being run for every 10–50 nodes.
HEURDIVESTRATEGY Can be used to select one specific out of 10 predefined diving strategies,otherwise the Optimizer will automatically select which appears to workbest. Set this control to zero to disable the diving heuristic.
HEURDIVERANDOMIZE How much randomization to introduce into the diving heuristics.
HEURDIVESPEEDUP The amount of effort to put into the individual dives. This essentiallydetermines how often the continuous relaxation is reoptimized during adive.
The local search heuristics have the following controls:
HEURSEARCHFREQ The frequency at which to run the local search heuristics during the branchand bound tree search. If HEURSEARCHFREQ=k, the local search heuristicswill be run when at least k nodes of the tree search have been solved sincethe last run.
HEURSEARCHEFFORT Determines the complexity of the local search MIP problems solved and, if

HEURSEARCHFREQ=-1, also how often they are applied.
HEURSEARCHROOTSELECT Selects which local search heuristics are allowed to be run on the rootnode. Each bit of this integer control represents an individual heuristic.
HEURSEARCHTREESELECT Selects which local search heuristics are allowed to be run during thebranch and bound tree search.

5.6 Analyzing and Handling Numerical Issues

There are many optimization applications which give rise to numerically challenging models. You mightnotice that the Optimizer takes unexpectedly long for simplex reoptimization, that minimal changes inthe models lead to an unexpectedly large change in the optimal solution value or that the optimalsolution shows a certain amount of violation in the postsolved state. The Optimizer provides varioustools to analyze whether a model is numerically challenging and to handle numerical issues when theyoccur.

Fair Isaac Corporation Confidential and Proprietary Information 31

Advanced Usage

5.6.1 Analyzing Models for Numerical Issues

There are two main reasons which can make models numerically challenging: Firstly, using coefficientsthat span many orders of magnitude, e.g., using numbers as large as 100 million mixed with numbersas small as 1 over 100 million. Those span 16 orders of magnitude. A double–precision floating pointnumber, however, can only represent 15 precise digits. Thus, round–off errors are inevitable. Secondly,if a model contains structures that amplify the effect of numeric error propagation, e.g., when the resultof subtracting two almost identical values is scaled up and then used for further computations.
To both ends, Xpress provides features to analyze models for numerical stability. Addressing the firstissue, Xpress provides the user with information on the coefficient ranges in both the original problemand the problem that is solved after presolving and scaling has been applied. In the log, the minimumand maximum absolute values of the matrix coefficients, the right–hand side/bounds and the objectiveare printed. The relevant part for the numerical behavior of the solution process are the coefficientranges in the solved model. The difference between the exponents of the min and max values tells youhow many orders of magnitude are covered. As a rule of thumb, those should not be more than nine(and not more than six in an individual row or column of the original matrix). For MIP solves, Xpress willnotify the user after the solution of the root LP when the coefficient ranges and other stabilitymeasures indicate that the solve might become numerically cumbersome. In such a case, it will print awarning "High attention level predicted from matrix features" to the log.
The second issue, error propagation, is a bit trickier to trace. The most important source to consider forthis is the multiplication of a vector with the constraint matrix, which gets stored in a factorized fashion.Hence, it makes sense to consider the condition number of the basis inverse matrix. Computing thiscan be expensive and is hence not done by default. You can activate it by setting the MIPKAPPAFREQcontrol to one. When setting this control, you will get a final statistic report that summarizes thecondition numbers collected during search. Besides the percentage of stable, suspicious, unstable, andill–posed basis inverse matrices, the Optimizer will report a quantity called the attention level after thesolve. The attention level takes values between zero and one. It is equal to zero if all basis inversematrices are stable, and one if all basis inverse matrices are ill–posed. The higher the attention level,the more likely are numerical errors. As a rule of thumb, matrices with an attention level larger than 0.1should be investigated further. The attention level is available as an attribute: ATTENTIONLEVEL.
After having solved the root LP relaxation of a MIP solve, the Optimizer applies a Machine Learningmodel to predict the attention level of the current MIP solve. If the prediction is larger than 0.1, it willprint a message to the log: "High attention level predicted from matrix features". The predictedattention level is available as an attribute: PREDICTEDATTLEVEL. Finally, if the Optimizer undergoesnumerical failures during the optimization process, it will report these at the end of the solve. If you seedual, primal or barrier failures, or single inverts being reported, it might be worthwhile to try some of themethods described in the following sections.

5.6.2 Scaling

Scaling is a widely used preconditioning technique that aims at reducing the condition number of theconstraint matrix, at reducing error propagation, and at reducing the number of LP iterations required tosolve the problem. In Xpress, both columns and rows are scaled, however, only by powers of 2 to avoidround–off errors. By default, Xpress applies a machine learning algorithm to choose a scaling variantthat is predicted to give the most stable performance. Although this prediction is correct in most of thecases, one can try the opposite setting, i.e., setting SCALING to 163 when autoscaling selectedCurtis–Reid scaling and setting scaling to 16 when autoscaling selected standard scaling. Furthermore,disabling special handling of big-M rows and conduction scaling before presolving, represented by bits6 and 9 of the SCALING control, is useful for some problems.
5.6.3 Solution Refinement

The Optimizer offers two methods of refining solutions, both are independent and complement each

Fair Isaac Corporation Confidential and Proprietary Information 32

Advanced Usage

other. The first is called LP Refinement and aims at providing LP solutions of a higher precision, i.e.,with more significant bits. It consists of two parts. Standard LP Refinement iteratively attempts toincrease the accuracy of the solution until either both FEASTOLTARGET and OPTIMALITYTOLTARGETare satisfied, or accuracy cannot further be increased, or some effort limit is exhausted. It is applied bydefault both to LP solutions and to MIP solutions. Iterative refinement has the same goal, but usesmore expensive, but also more promising measures of doing so, e.g., quad precision computing. If thepostsolved LP solution is slightly infeasible, setting bits 5 and 6 of the REFINEOPS control aims atreducing those infeasibilities.
The second refinement scheme is called MIP Refinement and aims at providing MIP solutions whichare truly integral and will not lead to infeasibilities when fixing integer variables in the original space.Note that both Iterative Refinement and MIP Refinement can lead to a slowdown of the solutionprocess which is more considerable the more numerically challenging the matrix is.

5.6.4 Other Ways to Handle Numerical Issues

In addition to the methods named above, the Optimizer gives the user the possibility to change thenumerical tolerances, such as FEASTOL and MATRIXTOL, but caution is advised here. Finally, if thenumerical issues mainly come from the behavior of the simplex algorithm, setting DUALSTRATEGY tovalues 7 or 32 might help, or even using only barrier for solving LPs during a MIP solve, achieved bychanging DEFAULTALG to 4.
In any case, it is best practice to reconsider the model. If you have very small and/or very large values inthere — are those really necessary? Or could they be adapted to some significantly more stable valuewhile still representing the same logic? Can you determine places where large values might canceleach other out and the residual is used for further computations? Have you tried using indicatorinstead of big-M formulations?

5.7 Common Causes of Confusion

It should be noted that most of the library routines described above and in chapter 8, which modify thematrix will not work on a presolved matrix. The only exception is inside a callback for a MIP solve,where cuts may be added or variable bounds tightened (using XPRSchgbounds). Any of thesefunctions expect references to the presolved problem. If one tries to retrieve rows, columns, bounds orthe number of these, such information will come from the presolved matrix and not the original. A fewfunctions exist which are specifically designed to work with presolved and scaled matrices, althoughcare should be exercised in using them. Examples of these include the commands
XPRSgetpresolvesol, XPRSgetpresolvebasis,
XPRSgetscaledinfeas, XPRSloadpresolvebasis and XPRSloadpresolvedirs.

5.8 Using the Callbacks

Console users are constantly provided with information on the standard output device by the Optimizeras it searches for a solution to the current problem. The same output is also available to library users ifa log file has been set up using XPRSsetlogfile. However, whilst Console users can respond to thisinformation as it is produced and allow it to influence their session, the same is not immediately truefor library users, since their program must be written and compiled before the session is initiated. Forsuch users, a more interactive alternative to the above forms of output is provided by the use of
callback functions.
The library callbacks are a collection of functions which allow user–defined routines to be specified tothe Optimizer. In this way, users may define their own routines which should be called at various stagesduring the optimization process, prompting the Optimizer to return to the user’s program before

Fair Isaac Corporation Confidential and Proprietary Information 33

Advanced Usage

continuing with the solution algorithm. Perhaps the three most general of the callback functions arethose associated with the search for an LP solution. However, the vast majority of situations in whichsuch routines might be called are associated with the global search, and will be addressed below.
5.8.1 Output Callbacks

Instead of catching the standard output from the Optimizer and saving it to a log file, the callback
XPRSaddcbmessage allows the user to define a routine which should be called every time a text line isoutput by the Optimizer. Since this returns the status of each message output, the user’s routine couldtest for error or warning messages and take appropriate action accordingly.

5.8.2 LP Callbacks

The functions XPRSaddcblplog and XPRSaddcbbarlog allow the user to respond after eachiteration of either the simplex or barrier algorithms, respectively. The controls LPLOG and BAROUTPUTmay additionally be set to reduce the frequency at which these routines should be called.
5.8.3 Global Search Callbacks

When a problem with global entities is to be optimized, a large number of sub problems, called nodes,must typically be solved as part of the global tree search. At various points in this process user–definedroutines can be called, depending on the callback that is used to specify the routine to the Optimizer.
In a global tree search, the Optimizer starts by selecting an active node amongst all candidates (knownas a full backtrack) and then proceed with solving it, which can lead to new descendent nodes beingcreated. If there is a descendent node, the optimizer will by default select one of these next to solveand repeat this iterative descend while new descendent nodes are being created. This dive stops whenit reaches a node that is found to be infeasible or cutoff, at which point the Optimizer will perform a full
backtrack again and repeat the process with a new active node.
A routine may be called whenever a node is selected by the optimizer during a full backtrack, using
XPRSaddcbchgnode. This will also allow a user to directly select the active node for the optimizer.Whenever a new node is created, a routine set by XPRSaddcbnewnode will be called, which can beused to record the identifier of the new node, e.g. for use with XPRSaddcbchgnode.
When the Optimizer solves a new node, it will first call any routine set by XPRSaddcbprenode, whichcan be used to e.g. tighten bounds on columns (with XPRSchgbounds) as part of a user nodepresolve. Afterwards, the LP relaxation of the node problem is solved to obtain a feasible solution and abest bound for the node. This might be followed by one or more rounds of cuts. If the node problem isfound to be infeasible or cutoff during this process, a routine set by XPRSaddcbinfnode will be called.Otherwise, a routine set by XPRSaddcboptnode will be called to let the user know that the optimizernow has an optimal solution to the LP relaxation of the node problem. In this routine, the user isallowed to add cuts (see section 5.9) and tighten bounds to tighten the node problem, or applybranching objects (see XPRS_bo_create) to separate on the current node problem. If the usermodifies the problem inside this optnode callback routine, the optimizer will automatically resolve thenode LP and, if the LP is still feasible, call the optnode routine again.
If the LP relaxation solution to the node problem also satisfies all global entities and the user has notadded any branching objects, i.e., if it is a MIP solution, the Optimizer will call a routine set by
XPRSaddcbpreintsol before saving the new solution, and call a routine set by XPRSaddcbintsol
after saving the solution. These two routines will also be called whenever a new MIP solution is foundusing one of the Optimizer heuristics.
Otherwise, if the node LP solution does not satisfy the global entities (or any user branching objects),the Optimizer will proceed with branching. After the optimizer has selected the candidate entity forbranching, a routine set by XPRSaddcbchgbranch will be called, which also allows a user to changethe selected candidate. If, during the candidate evaluation the optimizer discovers that e.g. bounds can

Fair Isaac Corporation Confidential and Proprietary Information 34

Advanced Usage

be tightened, it will tighten the node problem and go back to resolving the node LP, followed by thecallback routines explained above.
When the Optimizer finds a better MIP solution, it is possible that some of the nodes in the active nodespool are cut off due to having an LP solution bound that is worse than the new cutoff value. For suchnodes, a routine set by XPRSaddcbnodecutoff will be called and the node will be dropped from theactive nodes pool.
The final global callback, XPRSaddcbgloballog, is more similar to the LP search callbacks, allowinga user’s routine to be called whenever a line of the global log is printed. The frequency with which thisoccurs is set by the control MIPLOG.

5.9 Working with the Cut Manager

5.9.1 Cuts and the Cut Pool

Solving the LP relaxations during a global search is often made more efficient by supplying additionalrows (constraints) to the matrix which reduce the size of the feasible region, whilst ensuring that it stillcontains an optimal integer solution. Such additional rows are called cutting planes, or cuts.
By default, cuts are automatically added to the matrix by the Optimizer during a global search to speedup the solution process. However, for advanced users, the Optimizer library provides greater freedom,allowing the possibility of choosing which cuts are to be added at particular nodes, or removing cutsentirely. The cutting planes themselves are held in a cut pool, which may be manipulated using libraryfunctions.
Cuts may be added directly to the matrix at a particular node, or may be stored in the cut pool firstbefore subsequently being loaded into the matrix. It often makes little difference which of these twoapproaches is adopted, although as a general rule if cuts are cheap to generate, it may be preferable toadd the cuts directly to the matrix and delete any redundant cuts after each sub–problem (node) hasbeen optimized. Any cuts added to the matrix at a node and not deleted at that node will automaticallybe added to the cut pool. If you wish to save all the cuts that are generated, it is better to add the cuts tothe cut pool first. Cuts can then be loaded into the matrix from the cut pool. This approach has theadvantage that the cut pool routines can be used to identify duplicate cuts and save only the strongercuts.
To help track the cuts that have been added to the matrix at different nodes, the cuts can be classifiedaccording to a user–defined cut type. The cut type can either be a number such as the node number orit can be a bit map. In the latter case each bit of the cut type may be used to indicate a property of thecut. For example, cuts could be classified as local cuts applicable at the current node and itsdescendants, or as global cuts applicable at all nodes. If the first bit of the cut type is set this couldindicate a local cut and if the second bit is set this could indicate a global cut. Other bits of the cut typecould then be used to signify other properties of the cuts. The advantage of using bit maps is that allcuts with a particular property can easily be selected, for example all local cuts.

5.9.2 Cut Management Routines

Cuts may be added directly into the matrix at the current node using XPRSaddcuts. Any cuts added tothe matrix at a node will be automatically added to the cut pool and hence restored at descendantnodes unless specifically deleted at that node, using XPRSdelcuts. Cuts may be deleted from aparent node which have been automatically restored, as well as those added to the current node using
XPRSaddcuts, or loaded from the cut pool using XPRSloadcuts.
It is recommended to delete only those cuts with basic slacks. Otherwise, the basis will no longer bevalid and it may take many iterations to recover an optimal basis. If the second argument to
XPRSdelcuts is set to 1, this will ensure that cuts with non–basic slacks will not be deleted, even if

Fair Isaac Corporation Confidential and Proprietary Information 35

Advanced Usage

the other controls specify that they should be. It is highly recommended that this is always set to 1.
Cuts may be saved directly to the cut pool using the function XPRSstorecuts. Since cuts added to thecut pool are not automatically added to the matrix at the current node, any such cut must be explicitlyloaded into the matrix using XPRSloadcuts before it can become active. If the third argument of
XPRSstorecuts is set to 1, the cut pool will be checked for duplicate cuts with a cut type identical tothe cuts being added. If a duplicate cut is found, the new cut will only be added if its right hand sidevalue makes the cut stronger. If the cut in the cut pool is weaker than the added cut, it will be removedunless it has already been applied to active nodes of the tree. If, instead, this argument is set to 2, thesame test is carried out on all cuts, ignoring the cut type. The routine XPRSdelcpcuts allows the userto remove cuts from the cut pool, unless they have already been applied to active nodes in the branchand bound tree.
A list of cuts in the cut pool may be obtained using the command XPRSgetcpcuts, whilst
XPRSgetcpcutlist returns a list of their indices. A list of those cuts which are active at the currentnode is returned using XPRSgetcutlist.

5.9.3 User Cut Manager Routines

Users may also write their own cut manager routines to be called during the branch and bound search.Cuts can be added or removed on any node of the branch and bound search using a callback functionset by the routine XPRSaddcboptnode (see section 5.8.3).
Further details of these functions may be found in chapter 8 within the functional reference whichfollows.

5.10 Solving Problems Using Multiple Threads

It is possible to use multiple processors when solving any type of problem with the Optimizer. On themore common processor types, such as those from Intel or AMD, the Optimizer will detect how manylogical processors are available in the system and attempt to solve the problem in parallel using asmany threads as possible. The number detected can be read through the CORESDETECTED integerattribute. It is also possible to adjust the number of threads to use by setting the integer parameter
THREADS.
By default a problem will be solved deterministically, in the sense that the same solution path will befollowed each time the problem is solved when given the same number of threads. For an LP thismeans that the number of iterations and the optimal, feasible solution returned will always be thesame.
When solving a MIP deterministically, each node of the branch–and–bound tree will always be solvedthe same. Each node of the branch–and–bound tree can be identified by a unique number, availablethrough the attribute CURRENTNODE. The tree will always have the same parent/child relationship interms of these identifiers. A deterministic MIP solve will always find integer solutions on the samenodes and the attributes and solutions on a node will always be returned the same from one run toanother. Since nodes will be solved in parallel the order in which nodes are solved can vary. There is anoverhead in synchronizing the threads to make the parallel runs deterministic and it can be faster to runin non–deterministic mode. This can be done by setting the DETERMINISTIC control to 0.
For an LP problem (or the initial continuous relaxation of a MIP), there are several choices ofparallelism. Both the barrier algorithm and the dual simplex algorithm support multiple threads. Thenumber of threads to use can be set with BARTHREADS or DUALTHREADS, respectively. It is alsopossible to run some or all of primal simplex, dual simplex and the Barrier algorithm side–by–side inseparate threads, known as a concurrent LP solve. This can be useful when none of the methods is theobvious choice. In this mode, the Optimizer will stop with the first algorithm to solve the problem. Thenumber of threads for the concurrent LP solve can be set using CONCURRENTTHREADS. The algorithms

Fair Isaac Corporation Confidential and Proprietary Information 36

Advanced Usage

to use for the concurrent solve can be specified by concatenating the required "d", "p", "n" and "b" flagswhen calling XPRSlpoptimize (LPOPTIMIZE) or XPRSmipoptimize (MIPOPTIMIZE); please referto section 5.10.1 for more details.
When solving a MIP problem, the Optimizer will try to run the branch and bound tree search in parallel.Use the MIPTHREADS control to set the number of threads specifically for the tree search.
The operation of the optimizer for MIPs is fairly similar in serial and parallel mode. The MIP callbackscan still be used in parallel and callbacks are called when each MIP worker problem is created anddestroyed. The mipthread callback (declared with XPRSaddcbmipthread) is called whenever a MIPworker problem is created and the callback declared with XPRSaddcbdestroymt is called wheneverthe worker problem is destroyed. Each worker problem has a unique ID which can be obtained from the
MIPTHREADID integer attribute. When an executing thread solves a branch–and–bound node, it willalso do so on a worker problem assigned to it. Note that a given worker problem can be assigned todifferent threads during its lifetime and the threads might differ from one run to another.
When the MIP callbacks are called they are MUTEX protected to allow non threadsafe user callbacks. Ifa significant amount of time is spent in the callbacks then it is worth turning off the automatic MUTEXprotection by setting the MUTEXCALLBACKS control to 0. It this is done then the user must ensure thattheir callbacks are threadsafe.
On some problems it is also possible to obtain a speedup by using multiple threads for the MIP solveprocess between the initial LP relaxation solve and the branch and bound search. The default behaviorhere is for the Optimizer to use a single thread to create its rounds of cuts and to run its heuristicmethods to obtain MIP solutions. Extra threads can be started, dedicated to running the heuristics only,by setting the HEURTHREADS control. By setting HEURTHREADS to a non–zero value, the heuristics willbe run in separate threads, in parallel with cutting.
When a MIP solve is terminated early, due to e.g. a time or node limit, it is possible to select betweentwo different termination behaviors. This has implications for the determinism of callbacks called neartermination and how quickly the Optimizer stops. In the default behavior, when termination is detected,all work is immediately stopped and any partial node solves are discarded. It is therefore possible thatsome callbacks will have been called for nodes that are discarded at termination. Note that thistermination method does not affect the final state the problem is left in after termination and that anyinteger solution for which the preintsol and intsol callbacks are called will never be dropped. By settingthe control MIPTERMINATIONMETHOD to 1, the termination behavior will be changed such that partialwork is never discarded. Instead, all worker threads will be allowed to complete their current workbefore the solve stops. This termination behavior might cause a longer delay between termination isdetected and the Optimizer stops, but it will ensure that work is never dropped for any callbacks thathave already been called.

5.10.1 The concurrent solver

The concurrent solve is activated either by passing multiple algorithm flags to XPRSlpoptimize (e.g."pb" for running primal and the barrier) or by setting CONCURRENTTHREADS to a positive number. Theorder in which threads are allocated to the algorithms is not affected by the order of the flags provided.
If algorithm flags are specified, then concurrent will run the specified algorithms, if the setting of
CONCURRENTTHREADS allows for a sufficient number of threads. When no flags are specified, theautomatic order of selecting algorithms starts with dual, followed by barrier and then primal. Thenetwork solver is only used if specified by flags.
CONCURRENTTHREADS represents the total target number of threads that can be used by concurrent.The optimizer will then first start dual then barrier (if CONCURRENTTHREADS >1) followed by primal (if
CONCURRENTTHREADS >2). Any remaining threads will be allocated to parallel barrier.
If manual algorithm selection has been made using algorithm flags, then CONCURRENTTHREADS willlimit the number of algorithms started (if smaller than the number of algorithms provided), in whichcase the number of algorithms started will be the first CONCURRENTTHREADS in the dual→ barrier→

Fair Isaac Corporation Confidential and Proprietary Information 37

Advanced Usage

primal→ network order.
Once an algorithm is started, the direct thread controls BARTHREADS and DUALTHREADS are respected.Note that due to the latter controls the total number of theads may exceed CONCURRENTTHREADS.
In case a single algorithm is started and relevant controls are on automatic, the value of the THREADScontrol is used.
If multiple algorithms have been started and CONCURRENTTHREADS is on automatic, then THREADS willbe used as the overall number of threads used in the concurrent (unless overwritten by the relevantalgorithm specific control on a per–algorithm basis).

5.11 Solving Large Models (the 64 bit Functions)

The size of the models that can be loaded into the optimizer using the standard optimizer functions islimited by the largest number that can be held in a 32–bit integer. This means that it is not possible toload any problem with more than 2147483648 matrix elements with the standard optimizer functions.On 64–bit machines, it is possible to use the optimizer 64–bit functions to load problems with a largernumber of elements (these functions have 64 appended to the standard optimizer function names). Forexample, it is possible to load a problem with a large number of elements with the XPRSloadlp64function. The only difference between XPRSloadlp64 and XPRSloadlp is that the mstart arraycontaining the starting points of the elements in each column that is passed to XPRSloadlp64 is apointer to an array of 64–bit integers. Typically, the declaration and allocation of space for the 64–bit
mstart array would be as follows:
XPRSint64 ⁎mstart = malloc(ncol ⁎ sizeof(⁎mstart));

The starting points of the elements in mstart can then exceed the largest 32–bit integer.
Wherever there is a need to pass a large array to an optimizer subroutine there is a corresponding64–bit function. Once a large model has been loaded into the optimizer then all the standard optimizerfunctions (such as XPRSlpoptimize) can be used.
Note that although the 64–bit functions allow very large models to be loaded, there is no guarantee thatsuch large problems can be solved in a reasonable time. Also if the machine doesn’t have sufficientmemory, the matrix will be constantly swapped in and out of memory which can slow the solutionprocess considerably.

5.12 Using the Tuner

For a given optimization problem, setting suitable control parameters frequently results in improvedperformance such as solution time reduction. The Xpress Optimizer built–in tuner can help a user toidentify such set of control settings that allows the Xpress Optimizer or Xpress SLP to solve problemsfaster than by using defaults.
5.12.1 Basic Usage

With a loaded problem, the tuner can be started by simply calling TUNE from the console, or XPRStunefrom a user application. The tuner will then search for better control settings from a list of controls(called the tuner method). To achieve this, the tuner will solve the problem with its default baselinecontrol settings and then solve the problem multiple times with each individual control and certaincombinations of these controls.
As the tuner works by solving a problem mutiple times, it is important and recommended to set timelimits. Setting MAXTIME will limit the effort spent on each individual solve and setting TUNERMAXTIMEwill limit the overall effort of the tuner.

Fair Isaac Corporation Confidential and Proprietary Information 38

Advanced Usage

The tuner works with LP and MIP problems. It automatically determines the problem type by examiningthe characteristics of the current problem. It is possible to tune a MIP problem as an LP or vice versa bypassing the flag l or g to XPRStune or TUNE.
The tuner can also work with SLP and MISLP problems when Xpress Nonlinear is available. Note thatfor SLP or MISLP problems, the time limit is set with XSLP_MAXTIME.

5.12.2 The Tuner Method

A tuner method consists of a list of controls for the tuner to try with. It is possible to run the tuner withdifferent pre–defined lists of controls, so–called factory tuner methods, or with a user–defined list ofcontrols. When using the tuner, it will automatically choose a default factory tuner method according tothe problem type. A non–default factory tuner method can be selected by setting the TUNERMETHODcontrol. There are several choices available for factory tuner methods, among them:
� A simple MIP method, which only features a few controls and can be used in situations wheretuning with the default method would take too long, e.g., because the instance to be tuned takes along time for each individual solve
� A comprehensive MIP method, which features a larger list of controls (and control settings) andcan be used when individual instance solves are relatively fast or the default method could notreveal a satisfying improvement
� A root–focus method, which only considers controls that affect the root node processing of theMIP solve. It can either be used when root and tree behavior should be tuned independently, in atwo stage process, or when it is evident that improvements have to come from root nodeprocessing. When tuning with a root–focus, it might make sense to choose minimizing the primaldual integral as a tuner target.
� A tree–focus method, which only considers controls that affect the tree search behavior of theMIP solve. It can either be used when root and tree behavior should be tuned independently, in atwo stage process, or when it is evident that improvements have to come from the tree search,e.g., because the dual bound needs better branching.
� A method for tuning primal heuristics, which should be used when finding a better MIP solutionsis the only focus and improving the best bound can be neglected. In this case, it might makesense to choose improvement of the primal bound also as a tuner target.

Please also refer to the documentation of the TUNERMETHOD control.
A tuner method can be written out using XPRStunerwritemethod. This function will create a file inXTM format, that is effectively a list of Xpress Optimizer controls, each with a set of possible settingsto try in tuning. When writing out one of the factory methods, it is recommended to first select the tunermethod by setting TUNERMETHOD, or to load a targeting problem, so that the tuner can write outsuitable tuner methods for the respective problem types.
Users can provide their own method to the tuner by setting up an XTM file (or editing one that has beenwritten out). This can be read into the tuner with XPRStunerreadmethod.
An alternate way to load a user–defined tuner method is to set the TUNERMETHODFILE control to thefile name. This will only work when no tuner method has been loaded by explicitly calling
XPRStunerreadmethod. If a user–defined method is successfully loaded, the tuner will use it and notload any factory tuner method.
Please refer to Appendix A.9 for the format of tuner method file.

Fair Isaac Corporation Confidential and Proprietary Information 39

Advanced Usage

5.12.3 The Tuner Output

While the tuner examines various control settings, it prints a progress report to the console. At thesame time, it writes out the result and individual logs to the file system.
On the console, the tuner will print a one–line summary for each finished run. When a new bettercontrol setting is identified, it will be highlighted with an asterisk (*) at the begining of its log line, andfollowed by details of the control setting and its log file name. The console progress logging can beswitched off by disabling the OUTPUTLOG control. Please refer to Appendix A.13 for a more detaileddescription of the tuner logging.
In the background, the tuner will output the result and individual logs to the file system. By default, allthe output files will be stored in the directory tuneroutput/probname/. The root folder path can bechanged by setting the TUNEROUTPUTPATH control. This is the central folder in which all subfolders forthe results and logs of different problems will be stored. The subfolders themselves are automaticallynamed using the current problem name. They can be manually given a different name by setting the
TUNERSESSIONNAME control. The subfolder contains one result file in XML format, and many log files,one for each evaluated control setting. The XML result file consists of the control settings, solutionresults and pointers to the log files of all finished tuner runs.
The file output can be turned off completely by disabling the TUNEROUTPUT control.

5.12.4 The Tuner Target

A tuner target defines how to compare two finished runs with different control settings.
A common usage of the tuner is to pursue a solution time reduction, where two runs will be comparedby their solution time, the faster one is considered the better. However, when both of the runs time out,it will be more meaningful to compare other attributes of the two runs, for example the final gap or thebest integer solution for MIP problems.
The tuner will choose a default tuner target according to problem types. For instance, comparing thetime firstly and then the gap is the default tuner target for MIP problems. A user can select a differenttarget by setting the TUNERTARGET control. Please refer to the documentation of TUNERTARGET for alist of supported tuner targets.

5.12.5 Restarting the Tuner

When tuning the same problem again, the tuner will attempt to pick up results from previous tuner runsso that it can avoid testing with the same control settings again. For this, it checks whether an XMLresult file is available in the directory tuneroutput/probname/, see Section 5.12.3. Reusing of thehistory results even works when a user changes the baseline settings or uses a different tuner method.In this case, the tuner will only pick up history results which match the new control combinations. Bydefault, when a new control setting is evaluated, the result will be appended to the existing result filefrom the previous tuner session.
This feature of reusing and appending to previous results can be switched off by setting the
TUNERHISTORY control. This control has the default value 2, which allows both, reusing andappending. Setting it to 1 will switch off reusing of the results, while still allowing to append new resultto the XML result file. Setting it to 0 will switch off appending as well; consequently, the old result filewill be overwritten. Note that all log files from previous tuner session will always be kept even if theyrun with identical settings. This is realized by having a time stamp and a unique number in the filename. Log files can only be removed manually.

5.12.6 Tuner with Multiple Threads

The tuner can work in parallel, i.e., it can run several evaluations of different control settings

Fair Isaac Corporation Confidential and Proprietary Information 40

Advanced Usage

simultaneously. When setting TUNERTHREADS larger than 1, the tuner will start in parallel mode with thegiven number of threads. Setting the tuner threads won’t affect the number of threads used by eachindividual run. However, it is natural that, when solving different control settings in parallel, each of theruns may slow down.
When using the parallel tuner, it is worth considering to set the THREADS control as well; ideally suchthat the product of THREADS and TUNERTHREADS is at most the number of system threads.

5.12.7 Tuner with Problem Permutations

For a certain problem, there may exist several "lucky" controls, that show a better performance bycoincidence and not due to structural reasons. Such lucky controls will typically not work with otherproblems of the same type, or when a user modifies the problem slightly or updates Xpress. They canbe thought of as false positives of tuning.
To address this issue, the tuner can exploit a phenomenon known as performance variability and solvethe problem with multiple random permutations. When setting TUNERPERMUTE to a positive number,for each control setting, the tuner will solve the original problem and the corresponding number ofpermuted problems and finally aggregate their results as one. Generally, tuner results withpermutations are expected to be more stable.

5.12.8 Tuning a Set of Problems

The tuner can tune a set of problems to search for an overall best control setting for all the problems inthe set. Tuning a problem set can be started from the optimizer console with the command
tune probset problem.set,

where the problem.set is a plain text file which contains a list of problem files in MPS or LP format.
The tuner starts by checking all the problems defined in the problem set file. It will read in each problemto find out its type (one of LP, MIP, SLP and MISLP) and optimization direction. When there are mixedproblem types, the tuner will quit with a warning message. The tuner can work with mixed optimizationdirections and it will treat the whole problem set as a minimization problem. For a given problem set, itis possible to force the tuner to tune the problem set as LP or MIP problems with the command

tune lpset problem.set or tune mipset problem.set

respectively.
For a problem set, the tuner works by solving each individual problem in the set for each specificcombination of control settings separately. When all the problems in the set are solved for a specificcontrol setting, the tuner combines the individual problem results into a consolidated one and reports iton the console. During the solve, for each problem in the set, the tuner will output its result and log filesto a path defined by TUNEROUTPUTPATH/PROBLEMNAME. For the main problem set, the tuner will writethe consolidated results to the main output path, together with a concatenated copy of all the individualproblem logs.
When tuning a problem set again, the tuner can pick up the result of existing runs for the main problemset and for each separate problem in the set as well. If the full problem set can be recovered from theexisting tuning records, the tuner will omit solving them as usual. Otherwise, the tuner will go throughall the problems in the set. For each problem in the set, the tuner will also check whether it is possibleto pick up an existing result with the specific control setting and omit solving for existing ones whenpossible.

Fair Isaac Corporation Confidential and Proprietary Information 41

Advanced Usage

5.12.9 Advanced Topics

Besides explicitly calling TUNE or XPRStune, the tuner can also be started by enabling the TUNERMODEcontrol. When enabling this control (setting to 1), all the optimization such as XPRSmipoptimize or
XPRSlpoptimize will be carried out as a tuned optimization. The Optimizer will first use the tuner tofind the best setting and then apply the best setting to solve the problem. On the other hand, a user candisable this control (setting to 0) to always disable the tuner, such that a call to XPRStune will have noeffect. This TUNERMODE has a default value of -1, which won’t affect the behaviour of any of the abovementioned functions.
When using the tuner from a user application with callbacks, the callbacks will also be passed on toeach individual runs. A user needs to keep in mind that these callbacks may be called mutiple timesfrom the tuner, as the tuner will solve the problem mutiples times. Moreover, when using the paralleltuner, it is the user’s responsibility to ensure that callbacks are thread–safe.
Though the tuner is built–in with the Xpress Optimizer, it can tune nonlinear problems when XpressNonlinear is available. Currently, parallel tuning and permutations will be disabled in this case.

5.13 Remote Solving with Xpress Insight Compute Interface

The Xpress Optimizer libraries can be configured to outsource optimization computation to a remoteInsight server that supports the Compute Interface. Software applications which depend on theOptimizer libraries for optimization computation therefore inherit the ability to transparently send jobsto Insight. This includes the Xpress applications (Optimizer Console, Mosel, Workbench).
When a solve is started, the Optimizer library directs any operations that can be solved remotely to theremote server. Some features such as callbacks, multi-start, and the solution enumerator haverestrictions applied which are documented here.
To integrate Xpress with an Insight Compute Server you must provide some configuration. Please seeChapter 3 of the Xpress Insight Compute Interface guide here:(https://www.fico.com/fico-xpress-optimization/docs/latest/insight5/compute/)
The single solve operations XPRSlpoptimize, XPRSmipoptimize, XSLPnlpoptimize, XSLPminim,XSLPmaxim, XPRSiis are supported. Calls to XPRSrepairinfeas and XPRStune which generate multipleproblem solves are also supported and each solve will be outsourced to the remote Insight server. Thenumber of parallel solves in the tuner is driven by the TUNERTHREADS control.
The Xpress Insight execution service and the local client application must be using the same majorversion of Xpress. Remote solves by Insight are supported by Xpress v8.10 and higher. Note: If you geta solve path difference, update the version of Xpress to match the version on the server with that on theclient machine and check hardware controls, in particular threading controls. Solves will use the defaultexecution service unless you specify one using the COMPUTEEXECSERVICE control or theconfiguration file as described in Appendix A.14.3.
Compute solves do not support the continuation of solves once they are interrupted, nor the multistartnonlinear algorithm.
A remote solve can be terminated by calling XPRSinterrupt. When called from the supported callbacks -with the exception of the message callback - this will stop the optimizer the same way as for a localsolve. Otherwise, calling XPRSinterrupt outside of the supported callbacks will terminate the solve atthe earliest opportunity, and no results will be generated.
The remote solve is resilient to a temporary loss of connection between client and server. Xpress willtry to reconnect for a period of time and a message will appear in the run log if this is successful, or thesolve will terminate with an error if it is not. If the connection between client and server is establishedwhen the connection between server and the executing worker is lost then the solve will be restarted tomaintain determinism, and a computerestart callback will be fired to notify the calling application. Any

Fair Isaac Corporation Confidential and Proprietary Information 42

https://www.fico.com/fico-xpress-optimization/docs/latest/insight5/compute/

Advanced Usage

work done by the disconnected remote worker, including any integer solution callbacks already fired,will be repeated.
Support for the following features are disabled when solving remotely and calling the related APImethods will cause a runtime error:

� multiple solution pools,
� solution enumeration,
� callbacks not listed as supported above.

5.13.1 Authentication

Please refer to the Insight Compute Interface guide Chapter 2 and 3 for details of connecting Xpress toa remote Insight server.(https://www.fico.com/fico-xpress-optimization/docs/latest/insight5/compute/)
5.13.2 Callbacks

Callbacks are supported. When submitting a job to a remote machine, these callbacks are restricted tothe message, barlog, globallog, lplog and cutlog, gapnotify, and intsol callbacks. Attempting to set anyother callbacks will cause a runtime error. Controls can be changed in the usual way in all thesupported callbacks with the exception of the message callback. Note: when solving remotely, thevalue of control XSLP_AUTOSAVE is always ignored.
Within the supported callbacks, calls can be made to functions that retrieve attributes and settingcontrol values. Within the intsol callback, calls to XPRSgetmipsol and XPRSgetmipsolvalue arepermitted. Calling any other API function will cause a runtime error, including any XSLP and BCL APIcalls. Note: While calling XPRSgetlpsol is also permitted in the intsol callback, it will return the samesolution as XPRSgetmipsol, both being the solution associated to the intsol callback. This is differentto non–remote solves where getmipsol would return the overall best solution instead. It is thereforesafe to keep using getlpsol in applications utilizing compute solves.
Any job that features callbacks which return hardware related attributes will use values from the remoteserver. For example, XPRS_CORESDETECTED will reflect the hardware on which the problem is beingsolved, not the hardware of the local client.

5.13.3 Licensing

When an Xpress application or an application embedding the Optimizer library is started with remotesolving configured, the local license check is omitted and no local license is required to execute theapplication.
When a solve is started, the Optimizer instance will direct any operations that can be solved remotely tothe remote server. This will also be the case if additional Optimizer instances are initiated as separatethreads of the same process.

5.13.4 Advanced Configuration

There are some advanced settings that can be set using the Remote Solving Configuration file; this isdescribed in section A.14.

Fair Isaac Corporation Confidential and Proprietary Information 43

https://www.fico.com/fico-xpress-optimization/docs/latest/insight5/compute/

CHAPTER 6

Infeasibility, Unboundedness and Instability

All users will, generally, encounter occasions in which an instance of the model they are developing issolved and found to be infeasible or unbounded. An infeasible problem is a problem that has nosolution while an unbounded problem is one where the constraints do not restrict the objective functionand the objective goes to infinity. Both situations often arise due to errors or shortcomings in theformulation or in the data defining the problem. When such a result is found it is typically not clear whatit is about the formulation or the data that has caused the problem.
Problem instability arises when the coefficient values of the problem are such that the optimizationalgorithms find it difficult to converge to a solution. This is typically because of large ratios between thelargest and smallest coefficients in the rows or columns and the handling of the range of numericalvalues in the algorithm is causing floating point accuracy issues. Problem instability generallymanifests in either long run times or spurious infeasibilities.
It is often difficult to deal with these issues since it is often difficult to diagnose the cause of theproblems. In this chapter we discuss the various approaches and tools provided by the Optimizer forhandling these issues.

6.1 Infeasibility

A problem is said to be infeasible if no solution exists which satisfies all the constraints. The FICOXpress Optimizer provides functionality for diagnosing the cause of infeasibility in the user’s problem.
Before we discuss the infeasibility diagnostics of the Optimizer we will define some types of infeasibilityin terms of the type of problem it relates to and how the infeasibility is detected by the Optimizer.
We will consider two basic types of infeasibility. The first we will call continuous infeasibility and thesecond discrete or integer infeasibility. Continuous infeasibility is where a non–MIP problem isinfeasible. In this case the feasible region defined by the intersecting constraints is empty. Discrete orinteger infeasibility is where a MIP problem has a feasible relaxation (a relaxation of a MIP is theproblem we get when we drop the discreteness requirement on the variables) but the feasible region ofthe relaxation contains no solution that satisfies the discreteness requirement.
Either type of infeasibility may be detected at the presolve phase of an optimization run. Presolve is theanalysis and processing of the problem before the problem is run through the optimization algorithm. Ifcontinuous infeasibility is not detected in presolve then the optimization algorithm will detect theinfeasibility. If integer infeasibility is not detected in presolve, a branch and bound search will benecessary to detect the infeasibility. These scenarios are discussed in the following sections.

6.1.1 Diagnosis in Presolve

The presolve processing, if activated (see section 5.3), provides a variety of checks for infeasibility.When presolve detects infeasibility, it is possible to "trace" back the implications that determined an

Fair Isaac Corporation Confidential and Proprietary Information 44

Infeasibility, Unboundedness and Instability

inconsistency and identify a particular cause. This diagnosis is carried out whenever the controlparameter TRACE is set to 1 before the optimization routine XPRSlpoptimize (LPOPTIMIZE) iscalled. In such a situation, the cause of the infeasibility is then reported as part of the output from theoptimization routine.
6.1.2 Diagnosis using Primal Simplex

The trace presolve functionality is typically useful when the infeasibility is simple, such that thesequence of bound implications that explains the infeasibility is short. If, however, this sequence islong or there are a number of sequences on different sets of variables, it might be useful to try forcingpresolve to continue processing and then solve the problem using the primal simplex to get the, socalled, ’phase 1’ solution. To force presolve to continue even when an infeasibility is discovered the usercan set the control PRESOLVE to --1. The ’phase 1’ solution is useful because the sum of infeasibilitiesis minimized in the solution and the resulting set of violated constraints and violated variable boundsprovides a clear picture of what aspect of the model is causing the infeasibility.
6.1.3 Irreducible Infeasible Sets

A general technique to analyze infeasibility is to find a small subset of the matrix that is itself infeasible.The Optimizer does this by finding irreducible infeasible sets (IISs). An IIS is a minimal set ofconstraints and variable bounds which is infeasible, but becomes feasible if any constraint or bound init is removed.
A model may have several infeasibilities. Repairing a single IIS may not make the model feasible, forwhich reason the Optimizer can attempt to find an IIS for each of the infeasibilities in a model. The IISsfound by the optimizer are independent in the sense that each constraint and variable bound may onlybe present in at most one IIS. In some problems there are overlapping IISs. The number of all IISspresent in a problem may be exponential, and no attempt is made to enumerate all. If the infeasibilitycan be represented by several different IISs the Optimizer will attempt to find the IIS with the smallestnumber of constraints in order to make the infeasibility easier to diagnose (the Optimizer tries tominimize the number of constraints involved, even if it means that the IIS will contain more bounds).
Using the library functions IISs can be generated iteratively using the XPRSiisfirst and
XPRSiisnext functions. All (a maximal set of independent) IISs can also be obtained with the
XPRSiisall function. Note that if the problem is modified during the iterative search for IISs, theprocess has to be started from scratch. After a set of IISs is identified, the information contained byany one of the IISs (size, constraint and bound lists, duals, etc.) may be retrieved with the function
XPRSgetiisdata. A summary on the generated IISs is provided by function XPRSiisstatus, while itis possible to save the IIS data or the IIS subproblem directly into a file in MPS or LP format using
XPRSiiswrite. The information about the IISs is available while the problem remains unchanged.The information about an IIS may be obtained at any time after it has been generated. Function
XPRSiisclear clears the information already stored about IISs.
On the console, all the IIS functions are available by passing different flags to the IIS consolecommand. A single IIS may be found with the command IIS. If further IISs are required (e.g., if tryingto find the smallest one) the IIS --n command may be used to generate subsequent IISs, or the IIS
--a to generate all independent IISs, until no further independent IIS exists. These functions displaythe constraints and bounds that are identified to be in an IIS as they are found. If further information isrequired, the IIS --p num command may be used to retrieve all the data for a given IIS, or the IISwand IISe functions to create an LP/MPS or CSV containing the IIS subproblem or the additionalinformation about the IIS in a file.
Once an IIS has been found it is useful to know if dropping a single constraint or bound in the IIS willcompletely remove the infeasibility represented by the IIS, thus an attempt is made to identify a subsetof the IIS called a sub--IIS isolation. A sub--IIS isolation is a special constraint or boundin an IIS. Removing an IIS isolation constraint or bound will remove all infeasibilities in the IIS without

Fair Isaac Corporation Confidential and Proprietary Information 45

Infeasibility, Unboundedness and Instability

increasing the infeasibilities outside the IIS, that is, in any other independent IISs.
The IIS isolations thus indicate the likely cause of each independent infeasibility and give anindication of which constraint or bound to drop or modify. This procedure is computationally expensive,and is carried out separately by function XPRSiisisolations (IIS--i) for an already identified IIS.It is not always possible to find IIS isolations.
After an optimal but infeasible first phase primal simplex, it is possible to identify a subproblemcontaining all the infeasibilities (corresponding to the given basis) to reduce the IIS work–problemdramatically. Rows with zero duals (thus with slack variables having zero reduced cost) and columnsthat have zero reduced costs may be excluded from the search for IISs. Moreover, for rows andcolumns with nonzero costs, the sign of the cost is used to relax equality rows either to less then orgreater than equal rows, and to drop either possible upper or lower bounds on variables. This processis referred to as sensitivity filter for IISs.
The identification of an IIS, especially if the isolations search is also performed, may take a very longtime. For this reason, using the sensitivity filter for IISs, it is possible to find only an approximation ofthe IISs, which typically contains all the IISs (and may contain several rows and bounds that are not partof any IIS). This approximation is a sub–problem identified at the beginning of the search for IISs, andis referred to as the initial infeasible sub–problem. Its size is typically crucial to the running time of theIIS procedure. This sub–problem is accessible by setting the input parameters of XPRSiisfirst or bycalling (IIS --f) on the console. Note that the IIS approximation and the IISs generated so far arealways available.
The XPRSgetiisdata function also returns dual multipliers. These multipliers are associated withFarkas’ lemma of linear optimization. Farkas’ lemma in its simplest form states that if Ax = b, x ≥ 0 hasno solution, then there exists a y for which yTA ≥ 0 and yTb < 0. In other words, if the constraints andbounds are contradictory, then an inequality of form dTx < 0 may be derived, where d is a constantvector of nonnegative values. The vector y, i.e., the multipliers with which the constraints and boundshave to be combined to get the contradiction is called dual multipliers. For each IIS identified, thesemultipliers are also provided. For an IIS all the dual multipliers should be nonzero.

6.1.4 The Infeasibility Repair Utility

In some cases, identifying the cause of infeasibility, even if the search is based on IISs may prove verydemanding and time consuming. In such cases, a solution that violates the constraints and boundsminimally can greatly assist modeling. This functionality is provided by the
XPRSrepairweightedinfeas function.
Based on preferences provided by the user, the Optimizer relaxes the constraints and bounds in theproblem by introducing penalized deviation variables associated with selected rows and columns. Thena weighted sum of these variables (sometimes referred to as infeasibility breakers) is minimized,resulting in a solution that violates the constraints and bounds minimally regarding the providedpreferences. The preference associated with a constraint or bound reflects the modeler’s will to relaxthe corresponding right–hand–side or bound. The higher the preference, the more willing the modeleris to relax (the penalty value associated is the reciprocal of the preference). A zero preference reflectsthat the constraint or bound cannot be relaxed. It is the responsibility of the modeler to providepreferences that yield a feasible relaxed problem. Note, that if all preferences are nonzero, the relaxedproblem is always feasible (with the exception of problems containing binary or semi–continuousvariables, since because of their special associated modeling properties, such variables are notrelaxed).
Note, that this utility does not repair the infeasibility of the original model, but based on the preferencesprovided by the user, it introduces extra freedom into it to make it feasible, and minimizes the utilizationof the added freedom.
The magnitude of the preferences does not affect the quality of the resulting solution, and only theratios of the individual preferences determine the resulting solution. If a single penalty value is used for

Fair Isaac Corporation Confidential and Proprietary Information 46

Infeasibility, Unboundedness and Instability

each constraint and bound group (less than and greater than or equal constraints, as well as lower andupper bounds are treated separately) the XPRSrepairinfeas (REPAIRINFEAS) function may beused, which provides a simplified interface to
XPRSrepairweightedinfeas.
Using the new variables introduced, it is possible to warm start the primal simplex algorithm with abasic solution. However, based on the value of the control KEEPBASIS, the function may modify theactual basis to produce a warm start basis for the solution process. An infeasible, but first phaseoptimal primal solution typically speeds up the solution of the relaxed problem.
Once the optimal solution to the relaxed problem is identified (and is automatically projected back tothe original problem space), it may be used by the modeler to modify the problem in order to becomefeasible. However, it may be of interest to know what the optimal objective value will be if the originalproblem is relaxed according to the solution found be the infeasibility repair function.
In order to provide such information, the infeasibility repair tool may carry out a second phase, in whichthe weighted violation of the constraints and bounds are restricted to be no greater than the optimumof the first phase in the infeasibility repair function, and the original objective function is minimized ormaximized.
It is possible to slightly relax the restriction on the weighted violation of the constraints and bounds inthe second phase by setting the value of the parameter delta in
XPRSrepairweightedinfeas, or using the --delta option with the Console Optimizer command
REPAIRINFEAS. If the minimal weighted violation in the first phase is p, a nonzero delta would relaxthe restriction on the weighted violations to be less or equal than (1+delta)p. While such a relaxationallows considering the effect of the original objective function in more detail, on some problems thetrade–off between increasing delta to improve the objective can be very large, and the modeler isadvised to carefully analyze the effect of the extra violations of the constraints and bounds to theunderlying model.
Note, that it is possible that an infeasible problem becomes unbounded in the second phase of theinfeasibility repair function. In such cases, the cause of the problem being unbounded is likely to beindependent from the cause of its infeasibility.
When not all constraints and bounds are relaxed it is possible for the relaxed problem to remaininfeasible. In such cases it is possible to run the IIS tool on the relaxed problem, which can be used toidentify why it is still infeasible.
It is also possible to limit the amount of relaxation allowed on a per constraint side or bound by using
XPRSrepairweightedinfeasbounds.
It can sometimes be desired to achieve an even distribution of relaxation values. This can be achievedby using quadratic penalties on the added relaxation variables, and is indicated to the optimizer byspecifying a negative preference value for the constraint or bound on which a quadratic penalty shouldbe added.

6.1.5 Integer Infeasibility

In rare cases a MIP problem can be found to be infeasible although its LP relaxation was found to befeasible. In such circumstances the feasible region for the LP relaxation, while nontrivial, contains nosolutions which satisfy the various integrality constraints. These are perhaps the worst kind ofinfeasibilities as it can be hard to determine the cause. In such cases it is recommended that the usertry to introduce some flexibility into the problem by adding slack variables to all of the constraints eachwith some moderate penalty cost. With the solution to this problem the user should be able to identify,from the non–zero slack variables, where the problem is being overly restricted and with this decidehow to modify the formulation and/or the data to avoid the problem.

Fair Isaac Corporation Confidential and Proprietary Information 47

Infeasibility, Unboundedness and Instability

6.2 Unboundedness

A problem is said to be unbounded if the objective function may be improved indefinitely withoutviolating the constraints and bounds. This can happen if a problem is being solved with the wrongoptimization sense, e.g., a maximization problem is being minimized. However, when a problem isunbounded and the problem is being solved with the correct optimization sense then this indicates aproblem in the formulation of the model or the data. Typically, the problem is caused by missingconstraints or the wrong signs on the coefficients. Note that unboundedness is often diagnosed bypresolve.

6.3 Instability

6.3.1 Scaling

When developing a model and the definition of its input data users often produce problems that containconstraints and/or columns with large ratios in the absolute values of the largest and smallestcoefficients. For example:
maximize: 106x + 7y = z
subject to: 106x + 0.1y ≤ 100

107x + 8y ≤ 500
1012x + 106y ≤ 50⁎106

Here the objective coefficients, constraint coefficients, and right–hand side values range between 0.1and 1012. We say that the model is badly scaled.
During the optimization process, the Optimizer must perform many calculations involving subtractionand division of quantities derived from the constraints and the objective function. When thesecalculations are carried out with values differing greatly in magnitude, the finite precision of computerarithmetic and the fixed tolerances employed by FICO Xpress result in a build up of rounding errors to apoint where the Optimizer can no longer reliably find the optimal solution.
To minimize undesirable effects, when formulating your problem try to choose units (or equivalentlyscale your problem) so that objective coefficients and matrix elements do not range by more than 106,and the right–hand side and non–infinite bound values do not exceed 106. One common problem is theuse of large finite bound values to represent infinite bounds (i.e., no bounds) — if you have to enterexplicit infinite bounds, make sure you use values greater than 1020 which will be interpreted as infinityby the Optimizer. Avoid having large objective values that have a small relative difference — this makesit hard for the dual simplex algorithm to solve the problem. Similarly, avoid having large right–hand sideor bound values that are close together, but not identical.
In the above example, both the coefficient for x and the last constraint might be better scaled. Issuesarising from the first may be overcome by column scaling, effectively a change of coordinates, with thereplacement of 106x by some new variable. Those from the second may be overcome by row scaling. Ifwe set x = 106x′ and scale the last row by 10–6, the example becomes the much better scaled problem:
maximize: x’ + 7y = z
subject to: x’ + 0.1y ≤ 100

10x’ + 8y ≤ 500
x’ + y ≤ 50

FICO Xpress also incorporates a number of automatic scaling options to improve the scaling of thematrix. However, the general techniques described below cannot replace attention to the choice of

Fair Isaac Corporation Confidential and Proprietary Information 48

Infeasibility, Unboundedness and Instability

units specific to your problem. The best option is to scale your problem following the advice above, anduse the automatic scaling provided by the Optimizer.
The form of scaling provided by the Optimizer depends on the setting of the bits of the controlparameter SCALING. To get a particular form of scaling, set SCALING to the sum of the valuescorresponding to the scaling required. For instance, to get row scaling, column scaling and then rowscaling again, set SCALING to 1+2+4=7. The scaling processing is applied after presolve and before theoptimization algorithm. The most important of the defined bits are given in the following table. For afull list, refer to SCALING in Chapter 9
Bit Value Type of Scaling
0 1 Row scaling.
1 2 Column scaling.
2 4 Row scaling again.
3 8 Maximin.
4 16 Curtis–Reid.
5 32 0– scale by geometric mean;

1– scale by maximum element(not applicable if maximin or Curtis–Reid is specified).
7 128 Objective function scaling.
8 256 Exclude the quadratic part of constraint when calculating scaling factors.
9 512 Scale the problem before presolve is applied.

If scaling is not required, SCALING should be set to 0.
If the user wants to get quick results when attempting to solve a badly scaled problem it may be usefulto try running customized scaling on a problem before calling the optimization algorithm. To run thescaling process on a problem the user can call the routine XPRSscale(SCALE). The SCALING controldetermines how the scaling will be applied.
If the user is applying customized scaling to their problem and they are subsequently modifying theproblem, it is important to note that the addition of new elements in the matrix can cause the problemto become badly scaled again. This can be avoided by reapplying their scaling strategy aftercompleting their modifications to the matrix.
Finally, note that the scaling operations are determined by the matrix elements only. The objectivecoefficients, right hand side values and bound values do not influence the scaling. Only continuousvariables (i.e., their bounds and coefficients) and constraints (i.e., their right–hand sides andcoefficients) are scaled. Discrete entities such as integer variables are not scaled so the user shouldchoose carefully the scaling of these variables.

6.3.2 Accuracy

The accuracy of the computed variable values and objective function value is affected in general by thevarious tolerances used in the Optimizer. Of particular relevance to MIP problems are the accuracy andcut off controls. The MIPRELCUTOFF control has a non–zero default value, which will prevent solutionsvery close but better than a known solution being found. This control can of course be set to zero ifrequired.
When the LP solver stops at an optimal solution, the scaled constraints will be violated by no more than
FEASTOL and the variables will be within FEASTOL of their scaled bounds. However once theconstraints and variables have been unscaled the constraint and variable bound violation can increaseto more than FEASTOL. If this happens then it indicates the problem is badly scaled. Reducing
FEASTOL can help however this can cause the LP solve to be unstable and reduce solutionperformance.

Fair Isaac Corporation Confidential and Proprietary Information 49

Infeasibility, Unboundedness and Instability

However, for all problems it is probably ambitious to expect a level of accuracy in the objective of morethan 1 in 1,000,000. Bear in mind that the default feasibility and optimality tolerances are 10–6. It isoften not practially possible to compute the solution values and reduced costs from a basis, to anaccuracy better than 10–8 anyway, particularly for large models. It depends on the condition number ofthe basis matrix and the size of the right—hand side and cost coefficients. Under reasonableassumptions, an upper bound for the computed variable value accuracy is 4xKx‖RHS‖/1016, where
‖RHS‖ denotes the L–infinity norm of the right–hand side and K is the basis condition number. Thebasis condition number can be found using the XPRSbasiscondition (BASISCONDITION) function.
You should also bear in mind that the matrix is scaled, which would normally have the effect ofincreasing the apparent feasibility tolerance.

Fair Isaac Corporation Confidential and Proprietary Information 50

CHAPTER 7

Goal Programming

7.1 Overview

Note that the Goal Programming functionality of the Optimizer will be dropped in a future release.
This functionality will be replaced by an example program, available with this release (see
goal_example.c in the examples/optimizer/c folder of the installation), that provides the same
functionality as the original library function XPRSgoal(GOAL) but is implemented using the Optimizer
library interface.
Goal programming is an extension of linear programming in which targets are specified for a set ofconstraints. In goal programming there are two basic models: the pre–emptive (lexicographic) modeland the Archimedean model. In the pre–emptive model, goals are ordered according to priorities. Thegoals at a certain priority level are considered to be infinitely more important than the goals at the nextlevel. With the Archimedean model, weights or penalties for not achieving targets must be specifiedand one attempts to minimize the weighted sum of goal under–achievement.
In the Optimizer, goals can be constructed either from constraints or from objective functions (N rows).If constraints are used to construct the goals, then the goals are to minimize the violation of theconstraints. The goals are met when the constraints are satisfied. In the pre–emptive case we try tomeet as many goals as possible, taking them in priority order. In the Archimedean case, we minimize aweighted sum of penalties for not meeting each of the goals. If the goals are constructed from N rows,then, in the pre–emptive case, a target for each N row is calculated from the optimal value for the N row.This may be done by specifying either a percentage or absolute deviation that may be allowed from theoptimal value for the N rows. In the Archimedean case, the problem becomes a multi–objective linearprogramming problem in which a weighted sum of the objective functions is to be minimized.
In this section four examples will be provided of the four different types of goal programming available.Goal programming itself is performed using the XPRSgoal (GOAL) command, whose syntax isdescribed in full in the reference section of this manual.

7.2 Pre–emptive Goal Programming Using Constraints

For this case, goals are ranked from most important to least important. Initially we try to satisfy themost important goal. Then amongst all the solutions that satisfy the first goal, we try to come as closeas possible to satisfying the second goal. We continue in this fashion until the only way we can comecloser to satisfying a goal is to increase the deviation from a higher priority goal.
An example of this is as follows:

Fair Isaac Corporation Confidential and Proprietary Information 51

Goal Programming

goal 1 (G1): 7x + 3y ≥ 40
goal 2 (G2): 10x + 5y = 60
goal 3 (G3): 5x + 4y ≤ 35
LIMIT: 100x + 60y ≤ 600

Initially we try to meet the first goal (G1), which can be done with x=5.0 and y=1.6, but this solutiondoes not satisfy goal 2 (G2) or goal 3 (G3). If we try to meet goal 2 while still meeting goal 1, thesolution x=6.0 and y=0.0 will satisfy. However, this does not satisfy goal 3, so we repeat the process.On this occasion no solution exists which satisfies all three.

7.3 Archimedean Goal Programming Using Constraints

We must now minimize a weighted sum of violations of the constraints. Suppose that we have thefollowing problem, this time with penalties attached:
Penalties

goal 1 (G1): 7x + 3y ≥ 40 8
goal 2 (G2): 10x + 5y = 60 3
goal 3 (G3): 5x + 4y ≤ 35 1
LIMIT: 100x + 60y ≤ 600

Then the solution will be the solution of the following problem:
minimize: 8d1 + 3d2 + 3d3 + 1d4subject to: 7x + 3y + d1 ≥ 40

10x + 5y + d2 – d3 = 60
5x + 4y + d4 ≥ 35
100x + 60y ≤ 600

d1 ≥ 0, d2 ≥ 0, d3 ≥ 0, d4 ≥ 0
In this case a penalty of 8 units is incurred for each unit that 7x + 3y is less than 40 and so on. thefinal solution will minimize the weighted sum of the penalties. Penalties are also referred to as weights.This solution will be x=6, y=0, d1=d2=d3=0 and d4=5, which means that the first and second mostimportant constraints can be met, while for the third constraint the right hand side must be reduced by
5 units in order to be met.
Note that if the problem is infeasible after all the goal constraints have been relaxed, then no solutionwill be found.

7.4 Pre–emptive Goal Programming Using Objective Functions

Suppose that we have a set of objective functions and knowing which are the most important. As in thepre–emptive case with constraints, goals are ranked from most to least important. Initially we find theoptimal value of the first goal. Once we have found this value we turn this objective function into aconstraint such that its value does not differ from its optimal value by more than a certain amount. Thiscan be a fixed amount (or absolute deviation) or a percentage of (or relative deviation from) the optimalvalue found before. Now we optimize the next goal (the second most important objective function) andso on.
For example, suppose we have the following problem:

Fair Isaac Corporation Confidential and Proprietary Information 52

Goal Programming

Sense D/P Deviation
goal 1 (OBJ1): 5x + 2y – 20 max P 10
goal 2 (OBJ2): –3x + 15y – 48 min D 4
goal 3 (OBJ3): 1.5x + 21y – 3.8 max P 20
LIMIT: 42x + 13y ≤ 100

For each goal the sense of the optimization (max or min) and the percentage (P) or absolute (D)deviation must be specified. For OBJ1 and OBJ3 a percentage deviation of 10% and 20%, respectively,have been specified, whilst for OBJ2 an absolute deviation of 4 units has been specified.
We start by maximizing the first objective function, finding that the optimal value is --4.615385. As a10% deviation has been specified, we change this objective function into the following constraint:
5x + 2y – 20 ≥ –4.615385 – 0.14615385

Now that we know that for any solution the value for the former objective function must be within 10%of the best possible value, we minimize the next most important objective function (OBJ2) and find theoptimal value to be 51.133603. Goal 2 (OBJ2) may then be changed into a constraint such that:
–3x + 15y – 48 ≤ 51.133603 + 4

and in this way we ensure that for any solution, the value of this objective function will not be greaterthan the best possible minimum value plus 4 units.
Finally we have to maximize OBJ3. An optimal value of 141.943995 will be obtained. Since a 20%allowable deviation has been specified, this objective function may be changed into the followingconstraint:
1.5x + 21y – 3.8 ≥ 141.943995 – 0.2141.943995

The solution of this problem is x=0.238062 and y=6.923186.

7.5 Archimedean Goal Programming Using Objective Functions

In this, the final case, we optimize a weighted sum of objective functions. In other words we solve amulti–objective problem. For consider the following:
Weights Sense

goal 1 (OBJ1): 5x + 2y – 20 100 max
goal 2 (OBJ2): –3x + 15y – 48 1 min
goal 3 (OBJ3): 1.5x + 21y – 3.8 0.01 max
LIMIT: 42x + 13y ≤ 100

In this case we have three different objective functions that will be combined into a single objectivefunction by weighting them by the values given in the weights column. The solution of this model is onethat minimizes:
1(–3x + 15y – 48) – 100(5x + 2y – 20) – 0.01(1.5x + 21y – 3.8)

The resulting values that each of the objective functions will have are as follows:

Fair Isaac Corporation Confidential and Proprietary Information 53

Goal Programming

OBJ1: 5x + 2y – 20 = –4.615389
OBJ2: –3x + 15y – 48 = 67.384613
OBJ3: 1.5x + 21y – 3.8 = 157.738464

The solution is x=0.0 and y=7.692308.

Fair Isaac Corporation Confidential and Proprietary Information 54

CHAPTER 8

Console and Library Functions

A large number of routines are available for both Console and Library users of the FICO XpressOptimizer, ranging from simple routines for the input and solution of problems from matrix files tosophisticated callback functions and greater control over the solution process. Of these, the corefunctionality is available to both sets of users and comprises the ’Console Mode’. Library usersadditionally have access to a set of more ’advanced’ functions, which extend the functionality providedby the Console Mode, providing more control over their program’s interaction with the Optimizer andcatering for more complicated problem development.

8.1 Console Mode Functions

With both the Console and Advanced Mode functions described side-by-side in this chapter, libraryusers can use this as a quick reference for the full capabilities of the Optimizer library. For users ofConsole Optimizer, only the following functions will be of relevance:

Command Description Page
CHECKCONVEXITY Convexity checker. p. 146
EXIT Terminate the Console Optimizer. p. 176
HELP Quick reference help for the Optimizer console. p. 263
IIS Console IIS command. p. 264
PRINTRANGE Writes the ranging information to screen. p. 315
PRINTSOL Write the current solution to screen. p. 316
QUIT Terminate the Console Optimizer. p. 317
STOP Terminate the Console Optimizer. p. 376
TUNE Console Tuner command. p. 382
SETARCHCONSISTENCY Sets whether to force the same execution path on various CPU architectureextensions, in particular (pre-)AVX and AVX2. p. 81
ALTER Alters or changes matrix elements, right hand sides and constraint senses in thecurrent problem. p. 138
BASISCONDITION This function is deprecated, and will be removed in future releases. Please use theXPRSbasisstability function instead. Calculates the condition number of the currentbasis after solving the LP relaxation. p. 139
BASISSTABILITY Calculates various measures for the stability of the current basis, including the basiscondition number. p. 140
CHGOBJSENSE Changes the problem’s objective function sense to minimize or maximize. p. 154
DUMPCONTROLS Displays the list of controls and their current value for those controls that have beenset to a non default value. p. 175
FIXGLOBALS Fixes all the global entities to the values of the last found MIP solution. This is usefulfor finding the reduced costs for the continuous variables after the global variableshave been fixed to their optimal values. p. 179

Fair Isaac Corporation Confidential and Proprietary Information 55

Console and Library Functions

GLOBAL Starts the global search for an integer solution after solving the LP relaxation withXPRSmaxim (MAXIM) or XPRSminim (MINIM) or continues a global search if it hasbeen interrupted. This function is deprecated and might be removed in a futurerelease. XPRSmipoptimize should be used instead. p. 259
GOAL This function is deprecated, and will be removed in future releases. Perform goalprogramming. p. 261
LPOPTIMIZE This function begins a search for the optimal continuous (LP) solution. The directionof optimization is given by OBJSENSE. The status of the problem when the functioncompletes can be checked using LPSTATUS. Any global entities in the problem will beignored. p. 306
MAXIM, MINIM Begins a search for the optimal LP solution. These functions are deprecated andmight be removed in a future release. XPRSlpoptimize or XPRSmipoptimize should beused instead. p. 307
MIPOPTIMIZE This function begins a global search for the optimal MIP solution. The direction ofoptimization is given by OBJSENSE. The status of the problem when the functioncompletes can be checked using MIPSTATUS. p. 309
POSTSOLVE Postsolve the current matrix when it is in a presolved state. p. 312
RANGE Calculates the ranging information for a problem and saves it to the binary ranging fileproblem_name.rng. p. 318
READBASIS Instructs the Optimizer to read in a previously saved basis from a file. p. 319
READBINSOL Reads a solution from a binary solution file. p. 320
READDIRS Reads a directives file to help direct the global search. p. 321
READPROB Reads an (X)MPS or LP format matrix from file. p. 323
READSLXSOL Reads an ASCII solution file .slx created by the XPRSwriteslxsol function. p. 325
REFINEMIPSOL Executes the MIP solution refiner. p. 326
REPAIRINFEAS An extended version of XPRSrepairweightedinfeas that allows for bounding the levelof relaxation allowed. p. 357
RESTORE Restores the Optimizer’s data structures from a file created by XPRSsave (SAVE).Optimization may then recommence from the point at which the file was created.p. 360
SAVE Saves the current data structures to file and terminates the run p. 362
SCALE Re-scales the current matrix. p. 363
SETDEFAULTCONTROL Sets a single control to its default value. p. 368
SETDEFAULTS Sets all controls to their default values. Must be called before the problem is read orloaded by XPRSreadprob, XPRSloadglobal, XPRSloadlp, XPRSloadqglobal,XPRSloadqp. p. 369
SETLOGFILE This directs all Optimizer output to a log file. p. 372
SETPROBNAME Sets the current default problem name. This command is rarely used. p. 374
WRITEBASIS Writes the current basis to a file for later input into the Optimizer. p. 388
WRITEBINSOL Writes the current MIP or LP solution to a binary solution file for later input into theOptimizer. p. 389
WRITEDIRS Writes the global search directives from the current problem to a directives file. p. 390
WRITEPROB Writes the current problem to an MPS or LP file. p. 391
WRITEPRTRANGE Writes the ranging information to a fixed format ASCII file, problem_name.rrt. Thebinary range file (.rng) must already exist, created by XPRSrange (RANGE). p. 392
WRITEPRTSOL Writes the current solution to a fixed format ASCII file, problem_name .prt. p. 393
WRITERANGE Writes the ranging information to a CSV format ASCII file, problem_name.rsc (and.hdr). The binary range file (.rng) must already exist, created by XPRSrange (RANGE)and an associated header file. p. 394
WRITESLXSOL Creates an ASCII solution file (.slx) using a similar format to MPS files. These files canbe read back into the Optimizer using the XPRSreadslxsol function. p. 396
WRITESOL Writes the current solution to a CSV format ASCII file, problem_name.asc (and .hdr).p. 397

For a list of functions by task, refer to 2.8.

Fair Isaac Corporation Confidential and Proprietary Information 56

Console and Library Functions

8.2 Layout for Function Descriptions

All functions mentioned in this chapter are described under the following set of headings:
Function Name

The description of each routine starts on a new page. The library name for a function is on the left andthe Console Optimizer command name, if one exists, is on the right.
Purpose

A short description of the routine and its purpose begins the information section.
Synopsis

A synopsis of the syntax for usage of the routine is provided. "Optional" arguments and flags may bespecified as NULL if not required. Where this possibility exists, it will be described alongside theargument, or in the Further Information at the end of the routine’s description. If the function isavailable in the Console, the library syntax is described first, followed by the Console Optimizer syntax.
Arguments

A list of arguments to the routine with a description of possible values for them follows.
Error Values

Optimizer return codes are described in Chapter 11. For library users, however, a return code of 32indicates that additional error information may be obtained, specific to the function which caused theerror. Such is available by calling
XPRSgetintattrib(prob,XPRS_ERRORCODE,&errorcode);

Likely error values returned by this for each function are listed in the Error Values section. A descriptionof the error may be obtained using the XPRSgetlasterror function. If no attention need be drawn toparticular error values, this section will be omitted.
Associated Controls

Controls which affect a given routine are listed next, separated into lists by type. The control namegiven here should have XPRS_ prefixed by library users, in a similar way to the XPRSgetintattribexample in the Error Values section above. Console Xpress users should use the controls without thisprefix, as described in FICO Xpress Getting Started manual. These controls must be set before theroutine is called if they are to have any effect.
Examples

One or two examples are provided which explain certain aspects of the routine’s use.
Further Information

Additional information not contained elsewhere in the routine’s description is provided at the end.

Fair Isaac Corporation Confidential and Proprietary Information 57

Console and Library Functions

Related Topics

Finally a list of related routines and topics is provided for comparison and reference.

Fair Isaac Corporation Confidential and Proprietary Information 58

Console and Library Functions

XPRS_bo_addbounds

Purpose Adds new bounds to a branch of a user branching object.
Synopsis

int XPRS_CC XPRS_bo_addbounds(XPRSbranchobject obranch, int ibranch, int
nbounds, const char cbndtype[], const int mbndcol[], const double
dbndval[]);

Arguments
obranch The user branching object to modify.
ibranch The number of the branch to add the new bounds for. This branch must already havebeen created using XPRS_bo_addbranches. Branches are indexed starting from zero.
nbounds Number of new bounds to add.
cbndtype Character array of length nbounds indicating the type of bounds to add:

L Lower bound.
U Upper bound.

mbndcol Integer array of length nbounds containing the column indices for the new bounds.
dbndval Double array of length nbounds giving the bound values.

Example See XPRS_bo_create for an example using XPRS_bo_addbounds.
Related topics

XPRS_bo_create.

Fair Isaac Corporation Confidential and Proprietary Information 59

Console and Library Functions

XPRS_bo_addbranches

Purpose Adds new, empty branches to a user defined branching object.
Synopsis

int XPRS_CC XPRS_bo_addbranches(XPRSbranchobject obranch, int nbranches);

Arguments
obranch The user branching object to modify.
nbranches Number of new branches to create.

Example See XPRS_bo_create for an example using XPRS_bo_addbranches.
Related topics

XPRS_bo_create.

Fair Isaac Corporation Confidential and Proprietary Information 60

Console and Library Functions

XPRS_bo_addcuts

Purpose Adds stored user cuts as new constraints to a branch of a user branching object.
Synopsis

int XPRS_CC XPRS_bo_addcuts(XPRSbranchobject obranch, int ibranch, int
ncuts, const XPRScut mcutind[]);

Arguments
obranch The user branching object to modify.
ibranch The number of the branch to add the cuts for. This branch must already have beencreated using XPRS_bo_addbranches. Branches are indexed starting from zero.
ncuts Number of cuts to add.
mcutind Array of length ncuts containing the pointers to user cuts that should be added to thebranch.

Related topics
XPRS_bo_create, XPRS_bo_addrows.

Fair Isaac Corporation Confidential and Proprietary Information 61

Console and Library Functions

XPRS_bo_addrows

Purpose Adds new constraints to a branch of a user branching object.
Synopsis

int XPRS_CC XPRS_bo_addrows(XPRSbranchobject obranch, int ibranch, int
nrows, int nelems, const char crtype[], const double drrhs[], const
int mrbeg[], const int mcol[], const double dval[]);

Arguments
obranch The user branching object to modify.
ibranch The number of the branch to add the new constraints for. This branch must already havebeen created using XPRS_bo_addbranches. Branches are indexed starting from zero.
nrows Number of new constraints to add.
nelems Number of non-zero coefficients in all new constraints.
crtype Character array of length nrows indicating the type of constraints to add:

L Less than type.
G Greater than type.
E Equality type.

drrhs Double array of length nrows containing the right hand side values.
mrbeg Integer array of length nrows containing the offsets of the mcol and dval arrays of thestart of the non zero coefficients in the new constraints.
mcol Integer array of length nelems containing the column indices for the non zerocoefficients.
dval Double array of length nelems containing the non zero coefficient values.

Example The following function will create a branching object that branches on constraints x1 + x2 ≥ 1 or
x1 + x2 ≤ 0:

XPRSbranchobject CreateConstraintBranch(XPRSprob xp_mip, int icol)
{

char cRowType;
double dRowRHS;
int mRowBeg;
int mElemCol[2];
double dElemVal[2];

XPRSbranchobject bo = NULL;
int isoriginal = 1;

/⁎ Create the new object with two empty branches. ⁎/
XPRS_bo_create(&bo, xp_mip, isoriginal);
XPRS_bo_addbranches(bo, 2);

/⁎ Add the constraint x1 + x2 >= 1. ⁎/
cRowType = 'G';
dRowRHS = 1.0;
mRowBeg = 0;
mElemCol[0] = 0; mElemCol[1] = 1;
dElemVal[0] = 1.0; dElemVal[1] = 1.0;
XPRS_bo_addrows

(bo, 0, 1, 2, &cRowType, &dRowRHS, &mRowBeg, mElemCol, dElemVal);

Fair Isaac Corporation Confidential and Proprietary Information 62

Console and Library Functions

/⁎ Add the constraint x1 + x2 <= 0. ⁎/
cRowType = 'L';
dRowRHS = 0.0;
XPRS_bo_addrows

(bo, 1, 1, 2, &cRowType, &dRowRHS, &mRowBeg, mElemCol, dElemVal);

/⁎ Set a low priority value so our branch object is picked up ⁎/
/⁎ before the default branch candidates. ⁎/
XPRS_bo_setpriority(bo, 100);

return bo;
}

Related topics
XPRS_bo_create.

Fair Isaac Corporation Confidential and Proprietary Information 63

Console and Library Functions

XPRS_bo_create

Purpose Creates a new user defined branching object for the Optimizer to branch on. This function should becalled only from within one of the callback functions set by XPRSaddcboptnode or
XPRSaddcbchgbranchobject.

Synopsis
int XPRS_CC XPRS_bo_create(XPRSbranchobject⁎ p_object, XPRSprob prob, int

isoriginal);

Arguments
p_object Pointer to where the new object should be returned.
prob The problem structure that the branching object should be created for.
isoriginal If the branching object will be set up for the original matrix, which determines howcolumn indices are interpreted when adding bounds and rows to the object:

0 Column indices should refer to the current (presolved) node problem.
1 Column indices should refer to the original matrix.

Further information
1. In addition to the standard global entities supported by the Optimizer, the Optimizer also allows theuser to define their own global entities for branching, using branching objects.
2. A branching object of type XPRSbranchobject should provide a linear description of how to branchon the current node for a user’s global entities. Any number of branches is allowed and each branchdescription can contain any combination of columns bounds and new constraints.
3. Branching objects must always contain at least one branch and all branches of the object must containat least one bound or constraint.
4. When the Optimizer branches the current node on a user’s branching object, a new child node will becreated for each branch defined in the object. The child nodes will inherit the bounds and constraint ofthe current node, plus any new bounds or constraints defined for that branch in the object.
5. Inside the callback function set by XPRSaddcboptnode, a user can define any number of branchingobjects and pass them to the Optimizer. These objects are added to the set of infeasible global entitiesfor the current node and the Optimizer will select a best candidate from this extended set using all of itsnormal evaluation methods.
6. The callback function set by XPRSaddcbchgbranchobject can be used to override the Optimizer’sselected branching candidate with the user’s own object. This can for example be used to modify howto branch on the global entity selected by the Optimizer.
7. The following functions are available to set up a new user branching object:

XPRS_bo_create Creates a new, empty branching object with no branches.
XPRS_bo_addbranches Adds new, empty branches to the object. Branches mustbe created before column bounds or rows can be added toa branch.
XPRS_bo_addbounds Adds new column bounds to a given branch of the object.
XPRS_bo_addrows Adds new constraints to a given branch of the object.
XPRS_bo_setpriority Sets the priority value for the object. These are equivalentto the priority values for regular global entities that can beset through directives (see also Appendix A.6).
XPRS_bo_setpreferredbranch Specifies which of the child nodes corresponding to thebranches of the object should be explored first.
XPRS_bo_store Adds the created object to the candidate list for branching.

Fair Isaac Corporation Confidential and Proprietary Information 64

Console and Library Functions

Example The following function will create a branching object equivalent to a standard binary branch on acolumn:
XPRSbranchobject CreateBinaryBranchObject(XPRSprob xp_mip, int icol)
{

char cBndType;
double dBndValue;
int isoriginal = 1;

XPRSbranchobject bo = NULL;

/⁎ Create the new object with two empty branches. ⁎/
XPRS_bo_create(&bo, xp_mip, isoriginal);
XPRS_bo_addbranches(bo, 2);

/⁎ Add bounds to branch the column to either zero or one. ⁎/
cBndType = 'U';
dBndValue = 0.0;
XPRS_bo_addbounds(bo, 0, 1, &cBndType, &icol, &dBndValue);
cBndType = 'L';
dBndValue = 1.0;
XPRS_bo_addbounds(bo, 1, 1, &cBndType, &icol, &dBndValue);

/⁎ Set a low priority value so our branch object is picked up ⁎/
/⁎ before the default branch candidates. ⁎/
XPRS_bo_setpriority(bo, 100);

return bo;
}

Related topics
XPRSaddcboptnode, XPRSaddcbchgbranchobject.

Fair Isaac Corporation Confidential and Proprietary Information 65

Console and Library Functions

XPRS_bo_destroy

Purpose Frees all memory for a user branching object, when the object was not stored with the Optimizer.
Synopsis

int XPRS_CC XPRS_bo_destroy(XPRSbranchobject obranch);

Argument
obranch The user branching object to free.

Related topics
XPRS_bo_create, XPRS_bo_store.

Fair Isaac Corporation Confidential and Proprietary Information 66

Console and Library Functions

XPRS_bo_getbounds

Purpose Returns the bounds for a branch of a user branching object.
Synopsis

int XPRS_CC XPRS_bo_getbounds(XPRSbranchobject obranch, int ibranch, int⁎
p_nbounds, int nbounds_size, char cbndtype[], int mbndcol[], double
dbndval[]);

Arguments
obranch The branching object to inspect.
ibranch The number of the branch to get the bounds for.
p_nbounds Location where the number of bounds for the given branch should be returned.
nbounds_size Maximum number of bounds to return.
cbndtype Character array of length nbounds_size where the types of bounds will be returned:

L Lower bound.
U Upper bound.Allowed to be NULL.

mbndcol Integer array of length nbounds_size where the column indices will be returned.Allowed to be NULL.
dbndval Double array of length nbounds_size where the bound values will be returned.Allowed to be NULL.

Related topics
XPRS_bo_create, XPRS_bo_addbounds.

Fair Isaac Corporation Confidential and Proprietary Information 67

Console and Library Functions

XPRS_bo_getbranches

Purpose Returns the number of branches of a branching object.
Synopsis

int XPRS_CC XPRS_bo_getbranches(XPRSbranchobject obranch, int⁎
p_nbranches);

Arguments
obranch The user branching object to inspect.
p_nbranches Memory where the number of branches should be returned.

Related topics
XPRS_bo_create, XPRS_bo_addbranches.

Fair Isaac Corporation Confidential and Proprietary Information 68

Console and Library Functions

XPRS_bo_getid

Purpose Returns the unique identifier assigned to a branching object.
Synopsis

int XPRS_CC XPRS_bo_getid(XPRSbranchobject obranch, int⁎ p_id);

Arguments
obranch A branching object.
p_id Pointer to an integer where the identifier should be returned.

Further information

1. Branching objects associated with existing column entities (binaries, integers, semi–continuous andpartial integers), are given an identifier from 1 to MIPENTS.
2. Branching objects associated with existing Special Ordered Sets, are given an identifier from

MIPENTS+1 to MIPENTS+SETS.
3. User created branching objects will always have a negative identifier.

Related topics
XPRS_bo_create.

Fair Isaac Corporation Confidential and Proprietary Information 69

Console and Library Functions

XPRS_bo_getlasterror

Purpose Returns the last error encountered during a call to the given branch object.
Synopsis

int XPRS_CC XPRS_bo_getlasterror(XPRSbranchobject obranch, int⁎ iMsgCode,
char⁎ _msg, int _iStringBufferBytes, int⁎ _iBytesInInternalString);

Arguments
obranch The branch object.
iMsgCode Location where the error code will be returned. Can be NULL if not required.
_msg A character buffer of size iStringBufferBytes in which the last error messagerelating to the given branching object will be returned.
iStringBufferBytes The size of the character buffer _msg.
_iBytesInInternalString The size of the required character buffer to fully return the error string.

Example The following shows how this function might be used in error checking:
XPRSbranchobject obranch;
...
char⁎ cbuf;
int cbuflen;
if (XPRS_bo_setpreferredbranch(obranch,3)) {

XPRS_bo_getlasterror(obranch,NULL,NULL,0,&cbuflen);
cbuf = malloc(cbuflen);
XPRS_bo_getlasterror(obranch,NULL, cbuf, cbuflen, NULL);
printf("ERROR when setting preferred branch: %s\n", cbuf);

}

Related topics
XPRS_ge_setcbmsghandler.

Fair Isaac Corporation Confidential and Proprietary Information 70

Console and Library Functions

XPRS_bo_getrows

Purpose Returns the constraints for a branch of a user branching object.
Synopsis

int XPRS_CC XPRS_bo_getrows(XPRSbranchobject obranch, int ibranch, int⁎
p_nrows, int nrows_size, int⁎ p_nelems, int nelems_size, char
crtype[], double drrhs[], int mrbeg[], int mcol[], double dval[]);

Arguments
obranch The user branching object to inspect.
ibranch The number of the branch to get the constraints from.
p_nrows Memory location where the number of rows should be returned.
nrows_size Maximum number of rows to return.
p_nelems Memory location where the number of non zero coefficients in the constraints should bereturned.
nelems_size Maximum number of non zero coefficients to return.
crtype Character array of length nrows_size where the types of the rows will be returned:

L Less than type.
G Greater than type.
E Equality type.

drrhs Double array of length nrows_size where the right hand side values will be returned.
mrbeg Integer array of length nrows_size which will be filled with the offsets of the mcol and

dval arrays of the start of the non zero coefficients in the returned constraints.
mcol Integer array of length nelems_size which will be filled with the column indices for thenon zero coefficients.
dval Double array of length nelems_size which will be filled with the non zero coefficientvalues.

Related topics
XPRS_bo_create, XPRS_bo_addrows.

Fair Isaac Corporation Confidential and Proprietary Information 71

Console and Library Functions

XPRS_bo_setpreferredbranch

Purpose Specifies which of the child nodes corresponding to the branches of the object should be explored first.
Synopsis

int XPRS_CC XPRS_bo_setpreferredbranch(XPRSbranchobject obranch, int
ibranch);

Arguments
obranch The user branching object.
ibranch The number of the branch to mark as preferred.

Related topics
XPRS_bo_create.

Fair Isaac Corporation Confidential and Proprietary Information 72

Console and Library Functions

XPRS_bo_setpriority

Purpose Sets the priority value of a user branching object.
Synopsis

int XPRS_CC XPRS_bo_setpriority(XPRSbranchobject obranch, int ipriority);

Arguments
obranch The user branching object.
ipriority The new priority value to assign to the branching object, which must be a number from 0to 1000. User branching objects are created with a default priority value of 500.

Further information
1. A candidate branching object with lowest priority number will always be selected for branching beforean object with a higher number.
2. Priority values must be an integer from 0 to 1000. User branching objects and global entities are bydefault assigned a priority value of 500. Special branching objects, such as those arising fromstructural branches or split disjunctions are assigned a priority value of 400.

Related topics
XPRS_bo_create, Section A.6.

Fair Isaac Corporation Confidential and Proprietary Information 73

Console and Library Functions

XPRS_bo_store

Purpose Adds a new user branching object to the Optimizer’s list of candidates for branching. This function isavailable only through the callback function set by XPRSaddcboptnode.
Synopsis

int XPRS_CC XPRS_bo_store(XPRSbranchobject obranch, int⁎ p_status);

Arguments
obranch The new user branching object to store. After this call the obranch object is no longervalid and should not be referred to again.
p_status The returned status from checking the provided branching object:

0 The object was accepted successfully.
1 Failed to presolve the object due to dual reductions in presolve.
2 Failed to presolve the object due to duplicate column reductions in presolve.
3 The object contains an empty branch.
The object was not added to the candidate list if a non zero status is returned.

Further information
1. To ensure that a user branching object expressed in terms of the original matrix columns can beapplied to the presolved problem, it might be necessary to turn off certain presolve operations.
2. If any of the original matrix columns referred to in the object are unbounded, dual reductions mightprevent the corresponding bound or constraint from being presolved. To avoid this, dual reductionsshould be turned off in presolve, by clearing bit 3 of the integer control PRESOLVEOPS.
3. If one or more of the original matrix columns of the object are duplicates in the original matrix, but notin the branching object, it might not be possible to presolve the object due to duplicate columneliminations in presolve. To avoid this, duplicate column eliminations should be turned off in presolve,by clearing bit 5 of PRESOLVEOPS.
4. As an alternative to turning off the above mentioned presolve features, it is possible to protectindividual columns of a the problem from being modified by presolve. Use the XPRSloadsecurevecsfunction to mark any columns that might be branched on using branching objects.

Related topics
XPRS_bo_create, XPRS_bo_validate.

Fair Isaac Corporation Confidential and Proprietary Information 74

Console and Library Functions

XPRS_bo_validate

Purpose Verifies that a given branching object is valid for branching on the current branch-and-bound node of aMIP solve. The function will check that all branches are non-empty, and if required, verify that thebranching object can be presolved.
Synopsis

int XPRS_CC XPRS_bo_validate(XPRSbranchobject obranch, int⁎ p_status);

Arguments
obranch A branching object.
p_status The returned status from checking the provided branching object:

0 The object is acceptable.
1 Failed to presolve the object due to dual reductions in presolve.
2 Failed to presolve the object due to duplicate column reductions in presolve.
3 The object contains an empty branch.

Related topics
XPRS_bo_create.

Fair Isaac Corporation Confidential and Proprietary Information 75

Console and Library Functions

XPRS_ge_addcbmsghandler

Purpose Declares an output callback function in the global environment, called every time a line of message textis output by any object in the library. This callback function will be called in addition to any outputcallbacks already added by XPRS_ge_addcbmsghandler.
Synopsis

int XPRS_CC XPRS_ge_addcbmsghandler(int (XPRS_CC ⁎f_msghandler)(XPRSobject
vXPRSObject, void ⁎ vUserContext, void ⁎ vSystemThreadId, const char
⁎ sMsg, int iMsgType, int iMsgNumber), void ⁎object, int priority);

Arguments
f_msghandler The callback function which takes six arguments, vXPRSObject, vUserContext,

vSystemThreadId, sMsg, iMsgType and iMsgNumber. Use a NULL value to cancel acallback function.
vXPRSObject The object sending the message. Use XPRSgetobjecttypename to get the name ofthe object type.
vUserContext The user-defined object passed to the callback function.
vSystemThreadId The system id of the thread sending the message cast to a void ⁎.
sMsg A null terminated character array (string) containing the message, which may simply bea new line. When the callback is called for the first time sMsg will be a NULL pointer.
iMsgType Indicates the type of output message:

1 information messages;
2 (not used);
3 warning messages;
4 error messages.When the callback is called for the first time iMsgType will be a negative value.

iMsgNumber The number associated with the message. If the message is an error or a warning thenyou can look up the number in the section Optimizer Error and Warning Messages foradvice on what it means and how to resolve the associated issue.
object A user-defined object to be passed to the callback function.
priority An integer that determines the order in which multiple message handler callbacks willbe invoked. The callback added with a higher priority will be called before a callbackwith a lower priority. Set to 0 if not required.

Further informationTo send all messages to a log file the built in message handler XPRSlogfilehandler can be used.This can be done with:
XPRS_ge_addcbmsghandler(XPRSlogfilehandler, "log.txt", 0);

Related topics
XPRS_ge_removecbmsghandler, XPRSgetobjecttypename.

Fair Isaac Corporation Confidential and Proprietary Information 76

Console and Library Functions

XPRS_ge_getcbmsghandler

Purpose
This function is deprecated and may be removed in future releases.
Get the output callback function for the global environment, as set by XPRS_ge_setcbmsghander.

Synopsis
int XPRS_CC XPRS_ge_getcbmsghandler(int (XPRS_CC

⁎⁎r_f_msghandler)(XPRSobject vXPRSObject, void ⁎ vUserContext, void ⁎
vSystemThreadId, const char ⁎ sMsg, int iMsgType, int iMsgNumber),
void ⁎⁎object);

Arguments
r_f_msghandler Pointer to the memory where the callback function will be returned.
object Pointer to the memory where the callback function context value will be returned.

Related topics
XPRS_ge_setcbmsghandler.

Fair Isaac Corporation Confidential and Proprietary Information 77

Console and Library Functions

XPRS_ge_getlasterror

Purpose Returns the last error encountered during a call to the Xpress global environment.
Synopsis

int XPRS_CC XPRS_ge_getlasterror(int⁎ iMsgCode, char⁎ _msg, int
_iStringBufferBytes, int⁎ _iBytesInInternalString);

Arguments
iMsgCode Memory location in which the error code will be returned. Can be NULL if not required.
_msg A character buffer of size iStringBufferBytes in which the last error messagerelating to the global environment will be returned.
iStringBufferBytes The size of the character buffer _msg.
_iBytesInInternalString Memory location in which the minimum required size of the buffer tohold the full error string will be returned. Can be NULL if not required.

Example The following shows how this function might be used in error checking:
char⁎ cbuf;
int cbuflen;
if (XPRS_ge_setcbmsghandler(myfunc,NULL)!=0) {

XPRS_ge_getlasterror(NULL,NULL,0,&cbuflen);
cbuf = malloc(cbuflen);
XPRS_ge_getlasterror(NULL, cbuf, cbuflen, NULL);
printf("ERROR from Xpress global environment: %s\n", cbuf);

}

Related topics
XPRS_ge_setcbmsghandler.

Fair Isaac Corporation Confidential and Proprietary Information 78

Console and Library Functions

XPRS_ge_removecbmsghandler

Purpose Removes a message callback function previously added by XPRS_ge_addcbmsghandler. Thespecified callback function will no longer be called after it has been removed.
Synopsis

int XPRS_CC XPRS_ge_removecbmsghandler(int (XPRS_CC ⁎f_msghandler)
(XPRSobject vXPRSObject, void ⁎ vUserContext, void ⁎ vSystemThreadId,
const char ⁎ sMsg, int iMsgType, int iMsgNumber), void ⁎ object);

Arguments
f_msghandler The callback function to remove. If NULL then all message callback functions addedwith the given user-defined object value will be removed.
object The object value that the callback was added with. If NULL, then the object value will notbe checked and all message callbacks with the function pointer f_msghandler will beremoved.

Related topics
XPRS_ge_addcbmsghandler

Fair Isaac Corporation Confidential and Proprietary Information 79

Console and Library Functions

XPRS_ge_setcbmsghandler

Purpose
This function is deprecated and may be removed in future releases. Please use
XPRS_ge_addcbmsghandler instead.
Declares an output callback function, called every time a line of message text is output by any object inthe library.

Synopsis
int XPRS_CC XPRS_ge_setcbmsghandler(int (XPRS_CC ⁎f_msghandler)

(XPRSobject vXPRSObject, void ⁎ vUserContext, void ⁎ vSystemThreadId,
const char ⁎ sMsg, int iMsgType, int iMsgNumber), void ⁎ p);

Arguments
f_msghandler The callback function which takes six arguments, vXPRSObject, vUserContext,

vSystemThreadId, sMsg, iMsgType and iMsgNumber. Use a NULL value to cancel acallback function.
vXPRSObject The object sending the message. Use XPRSgetobjecttypename to get the name ofthe object type.
vUserContext The user-defined object passed to the callback function.
vSystemThreadId The system id of the thread sending the message caste to a void *.
sMsg A null terminated character array (string) containing the message, which may simply bea new line. When the callback is called for the first time sMsg will be a NULL pointer.
iMsgType Indicates the type of output message:

1 information messages;
2 (not used);
3 warning messages;
4 error messages.A negative value means the callback is being called for the first time.

iMsgNumber The number associated with the message. If the message is an error or a warning thenyou can look up the number in the section Optimizer Error and Warning Messages foradvice on what it means and how to resolve the associated issue.
p A user-defined object to be passed to the callback function.

Further informationTo send all messages to a log file the built in message handler XPRSlogfilehandler can be used.This can be done with:
XPRS_ge_setcbmsghandler(XPRSlogfilehandler, "log.txt");

Related topics
XPRSgetobjecttypename.

Fair Isaac Corporation Confidential and Proprietary Information 80

Console and Library Functions

XPRS_ge_setarchconsistency SETARCHCONSISTENCY

Purpose Sets whether to force the same execution path on various CPU architecture extensions, in particular(pre-)AVX and AVX2.
Synopsis

int XPRS_CC XPRS_ge_setarchconsistency(int ifArchConsistent);
SETARCHCONSISTENCY ifArchConsistent

Argument
ifArchConsistent Whether to force the same execution path:

0 Do not force the same execution path (default behavior);
1 Force the same execution path.

Further informationNote that, using this general environment API function is different from setting the CPUPLATFORMcontrol. Setting CPUPLATFORM selects a vectorization instruction set for the barrier method.

Fair Isaac Corporation Confidential and Proprietary Information 81

Console and Library Functions

XPRS_nml_addnames

Purpose The XPRS_nml_⁎ functions provide a simple, generic interface to lists of names, which may be namesof rows/columns on a problem or may be a list of arbitrary names provided by the user. Use the
XPRS_nml_addnames to add names to a name list, or modify existing names on a namelist.

Synopsis
int XPRS_CC XPRS_nml_addnames(XPRSnamelist nml, const char buf[], int

firstIndex, int lastIndex);

Arguments
nml The name list to which you want to add names. Must be an object previously returnedby XPRS_nml_create, as XPRSnamelist objects returned by other functions areimmutable and cannot be changed.
names Character buffer containing the null-terminated string names.
first The index of the first name to add/replace. Name indices in a namelist always startfrom 0.
last The index of the last name to add/replace.

Example

char mynames[0] = "fred\0jim\0sheila"
...
XPRS_nml_addnames(nml,mynames,0,2);

Related topics
XPRS_nml_create, XPRS_nml_removenames, XPRS_nml_copynames, XPRSaddnames.

Fair Isaac Corporation Confidential and Proprietary Information 82

Console and Library Functions

XPRS_nml_copynames

Purpose The XPRS_nml_⁎ functions provide a simple, generic interface to lists of names, which may be namesof rows/columns on a problem or may be a list of arbitrary names provided by the user.
XPRS_nml_copynames allows you to copy all the names from one name list to another. As name listsrepresenting row/column names cannot be modified, XPRS_nml_copynames will be most often usedto copy such names to a namelist where they can be modified, for some later use.

Synopsis
int XPRS_CC XPRS_nml_copynames(XPRSnamelist dst, XPRSnamelist src);

Arguments
dst The namelist object to copy names to. Any names already in this name list will beremoved. Must be an object previously returned by XPRS_nml_create.
src The namelist object from which all the names should be copied.

Example

XPRSprob prob;
XPRSnamelist rnames, rnames_on_prob;
...
/⁎ Create a namelist ⁎/
XPRS_nml_create(&rnames);
/⁎ Get a namelist through which we can access the row names ⁎/
XPRSgetnamelistobject(prob,1,&rnames_on_prob);
/⁎ Now copy these names from the immutable 'XPRSprob' namelist

to another one ⁎/
XPRS_nml_copynames(rnames,rnames_on_prob);
/⁎ The names in the list can now be modified then put to some

other use ⁎/

Related topics
XPRS_nml_create, XPRS_nml_addnames, XPRSgetnamelistobject.

Fair Isaac Corporation Confidential and Proprietary Information 83

Console and Library Functions

XPRS_nml_create

Purpose The XPRS_nml_⁎ functions provide a simple, generic interface to lists of names, which may be namesof rows/columns on a problem or may be a list of arbitrary names provided by the user.
XPRS_nml_create will create a new namelist to which the user can add, remove and otherwisemodify names.

Synopsis
int XPRS_CC XPRS_nml_create(XPRSnamelist⁎ p_nml);

Argument
p_nml Pointer to location where the new namelist will be returned.

Example

XPRSnamelist mylist;
XPRS_nml_create(&mylist);

Related topics
XPRSgetnamelistobject, XPRS_nml_destroy.

Fair Isaac Corporation Confidential and Proprietary Information 84

Console and Library Functions

XPRS_nml_destroy

Purpose Destroys a namelist and frees any memory associated with it. Note you need only destroy namelistscreated by XPRS_nml_destroy - those returned by XPRSgetnamelistobject are automaticallydestroyed when you destroy the problem object.
Synopsis

int XPRS_CC XPRS_nml_destroy(XPRSnamelist nml);

Argument
nml The namelist to be destroyed.

Example

XPRSnamelist mylist;
XPRS_nml_create(&mylist);
...
XPRS_nml_destroy(&mylist);

Related topics
XPRS_nml_create, XPRSgetnamelistobject, XPRSdestroyprob.

Fair Isaac Corporation Confidential and Proprietary Information 85

Console and Library Functions

XPRS_nml_findname

Purpose The XPRS_nml_⁎ functions provide a simple, generic interface to lists of names, which may be namesof rows/columns on a problem or may be a list of arbitrary names provided by the user.
XPRS_nml_findname returns the index of the given name in the given name list.

Synopsis
int XPRS_CC XPRS_nml_findname(XPRSnamelist nml, const char⁎ name, int⁎

r_index);

Arguments
nml The namelist in which to look for the name.
name Null-terminated string containing the name for which to search.
r_index Pointer to variable in which the index of the name is returned, or in which is returned -1 ifthe name is not found in the namelist.

Example

XPRSnamelist mylist;
int idx;
...
XPRS_nml_findname(mylist, "profit_after_work", &idx);
if (idx==-1)

printf("'profit_after_work' was not found in the namelist");
else

printf("'profit_after_work' was found at position %d", idx);

Related topics
XPRS_nml_addnames, XPRS_nml_getnames.

Fair Isaac Corporation Confidential and Proprietary Information 86

Console and Library Functions

XPRS_nml_getlasterror

Purpose Returns the last error encountered during a call to a namelist object.
Synopsis

int XPRS_CC XPRS_nml_getlasterror(XPRSnamelist nml, int⁎ iMsgCode, char⁎
_msg, int _iStringBufferBytes, int⁎ _iBytesInInternalString);

Arguments
nml The namelist object.
iMsgCode Variable in which the error code will be returned. Can be NULL if not required.
_msg A character buffer of size iStringBufferBytes in which the last error messagerelating to this namelist will be returned.
_iStringBufferBytes The size of the character buffer _msg.
_iBytesInInternalString Memory location in which the minimum required size of the buffer tohold the full error string will be returned. Can be NULL if not required.

Example

XPRSnamelist nml;
char⁎ cbuf;
int cbuflen;
...
if (XPRS_nml_removenames(nml,2,35)) {

XPRS_nml_getlasterror(nml, NULL, NULL, 0, &cbuflen);
cbuf = malloc(cbuflen);
XPRS_nml_getlasterror(nml, NULL, cbuf, cbuflen, NULL);
printf("ERROR removing names: %s\n", cbuf);

}

Related topicsNone.

Fair Isaac Corporation Confidential and Proprietary Information 87

Console and Library Functions

XPRS_nml_getmaxnamelen

Purpose The XPRS_nml_⁎ functions provide a simple, generic interface to lists of names, which may be namesof rows/columns on a problem or may be a list of arbitrary names provided by the user.
XPRS_nml_getmaxnamelen returns the length of the longest name in the namelist.

Synopsis
int XPRS_CC XPRS_nml_getmaxnamelen(XPRSnamelist nml, int⁎ namlen);

Arguments
nml The namelist object.
namelen Pointer to a variable into which shall be written the length of the longest name.

Related topicsNone.

Fair Isaac Corporation Confidential and Proprietary Information 88

Console and Library Functions

XPRS_nml_getnamecount

Purpose The XPRS_nml_⁎ functions provide a simple, generic interface to lists of names, which may be namesof rows/columns on a problem or may be a list of arbitrary names provided by the user.
XPRS_nlm_getnamecount returns the number of names in the namelist.

Synopsis
int XPRS_CC XPRS_nml_getnamecount(XPRSnamelist nml, int⁎ count);

Arguments
nml The namelist object.
count Pointer to a variable into which shall be written the number of names.

Example

XPRSnamelist mylist;
int count;
...
XPRS_nml_getnamecount(mylist,&count);
printf("There are %d names", count);

Related topicsNone.

Fair Isaac Corporation Confidential and Proprietary Information 89

Console and Library Functions

XPRS_nml_getnames

Purpose The XPRS_nml_⁎ functions provide a simple, generic interface to lists of names, which may be namesof rows/columns on a problem or may be a list of arbitrary names provided by the user. The
XPRS_nml_getnames function returns some of the names held in the name list. The names shall bereturned in a character buffer, and with each name being separated by a NULL character.

Synopsis
int XPRS_CC XPRS_nml_getnames(XPRSnamelist nml, int padlen, char buf[], int

buflen, int⁎ r_buflen_reqd, int firstIndex, int lastIndex);

Arguments
nml The namelist object.
padlen The minimum length of each name. If > 0 then names shorter than padlen will beconcatenated with whitespace to make them this length.
buf Buffer of length buflen into which the names shall be returned.
buflen The maximum number of bytes that may be written to the character buffer buf.
r_buflen_reqd A pointer to a variable into which will be written the number of bytes required tocontain the names. May be NULL if not required.
firstIndex The index of the first name in the namelist to return. Note name list indexes alwaysstart from 0.
lastIndex The index of the last name in the namelist to return.

Example

XPRSnamelist mylist;
char⁎ cbuf;
int o, i, cbuflen;
...
/⁎ Find out how much space we'll require for these names ⁎/
XPRS_nml_getnames(mylist, 0, NULL, 0, &cbuflen, 0, 5);
/⁎ Allocate a buffer large enough to hold the names ⁎/
cbuf = malloc(cbuflen);
/⁎ Retrieve the names ⁎/
XPRS_nml_getnames(mylist, 0, cbuf, cbuflen, NULL, 0, 5);
/⁎ Display the names ⁎/
o=0;
for (i=0;i<6;i++) {

printf("Name #%d = %s\n", i, cbuf+o);
o += strlen(cbuf)+1;

}

Related topicsNone.

Fair Isaac Corporation Confidential and Proprietary Information 90

Console and Library Functions

XPRS_nml_removenames

Purpose The XPRS_nml_⁎ functions provide a simple, generic interface to lists of names, which may be namesof rows/columns on a problem or may be a list of arbitrary names provided by the user.
XPRS_nml_removenames will remove the specified names from the name list. Any subsequentnames will be moved down to replace the removed names.

Synopsis
int XPRS_CC XPRS_nml_removenames(XPRSnamelist nml, int firstIndex, int

lastIndex);

Arguments
nml The name list from which you want to remove names. Must be an object previouslyreturned by XPRS_nml_create, as XPRSnamelist objects returned by other functionsare immutable and cannot be changed.
firstIndex The index of the first name to remove. Note that indices for names in a name listalways start from 0.
lastIndex The index of the last name to remove.

Example

XPRS_nml_removenames(mylist, 3, 5);

Related topics
XPRS_nml_addnames.

Fair Isaac Corporation Confidential and Proprietary Information 91

Console and Library Functions

XPRSaddcbbariteration

Purpose Declares a barrier iteration callback function, called after each iteration during the interior pointalgorithm, with the ability to access the current barrier solution/slack/duals or reduced cost values, andto ask barrier to stop. This callback function will be called in addition to any callbacks already added byXPRSaddcbbariteration.
Synopsis

int XPRS_CC XPRSaddcbbariteration (XPRSprob prob, void (XPRS_CC
⁎f_bariteration)(XPRSprob my_prob, void ⁎my_object, int
⁎barrier_action), void ⁎object, int priority);

Arguments
prob The current problem.
f_bariteration The callback function itself. This takes three arguments, my_prob, my_object,and barrier_action serving as an integer return value. This function is called atevery barrier iteration.
my_prob The problem passed to the callback function, f_bariteration.
my_object The user-defined object passed as object when setting up the callback with

XPRSaddcbbariteration.
barrier_action Defines a return value controlling barrier:

<0 continue with the next iteration;
=0 let barrier decide (use default stopping criteria);
1 barrier stops with status not defined;
2 barrier stops with optimal status;
3 barrier stops with dual infeasible status;
4 barrier stops wih primal infeasible status;

object A user-defined object to be passed to the callback function, f_bariteration.
priority An integer that determines the order in which callbacks of this type will be invoked. Thecallback added with a higher priority will be called before a callback with a lower priority.Set to 0 if not required.

Example This simple example demonstrates how the solution might be retrieved for each barrier iteration.
// Barrier iteration callback
void XPRS_CC BarrierIterCallback(XPRSprob my_prob,

void ⁎my_object, int ⁎barrier_action) {
int current_iteration;
double PrimalObj, DualObj, Gap, PrimalInf, DualInf,

ComplementaryGap;

my_object_s ⁎my = (my_object_s ⁎) my_object;

XPRSgetintattrib(my_prob, XPRS_BARITER, ¤t_iteration);

// try to get all the solution values
XPRSgetlpsol(my_prob, my->x, my->slacks, my->y, my->dj);

XPRSgetdblattrib(my_prob, XPRS_BARPRIMALOBJ, &PrimalObj);
XPRSgetdblattrib(my_prob, XPRS_BARDUALOBJ, &DualObj);
Gap = DualObj - PrimalObj;
XPRSgetdblattrib(my_prob, XPRS_BARPRIMALINF, &PrimalInf);

Fair Isaac Corporation Confidential and Proprietary Information 92

Console and Library Functions

XPRSgetdblattrib(my_prob, XPRS_BARDUALINF, &DualInf);
XPRSgetdblattrib(my_prob, XPRS_BARCGAP, &ComplementaryGap);

// decide if stop or continue
⁎barrier_action = BARRIER_CHECKSTOPPING;
if (current_iteration >= 50

|| Gap <= 0.1⁎max(fabs(PrimalObj),fabs(DualObj))) {
⁎barrier_action = BARRIER_OPTIMAL;

}
}

// To set callback:
XPRSaddcbbariteration(xprob, BarrierIterCallback, (void ⁎) &my, 0);

Further information
1. Only the following functions are expected to be called from the callback: XPRSgetlpsol and theattribute/control value retrieving and setting routines.
2. General barrier iteration values are available by using XPRSgetdblattrib to retrieve:

� BARPRIMALOBJ - current primal objective
� BARDUALOBJ - current dual objective
� BARPRIMALINF - current primal infeasibility
� BARDUALINF - current dual infeasibility
� BARCGAP - current complementary gap

3. Please note that these values refer to the scaled and presolved problem used by barrier, and may differfrom the ones calculated from the postsolved solution returned by XPRSgetlpsol.
Related topics

XPRSremovecbbariteration.

Fair Isaac Corporation Confidential and Proprietary Information 93

Console and Library Functions

XPRSaddcbbarlog

Purpose Declares a barrier log callback function, called at each iteration during the interior point algorithm. Thiscallback function will be called in addition to any barrier log callbacks already added byXPRSaddcbbarlog.
Synopsis

int XPRS_CC XPRSaddcbbarlog (XPRSprob prob, int (XPRS_CC
⁎f_barlog)(XPRSprob my_prob, void ⁎my_object), void ⁎object, int
priority);

Arguments
prob The current problem.
f_barlog The callback function itself. This takes two arguments, my_prob and my_object, andhas an integer return value. If the value returned by f_barlog is nonzero, the solutionprocess will be interrupted. This function is called at every barrier iteration.
my_prob The problem passed to the callback function, f_barlog.
my_object The user-defined object passed as object when setting up the callback with

XPRSaddcbbarlog.
object A user-defined object to be passed to the callback function, f_barlog.
priority An integer that determines the order in which multiple barrier log callbacks will beinvoked. The callback added with a higher priority will be called before a callback with alower priority. Set to 0 if not required.

Example This simple example prints a line to the screen for each iteration of the algorithm.
XPRSaddcbbarlog(prob,barLog,NULL,0);
XPRSlpoptimize(prob,"b");

The callback function might resemble:
int XPRS_CC barLog(XPRSprob prob, void ⁎object)
{

printf("Next barrier iteration\n");
}

Further informationIf the callback function returns a nonzero value, the Optimizer run will be interrupted.
Related topics

XPRSremovecbbarlog, XPRSaddcbgloballog, XPRSaddcblplog, XPRSaddcbmessage.

Fair Isaac Corporation Confidential and Proprietary Information 94

Console and Library Functions

XPRSaddcbcomputerestart

Purpose Declares a callback to be called when a solve executed in compute mode needs to be restarted.
Synopsis

int XPRS_CC XPRSaddcbcomputerestart (XPRSprob prob, void (XPRS_CC
⁎f_computerestart)(XPRSprob my_prob, void ⁎my_object), void ⁎object,
int priority);

Arguments
prob The current problem.
f_presolve The callback function itself. This takes two arguments, my_prob and my_object, andhas an integer return value. This function is called when a solve had to be restarted incompute mode.
my_prob The problem passed to the callback function, f_computerestart.
my_object The user-defined object passed as object when setting up the callback with

XPRSaddcbcomputerestart.
object A user-defined object to be passed to the callback function, f_computerestart.
priority An integer that determines the order in which multiple computerestart callbacks will beinvoked. The callback added with a higher priority will be called before a callback with alower priority. Set to 0 if not required.

Related topics
XPRSremovecbcomputerestart

Fair Isaac Corporation Confidential and Proprietary Information 95

Console and Library Functions

XPRSaddcbpresolve

Purpose Declares a callback to be called after presolve has been performed.
Synopsis

int XPRS_CC XPRSaddcbpresolve (XPRSprob prob, void (XPRS_CC
⁎f_presolve)(XPRSprob my_prob, void ⁎my_object), void ⁎object, int
priority);

Arguments
prob The current problem.
f_presolve The callback function itself. This takes two arguments, my_prob and my_object, andhas an integer return value. This function is called after presolve is complete.
my_prob The problem passed to the callback function, f_barlog.
my_object The user-defined object passed as object when setting up the callback with

XPRSaddcbpresolve.
object A user-defined object to be passed to the callback function, f_presolve.
priority An integer that determines the order in which multiple presolve callbacks will beinvoked. The callback added with a higher priority will be called before a callback with alower priority. Set to 0 if not required.

Related topics
XPRSremovecbpresolve

Fair Isaac Corporation Confidential and Proprietary Information 96

Console and Library Functions

XPRSaddcbchecktime

Purpose Declares a callback function which is called every time the Optimizer checks if the time limit has beenreached. This callback function will be called in addition to any callbacks already added byXPRSaddcbchecktime.
Synopsis

int XPRS_CC XPRSaddcbchecktime(XPRSprob prob, int (XPRS_CC
⁎f_checktime)(XPRSprob my_prob, void⁎ my_object), void⁎ object, int
priority);

Arguments
prob The current problem.
f_checktime The callback function which takes two arguments, my_prob and my_object, andhas an integer return value. This function is called every time the Optimizer checksagainst the time limit.
my_prob The problem passed to the callback function, f_checktime.
my_object The user-defined object passed as object when setting up the callback with

XPRSaddcbchecktime.
object A user-defined object to be passed to the callback function, f_checktime.
priority An integer that determines the order in which multiple checktime callbacks will beinvoked. The callback added with a higher priority will be called before a callback with alower priority. Set to 0 if not required.

Further informationIf the callback function returns a nonzero value the solution process will be interrupted.
Related topics

XPRSremovecbchecktime MAXTIME CHECKSONMAXTIME MAXCHECKSONMAXTIME

Fair Isaac Corporation Confidential and Proprietary Information 97

Console and Library Functions

XPRSaddcbchgbranch

Purpose
This function is deprecated and may be removed in future releases. Please use
XPRSaddcbchgbranchobject instead.
Declares a branching variable callback function, called every time a new branching variable is set orselected during the branch and bound search. This callback function will be called in addition to anychange branch callbacks already added by XPRSaddcbchgbranch.

Synopsis
int XPRS_CC XPRSaddcbchgbranch(XPRSprob prob, void (XPRS_CC

⁎f_chgbranch)(XPRSprob my_prob, void ⁎my_object, int ⁎entity, int
⁎up, double ⁎estdeg), void ⁎object, int priority);

Arguments
prob The current problem.
f_chgbranch The callback function, which takes five arguments, my_prob, my_object, entity,

up and estdeg, and has no return value. This function is called every time a newbranching variable or set is selected.
my_prob The problem passed to the callback function, f_chgbranch.
my_object The user-defined object passed as object when setting up the callback with

XPRSaddcbchgbranch.
entity A pointer to the variable or set on which to branch. Ordinary global variables areidentified by their column index, i.e. 0, 1,...(COLS- 1) and by their set index, i.e. 0,

1,...,(SETS- 1).
up If entity is a variable, this is 1 if the upward branch is to be made first, or 0 otherwise.If entity is a set, this is 3 if the upward branch is to be made first, or 2 otherwise.
estdeg This value is obsolete. It will be set to zero and any returned value is ignored.
object A user-defined object to be passed to the callback function, f_chgbranch.
priority An integer that determines the order in which multiple branching variable callbacks willbe invoked. The callback added with a higher priority will be called before a callbackwith a lower priority. Set to 0 if not required.

Further informationThe arguments initially contain the default values of the branching variable, branching variable,branching direction and estimated degradation. If they are changed then the Optimizer will use the newvalues, if they are not changed then the default values will be used.
Related topics

XPRSremovecbchgbranch, XPRSaddcbchgnode, XPRSaddcboptnode, XPRSaddcbinfnode,
XPRSaddcbintsol, XPRSaddcbnodecutoff, XPRSaddcbprenode.

Fair Isaac Corporation Confidential and Proprietary Information 98

Console and Library Functions

XPRSaddcbchgbranchobject

Purpose Declares a callback function that will be called after the selection of a global entity to branch on. Thiscallback allows the user to inspect and replace the Optimizer’s choice of how to branch the currentnode. This callback will also be called in the case when there are no candidates to branch on, that is,when all global entities are already satisfied. This callback function will be called in addition to anycallbacks already added by XPRSaddcbchgbranchobject.
Synopsis

int XPRS_CC XPRSaddcbchgbranchobject(XPRSprob prob, void (XPRS_CC
⁎f_chgbranchobject)(XPRSprob my_prob, void⁎ my_object,
XPRSbranchobject obranch, XPRSbranchobject⁎ p_newobject), void⁎
object, int priority);

Arguments
prob The current problem.
f_chgbranchobject The callback function, which takes four arguments: my_prob, my_object,

obranch and p_newobject. This function is called every time the Optimizer hasselected a candidate entity for branching.
my_prob The problem passed to the callback function, f_chgbranchobject.
my_object The user defined object passed as object when setting up the callback with

XPRSaddcbchgbranchobject.
obranch The candidate branching object selected by the Optimizer. Will be NULL if no candidatesexist.
p_newobject Optional new branching object to replace the Optimizer’s selection. If obranch or

NULL is passed back, no change will be applied.
object A user-defined object to be passed to the callback function, f_chgbranchobject.
priority An integer that determines the order in which multiple callbacks of this type will beinvoked. The callback added with a higher priority will be called before a callback with alower priority. Set to 0 if not required.

Further information
1. The branching object given by the Optimizer provides a linear description of how the Optimizer intendsto branch on the selected candidate. This will often be one of standard global entities of the currentproblem, but can also be e.g. a split disjunction or a structural branch, if those features are turned on.
2. The functions XPRS_bo_getbranches, XPRS_bo_getbounds and XPRS_bo_getrows can be usedto inspect the given branching object.
3. Refer to XPRS_bo_create on how to create a new branching object to replace the Optimizer’sselection. Note that the new branching object should be created with a priority value no higher than thecurrent object to guarantee it will be used for branching.

Related topics
XPRSremovecbchgbranchobject, XPRS_bo_create.

Fair Isaac Corporation Confidential and Proprietary Information 99

Console and Library Functions

XPRSaddcbchgnode

Purpose
This function is deprecated and may be removed in future releases.
Declares a node selection callback function. This is called every time the code backtracks to select anew node during the MIP search. This callback function will be called in addition to any callbacksalready added by XPRSaddcbchgnode.

Synopsis
int XPRS_CC XPRSaddcbchgnode(XPRSprob prob, void (XPRS_CC

⁎f_chgnode)(XPRSprob my_prob, void ⁎my_object, int ⁎nodnum), void
⁎object, int priority);

Arguments
prob The current problem.
f_chgnode The callback function which takes three arguments, my_prob, my_object and nodnum,and has no return value. This function is called every time a new node is selected.
my_prob The problem passed to the callback function, f_chgnode.
my_object The user-defined object passed as object when setting up the callback with

XPRSaddcbchgnode.
nodnum A pointer to the number of the node, nodnum, selected by the Optimizer. By changing thevalue pointed to by this argument, the selected node may be changed with this function.
object A user-defined object to be passed to the callback function, f_chgnode.
priority An integer that determines the order in which multiple node selection callbacks will beinvoked. The callback added with a higher priority will be called before a callback with alower priority. Set to 0 if not required.

Related controls
Integer

NODESELECTION Node selection control.
Example The following prints out the node number every time a new node is selected during the global search:

XPRSsetintcontrol(prob,XPRS_MIPLOG,3);
XPRSsetintcontrol(prob,XPRS_NODESELECTION,2);
XPRSaddcbchgnode(prob,nodeSelection,NULL,0);
XPRSmipoptimize(prob,"");

The callback function may resemble:
XPRS_CC void nodeSelection(XPRSprob prob, void ⁎object,

int ⁎Node)
{

printf("Node number %d\n", ⁎Node);
}

See the example depthfirst.c in the examples/optimizer/c folder for an example of using anode selection callback.
Related topics

XPRSremovecbchgnode, XPRSaddcboptnode, XPRSaddcbinfnode, XPRSaddcbintsol,
XPRSaddcbnodecutoff, XPRSaddcbchgbranch, XPRSaddcbprenode.

Fair Isaac Corporation Confidential and Proprietary Information 100

Console and Library Functions

XPRSaddcbcutlog

Purpose Declares a cut log callback function, called each time the cut log is printed. This callback function willbe called in addition to any callbacks already added by XPRSaddcbcutlog.
Synopsis

int XPRS_CC XPRSaddcbcutlog(XPRSprob prob, int (XPRS_CC ⁎f_cutlog)(XPRSprob
my_prob, void ⁎my_object), void ⁎object, int priority);

Arguments
prob The current problem.
f_cutlog The callback function which takes two arguments, my_prob and my_object, and hasan integer return value.
my_prob The problem passed to the callback function, f_cutlog.
my_object The user-defined object passed as object when setting up the callback with

XPRSaddcbcutlog.
object A user-defined object to be passed to the callback function, f_cutlog.
priority An integer that determines the order in which multiple cut log callbacks will be invoked.The callback added with a higher priority will be called before a callback with a lowerpriority. Set to 0 if not required.

Further informationReturn a non-zero value from f_cutlog to stop cutting on the current node.
Related topics

XPRSremovecbcutlog, XPRSaddcbcutmgr.

Fair Isaac Corporation Confidential and Proprietary Information 101

Console and Library Functions

XPRSaddcbcutmgr

Purpose
This function is deprecated and may be removed in future releases. Please use XPRSaddcboptnode
instead.
Declares a user-defined cut manager routine, called at each node of the branch and bound search. Thiscallback function will be called in addition to any callbacks already added by XPRSaddcbcutmgr.

Synopsis
int XPRS_CC XPRSaddcbcutmgr(XPRSprob prob, int (XPRS_CC ⁎f_cutmgr)(XPRSprob

my_prob, void ⁎my_object), void ⁎object, int priority);

Arguments
prob The current problem
f_cutmgr The callback function which takes two arguments, my_prob and my_object, and hasan integer return value. This function is called at each node in the Branch and Boundsearch.
my_prob The problem passed to the callback function, f_cutmgr.
my_object The user-defined object passed as object when setting up the callback with

XPRSaddcbcutmgr.
object A user-defined object to be passed to the callback function, f_cutmgr.
priority An integer that determines the order in which multiple global log callbacks will beinvoked. The callback added with a higher priority will be called before a callback with alower priority. Set to 0 if not required.

Further information
1. When returning from the user function f_cutlog, the Optimizer will automatically reoptimize the LPrelaxation of the node problem. If a non-zero value is returned from f_cutlog, the function will becalled again afterwards, unless the LP relaxation has become infeasible or was cut off due to theobjective function value. Return 0 from f_cutlog to prevent the function from being called again forthe same branch and bound node.
2. f_cutlog is called for a branch-and-bound node problem after the Optimizer has already applied anyinternal cuts and heuristics, but before determining if the node problem should be branched or if thenode LP relaxation solution is MIP feasible.
3. The Optimizer ensures that cuts added to a node are automatically restored at descendant nodes. Todo this, all cuts are stored in a cut pool and the Optimizer keeps track of which cuts from the cut poolmust be restored at each node.

Related topics
XPRSremovecbcutmgr, XPRSaddcbcutlog, CALLBACKCOUNT_CUTMGR.

Fair Isaac Corporation Confidential and Proprietary Information 102

Console and Library Functions

XPRSaddcbdestroymt

Purpose Declares a destroy MIP thread callback function, called every time a MIP thread is destroyed by theparallel MIP code. This callback function will be called in addition to any callbacks already added byXPRSaddcbdestroymt.
Synopsis

int XPRS_CC XPRSaddcbdestroymt(XPRSprob prob, void (XPRS_CC
⁎f_destroymt)(XPRSprob my_prob, void ⁎my_object), void ⁎object, int
priority);

Arguments
prob The current thread problem.
f_destroymt The callback function which takes two arguments, my_prob and my_object, andhas no return value.
my_prob The thread problem passed to the callback function.
my_object The user-defined object passed as object when setting up the callback with

XPRSaddcbdestroymt.
object A user-defined object to be passed to the callback function.
priority An integer that determines the order in which multiple callbacks of this type will beinvoked. The callback added with a higher priority will be called before a callback with alower priority. Set to 0 if not required.

Related controls
Integer

MIPTHREADS Number of MIP threads to create.
Further informationThis callback is useful for freeing up any user data created in the MIP thread callback.
Related topics

XPRSremovecbdestroymt,XPRSaddcbmipthread.

Fair Isaac Corporation Confidential and Proprietary Information 103

Console and Library Functions

XPRSaddcbestimate

Purpose
This function is deprecated and may be removed in future releases. Please use branching objects instead.
Declares an estimate callback function. If defined, it will be called at each node of the branch andbound tree to determine the estimated degradation from branching the user’s global entities. Thiscallback function will be called in addition to any callbacks already added by XPRSaddcbestimate.

Synopsis
int XPRS_CC XPRSaddcbestimate(XPRSprob prob, int (XPRS_CC

⁎f_estimate)(XPRSprob my_prob, void ⁎my_object, int ⁎iglsel, int
⁎iprio, double ⁎degbest, double ⁎degworst, double ⁎curval, int
⁎ifupx, int ⁎nglinf, double ⁎degsum, int ⁎nbr), void ⁎object, int
priority);

Arguments
prob The current problem.
f_estimate The callback function which takes eleven arguments, my_prob, my_object, iglsel,

iprio, degbest, degworst, curval, ifupx, nglinf, degsum and nbr, and has aninteger return value. This function is called at each node of the branch and boundsearch.
my_prob The problem passed to the callback function, f_estimate.
my_object The user-defined object passed as object when setting up the callback with

XPRSaddcbestimate.
iglsel Selected user global entity. Must be non-negative or -1 to indicate that there is no userglobal entity candidate for branching. If set to -1, all other arguments, except for nglinfand degsum are ignored. This argument is initialized to -1.
iprio Priority of selected user global entity. This argument is initialized to a value larger (i.e.,lower priority) than the default priority for global entities (see Section 4.3.3 in Section4.3).
degbest Estimated degradation from branching on selected user entity in preferred direction.
degworst Estimated degradation from branching on selected user entity in worst direction.
curval Current value of user global entities.
ifupx Preferred branch on user global entity (0,...,nbr-1).
nglinf Number of infeasible user global entities.
degsum Sum of estimated degradations of satisfying all user entities.
nbr Number of branches. The user separate routine (set up with XPRSaddcbsepnode) willbe called nbr times in order to create the actual branches.
object A user-defined object to be passed to the callback function, f_estimate.
priority An integer that determines the order in which multiple estimate callbacks will beinvoked. The callback added with a higher priority will be called before a callback with alower priority. Set to 0 if not required.

Further informationConsider using the more flexible branching objects, as described for the XPRS_bo_create function.
Related topics

XPRSremovecbestimate, XPRSsetbranchcuts, XPRSaddcbsepnode, XPRS_bo_create.

Fair Isaac Corporation Confidential and Proprietary Information 104

Console and Library Functions

XPRSaddcbgapnotify

Purpose Declares a gap notification callback, to be called when a MIP solve reaches a predefined target, setusing the MIPRELGAPNOTIFY, MIPABSGAPNOTIFY, MIPABSGAPNOTIFYOBJ and/or
MIPABSGAPNOTIFYBOUND controls.

Synopsis
int XPRS_CC XPRSaddcbgapnotify(XPRSprob prob, void (XPRS_CC

⁎f_gapnotify)(XPRSprob my_prob, void⁎ my_object, double⁎
newRelGapNotifyTarget, double⁎ newAbsGapNotifyTarget, double⁎
newAbsGapNotifyObjTarget, double⁎ newAbsGapNotifyBoundTarget), void⁎
object, int priority);

Arguments
prob The current problem.
f_gapnotify The callback function.
my_prob The current problem.
my_object The user-defined object passed as object when setting up the callback with

XPRSaddcbgapnotify.
newRelGapNotifyTarget The value the MIPRELGAPNOTIFY control will be set to after thiscallback. May be modified within the callback in order to set a new notification target.
newAbsGapNotifyTarget The value the MIPABSGAPNOTIFY control will be set to after thiscallback. May be modified within the callback in order to set a new notification target.
newAbsGapNotifyObjTarget The value the MIPABSGAPNOTIFYOBJ control will be set to after thiscallback. May be modified within the callback in order to set a new notification target.
newAbsGapNotifyBoundTarget The value the MIPABSGAPNOTIFYBOUND control will be set toafter this callback. May be modified within the callback in order to set a new notificationtarget.
object A user-defined object to be passed to the callback function, f_gapnotify.
priority An integer that determines the order in which multiple estimate callbacks will beinvoked. The callback added with a higher priority will be called before a callback with alower priority. Set to 0 if not required.

Example The following example prints a message when the gap reaches 10% and 1%
void XPRS_CC gapnotify(XPRSprob prob, void⁎ object,

double⁎ newRelGapNotifyTarget, double⁎ newAbsGapNotifyTarget,
double⁎ newAbsGapNotifyObjTarget, double⁎ newAbsGapNotifyBoundTarget)

{
double obj, bound, relgap;
XPRSgetdblattrib(prob, XPRS_MIPOBJVAL, &obj);
XPRSgetdblattrib(prob, XPRS_BESTBOUND, &bound);
if (obj != 0.0 || bound != 0.0)

relgap = fabs((obj - bound)/ max(fabs(obj), fabs(bound)));
else

relgap = 0.0;
if (relgap<=0.10) {

printf("Gap reached 10%");
⁎newRelGapNotifyTarget = 0.1;

}
if (relgap<=0.01) {

printf("Gap reached 1%");

Fair Isaac Corporation Confidential and Proprietary Information 105

Console and Library Functions

⁎newRelGapNotifyTarget = -1; /⁎ Don't call gapnotify again ⁎/
}

}

XPRSsetdblcontrol(prob, XPRS_MIPRELGAPNOTIFY, 0.10);
XPRSaddcbgapnotify(prob, gapnotify, NULL, 0);
XPRSmipoptimize(prob, "");

Further informationThe target values that caused the callback to be triggered will automatically be reset to prevent thesame callback from being fired again.
Related topics

MIPRELGAPNOTIFY, MIPABSGAPNOTIFY, MIPABSGAPNOTIFYOBJ, MIPABSGAPNOTIFYBOUND,
XPRSremovecbgapnotify.

Fair Isaac Corporation Confidential and Proprietary Information 106

Console and Library Functions

XPRSaddcbgloballog

Purpose Declares a global log callback function, called each time the global log is printed. This callback functionwill be called in addition to any callbacks already added by XPRSaddcbgloballog.
Synopsis

int XPRS_CC XPRSaddcbgloballog(XPRSprob prob, int (XPRS_CC
⁎f_globallog)(XPRSprob my_prob, void ⁎my_object), void ⁎object, int
priority);

Arguments
prob The current problem.
f_globallog The callback function which takes two arguments, my_prob and my_object, andhas an integer return value. This function is called whenever the global log is printed asdetermined by the MIPLOG control.
my_prob The problem passed to the callback function, f_globallog.
my_object The user-defined object passed as object when setting up the callback with

XPRSaddcbgloballog.
object A user-defined object to be passed to the callback function, f_globallog.
priority An integer that determines the order in which multiple global log callbacks will beinvoked. The callback added with a higher priority will be called before a callback with alower priority. Set to 0 if not required.

Related controls
Integer

MIPLOG Global print flag.
Example The following example prints at each node of the global search the node number and its depth:

XPRSsetintcontrol(prob, XPRS_MIPLOG, 3);
XPRSaddcbgloballog(prob, globalLog, NULL, 0);
XPRSmipoptimize(prob,"");

The callback function may resemble:
int XPRS_CC globalLog(XPRSprob prob, void ⁎object)
{

int node, nodedepth;

XPRSgetintattrib(prob, XPRS_NODEDEPTH, &nodedepth);
XPRSgetintattrib(prob, XPRS_CURRENTNODE, &node);
printf("Node %d with depth %d has just been processed\n",

node, nodedepth);

return 0;
}

See the example depthfirst.c in the examples/optimizer/c folder.
Further informationIf the callback function returns a nonzero value, the global search will be interrupted.
Related topics

XPRSremovecbgloballog, XPRSaddcbbarlog, XPRSaddcblplog, XPRSaddcbmessage.

Fair Isaac Corporation Confidential and Proprietary Information 107

Console and Library Functions

XPRSaddcbinfnode

Purpose Declares a user infeasible node callback function, called after the current node has been found to beinfeasible during the Branch and Bound search. This callback function will be called in addition to anycallbacks already added by XPRSaddcbinfnode.
Synopsis

int XPRS_CC XPRSaddcbinfnode(XPRSprob prob, void (XPRS_CC
⁎f_infnode)(XPRSprob my_prob, void ⁎my_object), void ⁎object, int
priority);

Arguments
prob The current problem
f_infnode The callback function which takes two arguments, my_prob and my_object, and hasno return value. This function is called after the current node has been found to beinfeasible.
my_prob The problem passed to the callback function, f_infnode.
my_object The user-defined object passed as object when setting up the callback with

XPRSaddcbinfnode.
object A user-defined object to be passed to the callback function, f_infnode.
priority An integer that determines the order in which multiple user infeasible node callbackswill be invoked. The callback added with a higher priority will be called before a callbackwith a lower priority. Set to 0 if not required.

Example The following notifies the user whenever an infeasible node is found during the global search:
XPRSaddcbinfnode(prob,nodeInfeasible,NULL,0);
XPRSmipoptimize(prob,"");

The callback function may resemble:
void XPRS_CC nodeInfeasible(XPRSprob prob, void ⁎object)
{

int node;
XPRSgetintattrib(prob, XPRS_CURRENTNODE, &node);
printf("Node %d infeasible\n", node);

}

See the example depthfirst.c in the examples/optimizer/c folder.
Related topics

XPRSremovecbinfnode, XPRSaddcboptnode, XPRSaddcbintsol, XPRSaddcbnodecutoff.

Fair Isaac Corporation Confidential and Proprietary Information 108

Console and Library Functions

XPRSaddcbintsol

Purpose Declares a user integer solution callback function, called every time an integer solution is found byheuristics or during the Branch and Bound search. This callback function will be called in addition toany callbacks already added by XPRSaddcbintsol.
Synopsis

int XPRS_CC XPRSaddcbintsol(XPRSprob prob, void (XPRS_CC
⁎f_intsol)(XPRSprob my_prob, void ⁎my_object), void ⁎object, int
priority);

Arguments
prob The current problem.
f_intsol The callback function which takes two arguments, my_prob and my_object, and hasno return value. This function is called if the current node is found to have an integerfeasible solution, i.e. every time an integer feasible solution is found.
my_prob The problem passed to the callback function, f_intsol.
my_object The user-defined object passed as object when setting up the callback with

XPRSaddcbintsol.
object A user-defined object to be passed to the callback function, f_intsol.
priority An integer that determines the order in which multiple integer solution callbacks will beinvoked. The callback added with a higher priority will be called before a callback with alower priority. Set to 0 if not required.

Example The following example prints integer solutions as they are discovered in the global search:
XPRSaddcbintsol(prob,printsol,NULL,0);
XPRSmipoptimize(prob,"");

The callback function might resemble:
void XPRS_CC printsol(XPRSprob my_prob, void ⁎object)
{

int i, cols;
double objval, ⁎x;

XPRSgetintattrib(my_prob, XPRS_ORIGINALCOLS, &cols);
XPRSgetdblattrib(my_prob, XPRS_LPOBJVAL, &objval);
x = malloc(cols ⁎ sizeof(double));
if (!x) return;
XPRSgetlpsol(my_prob, x, NULL, NULL, NULL);

printf("\nInteger solution found: %f\n", objval);
for(i=0;i<cols;i++) printf(" x[%d] = %d\n", i, x[i]);
free(x);

}

Fair Isaac Corporation Confidential and Proprietary Information 109

Console and Library Functions

Further information
1. This callback is useful if the user wants to retrieve the integer solution when it is found.
2. To retrieve the integer solution, use either XPRSgetlpsol or XPRSgetpresolvesol.

XPRSgetmipsol always returns the last integer solution found and, if called from the intsolcallback, it will not necessarily return the solution that caused the invocation of the callback (forexample, it is possible that when solving with multiple MP threads, another thread finds a new integersolution before the user calls XPRSgetmipsol).
3. This callback is called after a new integer solution was found by the Optimizer. Use a callback set by

XPRSaddcbpreintsol in order to be notified before a new integer solution is accepted by theOptimizer, which allows for the new solution to be rejected.
Related topics

XPRSremovecbintsol, XPRSaddcbpreintsol.

Fair Isaac Corporation Confidential and Proprietary Information 110

Console and Library Functions

XPRSaddcblplog

Purpose Declares a simplex log callback function which is called after every LPLOG iterations of the simplexalgorithm. This callback function will be called in addition to any callbacks already added byXPRSaddcblplog.
Synopsis

int XPRS_CC XPRSaddcblplog(XPRSprob prob, int (XPRS_CC ⁎f_lplog)(XPRSprob
my_prob, void⁎ my_object), void⁎ object, int priority);

Arguments
prob The current problem.
f_lplog The callback function which takes two arguments, my_prob and my_object, and hasan integer return value. This function is called every LPLOG simplex iterations includingiteration 0 and the final iteration.
my_prob The problem passed to the callback function, f_lplog.
my_object The user-defined object passed as object when setting up the callback with

XPRSaddcblplog.
object A user-defined object to be passed to the callback function, f_lplog.
priority An integer that determines the order in which multiple lplog callbacks will be invoked.The callback added with a higher priority will be called before a callback with a lowerpriority. Set to 0 if not required.

Related controls
Integer

LPLOG Frequency and type of simplex algorithm log.
Example The following code sets a callback function, lpLog, to be called every 10 iterations of the optimization:

XPRSsetintcontrol(prob,XPRS_LPLOG,10);
XPRSaddcblplog(prob,lpLog,NULL,0);
XPRSreadprob(prob,"problem","");
XPRSmipoptimize(prob,"");

The callback function may resemble:
int XPRS_CC lpLog(XPRSprob my_prob, void ⁎object)
{

int iter; double obj;

XPRSgetintattrib(my_prob, XPRS_SIMPLEXITER, &iter);
XPRSgetdblattrib(my_prob, XPRS_LPOBJVAL, &obj);
printf("At iteration %d objval is %g\n", iter, obj);
return 0;

}

Further informationIf the callback function returns a nonzero value the solution process will be interrupted.
Related topics

XPRSremovecblplog, XPRSaddcbbarlog, XPRSaddcbgloballog, XPRSaddcbmessage.

Fair Isaac Corporation Confidential and Proprietary Information 111

Console and Library Functions

XPRSaddcbmessage

Purpose Declares an output callback function, called every time a text line relating to the given XPRSprob isoutput by the Optimizer. This callback function will be called in addition to any callbacks already addedby XPRSaddcbmessage.
Synopsis

int XPRS_CC XPRSaddcbmessage(XPRSprob prob, void (XPRS_CC
⁎f_message)(XPRSprob my_prob, void ⁎my_object, const char ⁎msg, int
len, int msgtype), void ⁎object, int priority);

Arguments
prob The current problem.
f_message The callback function which takes five arguments, my_prob, my_object, msg, len and

msgtype, and has no return value. Use a NULL value to cancel a callback function.
my_prob The problem passed to the callback function.
my_object The user-defined object passed as object when setting up the callback with

XPRSaddcbmessage.
msg A null terminated character array (string) containing the message, which may simply bea new line.
len The length of the message string, excluding the null terminator.
msgtype Indicates the type of output message:

1 information messages;
2 (not used);
3 warning messages;
4 error messages.A negative value indicates that the Optimizer is about to finish and the buffers should beflushed at this time if the output is being redirected to a file.

object A user-defined object to be passed to the callback function.
priority An integer that determines the order in which callbacks of this type will be invoked. Thecallback added with a higher priority will be called before a callback with a lower priority.Set to 0 if not required.

Related controls
Integer

OUTPUTLOG All messages are disabled if set to zero.
Example The following example simply sends all output to the screen (stdout):

XPRSaddcbmessage(prob,Message,NULL,0);

The callback function might resemble:
void XPRS_CC Message(XPRSprob my_prob, void⁎ object,

const char ⁎msg, int len, int msgtype)
{

switch(msgtype)
{

case 4: /⁎ error ⁎/
case 3: /⁎ warning ⁎/
case 2: /⁎ not used ⁎/
case 1: /⁎ information ⁎/

printf("%s\n", msg);

Fair Isaac Corporation Confidential and Proprietary Information 112

Console and Library Functions

break;
default: /⁎ exiting - buffers need flushing ⁎/

fflush(stdout);
break;

}
}

Further information
1. Screen output is automatically created by the Optimizer Console only. To produce output when usingthe Optimizer library, it is necessary to define this callback function and use it to print the messages tothe screen (stdout).
2. This function offers one method of handling the messages which describe any warnings and errorsthat may occur during execution. Other methods are to check the return values of functions and thenget the error code using the ERRORCODE attribute, obtain the last error message directly using

XPRSgetlasterror, or send messages direct to a log file using XPRSsetlogfile.
3. Visual Basic users must use the alternative function XPRSaddcbmessageVB to define the callback;this is required because of the different way VB handles strings.

Related topics
XPRSremovecbmessage, XPRSaddcbbarlog, XPRSaddcbgloballog, XPRSaddcblplog,
XPRSsetlogfile.

Fair Isaac Corporation Confidential and Proprietary Information 113

Console and Library Functions

XPRSaddcbmipthread

Purpose Declares a MIP thread callback function, called every time a MIP worker problem is created by theparallel MIP code. This callback function will be called in addition to any callbacks already added byXPRSaddcbmipthread.
Synopsis

int XPRS_CC XPRSaddcbmipthread(XPRSprob prob, void (XPRS_CC
⁎f_mipthread)(XPRSprob my_prob, void ⁎my_object, XPRSprob
thread_prob), void ⁎object, int priority);

Arguments
prob The current problem.
f_mipthread The callback function which takes three arguments, my_prob, my_object and

thread_prob, and has no return value.
my_prob The problem passed to the callback function.
my_object The user-defined object passed to the callback function.
thread_prob The problem pointer for the MIP thread
object A user-defined object to be passed to the callback function.
priority An integer that determines the order in which multiple callbacks of this type will beinvoked. The callback added with a higher priority will be called before a callback with alower priority. Set to 0 if not required.

Related controls
Integer

MIPTHREADS Number of MIP threads to create.
Example The following example clears the message callback for each of the MIP threads:

XPRSaddcbmipthread(prob,mipthread,NULL, 0);

void XPRS_CC mipthread(XPRSprob my_prob, void⁎ my_object,
XPRSprob mipthread)

{
/⁎ clear the message callback⁎/
XPRSremovecbmessage(my_prob, mipthread, NULL);

}

Further informationThis function will be called when a new MIP worker problem is created. Each worker problem receives aunique identifier that can be obtained through the MIPTHREADID attribute. Worker problems can bematched with different system threads at different points of a solve, so the system thread that isresponsible for executing the callback is not necessarily the same thread used for all subsequentcallbacks for the same worker problem. On the other hand, worker problems are always assigned to asingle thread at a time and the same nodes are always solved on the same worker problem in repeatedruns of a deterministic MIP solve. A worker problem therefore acts as a virtual thread through the nodesolves.
Related topics

XPRSremovecbmipthread,XPRSaddcbdestroymt, MIPTHREADS, MAXMIPTASKS.

Fair Isaac Corporation Confidential and Proprietary Information 114

Console and Library Functions

XPRSaddcbnewnode

Purpose Declares a callback function that will be called every time a new node is created during the branch andbound search. This callback function will be called in addition to any callbacks already added byXPRSaddcbnewnode.
Synopsis

int XPRS_CC XPRSaddcbnewnode(XPRSprob prob, void (XPRS_CC
⁎f_newnode)(XPRSprob my_prob, void⁎ my_object, int parentnode, int
newnode, int branch), void⁎ object, int priority);

Arguments
prob The current problem.
f_newnode The callback function, which takes five arguments: myprob, my_object, parentnode,

newnode and branch. This function is called every time a new node is created throughbranching.
my_prob The problem passed to the callback function, f_newnode.
my_object The user-defined object passed as object when setting up the callback with

XPRSaddcbnewnode.
parentnode Unique identifier for the parent of the new node.
newnode Unique identifier assigned to the new node.
branch The sequence number of the new node amongst the child nodes of parentnode. Forregular branches on a global entity this will be either 0 or 1.
object A user-defined object to be passed to the callback function.
priority An integer that determines the order in which callbacks of this type will be invoked. Thecallback added with a higher priority will be called before a callback with a lower priority.Set to 0 if not required.

Further information
1. For regular branches on a global entity, branch will be either zero or one, depending on whether thenew node corresponds to branching the global entity up or down.
2. When branching on an XPRSbranchobject, branch refers to the given branch index of the object.
3. For new nodes created using the XPRSaddcbestimate/XPRSaddcbsepnode callback functions,branch is identical to the ifup argument of the XPRSaddcbsepnode callback function.

Related topics
XPRSremovecbnewnode, XPRSaddcbchgnode.

Fair Isaac Corporation Confidential and Proprietary Information 115

Console and Library Functions

XPRSaddcbnodecutoff

Purpose Declares a user node cutoff callback function, called every time a node is cut off as a result of animproved integer solution being found during the branch and bound search. This callback function willbe called in addition to any callbacks already added by XPRSaddcbnodecutoff.
Synopsis

int XPRS_CC XPRSaddcbnodecutoff(XPRSprob prob, void (XPRS_CC
⁎f_nodecutoff)(XPRSprob my_prob, void ⁎my_object, int node), void
⁎object, int priority);

Arguments
prob The current problem.
f_nodecutoff The callback function, which takes three arguments, my_prob, my_object and

node, and has no return value. This function is called every time a node is cut off as theresult of an improved integer solution being found.
my_prob The problem passed to the callback function, f_nodecutoff.
my_object The user-defined object passed as object when setting up the callback with

XPRSaddcbnodecutoff.
node The number of the node that is cut off.
object A user-defined object to be passed to the callback function, f_nodecutoff.
priority An integer that determines the order in which multiple node-optimal callbacks will beinvoked. The callback added with a higher priority will be called before a callback with alower priority. Set to 0 if not required.

Example The following notifies the user whenever a node is cutoff during the global search:
XPRSaddcbnodecutoff(prob,Cutoff,NULL,0);
XPRSmipoptimize(prob,"");

The callback function might resemble:
void XPRS_CC Cutoff(XPRSprob prob, void ⁎object, int node)
{

printf("Node %d cutoff\n", node);
}

See the example depthfirst.c in the examples/optimizer/c folder.
Further informationThis function allows the user to keep track of the eligible nodes. Note that the LP solution will not beavailable from this callback.
Related topics

XPRSremovecbnodecutoff, XPRSaddcboptnode, XPRSaddcbinfnode, XPRSaddcbintsol.

Fair Isaac Corporation Confidential and Proprietary Information 116

Console and Library Functions

XPRSaddcboptnode

Purpose Declares an optimal node callback function, called during the branch and bound search, after the LPrelaxation has been solved for the current node, and after any internal cuts and heuristics have beenapplied, but before the Optimizer checks if the current node should be branched. This callback functionwill be called in addition to any callbacks already added by XPRSaddcboptnode.
Synopsis

int XPRS_CC XPRSaddcboptnode(XPRSprob prob, void (XPRS_CC
⁎f_optnode)(XPRSprob my_prob, void ⁎my_object, int ⁎feas), void
⁎object, int priority);

Arguments
prob The current problem.
f_optnode The callback function which takes three arguments, my_prob, my_object and feas,and has no return value.
my_prob The problem passed to the callback function, f_optnode.
my_object The user-defined object passed as object when setting up the callback with

XPRSaddcboptnode.
feas The feasibility status. If set to a nonzero value by the user, the current node will bedeclared infeasible.
object A user-defined object to be passed to the callback function, f_optnode.
priority An integer that determines the order in which multiple node-optimal callbacks will beinvoked. The callback added with a higher priority will be called before a callback with alower priority. Set to 0 if not required.

Example The following prints the optimal objective value of the node LP relaxations:
XPRSaddcboptnode(prob,nodeOptimal,NULL,0);
XPRSmipoptimize(prob,"");

The callback function might resemble:
void XPRS_CC nodeOptimal(XPRSprob prob, void ⁎object, int ⁎feas)
{

int node;
double objval;

XPRSgetintattrib(prob, XPRS_CURRENTNODE, &node);
printf("NodeOptimal: node number %d\n", node);
XPRSgetdblattrib(prob, XPRS_LPOBJVAL, &objval);
printf("\tObjective function value = %f\n", objval);

}

See the example depthfirst.c in the examples/optimizer/c folder.
Related topics

XPRSremovecboptnode, XPRSaddcbinfnode, XPRSaddcbintsol, XPRSaddcbnodecutoff,
CALLBACKCOUNT_OPTNODE.

Fair Isaac Corporation Confidential and Proprietary Information 117

Console and Library Functions

XPRSaddcbpreintsol

Purpose Declares a user integer solution callback function, called when an integer solution is found byheuristics or during the branch and bound search, but before it is accepted by the Optimizer. Thiscallback function will be called in addition to any integer solution callbacks already added byXPRSaddcbpreintsol.
Synopsis

int XPRS_CC XPRSaddcbpreintsol(XPRSprob prob, void (XPRS_CC
⁎f_preintsol)(XPRSprob my_prob, void ⁎my_object, int soltype, int
⁎ifreject, double ⁎cutoff), void ⁎object, int priority);

Arguments
prob The current problem.
f_preintsol The callback function which takes five arguments, my_prob, my_object,

soltype, ifreject and cutoff, and has no return value. This function is called whenan integer solution is found, but before the solution is accepted by the Optimizer,allowing the user to reject the solution.
my_prob The problem passed to the callback function, f_preintsol.
my_object The user-defined object passed as object when setting up the callback with

XPRSaddcbpreintsol.
soltype The type of MIP solution that has been found: Set to 1 if the solution was found using aheuristic. Otherwise, it will be the global feasible solution to the current node of theglobal search.

0 The continuous relaxation solution to the current node of the global search,which has been found to be global feasible.
1 A MIP solution found by a heuristic.
2 A MIP solution provided by the user.
3 A solution resulting from refinement of primal or dual violations of a previousMIP solution.

ifreject Set this to 1 if the solution should be rejected.
cutoff The new cutoff value that the Optimizer will use if the solution is accepted. If the userchanges cutoff, the new value will be used instead. The cutoff value will not beupdated if the solution is rejected.
object A user-defined object to be passed to the callback function, f_preintsol.
priority An integer that determines the order in which callbacks of this type will be invoked. Thecallback added with a higher priority will be called before a callback with a lower priority.Set to 0 if not required.

Related controls
Integer

MIPABSCUTOFF Branch and Bound: If the user knows that they are interested only in values of theobjective function which are better than some value, this can be assigned toMIPABSCUTOFF. This allows the Optimizer to ignore solving any nodes which mayyield worse objective values, saving solution time. When a MIP solution is found anew cut off value is calculated and the value can be obtained from theCURRMIPCUTOFF attribute. The value of CURRMIPCUTOFF is calculated using theMIPRELCUTOFF and MIPADDCUTOFF controls.

Fair Isaac Corporation Confidential and Proprietary Information 118

Console and Library Functions

Further information
1. If a solution is rejected, the Optimizer will drop the found solution without updating any attributes,including the cutoff value. To change the cutoff value when rejecting a solution, the control
MIPABSCUTOFF should be set instead.

2. When a node solution (soltype = 0) is rejected, the node itself will be dropped without furtherbranching.
3. To retrieve the integer solution, use either XPRSgetlpsol or XPRSgetpresolvesol.

XPRSgetmipsol will not return the newly found solution because it has not been saved at this point.
Related topics

XPRSremovecbpreintsol, XPRSaddcbintsol.

Fair Isaac Corporation Confidential and Proprietary Information 119

Console and Library Functions

XPRSaddcbprenode

Purpose Declares a preprocess node callback function, called before the LP relaxation of a node has beenoptimized, so the solution at the node will not be available. This callback function will be called inaddition to any callbacks already added by XPRSaddcbprenode.
Synopsis

int XPRS_CC XPRSaddcbprenode(XPRSprob prob, void (XPRS_CC
⁎f_prenode)(XPRSprob my_prob, void ⁎my_object, int ⁎nodinfeas), void
⁎object, int priority);

Arguments
prob The current problem.
f_prenode The callback function, which takes three arguments, my_prob, my_object and

nodinfeas, and has no return value. This function is called before a node isreoptimized and the node may be made infeasible by setting ⁎nodinfeas to 1.
my_prob The problem passed to the callback function, f_prenode.
my_object The user-defined object passed as object when setting up the callback with

XPRSaddcbprenode.
nodinfeas The feasibility status. If set to a nonzero value by the user, the current node will bedeclared infeasible by the Optimizer.
object A user-defined object to be passed to the callback function, f_prenode.
priority An integer that determines the order in which multiple preprocess node callbacks will beinvoked. The callback added with a higher priority will be called before a callback with alower priority. Set to 0 if not required.

Example The following example notifies the user before each node is processed:
XPRSaddcbprenode(prob, preNode, NULL, 0);
XPRSmipoptimize(prob,"");

The callback function might resemble:
void XPRS_CC preNode(XPRSprob prob, void⁎ object, int ⁎nodinfeas)
{
⁎nodinfeas = 0; /⁎ set to 1 if node is infeasible ⁎/
}

Related topics
XPRSremovecbprenode, XPRSaddcbchgnode, XPRSaddcbinfnode, XPRSaddcbintsol,
XPRSaddcbnodecutoff, XPRSaddcboptnode.

Fair Isaac Corporation Confidential and Proprietary Information 120

Console and Library Functions

XPRSaddcbsepnode

Purpose
This function is deprecated and may be removed in future releases. Please use branching objects instead.
Declares a separate callback function to specify how to branch on a node in the branch and bound treeusing a global object. A node can be branched by applying either cuts or bounds to each node. Theseare stored in the cut pool. This callback function will be called in addition to any callbacks alreadyadded by XPRSaddcbsepnode.

Synopsis
int XPRS_CC XPRSaddcbsepnode(XPRSprob prob, int (XPRS_CC

⁎f_sepnode)(XPRSprob my_prob, void ⁎my_object, int ibr, int iglsel,
int ifup, double curval), void ⁎object, int priority);

Arguments
prob The current problem.
f_sepnode The callback function, which takes six arguments, my_prob, my_object, ibr, iglsel,

ifup and curval, and has an integer return value.
my_prob The problem passed to the callback function, f_sepnode.
my_object The user-defined object passed as object when setting up the callback with

XPRSaddcbsepnode.
ibr The branch number.
iglsel The global entity number.
ifup The direction of branch on the global entity (same as ibr).
curval Current value of the global entity.
object A user-defined object to be passed to the callback function, f_sepnode .
priority An integer that determines the order in which callbacks of this type will be invoked. Thecallback added with a higher priority will be called before a callback with a lower priority.Set to 0 if not required.

Example This example solves a MIP, using a separation callback function to branch on fractional integervariables. It assumes the presence of an estimation callback function (not shown), defined by
XPRSaddcbestimate, to identify a fractional integer variable.

XPRSaddcbsepnode(prob,nodeSep,NULL,0);
XPRSmipoptimize(prob,"");

where the function nodeSepmay be defined as follows:
int nodeSep(XPRSprob my_prob, void ⁎my_object, int ibr,

int iglsel, int ifup, double curval)
{

XPRScut index;
double dbd;

if(ifup)
{

dbd = floor(xval);
XPRSstorebounds(my_prob, 1, &iglsel, "U", &dbd, &index);

}
else
{

dbd = ceil(xval);

Fair Isaac Corporation Confidential and Proprietary Information 121

Console and Library Functions

XPRSstorebounds(my_prob, 1, &iglsel, "L", &dbd, &index);
}
XPRSsetbranchbounds(prob, index);
return 0;

}

Further information
1. The return value of the f_sepnode callback function is currently ignored.
2. Consider using the more flexible branching objects, as described for the XPRS_bo_create function.
3. The user separate routine is called nbr times where nbr is returned by the estimate callback function,

XPRSaddcbestimate. This allows multi-way branching to be performed.
4. The bounds and/or cuts to be applied at a node must be specified in the user separate routine bycalling XPRSsetbranchbounds and/or XPRSsetbranchcuts.

Related topics
XPRSremovecbsepnode, XPRSsetbranchbounds, XPRSsetbranchcuts, XPRSaddcbestimate,
XPRSstorebounds, XPRSstorecuts.

Fair Isaac Corporation Confidential and Proprietary Information 122

Console and Library Functions

XPRSaddcbusersolnotify

Purpose Declares a callback function to be called each time a solution added by XPRSaddmipsol has beenprocessed. This callback function will be called in addition to any callbacks already added by
XPRSaddcbusersolnotify.

Synopsis
int XPRS_CC XPRSaddcbusersolnotify(XPRSprob prob, void (XPRS_CC

⁎f_usersolnotify)(XPRSprob my_prob, void⁎ my_object, const char⁎
solname, int status), void⁎ object, int priority);

Arguments
prob The current problem.
f_usersolnotify The callback function which takes four arguments, my_prob, my_object,

solname and status and has no return value.
my_prob The problem passed to the callback function, f_usersolnotify.
my_object The user-defined object passed as object when setting up the callback with

XPRSaddcbusersolnotify.
solname The string name assigned to the solution when it was loaded into the Optimizer using

XPRSaddmipsol.
status One of the following status values:

0 An error occurred while processing the solution.
1 Solution is feasible.
2 Solution is feasible after reoptimizing with fixed globals.
3 A local search heuristic was applied and a feasible solution discovered.
4 A local search heuristic was applied but a feasible solution was not found.
5 Solution is infeasible and a local search could not be applied.
6 Solution is partial and a local search could not be applied.
7 Failed to reoptimize the problem with globals fixed to the provided solution.Likely because a time or iteration limit was reached.
8 Solution is dropped. This can happen if the MIP problem is changed or solvedto completion before the solution could be processed.

object A user-defined object to be passed to the callback function, f_usersolnotify.
priority An integer that determines the order in which multiple callbacks will be invoked. Thecallback added with a higher priority will be called before a callback with a lower priority.Set to 0 if not required.

Further informationIf presolve is turned on, any solution added with XPRSaddmipsol will first be presolved before it canbe checked. The value returned in status refers to the presolved solution, which might have hadvalues adjusted due to bound changes, fixing of variables, etc.
Related topics

XPRSremovecbusersolnotify, XPRSaddmipsol.

Fair Isaac Corporation Confidential and Proprietary Information 123

Console and Library Functions

XPRSaddcols, XPRSaddcols64

Purpose Allows columns to be added to the matrix after passing it to the Optimizer using the input routines.
Synopsis

int XPRS_CC XPRSaddcols(XPRSprob prob, int newcol, int newnz, const double
objx[], const int mstart[], const int mrwind[], const double
dmatval[], const double bdl[], const double bdu[]);

int XPRS_CC XPRSaddcols64(XPRSprob prob, int newcol, XPRSint64 newnz, const
double objx[], const XPRSint64 mstart[], const int mrwind[], const
double dmatval[], const double bdl[], const double bdu[]);

Arguments
prob The current problem.
newcol Number of new columns.
newnz Number of new nonzeros in the added columns.
objx Double array of length newcol containing the objective function coefficients of the newcolumns.
mstart Integer array of length newcol containing the offsets in the mrwind and dmatvalarrays of the start of the elements for each column.
mrwind Integer array of length newnz containing the row indices for the elements in eachcolumn.
dmatval Double array of length newnz containing the element values.
bdl Double array of length newcol containing the lower bounds on the added columns.
bdu Double array of length newcol containing the upper bounds on the added columns.

Related controls
Integer

EXTRACOLS Number of extra columns to be allowed for.
EXTRAELEMS Number of extra matrix elements to be allowed for.
EXTRAMIPENTS Number of extra global entities to be allowed for.

Double
MATRIXTOL Tolerance on matrix elements.

Example In this example, we consider the two problems:
(a) maximize: 2x + y (b) maximize: 2x + y + 3z

subject to: x + 4y ≤ 24 subject to: x + 4y + 2z ≤ 24
y ≤ 5 y + z ≤ 5

3x + y ≤ 20 3x + y ≤ 20
x + y ≤ 9 x + y + 3z ≤ 9

z ≤ 12
Using XPRSaddcols, the following transforms (a) into (b) and then names the new variable using
XPRSaddnames:

obj[0] = 3;
mstart[] = {0};
mrwind[] = {0, 1, 3};

Fair Isaac Corporation Confidential and Proprietary Information 124

Console and Library Functions

matval[] = {2.0, 1.0, 3.0};
bdl[0] = XPRS_MINUSINFINITY; bdu[0] = 12.0;
...
XPRSaddcols(prob,1,3,obj,mstart,mrwind,matval,bdl,bdu);
XPRSaddnames(prob,2,"z",2,2);

Further information
1. The double constants XPRS_PLUSINFINITY and XPRS_MINUSINFINITY defined in the library headerfile can be used to represent plus and minus infinity respectively in the bound arrays.
2. If the columns are added to a MIP problem then they will be continuous variables. Use

XPRSchgcoltype to impose integrality conditions on such new columns.
Related topics

XPRSaddnames, XPRSaddrows, XPRSdelcols, XPRSchgcoltype.

Fair Isaac Corporation Confidential and Proprietary Information 125

Console and Library Functions

XPRSaddcuts, XPRSaddcuts64

Purpose Adds cuts directly to the matrix at the current node. Any cuts added to the matrix at the current nodeand not deleted at the current node will be automatically added to the cut pool. The cuts added to thecut pool will be automatically restored at descendant nodes.
Synopsis

int XPRS_CC XPRSaddcuts(XPRSprob prob, int ncuts, const int mtype[], const
char qrtype[], const double drhs[], const int mstart[], const int
mcols[], const double dmatval[]);

int XPRS_CC XPRSaddcuts64(XPRSprob prob, int ncuts, const int mtype[],
const char qrtype[], const double drhs[], const XPRSint64 mstart[],
const int mcols[], const double dmatval[]);

Arguments
prob The current problem.
ncuts Number of cuts to add.
mtype Integer array of length ncuts containing the user assigned cut types. The cut types canbe any integer chosen by the user, and are used to identify the cuts in other cut managerroutines using user supplied parameters. The cut type can be interpreted as an integeror a bitmap - see XPRSdelcuts.
qrtype Character array of length ncuts containing the row types:

L indicates a ≤ row;
G indicates a ≥ row;
E indicates an = row.

drhs Double array of length ncuts containing the right hand side elements for the cuts.
mstart Integer array containing offset into the mcols and dmatval arrays indicating the startof each cut. This array is of length ncuts+1 with the last element, mstart[ncuts],being where cut ncuts+1 would start.
mcols Integer array of length mstart[ncuts] containing the column indices in the cuts.
dmatval Double array of length mstart[ncuts] containing the matrix values for the cuts.

Further information
1. The columns and elements of the cuts must be stored contiguously in the mcols and dmatval arrayspassed to XPRSaddcuts. The starting point of each cut must be stored in the mstart array. Todetermine the length of the final cut, the mstart array must be of length ncuts+1 with the lastelement of this array containing the position in mcols and dmatval where the cut ncuts+1 wouldstart. mstart[ncuts] denotes the number of nonzeros in the added cuts.
2. The cuts added to the matrix are always added at the end of the matrix and the number of rows isalways set to the original number of cuts added. If ncuts have been added, then the rows

0,...,ROWS-ncuts-1 are the original rows, whilst the rows ROWS-ncuts,...,ROWS-1 are the added cuts.The number of cuts can be found by consulting the CUTS problem attribute.
3. This function should be called only from within callback functions set by either XPRSaddcboptnode or

XPRSaddcbcutmgr.
Related topics

XPRSaddrows, XPRSdelcpcuts, XPRSdelcuts, XPRSgetcpcutlist, XPRSgetcutlist,
XPRSloadcuts, XPRSstorecuts, Section 5.9.

Fair Isaac Corporation Confidential and Proprietary Information 126

Console and Library Functions

XPRSaddgencons, XPRSaddgencons64

Purpose Adds one or more general constraints to the problem. Each general constraint y = f(x1, ..., xn,
c1, ..., cn) consists of one or more (input) columns xi, zero or more constant values ci and aresultant (output column) y, different from all xi. General constraints include maximum and minimum(arbitrary number of input columns of any type and arbitrary number of input values, at least one total),
and and or (at least one binary input column, no constant values, binary resultant) and absolute
value (exactly one input column of arbitrary type, no constant values).

Synopsis
int XPRS_CC XPRSaddgencons(XPRSprob prob, int ngencons, int ncols, int

nvals, const int type[], const int resultant[], const int colstart[],
const int col[], const int valstart[], const double val[]);

int XPRS_CC XPRSaddgencons64(XPRSprob prob, int ngencons, XPRSint64 ncols,
XPRSint64 nvals, const int type[], const int resultant[], const
XPRSint64 colstart[], const int col[], const XPRSint64 valstart[],
const double val[]);

Arguments
prob The current problem.
ngencons The number of general constraints to add.
ncols The total number of input variables in general constraints that should be added.
nvals The total number of constant values in general constraints that should be added.
type Integer array of length ngencons containing the types of the general constraints:

XPRS_GENCONS_MAX (0) indicates a maximum constraint;
XPRS_GENCONS_MIN (1) indicates a minimum constraint;
XPRS_GENCONS_AND (2) indicates an and constraint.
XPRS_GENCONS_OR (3) indicates an or constraint;
XPRS_GENCONS_ABS (4) indicates an absolute value constraint.

resultant Integer array of length ngencons containing the indices of the output variables ofthe general constraints.
colstart Integer array of length ngencons containing the start index of each generalconstraint in the col array.
col Integer array of length ncols containing the input variables in all generalconstraints.
valstart Integer array of length ngencons containing the start index of each generalconstraint in the val array (may be NULL if nvals = 0).
val Double array of length nvals containing the constant values in all generalconstraints (may be NULL if nvals = 0).

Example This adds two new general constraints x2 = max(x0, x1, 5) and x3 = |x1|:
int type[] = {XPRS_GENCONS_MAX, XPRS_GENCONS_ABS};
int resultant[] = {2, 3};
int colstart[] = {0, 2};
int col[] = {0, 1, 1};
int valstart[] = {0, 1};
double val[] = {5.0};

...
XPRSaddgencons(prob, 2, 3, 1, type, resultant, colstart, col, valstart, val);

Fair Isaac Corporation Confidential and Proprietary Information 127

Console and Library Functions

XPRSmipoptimize(prob,"");

Further informationGeneral constraints must be set up before solving the problem. They are converted to additional binaryvariables, indicator and linear constraints with the exact formulation and number of added entitiesdepending on the performed presolving.
Note that using non-binary variables in and/or constraints or adding constant values to them or
absolute value constraints will give an error at solve time.

Related controls
Integer

GENCONSDUALREDUCTIONS Controls whether dual reductions may be applied to reduce the numberof added variables and constraints.
Related topics

XPRSgetgencons, XPRSdelgencons.

Fair Isaac Corporation Confidential and Proprietary Information 128

Console and Library Functions

XPRSaddmipsol

Purpose Adds a new feasible, infeasible or partial MIP solution for the problem to the Optimizer.
Synopsis

int XPRS_CC XPRSaddmipsol(XPRSprob prob, int ilength, const double
mipsolval[], const int mipsolcol[], const char⁎ solname);

Arguments
prob The current problem.
ilength Number of columns for which a value is provided.
mipsolval Double array of length ilength containing solution values.
mipsolcol Optional integer array of length ilength containing the column indices for the solutionvalues provided in mipsolval. Should be NULL when ilength is equal to COLS, inwhich case it is assumed that mipsolval provides a complete solution vector.
solname An optional name to associate with the solution. Can be NULL.

Further information
1. The function returns immediately after passing the solution to the Optimizer. The solution is placed in apool until the Optimizer is able to analyze the solution during a MIP solve.
2. If the provided solution is found to be infeasible, a limited local search heuristic will be run in anattempt to find a close feasible integer solution.
3. If a partial solution is provided, global columns will be fixed to any provided values and a limited localsearch will be run in an attempt to find integer feasible values for the remaining unspecified columns.Values provided for continuous column in partial solutions are currently ignored.
4. The XPRSaddcbusersolnotify callback function can be used to discover the outcome of a loadedsolution. The optional name provided as solname will be returned in the callback function.
5. If one or more solutions are loaded during the XPRSaddcboptnode callback, the Optimizer willprocess all loaded solutions and fire the callback again. This will be repeated as long as new solutionsare loaded during the callback. You can check the CALLBACKCOUNT_OPTNODE attribute if you onlywant to run once.

Related controls
Integer

CALLBACKCOUNT_OPTNODE Counts the number of times the XPRSaddcboptnode callback hasbeen called, in particular after rerunning due to XPRSaddmipsol.
USERSOLHEURISTIC Controls the local search heuristic for an infeasible or partial solution.

Related topics
XPRSaddcbusersolnotify, XPRSaddcboptnode.

Fair Isaac Corporation Confidential and Proprietary Information 129

Console and Library Functions

XPRSaddnames

Purpose When a model is loaded, the rows, columns, sets, piecewise linear and general constraints of the modelmay not have names associated with them. This may not be important as the rows, columns, sets,piecewise linear and general constraints can be referred to by their sequence numbers. However, if youwish row, column, set, piecewise linear and general constraint names to appear in the ASCII solutionsfiles, the names for a range of rows/columns/... can be added with XPRSaddnames.
Synopsis

int XPRS_CC XPRSaddnames(XPRSprob prob, int type, const char cnames[], int
first, int last);

Arguments
prob The current problem.
type 1 for row names;

2 for column names.
3 for set names.
4 for piecewise linear constraint names.
5 for general constraint names.

cnames Character buffer containing the null-terminated string names.
first Start of the range of rows, columns, sets, piecewise linear or general constraints.
last End of the range of rows, columns, sets, piecewise linear of general constraints.

Example Add variable names (a and b), objective function (profit) and constraint names (first and second)to a problem:
char rnames[] = "profit\0first\0second"
char cnames[] = "a\0b";
...
XPRSaddnames(prob,1,rnames,0,nrow-1);
XPRSaddnames(prob,2,cnames,0,ncol-1);

Related topics
XPRSaddcols, XPRSaddrows, XPRSgetnames.

Fair Isaac Corporation Confidential and Proprietary Information 130

Console and Library Functions

XPRSaddpwlcons, XPRSaddpwlcons64

Purpose Adds one or more piecewise linear constraints to the problem. Each piecewise linear constraint y =
f(x) consists of an (input) column x, a (different) resultant (output column) y and a piecewise linearfunction f. The piecewise linear function f is described by at least two breakpoints, which are given ascombinations of x- and y-values. Discontinuous piecewise linear functions are supported, in this caseboth the left and right limit at a given point need to be entered as breakpoints. To differentiate betweenleft and right limit, the breakpoints need to be given as a list with non-decreasing x-values.

Synopsis
int XPRS_CC XPRSaddpwlcons(XPRSprob prob, int npwls, int npoints, const int

col[], const int resultant[], const int start[], const double xval[],
const double yval[]);

int XPRS_CC XPRSaddpwlcons64(XPRSprob prob, int npwls, XPRSint64 npoints,
const int col[], const int resultant[], const XPRSint64 start[],
const double xval[], const double yval[]);

Arguments
prob The current problem.
npwls The number of piecewise linear constraints to add.
npoints The total number of breakpoints of all piecewise linear constraints that should be added.
col Integer array of length npwls containing the indices of the input variables x of thepiecewise linear functions.
resultant Integer array of length npwls containing the indices of the output variables y of thepiecewise linear functions.
start Integer array of length npwls containing the start index of each piecewise linearconstraint in the xval and yval arrays.
xval Double array of length npoints containing the x-values of the breakpoints.
yval Double array of length npoints containing the y-values of the breakpoints.

Example The following example adds a new piecewise linear constraint y = f(x), where
f(x) = -x if x < 0
f(x) = 1 if 0 <= x <= 2
f(x) = 2x-3 if x > 2

This function can be defined using the breakpoints (x = -1, y = 1), (0,0), (0,1), (2,1),
(3,3) (note that the first breakpoint could also be replaced, e.g., by (x = -2, y = 2), similarly forthe last):

int col[] = {0};
int resultant[] = {1};
int start[] = {0};
double xval[] = {-1,0,0,2,3};
double yval[] = {1,0,1,1,3};
...
XPRSaddpwlcons(prob,1,5,col,resultant,start,xval,yval);
XPRSmipoptimize(prob,"");

Further informationPiecewise linear constraints must be set up before solving the problem. They are converted toadditional linear constraints, continuous variables and SOS2 constraints, with the exact formulation

Fair Isaac Corporation Confidential and Proprietary Information 131

Console and Library Functions

and number of added entities depending on the convexity of the piecewise linear function and somepresolving steps that are applied.
Related controls

Integer
PWLDUALREDUCTIONS Controls whether dual reductions may be applied to reduce the number ofadded variables and constraints.

Related topics
XPRSgetpwlcons, XPRSdelpwlcons.

Fair Isaac Corporation Confidential and Proprietary Information 132

Console and Library Functions

XPRSaddqmatrix, XPRSaddqmatrix64

Purpose Adds a new quadratic matrix into a row defined by triplets.
Synopsis

int XPRS_CC XPRSaddqmatrix(XPRSprob prob, int irow, int nqtr, const int
mqc1[], const int mqc2[], const double dqe[]);

int XPRS_CC XPRSaddqmatrix64(XPRSprob prob, int irow, XPRSint64 nqtr, const
int mqc1[], const int mqc2[], const double dqe[]);

Arguments
prob The current problem.
irow Index of the row where the quadratic matrix is to be added.
nqtr Number of triplets used to define the quadratic matrix. This may be less than thenumber of coefficients in the quadratic matrix, since off diagonals and their transposedpairs are defined by one triplet.
mqc1 First index in the triplets.
mqc2 Second index in the triplets.
dqe Coefficients in the triplets.

Further information
1. The triplets should be filled to define the upper-triangular part of the quadratic expression. This meansthat to add [x2 + 6 xy] the dqe array shall contain the coefficients 1 and 3, respectively.
2. The matrix defined by mqc1, mqc2 and dqe should be positive semi-definite for <= and negativesemi-definite for >= rows.
3. The row must not be an equality or a ranged row.

Related topics
XPRSloadqcqp, XPRSgetqrowcoeff, XPRSchgqrowcoeff, XPRSgetqrowqmatrix,
XPRSgetqrowqmatrixtriplets, XPRSgetqrows, XPRSchgqobj, XPRSchgmqobj, XPRSgetqobj.

Fair Isaac Corporation Confidential and Proprietary Information 133

Console and Library Functions

XPRSaddrows, XPRSaddrows64

Purpose Allows rows to be added to the matrix after passing it to the Optimizer using the input routines.
Synopsis

int XPRS_CC XPRSaddrows(XPRSprob prob, int newrow, int newnz, const char
qrtype[], const double rhs[], const double range[], const int
mstart[], const int mclind[], const double dmatval[]);

int XPRS_CC XPRSaddrows64(XPRSprob prob, int newrow, XPRSint64 newnz, const
char qrtype[], const double rhs[], const double range[], const
XPRSint64 mstart[], const int mclind[], const double dmatval[]);

Arguments
prob The current problem.
newrow Number of new rows.
newnz Number of new nonzeros in the added rows.
qrtype Character array of length newrow containing the row types:

L indicates a ≤ row;
G indicates ≥ row;
E indicates an = row.
R indicates a range constraint;
N indicates a nonbinding constraint.

rhs Double array of length newrow containing the right hand side elements.
range Double array of length newrow containing the row range elements. This may be NULL ifthere are no ranged constraints. The values in the range array will only be read for Rtype rows. The entries for other type rows will be ignored.
mstart Integer array of length newrow containing the offsets in the mclind and dmatvalarrays of the start of the elements for each row.
mclind Integer array of length newnz containing the (contiguous) column indices for theelements in each row.
dmatval Double array of length newnz containing the (contiguous) element values.

Related controls
Integer

EXTRAELEMS Number of extra matrix elements to be allowed for.
EXTRAROWS Number of extra rows to be allowed for.

Double
MATRIXTOL Tolerance on matrix elements.

Example Suppose the current problem is:
maximize: 2x + y + 3z
subject to: x + 4y + 2z ≤ 24

y + z ≤ 5
3x + y ≤ 20

x + y + 3z ≤ 9
Then the following adds the row 8x + 9y + 10z ≤ 25 to the problem and names it NewRow:

qrtype[0] = 'L';

Fair Isaac Corporation Confidential and Proprietary Information 134

Console and Library Functions

rhs[0] = 25.0;
mstart[] = {0};
mclind[] = {0, 1, 2};
dmatval[] = {8.0, 9.0, 10.0};
...
XPRSaddrows(prob,1,3,qrtype,rhs,NULL,mstart,mclind, dmatval);
XPRSaddnames(prob,1,"NewRow",4,4);

Further informationRange rows are automatically converted to type L, with an upper bound in the slack. This must be takeninto consideration, when retrieving row type, right–hand side values or range information for rows.
Related topics

XPRSaddcols, XPRSaddcuts, XPRSaddnames, XPRSdelrows.

Fair Isaac Corporation Confidential and Proprietary Information 135

Console and Library Functions

XPRSaddsets, XPRSaddsets64

Purpose Allows sets to be added to the problem after passing it to the Optimizer using the input routines.
Synopsis

int XPRS_CC XPRSaddsets(XPRSprob prob, int newsets, int newnz, const char
qrtype[], const int msstart[], const int mclind[], const double
dref[]);

int XPRS_CC XPRSaddsets64(XPRSprob prob, int newsets, XPRSint64 newnz,
const char qrtype[], const XPRSint64 msstart[], const int mclind[],
const double dref[]);

Arguments
prob The current problem.
newsets Number of new sets.
newnz Number of new nonzeros in the added sets.
qrtype Character array of length newsets containing the set types:

1 indicates a SOS1;
2 indicates a SOS2;

msstart Integer array of length newsets containing the offsets in the mclind and dref arraysof the start of the elements for each set.
mclind Integer array of length newnz containing the (contiguous) column indices for theelements in each set.
dref Double array of length newnz containing the (contiguous) reference values.

Related topics
XPRSdelsets.

Fair Isaac Corporation Confidential and Proprietary Information 136

Console and Library Functions

XPRSaddsetnames

Purpose When a model with global entities is loaded, any special ordered sets may not have names associatedwith them. If you wish names to appear in the ASCII solutions files, the names for a range of sets canbe added with this function.
Synopsis

int XPRS_CC XPRSaddsetnames(XPRSprob prob, const char names[], int first,
int last);

Arguments
prob The current problem.
names Character buffer containing the null-terminated string names.
first Start of the range of sets.
last End of the range of sets.

Example Add set names (set1 and set2) to a problem:
char snames[] = "set1\0set2"
...
XPRSaddsetnames(prob,snames,0,1);

Related topics
XPRSaddnames, XPRSloadglobal, XPRSloadqglobal.

Fair Isaac Corporation Confidential and Proprietary Information 137

Console and Library Functions

XPRSalter ALTER

Purpose Alters or changes matrix elements, right hand sides and constraint senses in the current problem.
Synopsis

int XPRS_CC XPRSalter(XPRSprob prob, const char ⁎filename);
ALTER [filename]

Arguments
prob The current problem.
filename A string of up to MAXPROBNAMELENGTH characters specifying the file to be read. Ifomitted, the default problem_name is used with a .alt extension.

Related controls
Integer

EXTRAELEMS Number of extra matrix elements to be allowed for.
Double

MATRIXTOL Tolerance on matrix elements.
Example 1 (Library)Since the following call does not specify a filename, the file problem_name.alt is read in, from whichcommands are taken to alter the current matrix.

XPRSalter(prob,"");

Example 2 (Console)The following example reads in the file fred.alt, from which instructions are taken to alter thecurrent matrix:
ALTER fred

Further information
1. The file filename.alt is read. It is an ASCII file containing matrix revision statements in the formatdescribed in Section A.8. The MODIFY format of the MPS REVISE data is also supported.
2. It is not possible to alter a problem that is in a presolved state. Call XPRSpostsolve to bring theproblem back to its original state.
3. If the problem was read from an .lp file, the name to use for the right-hand side is the one given by theattribute RHSNAME which by default is set to RHS00001.

Related topicsSection A.8.

Fair Isaac Corporation Confidential and Proprietary Information 138

Console and Library Functions

XPRSbasiscondition BASISCONDITION

Purpose This function is deprecated, and will be removed in future releases. Please use the
XPRSbasisstability function instead. Calculates the condition number of the current basis aftersolving the LP relaxation.

Synopsis
int XPRS_CC XPRSbasiscondition(XPRSprob prob, double ⁎condnum, double

⁎scondnum);
BASISCONDITION

Arguments
prob The current problem.
condnum The returned condition number of the current basis.
scondnum The returned condition number of the current basis for the scaled problem.

Example 1 (Library)Get the condition number after optimizing a problem.
XPRSlpoptimize(prob," ");
XPRSbasiscondition(prob,&condnum,&scondnum);
printf("Condition no's are %g %g\n",condnum,scondnum);

Example 2 (Console)Print the condition number after optimizing a problem.
READPROB problem.mps
LPOPTIMIZE
BASISCONDITION

Further information
1. The condition number of an invertible matrix is the norm of the matrix multiplied with the norm of itsinverse. This number is an indication of how accurate the solution can be calculated and how sensitiveit is to small changes in the data. The larger the condition number is, the less accurate the solution islikely to become.
2. When using the BASISCONDITION command in the Console Optimizer, the condition number is shownboth for the scaled problem and in parenthesis for the original problem.

Fair Isaac Corporation Confidential and Proprietary Information 139

Console and Library Functions

XPRSbasisstability BASISSTABILITY

Purpose Calculates various measures for the stability of the current basis, including the basis condition number.
Synopsis

int XPRS_CC XPRSbasisstability(XPRSprob prob, int type, int norm, int
ifscaled, double ⁎dval);

BASISSTABILITY [-flags]

Arguments
prob The current problem.
type 0 Condition number of the basis.

1 Stability measure for the solution relative to the current basis.
2 Stability measure for the duals relative to the current basis.
3 Stability measure for the right hand side relative to the current basis.
4 Stability measure for the basic part of the objective relative to the current basis.

norm 0 Use the infinity norm.
1 Use the 1 norm.
2 Use the Euclidian norm for vectors, and the Frobenius norm for matrices.

ifscaled If the stability values are to be calculated in the scaled, or the unscaled matrix.
dval Pointer to a double, where the calculated value is to be returned.
flags x Stability measure for the solution and right–hand side values relative to thecurrent basis.

d Stability measure for the duals and the basic part of the objective relative tothe current basis.
c Condition number of the basis (default).
i Use the infinity norm (default).
o Use the one norm.
e Use the Euclidian norm for vectors, and the Frobenius norm for matrices.
u Calculate values in the unscaled matrix.

Further information
1. The Console Optimizer command BASISSTABILITY uses 0 as the default value for type and norm,and calculates the values in the scaled matrix.
2. The condition number (type = 0) of an invertible matrix is the norm of the matrix multiplied with thenorm of its inverse. This number is an indication of how accurate the solution can be calculated andhow sensitive it is to small changes in the data. The larger the condition number is, the less accuratethe solution is likely to become.
3. The stability measures (type = 1...4) are using the original matrix and the basis to recalculate thevarious vectors related to the solution and the duals. The returned stability measure is the norm of thedifference of the recalculated vector to the original one.

Fair Isaac Corporation Confidential and Proprietary Information 140

Console and Library Functions

XPRSbtran

Purpose Post-multiplies a (row) vector provided by the user by the inverse of the current basis.
Synopsis

int XPRS_CC XPRSbtran(XPRSprob prob, double vec[]);

Arguments
prob The current problem.
vec Double array of length ROWS containing the values by which the basis inverse is to bemultiplied. The transformed values will also be returned in this array.

Related controls
Double

ETATOL Tolerance on eta elements.
Example Get the (unscaled) tableau row z of constraint number irow, assuming that all arrays have beendimensioned.

/⁎ Minimum size of arrays:
⁎ y: nrow + ncol;
⁎ mstart: 2;
⁎ mrowind, dmatval: nrow.
⁎/

/⁎ set up the unit vector y to pick out row irow ⁎/
for(i = 0; i < nrow; i++) y[i] = 0.0;
y[irow] = 1.0;

rc = XPRSbtran(prob,y); /⁎ y = e⁎B^{-1} ⁎/

/⁎ Form z = y ⁎ A ⁎/
for(j = 0; j < ncol, j++) {

rc = XPRSgetcols(prob, mstart, mrowind, dmatval,
nrow, &nelt, j, j);

for(d = 0.0, ielt = 0, ielt < nelt; ielt++)
d += y[mrowind[ielt]] ⁎ dmatval[ielt];

y[nrow + j] = d;
}

Further informationIf the matrix is in a presolved state, XPRSbtran works with the basis for the presolved problem.
Related topics

XPRSftran.

Fair Isaac Corporation Confidential and Proprietary Information 141

Console and Library Functions

XPRScalcobjective

Purpose Calculates the objective value of a given solution.
Synopsis

int XPRS_CC XPRScalcobjective(XPRSprob prob, const double solution[],
double⁎ objective);

Arguments
prob The current problem.
solution Double array of length COLS that holds the solution.
objective Pointer to a double in which the calculated objective value is returned.

Further informationThe calculations are always carried out in the original problem, even if the problem is currentlypresolved.
Related topics

XPRScalcslacks, XPRScalcsolinfo, XPRScalcreducedcosts.

Fair Isaac Corporation Confidential and Proprietary Information 142

Console and Library Functions

XPRScalcreducedcosts

Purpose Calculates the reduced cost values for a given (row) dual solution.
Synopsis

int XPRS_CC XPRScalcreducedcosts(XPRSprob prob, const double duals[], const
double solution[], double calculateddjs[]);

Arguments
prob The current problem.
duals Double array of length ROWS that holds the dual solution to calculate the reduced costsfor.
solution Optional double array of length COLS that holds the primal solution. This is necessaryfor quadratic problems.
calculateddjs Double array of length COLS in which the calculated reduced costs are returned.

Further information
1. The calculations are always carried out in the original problem, even if the problem is currentlypresolved.
2. If using the function during a solve (e.g. from a callback), use ORIGINALCOLS and ORIGINALROWS toretrieve the non-presolved dimensions of the problem.

Related topics
XPRScalcslacks, XPRScalcsolinfo, XPRScalcobjective.

Fair Isaac Corporation Confidential and Proprietary Information 143

Console and Library Functions

XPRScalcslacks

Purpose Calculates the row slack values for a given solution.
Synopsis

int XPRS_CC XPRScalcslacks(XPRSprob prob, const double solution[], double
calculatedslacks[]);

Arguments
prob The current problem.
solution Double array of length COLS that holds the solution to calculate the slacks for.
calculatedslacks Double array of length ROWS in which the calculated row slacks are returned.

Further information
1. The calculations are always carried out in the original problem, even if the problem is currentlypresolved.
2. If using the function during a solve (e.g. from a callback), use ORIGINALCOLS and ORIGINALROWS toretrieve the non-presolved dimensions of the problem.

Related topics
XPRScalcreducedcosts, XPRScalcsolinfo, XPRScalcobjective.

Fair Isaac Corporation Confidential and Proprietary Information 144

Console and Library Functions

XPRScalcsolinfo

Purpose Calculates the required property of a solution, like maximum infeasibility of a given primal and dualsolution.
Synopsis

int XPRS_CC XPRScalcsolinfo(XPRSprob prob, const double solution[], const
double dual[], int Property, double⁎ Value);

Arguments
prob The current problem.
solution Double array of length COLS that holds the solution.
dual Double array of length ROWS that holds the dual solution.
Property XPRS_SOLINFO_ABSPRIMALINFEAS the calculated maximum absolute primalinfeasibility is returned.

XPRS_SOLINFO_RELPRIMALINFEAS the calculated maximum relative primalinfeasibility is returned.
XPRS_SOLINFO_ABSDUALINFEAS the calculated maximum absolute dualinfeasibility is returned.
XPRS_SOLINFO_RELDUALINFEAS the calculated maximum relative dualinfeasibility is returned.
XPRS_SOLINFO_MAXMIPFRACTIONAL the calculated maximum absolute MIPfractionality or SOS infeasibility.
XPRS_SOLINFO_ABSMIPINFEAS the calculated maximum absolute MIPinfeasibility (including delayed rows,indicators, general and piecewise linearconstraints) is returned.
XPRS_SOLINFO_RELMIPINFEAS the calculated maximum relative MIPinfeasibility (including delayed rows,indicators, general and piecewise linearconstraints) is returned.

Value Pointer to a double where the calculated value is returned.
Further informationThe calculations are always carried out in the original problem, even if the problem is currentlypresolved.
Related topics

XPRScalcslacks, XPRScalcobjective, XPRScalcreducedcosts.

Fair Isaac Corporation Confidential and Proprietary Information 145

Console and Library Functions

CHECKCONVEXITY

Purpose Checks if the loaded problem is convex. Applies to quadratic, mixed integer quadratic and quadraticallyconstrained problems. Checking convexity takes some time, thus for problems that are known to beconvex it might be reasonable to switch the checking off. Returns an error if the problem is not convex.
Synopsis

CHECKCONVEXITY

Further informationThis console function checks the positive semi-definiteness of all quadratic matrices in the problem.Note, that when optimizing a problem, for quadratic programming and mixed integer quadraticproblems, the checking of the objective function is performed after presolve, thus it is possible that anotherwise indefinite quadratic matrix will be found positive semi-definite (the indefinite part might havebeen fixed and dropped by presolve).
Related topics

XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE), IFCHECKCONVEXITY,
EIGENVALUETOL.

Fair Isaac Corporation Confidential and Proprietary Information 146

Console and Library Functions

XPRSchgbounds

Purpose Used to change the bounds on columns in the matrix.
Synopsis

int XPRS_CC XPRSchgbounds(XPRSprob prob, int nbnds, const int mindex[],
const char qbtype[], const double bnd[]);

Arguments
prob The current problem.
nbnds Number of bounds to change.
mindex Integer array of size nbnds containing the indices of the columns on which the boundswill change.
qbtype Character array of length nbnds indicating the type of bound to change:

U indicates change the upper bound;
L indicates change the lower bound;
B indicates change both bounds, i.e. fix the column.

bnd Double array of length nbnds giving the new bound values.
Example The following changes column 0 of the current problem to have an upper bound of 0.5:

mindex[0] = 0;
qbtype[0] = 'U';
bnd[0] = 0.5;
XPRSchgbounds(prob,1,mindex,qbtype,bnd);

Further information
1. A column index may appear twice in the mindex array so it is possible to change both the upper andlower bounds on a variable in one go.
2. XPRSchgboundsmay be applied to the problem in a presolved state, in which case it expectsreferences to the presolved problem.
3. The double constants XPRS_PLUSINFINITY and XPRS_MINUSINFINITY defined in the library headerfile can be used to represent plus and minus infinity respectively in the bound (bnd) array.
4. If the upper bound on a binary variable is changed to be greater than 1 or the lower bound is changed tobe less than 0 then the variable will become an integer variable.

Related topics
XPRSgetlb, XPRSgetub, XPRSstorebounds.

Fair Isaac Corporation Confidential and Proprietary Information 147

Console and Library Functions

XPRSchgcoef

Purpose Used to change a single coefficient in the matrix. If the coefficient does not already exist, a newcoefficient will be added to the matrix. If many coefficients are being added to a row of the matrix, itmay be more efficient to delete the old row of the matrix and add a new row.
Synopsis

int XPRS_CC XPRSchgcoef(XPRSprob prob, int irow, int icol, double dval);

Arguments
prob The current problem.
irow Row index for the coefficient.
icol Column index for the coefficient.
dval New value for the coefficient. If dval is zero, any existing coefficient will be deleted.

Related controls
Double

MATRIXTOL Tolerance on matrix elements.
Example In the following, the element in row 2, column 1 of the matrix is changed to 0.33:

XPRSchgcoef(prob,2,1,0.33);

Further information
XPRSchgmcoef is more efficient than multiple calls to XPRSchgcoef and should be used in its placein such circumstances.

Related topics
XPRSaddcols, XPRSaddrows, XPRSchgmcoef, XPRSchgmqobj, XPRSchgobj, XPRSchgqobj,
XPRSchgrhs, XPRSgetcols, XPRSgetrows.

Fair Isaac Corporation Confidential and Proprietary Information 148

Console and Library Functions

XPRSchgcoltype

Purpose Used to change the type of a column in the matrix.
Synopsis

int XPRS_CC XPRSchgcoltype(XPRSprob prob, int nels, const int mindex[],
const char qctype[]);

Arguments
prob The current problem.
nels Number of columns to change.
mindex Integer array of length nels containing the indices of the columns.
qctype Character array of length nels giving the new column types:

C indicates a continuous column;
B indicates a binary column;
I indicates an integer column.
S indicates a semi–continuous column. The semi–continuous lower bound willbe set to 1.0.
R indicates a semi–integer column. The semi–integer lower bound will be set to

1.0.
P indicates a partial integer column. The partial integer bound will be set to 1.0.

Example The following changes columns 3 and 5 of the matrix to be integer and binary respectively:
mindex[0] = 3; mindex[1] = 5;
qctype[0] = 'I'; qctype[1] = 'B';
XPRSchgcoltype(prob,2,mindex,qctype);

Further information
1. The column types can only be changed before the global search is started.
2. Calling XPRSchgcoltype to change any variable into a binary variable causes the bounds previouslydefined for the variable to be deleted and replaced by bounds of 0 and 1.
3. Calling XPRSchgcoltype to change a continuous variable into an integer variable cause its lowerbound to be rounded up to the nearest integer value and its upper bound to be rounded down to thenearest integer value.

Related topics
XPRSaddcols, XPRSchgrowtype, XPRSdelcols, XPRSgetcoltype.

Fair Isaac Corporation Confidential and Proprietary Information 149

Console and Library Functions

XPRSchgglblimit

Purpose Used to change semi-continuous or semi-integer lower bounds, or upper limits on partial integers.
Synopsis

int XPRS_CC XPRSchgglblimit(XPRSprob prob, int ncols, const int mindex[],
const double dlimit[]);

Arguments
prob The current problem.
ncols Number of column limits to change.
mindex Integer array of size ncols containing the indices of the semi-continuous, semi-integeror partial integer columns that should have their limits changed.
dlimit Double array of length ncols giving the new limit values.

Further information
1. The new limits are not allowed to be negative.
2. Partial integer limits can be at most 2̂28.

Related topics
XPRSchgcoltype, XPRSgetglobal.

Fair Isaac Corporation Confidential and Proprietary Information 150

Console and Library Functions

XPRSchgmcoef, XPRSchgmcoef64

Purpose Used to change multiple coefficients in the matrix. If any coefficient does not already exist, it will beadded to the matrix. If many coefficients are being added to a row of the matrix, it may be moreefficient to delete the old row of the matrix and add a new one.
Synopsis

int XPRS_CC XPRSchgmcoef(XPRSprob prob, int nels, const int mrow[], const
int mcol[], const double dval[]);

int XPRS_CC XPRSchgmcoef64(XPRSprob prob, XPRSint64 nels, const int mrow[],
const int mcol[], const double dval[]);

Arguments
prob The current problem.
nels Number of new coefficients.
mrow Integer array of length nels containing the row indices of the coefficients to bechanged.
mcol Integer array of length nels containing the column indices of the coefficients to bechanged.
dval Double array of length nels containing the new coefficient values. If an element of

dval is zero, the coefficient will be deleted.
Related controls

Double
MATRIXTOL Tolerance on matrix elements.

Example

mrow[0] = 0; mrow[1] = 3;
mcol[0] = 1; mcol[1] = 5;
dval[0] = 2.0; dval[1] = 0.0;
XPRSchgmcoef(prob,2,mrow,mcol,dval);

This changes two elements to values 2.0 and 0.0.
Further information

XPRSchgmcoef is more efficient than repeated calls to XPRSchgcoef and should be used in its placeif many coefficients are to be changed.
Related topics

XPRSchgcoef, XPRSchgmqobj, XPRSchgobj, XPRSchgqobj, XPRSchgrhs, XPRSgetcols,
XPRSgetrhs.

Fair Isaac Corporation Confidential and Proprietary Information 151

Console and Library Functions

XPRSchgmqobj, XPRSchgmqobj64

Purpose Used to change multiple quadratic coefficients in the objective function. If any of the coefficients doesnot exist already, new coefficients will be added to the objective function.
Synopsis

int XPRS_CC XPRSchgmqobj(XPRSprob prob, int nels, const int mqcol1[], const
int mqcol2[], const double dval[]);

int XPRS_CC XPRSchgmqobj64(XPRSprob prob, XPRSint64 nels, const int
mqcol1[], const int mqcol2[], const double dval[]);

Arguments
prob The current problem.
nels The number of coefficients to change.
mqcol1 Integer array of size ncol containing the column index of the first variable in eachquadratic term.
mqcol2 Integer array of size ncol containing the column index of the second variable in eachquadratic term.
dval New values for the coefficients. If an entry in dval is 0, the corresponding entry will bedeleted. These are the coefficients of the quadratic Hessian matrix.

Example The following code results in an objective function with terms: [6x21 + 3x1x2 + 3x2x1]/2
mqcol1[0] = 0; mqcol2[0] = 0; dval[0] = 6.0;
mqcol1[1] = 1; mqcol2[1] = 0; dval[1] = 3.0;
XPRSchgmqobj(prob,2,mqcol1,mqcol2,dval);

Further information
1. The columns in the arrays mqcol1 and mqcol2must already exist in the matrix. If the columns do notexist, they must be added with XPRSaddcols.
2. XPRSchgmqobj is more efficient than repeated calls to XPRSchgqobj and should be used in its placewhen several coefficients are to be changed.

Related topics
XPRSchgcoef, XPRSchgmcoef, XPRSchgobj, XPRSchgqobj, XPRSgetqobj.

Fair Isaac Corporation Confidential and Proprietary Information 152

Console and Library Functions

XPRSchgobj

Purpose Used to change the objective function coefficients.
Synopsis

int XPRS_CC XPRSchgobj(XPRSprob prob, int nels, const int mindex[], const
double obj[]);

Arguments
prob The current problem.
nels Number of objective function coefficient elements to change.
mindex Integer array of length nels containing the indices of the columns on which the rangeelements will change. An index of -1 indicates that the fixed part of the objectivefunction on the right hand side should change.
obj Double array of length nels giving the new objective function coefficient.

Example Changing three coefficients of the objective function with XPRSchgobj :
mindex[0] = 0; mindex[1] = 2; mindex[2] = 5;
obj[0] = 25.0; obj[1] = 5.3; obj[2] = 0.0;
XPRSchgobj(prob,3,mindex,obj);

Further informationThe value of the fixed part of the objective function can be obtained using the OBJRHS problemattribute.
Related topics

XPRSchgcoef, XPRSchgmcoef, XPRSchgmqobj, XPRSchgqobj, XPRSgetobj.

Fair Isaac Corporation Confidential and Proprietary Information 153

Console and Library Functions

XPRSchgobjsense CHGOBJSENSE

Purpose Changes the problem’s objective function sense to minimize or maximize.
Synopsis

int XPRS_CC XPRSchgobjsense(XPRSprob prob, int objsense);
CHGOBJSENSE [min | max]

Arguments
prob The current problem.
objsense XPRS_OBJ_MINIMIZE to change into a minimization, or XPRS_OBJ_MAXIMIZE tochange into maximization problem.

Related topics
XPRSlpoptimize, XPRSmipoptimize.

Fair Isaac Corporation Confidential and Proprietary Information 154

Console and Library Functions

XPRSchgqobj

Purpose Used to change a single quadratic coefficient in the objective function corresponding to the variablepair (icol,jcol) of the Hessian matrix.
Synopsis

int XPRS_CC XPRSchgqobj(XPRSprob prob, int icol, int jcol, double dval);

Arguments
prob The current problem.
icol Column index for the first variable in the quadratic term.
jcol Column index for the second variable in the quadratic term.
dval New value for the coefficient in the quadratic Hessian matrix. If an entry in dval is 0,the corresponding entry will be deleted.

Example The following code adds the terms [15x21 + 7x1x2]/2 to the objective function:
XPRSchgqobj(prob, 0, 0, 15);
XPRSchgqobj(prob, 0, 1, 3.5);

Further information
1. The columns icol and jcolmust already exist in the matrix. If the columns do not exist, they must beadded with the routine XPRSaddcols.
2. If icol is not equal to jcol, then both the matrix elements (icol, jcol) and (jcol, icol) arechanged to leave the Hessian symmetric.

Related topics
XPRSchgcoef, XPRSchgmcoef, XPRSchgmqobj, XPRSchgobj, XPRSgetqobj.

Fair Isaac Corporation Confidential and Proprietary Information 155

Console and Library Functions

XPRSchgqrowcoeff

Purpose Changes a single quadratic coefficient in a row.
Synopsis

int XPRS_CC XPRSchgqrowcoeff(XPRSprob prob, int irow, int icol, int jcol,
double dval);

Arguments
prob The current problem.
irow Index of the row where the quadratic matrix is to be changed.
icol First index of the coefficient to be changed.
jcol Second index of the coefficient to be changed.
dval The new coefficient.

Further information
1. This function may be used to add new nonzero coefficients, or even to define the whole quadraticexpression with it. Doing that, however, is significantly less efficient than adding the whole expressionwith XPRSaddqmatrix.
2. The row must not be an equality or a ranged row.

Related topics
XPRSloadqcqp, XPRSgetqrowcoeff, XPRSaddqmatrix, XPRSchgqrowcoeff,
XPRSgetqrowqmatrix, XPRSgetqrowqmatrixtriplets, XPRSgetqrows, XPRSchgqobj,
XPRSchgmqobj, XPRSgetqobj.

Fair Isaac Corporation Confidential and Proprietary Information 156

Console and Library Functions

XPRSchgrhs

Purpose Used to change right–hand side values of the problem.
Synopsis

int XPRS_CC XPRSchgrhs(XPRSprob prob, int nels, const int mindex[], const
double rhs[]);

Arguments
prob The current problem.
nels Number of right hand side values to change.
mindex Integer array of length nels containing the indices of the rows on which the right handside values will change.
rhs Double array of length nels giving the right hand side values.

Example Here we change the three right hand sides in rows 2, 6, and 8 to new values:
mindex[0] = 2; mindex[1] = 8; mindex[2] = 6;
rhs[0] = 5.0; rhs[1] = 3.8; rhs[2] = 5.7;
XPRSchgrhs(prob,3,mindex,rhs);

Related topics
XPRSchgcoef, XPRSchgmcoef, XPRSchgrhsrange, XPRSgetrhs, XPRSgetrhsrange.

Fair Isaac Corporation Confidential and Proprietary Information 157

Console and Library Functions

XPRSchgrhsrange

Purpose Used to change the range for a row of the problem matrix.
Synopsis

int XPRS_CC XPRSchgrhsrange(XPRSprob prob, int nels, const int mindex[],
const double rng[]);

Arguments
prob The current problem.
nels Number of range elements to change.
mindex Integer array of length nels containing the indices of the rows on which the rangeelements will change.
rng Double array of length nels giving the range values.

Example Here, the constraint x + y ≤ 10 (with row index 5) in the problem is changed to 8 ≤ x + y ≤ 10:
mindex[0] = 5; rng[0] = 2.0;
XPRSchgrhsrange(prob,1,mindex,rng);

Further informationIf the range specified on the row is r, what happens depends on the row type and value of r. It ispossible to convert non-range rows using this routine.
Value of r Row type Effect
r ≥ 0 = b, ≤ b b – r ≤

∑
ajxj ≤ b

r ≥ 0 ≥ b b ≤
∑

ajxj ≤ b + r
r < 0 = b, ≤ b b ≤

∑
ajxj ≤ b – r

r < 0 ≥ b b + r ≤
∑

ajxj ≤ b

Related topics
XPRSchgcoef, XPRSchgmcoef, XPRSchgrhs, XPRSgetrhsrange.

Fair Isaac Corporation Confidential and Proprietary Information 158

Console and Library Functions

XPRSchgrowtype

Purpose Used to change the type of a row in the matrix.
Synopsis

int XPRS_CC XPRSchgrowtype(XPRSprob prob, int nels, const int mindex[],
const char qrtype[]);

Arguments
prob The current problem.
nels Number of rows to change.
mindex Integer array of length nels containing the indices of the rows.
qrtype Character array of length nels giving the new row types:

L indicates a ≤ row;
E indicates an = row;
G indicates a ≥ row;
R indicates a range row;
N indicates a free row.

Example Here row 4 is changed to an equality row:
mindex[0] = 4; qrtype[0] = 'E';
XPRSchgrowtype(prob,1,mindex,qrtype);

Further informationA row can be changed to a range type row by first changing the row to an R or L type row and thenchanging the range on the row using XPRSchgrhsrange.
Related topics

XPRSaddrows, XPRSchgcoltype, XPRSchgrhs, XPRSchgrhsrange, XPRSdelrows,
XPRSgetrowrange, XPRSgetrowtype.

Fair Isaac Corporation Confidential and Proprietary Information 159

Console and Library Functions

XPRScopycallbacks

Purpose Copies callback functions defined for one problem to another.
Synopsis

int XPRS_CC XPRScopycallbacks(XPRSprob dest, XPRSprob src);

Arguments
dest The problem to which the callbacks are copied.
src The problem from which the callbacks are copied.

Example The following sets up a message callback function callback for problem prob1 and then copies thisto the problem prob2.
XPRScreateprob(&prob1);
XPRSaddcbmessage(prob1,callback,NULL,0);
XPRScreateprob(&prob2);
XPRScopycallbacks(prob2,prob1);

Related topics
XPRScopycontrols, XPRScopyprob.

Fair Isaac Corporation Confidential and Proprietary Information 160

Console and Library Functions

XPRScopycontrols

Purpose Copies controls defined for one problem to another.
Synopsis

int XPRS_CC XPRScopycontrols(XPRSprob dest, XPRSprob src);

Arguments
dest The problem to which the controls are copied.
src The problem from which the controls are copied.

Example The following turns off Presolve for problem prob1 and then copies this and other control values to theproblem prob2 :
XPRScreateprob(&prob1);
XPRSsetintcontrol(prob1,XPRS_PRESOLVE,0);
XPRScreateprob(&prob2);
XPRScopycontrols(prob2,prob1);

Related topics
XPRScopycallbacks, XPRScopyprob.

Fair Isaac Corporation Confidential and Proprietary Information 161

Console and Library Functions

XPRScopyprob

Purpose Copies information defined for one problem to another.
Synopsis

int XPRS_CC XPRScopyprob(XPRSprob dest, XPRSprob src, const char
⁎probname);

Arguments
dest The new problem pointer to which information is copied.
src The old problem pointer from which information is copied.
probname A string of up to 1024 characters (including NULL terminator) containing the name forthe problem copy. This must be unique when file writing is to be expected, andparticularly for global problems.

Example The following copies the problem, its controls and it callbacks from prob1 to prob2:
XPRSprob prob1, prob2;
...
XPRScreateprob(&prob2);
XPRScopyprob(prob2,prob1,"MyProb");
XPRScopycontrols(prob2,prob1);
XPRScopycallbacks(prob2,prob1);

Further information
XPRScopyprob copies only the problem and does not copy the callbacks or controls associated to aproblem. These must be copied separately using XPRScopycallbacks and XPRScopycontrols,respectively.

Related topics
XPRScopycallbacks, XPRScopycontrols, XPRScreateprob.

Fair Isaac Corporation Confidential and Proprietary Information 162

Console and Library Functions

XPRScreateprob

Purpose Sets up a new problem within the Optimizer.
Synopsis

int XPRS_CC XPRScreateprob(XPRSprob ⁎prob);

Argument
prob Pointer to a variable holding the new problem.

Example The following creates a problem which will contain myprob:
XPRSprob prob;
XPRSinit(NULL);
XPRScreateprob(&prob);
XPRSreadprob(prob,"myprob","");

Further information
1. XPRScreateprobmust be called after XPRSinit and before using the other Optimizer routines.
2. Any number of problems may be created in this way, depending on your license details. All problemsshould be removed using XPRSdestroyprob once you have finished working with them.
3. If XPRScreateprob cannot complete successfully, a nonzero value is returned and ⁎prob is set toNULL (as a consequence, it is not possible to retrieve further error information using e.g.

XPRSgetlasterror).
Related topics

XPRSdestroyprob, XPRScopyprob, XPRSinit.

Fair Isaac Corporation Confidential and Proprietary Information 163

Console and Library Functions

XPRScrossoverlpsol

Purpose Provides a basic optimal solution for a given solution of an LP problem. This function behaves like thecrossover after the barrier algorithm.
Synopsis

int XPRS_CC XPRScrossoverlpsol(XPRSprob prob, int ⁎status);

Arguments
prob The current problem.
status Pointer to an int where the status will be returned. The status is one of:

0 The crossover is successful.
1 The crossover is not performed because the problem has no solution.

Related controls
Integer

ALGAFTERCROSSOVER Specifies which algorithm to use for cleaning up the solution.
PREPROTECTDUAL Whether or not to protect the given dual solution during presolve.

Example This example loads a problem, loads a solution for the problem and then uses XPRScrossoverlpsolto find a basic optimal solution.
XPRSreadprob(prob, "problem", "");
XPRSloadlpsol(prob, x, NULL, dual, NULL, &status);
XPRScrossoverlpsol(prob, &status);

A solution can also be loaded from an ASCII solution file using XPRSreadslxsol.
Further information

1. The crossover contains two phases: a crossover phase for finding a basic solution and a clean-upphase for finding a basic optimal solution. Setting ALGAFTERCROSSOVER to 0 will allow the crossoverto skip the clean-up phase.
2. The given solution is expected to be feasible or nearly feasible, otherwise the crossover may take along time to find a basic feasible solution. More importantly, the given solution is expected to have asmall duality gap. A small duality gap indicates that the given solution is close to the optimal solution.If the given solution is far away from the optimal solution, the clean-up phase may need many simplexiterations to move to a basic optimal solution.

Related topics
XPRSloadlpsol, XPRSreadslxsol, Section 4.2.1.

Fair Isaac Corporation Confidential and Proprietary Information 164

Console and Library Functions

XPRSdelcols

Purpose Delete columns from a matrix.
Synopsis

int XPRS_CC XPRSdelcols(XPRSprob prob, int ncols, const int mindex[]);

Arguments
prob The current problem.
ncols Number of columns to delete.
mindex Integer array of length ncols containing the columns to delete.

Example In this example, column 3 is deleted from the matrix:
mindex[0] = 3;
XPRSdelcols(prob,1,mindex);

Further information
1. After columns have been deleted from a problem, the numbers of the remaining columns are moveddown so that the columns are always numbered from 0 to COLS-1 where COLS is the problem attributecontaining the number of non-deleted columns in the matrix.
2. If the problem has already been optimized, or an advanced basis has been loaded, and you delete abasis column the current basis will no longer be valid - the basis is "lost".If you go on to re-optimize the problem, a warning message is displayed (140) and the Optimizerautomatically generates a corrected basis.You can avoid losing the basis by only deleting non-basic columns (see XPRSgetbasis), taking abasic column out of the basis first if necessary (see XPRSgetpivots and XPRSpivot).

Related topics
XPRSaddcols, XPRSdelrows.

Fair Isaac Corporation Confidential and Proprietary Information 165

Console and Library Functions

XPRSdelcpcuts

Purpose During the branch and bound search, cuts are stored in the cut pool to be applied at descendant nodes.These cuts may be removed from a given node using XPRSdelcuts, but if this is to be applied in alarge number of cases, it may be preferable to remove the cut completely from the cut pool. This isachieved using XPRSdelcpcuts.
Synopsis

int XPRS_CC XPRSdelcpcuts(XPRSprob prob, int itype, int interp, int ncuts,
const XPRScut mcutind[]);

Arguments
prob The current problem.
itype User defined cut type to match against.
interp Way in which the cut itype is interpreted:

-1 match all cut types;
1 treat cut types as numbers;
2 treat cut types as bit maps - delete if any bit matches any bit set in itype;
3 treat cut types as bit maps - delete if all bits match those set in itype.

ncuts The number of cuts to delete. A value of -1 indicates delete all cuts.
mcutind Array containing pointers to the cuts which are to be deleted. This array may be NULL if

ncuts is -1, otherwise it has length ncuts.
Related topics

XPRSaddcuts, XPRSdelcuts, XPRSloadcuts, Section 5.9.

Fair Isaac Corporation Confidential and Proprietary Information 166

Console and Library Functions

XPRSdelcuts

Purpose Deletes cuts from the matrix at the current node. Cuts from the parent node which have beenautomatically restored may be deleted as well as cuts added to the current node using XPRSaddcutsor XPRSloadcuts. The cuts to be deleted can be specified in a number of ways. If a cut is ruled out byany one of the criteria it will not be deleted.
Synopsis

int XPRS_CC XPRSdelcuts(XPRSprob prob, int ibasis, int itype, int interp,
double delta, int num, const XPRScut mcutind[]);

Arguments
prob The current problem.
ibasis Ensures the basis will be valid if set to 1. If set to 0, cuts with non-basic slacks may bedeleted.
itype User defined type of the cut to be deleted.
interp Way in which the cut itype is interpreted:

-1 match all cut types;
1 treat cut types as numbers;
2 treat cut types as bit maps - delete if any bit matches any bit set in itype;
3 treat cut types as bit maps - delete if all bits match those set in itype.

delta Only delete cuts with an absolute slack value greater than delta. To delete all the cuts,this argument should be set to XPRS_MINUSINFINITY.
num Number of cuts to drop if a list of cuts is provided. A value of -1 indicates all cuts.
mcutind Array containing pointers to the cuts which are to be deleted. This array may be NULL if

num is set to -1 otherwise it has length num.
Further information

1. It is usually best to drop only those cuts with basic slacks, otherwise the basis will no longer be validand it may take many iterations to recover an optimal basis. If the ibasis parameter is set to 1, thiswill ensure that cuts with non-basic slacks will not be deleted even if the other parameters specify thatthese cuts should be deleted. It is highly recommended that the ibasis parameter is always set to 1.
2. The cuts to be deleted can also be specified by the size of the slack variable for the cut. Only those cutswith a slack value greater than the delta parameter will be deleted.
3. A list of indices of the cuts to be deleted can also be provided. The list of active cuts at a node can beobtained with the XPRSgetcutlist command.
4. This function should be called only from within callback functions set by either XPRSaddcboptnode or

XPRSaddcbcutmgr.
Related topics

XPRSaddcuts, XPRSdelcpcuts, XPRSgetcutlist, XPRSloadcuts, Section 5.9.

Fair Isaac Corporation Confidential and Proprietary Information 167

Console and Library Functions

XPRSdelgencons

Purpose Delete general constraints from a problem.
Synopsis

int XPRS_CC XPRSdelgencons(XPRSprob prob, int ngencons, const int
mindex[]);

Arguments
prob The current problem.
ngencons Number of general constraints to delete.
mindex An integer array of length ngencons containing the general constraints to delete.

Example In this example, general constraints 0 and 2 are deleted from the problem:
mindex[0] = 0; mindex[1] = 2;
XPRSdelgencons(prob,2,mindex);

Further informationAfter general constraints have been deleted from a problem, the indices of the remaining constraintsare reduced down so that the general constraints are always numbered from 0 to GENCONS-1 where
GENCONS is the problem attribute containing the number of non-deleted general constraints in theproblem.

Related topics
XPRSaddgencons, XPRSgetgencons.

Fair Isaac Corporation Confidential and Proprietary Information 168

Console and Library Functions

XPRSdelindicators

Purpose Delete indicator constraints. This turns the specified rows into normal rows (not controlled by indicatorvariables).
Synopsis

int XPRS_CC XPRSdelindicators(XPRSprob prob, int first, int last);

Arguments
prob The current problem.
first First row in the range.
last Last row in the range (inclusive).

Example In this example, if any of the first two rows of the matrix is an indicator constraint, they are turned intonormal rows:
XPRSdelindicators(prob,0,1);

Further informationThis function has no effect on rows that are not indicator constraints.
Related topics

XPRSgetindicators, XPRSsetindicators.

Fair Isaac Corporation Confidential and Proprietary Information 169

Console and Library Functions

XPRSdelpwlcons

Purpose Delete piecewise linear constraints from a problem.
Synopsis

int XPRS_CC XPRSdelpwlcons(XPRSprob prob, int npwls, const int mindex[]);

Arguments
prob The current problem.
npwls Number of piecewise linear constraints to delete.
mindex An integer array of length npwls containing the piecewise linear constraints to delete.

Example In this example, piecewise linear constraints 0 and 2 are deleted from the problem:
mindex[0] = 0; mindex[1] = 2;
XPRSdelpwlcons(prob,2,mindex);

Further informationAfter piecewise linear constraints have been deleted from a problem, the indices of the remainingconstraints are reduced so that the piecewise linear constraints are always numbered from 0 to
PWLCONS-1 where PWLCONS is the problem attribute containing the number of non-deleted piecewiselinear constraints in the problem.

Related topics
XPRSaddpwlcons, XPRSgetpwlcons.

Fair Isaac Corporation Confidential and Proprietary Information 170

Console and Library Functions

XPRSdelqmatrix

Purpose Deletes the quadratic part of a row or of the objective function.
Synopsis

int XPRS_CC XPRSdelqmatrix(XPRSprob prob, int row);

Arguments
prob The current problem.
row Index of row from which the quadratic part is to be deleted.

Further informationIf a row index of -1 is used, the function deletes the quadratic coefficients from the objective function.
Related topics

XPRSaddrows, XPRSdelcols, XPRSdelrows.

Fair Isaac Corporation Confidential and Proprietary Information 171

Console and Library Functions

XPRSdelrows

Purpose Delete rows from a matrix.
Synopsis

int XPRS_CC XPRSdelrows(XPRSprob prob, int nrows, const int mindex[]);

Arguments
prob The current problem.
nrows Number of rows to delete.
mindex An integer array of length nrows containing the rows to delete.

Example In this example, rows 0 and 10 are deleted from the matrix:
mindex[0] = 0; mindex[1] = 10;
XPRSdelrows(prob,2,mindex);

Further information
1. After rows have been deleted from a problem, the numbers of the remaining rows are moved down sothat the rows are always numbered from 0 to ROWS-1 where ROWS is the problem attribute containingthe number of non-deleted rows in the matrix.
2. If the problem has already been optimized, or an advanced basis has been loaded, and you delete a rowfor which the slack column is non-basic, the current basis will no longer be valid - the basis is "lost".

If you go on to re-optimize the problem, a warning message is displayed (140) and the Optimizerautomatically generates a corrected basis.You can avoid losing the basis by only deleting basic rows (see XPRSgetbasis), bringing a non-basicrow into the basis first if necessary (see XPRSgetpivots and XPRSpivot).
Related topics

XPRSaddrows, XPRSdelcols, XPRSgetbasis, XPRSgetpivots, XPRSpivot.

Fair Isaac Corporation Confidential and Proprietary Information 172

Console and Library Functions

XPRSdelsets

Purpose Delete sets from a problem.
Synopsis

int XPRS_CC XPRSdelsets(XPRSprob prob, int nsets, const int mindex[]);

Arguments
prob The current problem.
nsets Number of sets to delete.
mindex An integer array of length nsets containing the sets to delete.

Example In this example, sets 0 and 2 are deleted from the problem:
mindex[0] = 0; mindex[1] = 2;
XPRSdelsets(prob,2,mindex);

Further informationAfter sets have been deleted from a problem, the numbers of the remaining sets are moved down sothat the sets are always numbered from 0 to SETS-1 where SETS is the problem attribute containingthe number of non-deleted sets in the problem.
Related topics

XPRSaddsets.

Fair Isaac Corporation Confidential and Proprietary Information 173

Console and Library Functions

XPRSdestroyprob

Purpose Removes a given problem and frees any memory associated with it following manipulation andoptimization.
Synopsis

int XPRS_CC XPRSdestroyprob(XPRSprob prob);

Argument
prob The problem to be destroyed.

Example The following creates, loads and solves a problem called myprob, before subsequently freeing anyresources allocated to it:
XPRScreateprob(&prob);
XPRSreadprob(prob,"myprob","");
XPRSlpoptimize(prob,"");
XPRSdestroyprob(prob);

Further informationAfter work is finished, all problems must be destroyed. If a NULL problem pointer is passed to
XPRSdestroyprob, no error will result.

Related topics
XPRScreateprob, XPRSfree, XPRSinit.

Fair Isaac Corporation Confidential and Proprietary Information 174

Console and Library Functions

XPRSdumpcontrols DUMPCONTROLS

Purpose Displays the list of controls and their current value for those controls that have been set to a nondefault value.
Synopsis

int XPRS_CC XPRSdumpcontrols(XPRSprob prob);
DUMPCONTROLS

Related topics
SETDEFAULTS, SETDEFAULTCONTROL

Fair Isaac Corporation Confidential and Proprietary Information 175

Console and Library Functions

EXIT

Purpose Terminates the Console Optimizer, returning a zero exit code to the operating system. Alias of QUIT.
Synopsis

EXIT

Example The command is called simply as:
EXIT

Further information
1. Fatal error conditions return nonzero exit values which may be of use to the host operating system.These are described in Chapter 11.
2. If you wish to return an exit code reflecting the final solution status, then use the STOP commandinstead.

Related topics
STOP, QUIT, XPRSsave (SAVE).

Fair Isaac Corporation Confidential and Proprietary Information 176

Console and Library Functions

XPRSestimaterowdualranges

Purpose Performs a dual side range sensitivity analysis, i.e. calculates estimates for the possible ranges fordual values.
Synopsis

int XPRS_CC XPRSestimaterowdualranges(XPRSprob prob, const int nRows, const
int rowIndices[], const int iterationLimit, double minDualActivity[],
double maxDualActivity[]);

Arguments
prob The current problem.
nRows The number of rows to analyze.
rowIndices Row indices to analyze.
iterationLimit Effort limit expressed as simplex iterations per row.
minDualActivity Estimated lower bounds on the possible dual ranges.
maxDualActivity Estimated upper bounds on the possible dual ranges.

Further informationThis function may provide better results for individual row dual ranges when called for a larger numberof rows.
Related topics

XPRSlpoptimize, XPRSstrongbranch

Fair Isaac Corporation Confidential and Proprietary Information 177

Console and Library Functions

XPRSfeaturequery

Purpose Checks if the provided feature is available in the current license used by the optimizer.
Synopsis

int XPRS_CC XPRSfeaturequery(const char ⁎feature, int ⁎featurestatus);

Arguments
feature The feature string to be checked in the license.
featurestatus Return status of the check, a value of 1 indicates the feature is available.

Fair Isaac Corporation Confidential and Proprietary Information 178

Console and Library Functions

XPRSfixglobals FIXGLOBALS

Purpose Fixes all the global entities to the values of the last found MIP solution. This is useful for finding thereduced costs for the continuous variables after the global variables have been fixed to their optimalvalues.
Synopsis

int XPRS_CC XPRSfixglobals(XPRSprob prob, int options);
FIXGLOBALS [-flags]

Arguments
prob The current problem.
options Options how to fix the globals.
Values Bit Meaning

0 If all global entities should be rounded to the nearest discrete value in the solutionbefore being fixed.
1 If piecewise linear and general constraints should be kept in the problem with onlythe non-convex decisions (i.e. which part of a non-convex piecewise linear functionor which variable attains a maximum) fixed. Otherwise all variables appearing inpiecewise linear or general constraints will be fixed.

flags Flags to pass to FIXGLOBALS:
r round all global entities to the nearest feasible value in the solution beforebeing fixed;
t keep piecewise linear and general constraints and only fix their non-convexdecisions;

Example 1 (Library)This example performs a global search on problem myprob and then uses XPRSfixglobals beforesolving the remaining linear problem:
XPRSreadprob(prob,"myprob","");
XPRSmipoptimize(prob," ");
XPRSfixglobals(prob, 1);
XPRSlpoptimize(prob," ");
XPRSwriteprtsol(prob);

Example 2 (Console)A similar set of commands at the console would be as follows:
READPROB
MIPOPTIMIZE
FIXGLOBALS -r
LPOPTIMIZE
PRINTSOL

Further information
1. Because of tolerances, it is possible for e.g. a binary variable to be slightly fractional in the MIPsolution, where it might have the value 0.999999 instead of being at exactly 1.0. With ifround = 0,such a binary will be fixed at 0.999999, but with ifround = 1, it will be fixed at 1.0.
2. This command is useful for inspecting the reduced costs of the continuous variables in a matrix afterthe global entities have been fixed. Sensitivity analysis can also be performed on the continuousvariables in a MIP problem using XPRSrhssa or XPRSobjsa after calling XPRSfixglobals(FIXGLOBALS).

Fair Isaac Corporation Confidential and Proprietary Information 179

Console and Library Functions

Related topics
XPRSmipoptimize (MIPOPTIMIZE).

Fair Isaac Corporation Confidential and Proprietary Information 180

Console and Library Functions

XPRSfree

Purpose Frees any allocated memory and closes all open files.
Synopsis

int XPRS_CC XPRSfree(void);

Example The following frees resources allocated to the problem prob and then tidies up before exiting:
XPRSdestroyprob(prob);
XPRSfree();
return 0;

Further informationAfter a call to XPRSfree no library functions may be used without first calling XPRSinit again.
Related topics

XPRSdestroyprob, XPRSinit.

Fair Isaac Corporation Confidential and Proprietary Information 181

Console and Library Functions

XPRSftran

Purpose Pre-multiplies a (column) vector provided by the user by the inverse of the current matrix.
Synopsis

int XPRS_CC XPRSftran(XPRSprob prob, double vec[]);

Arguments
prob The current problem.
vec Double array of length ROWS containing the values which are to be multiplied by thebasis inverse. The transformed values appear in the array.

Related controls
Double

ETATOL Tolerance on eta elements.
Example To get the (unscaled) tableau column of structural variable number jcol, assuming that all arrays havebeen dimensioned, do the following:

/⁎ Min size of arrays: mstart: 2; mrowind, dmatval & y: nrow. ⁎/
/⁎ Get column as loaded originally, in sparse format ⁎/
rc = XPRSgetcols(prob, mstart, mrowind, dmatval, nrow, &nelt,

jcol, jcol);

/⁎ Unpack into the zeroed array ⁎/
for(i = 0; i < nrow; i++)
y[i] = 0.0;
for(ielt = 0; ielt < nelt; ielt++)
y[mrowind[ielt]] = dmatval[ielt];

rc = XPRSftran(prob,y);

Get the (unscaled) tableau column of the slack variable for row number irow, assuming that all arrayshave been dimensioned.
/⁎ Min size of arrays: y: nrow ⁎/
/⁎ Set up the original slack column in full format ⁎/
for(i = 0; i < nrow; i++)
y[i] = 0.0;
y[irow] = 1.0;

rc = XPRSftran(prob,y);

Further informationIf the matrix is in a presolved state, the function will work with the basis for the presolved problem.
Related topics

XPRSbtran.

Fair Isaac Corporation Confidential and Proprietary Information 182

Console and Library Functions

XPRSgetattribinfo

Purpose Accesses the id number and the type information of an attribute given its name. An attribute name maybe for example XPRS_ROWS. Names are case-insensitive and may or may not have the XPRS_ prefix.The id number is the constant used to identify the attribute for calls to functions such as
XPRSgetintattrib. The type information returned will be one of the below integer constants definedin the xprs.h header file.
The function will return an id number of 0 and a type value of XPRS_TYPE_NOTDEFINED if the name isnot recognized as an attribute name. Note that this will occur if the name is a control name and not anattribute name.XPRS_TYPE_NOTDEFINED The name was not recognized.XPRS_TYPE_INT 32 bit integer.XPRS_TYPE_INT64 64 bit integer.XPRS_TYPE_DOUBLE Double precision floating point.XPRS_TYPE_STRING String.

Synopsis
int XPRS_CC XPRSgetattribinfo(XPRSprob prob, const char⁎ sCaName, int⁎

iHeaderId, int⁎ iTypeinfo);

Arguments
prob The current problem.
sCaName The name of the attribute to be queried. Names are case-insensitive and may or maynot have the XPRS_ prefix. A full list of all attributes may be found in Chapter 9, or fromthe list in the xprs.h header file.
iHeaderId Pointer to an integer where the id number will be returned.
iTypeInfo Pointer to an integer where the type id will be returned.

Example The following code example obtains the id number and the type id of the control or attribute with namegiven by sCaName. Note that the name happens to be a control name in this example:
const char ⁎sCaName = "presolve";
int iHeaderId, iTypeInfo;
...
if(XPRSgetattribinfo(prob, sCaName, &iHeaderId,

&iTypeInfo) || iHeaderId==0) {
if(XPRSgetcontrolinfo(prob, sCaName, &iHeaderId,

&iTypeInfo) || iHeaderId==0) {
printf("Unrecognized name: %s\n", sCaName);

}
}

Related topics
XPRSgetcontrolinfo.

Fair Isaac Corporation Confidential and Proprietary Information 183

Console and Library Functions

XPRSgetbanner

Purpose Returns the banner and copyright message.
Synopsis

int XPRS_CC XPRSgetbanner(char ⁎banner);

Argument
banner A buffer of at least XPRS_MAXBUFFERLENGTH characters in which the null terminatedbanner string will be returned.

Example The following calls XPRSgetbanner to return banner information at the start of the program:
char banner[XPRS_MAXBUFFERLENGTH];
...
if(XPRSinit(NULL))
{

/⁎ The error message when XPRSinit fails is written to the banner. ⁎/
XPRSgetbanner(banner);
printf("%s\n", banner);
return 1;

}
XPRSgetbanner(banner);
printf("%s\n", banner);

Further informationThis function can most usefully be employed to return extra information if a problem occurs with
XPRSinit.

Related topics
XPRSinit.

Fair Isaac Corporation Confidential and Proprietary Information 184

Console and Library Functions

XPRSgetbasis

Purpose Returns the current basis into the user’s data arrays.
Synopsis

int XPRS_CC XPRSgetbasis(XPRSprob prob, int rstatus[], int cstatus[]);

Arguments
prob The current problem.
rstatus Integer array of length ROWS to the basis status of the slack, surplus or artificial variableassociated with each row. The status will be one of:

0 slack, surplus or artificial is non-basic at lower bound;
1 slack, surplus or artificial is basic;
2 slack or surplus is non-basic at upper bound.
3 slack or surplus is super-basic.May be NULL if not required.

cstatus Integer array of length COLS to hold the basis status of the columns in the constraintmatrix. The status will be one of:
0 variable is non-basic at lower bound, or superbasic at zero if the variable hasno lower bound;
1 variable is basic;
2 variable is non-basic at upper bound;
3 variable is super-basic.May be NULL if not required.

Example The following example minimizes a problem before saving the basis for later:
int rows, cols, ⁎rstatus, ⁎cstatus;
...
XPRSgetintattrib(prob,XPRS_ROWS,&rows);
XPRSgetintattrib(prob,XPRS_COLS,&cols);
rstatus = (int ⁎) malloc(sizeof(int)⁎rows);
cstatus = (int ⁎) malloc(sizeof(int)⁎cols);
XPRSlpoptimize(prob,"");
XPRSgetbasis(prob,rstatus,cstatus);

Related topics
XPRSgetpresolvebasis, XPRSloadbasis, XPRSloadpresolvebasis.

Fair Isaac Corporation Confidential and Proprietary Information 185

Console and Library Functions

XPRSgetbasisval

Purpose Returns the current basis status for a specific column or row.
Synopsis

int XPRS_CC XPRSgetbasisval(XPRSprob prob, int row, int column, int
⁎rstatus, int ⁎cstatus);

Arguments
prob The current problem.
row Row index to get the row basis status for.
column Column index to get the column basis status for.
rstatus Integer pointer where the value of the row basis status will be returned. May be NULL ifnot required.
cstatus Integer pointer where the value of the column basis status will be returned. May be

NULL if not required.
Related topics

XPRSgetbasis, XPRSgetpresolvebasis, XPRSloadbasis, XPRSloadpresolvebasis.

Fair Isaac Corporation Confidential and Proprietary Information 186

Console and Library Functions

XPRSgetcheckedmode

Purpose You can use this function to interrogate whether checking and validation of all Optimizer function callsis enabled for the current process. Checking and validation is enabled by default but can be disabled by
XPRSsetcheckedmode.

Synopsis
int XPRS_CC XPRSgetcheckedmode(int⁎ r_checked_mode);

Argument
r_checked_mode Variable that is set to 0 if checking and validation of Optimizer function calls isdisabled for the current process, non-zero otherwise.

Related topics
XPRSsetcheckedmode.

Fair Isaac Corporation Confidential and Proprietary Information 187

Console and Library Functions

XPRSgetcoef

Purpose Returns a single coefficient in the constraint matrix.
Synopsis

int XPRS_CC XPRSgetcoef(XPRSprob prob, int irow, int icol, double ⁎dval);

Arguments
prob The current problem.
irow Row of the constraint matrix.
icol Column of the constraint matrix.
dval Pointer to a double where the coefficient will be returned.

Further informationIt is quite inefficient to get several coefficients with the XPRSgetcoef function. It is better to use
XPRSgetcols or XPRSgetrows.

Related topics
XPRSgetcols, XPRSgetrows.

Fair Isaac Corporation Confidential and Proprietary Information 188

Console and Library Functions

XPRSgetcolrange

Purpose Returns the column ranges computed by XPRSrange.
Synopsis

int XPRS_CC XPRSgetcolrange(XPRSprob prob, double upact[], double loact[],
double uup[], double udn[], double ucost[], double lcost[]);

Arguments
prob The current problem.
upact Double array of length COLS for upper column activities.
loact Double array of length COLS for lower column activities.
uup Double array of length COLS for upper column unit costs.
udn Double array of length COLS for lower column unit costs.
ucost Double array of length COLS for upper costs.
lcost Double array of length COLS for lower costs.

Example Here the column ranges are retrieved into arrays as in the synopsis:
int cols;
double ⁎upact, ⁎loact, ⁎uup, ⁎udn, ⁎ucost, ⁎lcost;
...
XPRSgetintattrib(prob,XPRS_COLS,&cols);
upact = malloc(cols⁎(sizeof(double)));
loact = malloc(cols⁎(sizeof(double)));
uup = malloc(cols⁎(sizeof(double)));
udn = malloc(cols⁎(sizeof(double)));
ucost = malloc(cols⁎(sizeof(double)));
lcost = malloc(cols⁎(sizeof(double)));
XPRSrange(prob);
XPRSgetcolrange(prob,upact,loact,uup,udn,ucost,lcost);

Further informationThe activities and unit costs are obtained from the range file (problem_name.rng). The meaning of theupper and lower column activities and upper and lower unit costs in the ASCII range files is described inAppendix A.
Related topics

XPRSgetrowrange, XPRSrange.

Fair Isaac Corporation Confidential and Proprietary Information 189

Console and Library Functions

XPRSgetcols, XPRSgetcols64

Purpose Returns the nonzeros in the constraint matrix for the columns in a given range.
Synopsis

int XPRS_CC XPRSgetcols(XPRSprob prob, int mstart[], int mrwind[], double
dmatval[], int size, int ⁎nels, int first, int last);

int XPRS_CC XPRSgetcols64(XPRSprob prob, XPRSint64 mstart[], int mrwind[],
double dmatval[], XPRSint64 size, XPRSint64 ⁎nels, int first, int
last);

Arguments
prob The current problem.
mstart Integer array which will be filled with the indices indicating the starting offsets in the

mrwind and dmatval arrays for each requested column. It must be of length at least
last-first+2. Column i starts at position mstart[i] in the mrwind and dmatvalarrays, and has mstart[i+1]-mstart[i] elements in it. May be NULL if not required.

mrwind Integer array of length size which will be filled with the row indices of the nonzerocoefficents for each column. May be NULL if not required.
dmatval Double array of length size which will be filled with the nonzero coefficient values. Maybe NULL if not required.
size The size of the mrwind and dmatval arrays. This is the maximum number of nonzerocoefficients that the Optimizer is allowed to return.
nels Pointer to an integer where the number of nonzero coefficients in the selected columnswill be returned. If nels exceeds size, only the size first nonzero coefficients will bereturned.
first First column in the range.
last Last column in the range.

Example The following examples retrieves the number of nonzero coefficients in all columns of the problem:
int nels, cols, first = 0, last;
...
XPRSgetintattrib(prob,XPRS_COLS,&cols);
last = cols-1;
XPRSgetcols(prob,NULL,NULL,NULL,0,&nels,first,last);

Further informationIt is possible to obtain just the number of elements in the range of columns by replacing mstart,
mrwind and dmatval by NULL, as in the example. In this case, sizemust be set to 0 to indicate thatthe length of arrays passed is zero. This is demonstrated in the example above.

Related topics
XPRSgetrows.

Fair Isaac Corporation Confidential and Proprietary Information 190

Console and Library Functions

XPRSgetcoltype

Purpose Returns the column types for the columns in a given range.
Synopsis

int XPRS_CC XPRSgetcoltype(XPRSprob prob, char coltype[], int first, int
last);

Arguments
prob The current problem.
coltype Character array of length last-first+1 where the column types will be returned:

C indicates a continuous variable;
I indicates an integer variable;
B indicates a binary variable;
S indicates a semi-continuous variable;
R indicates a semi-continuous integer variable;
P indicates a partial integer variable.

first First column in the range.
last Last column in the range.

Example This example finds the types for all columns in the matrix and prints them to the console:
int cols, i;
char ⁎types;
...
XPRSgetintattrib(prob,XPRS_COLS,&cols);
types = (char ⁎)malloc(sizeof(char)⁎cols);
XPRSgetcoltype(prob,types,0,cols-1);

for(i=0;i<cols;i++) printf("%c\n",types[i]);

Related topics
XPRSchgcoltype, XPRSgetrowtype.

Fair Isaac Corporation Confidential and Proprietary Information 191

Console and Library Functions

XPRSgetcontrolinfo

Purpose Accesses the id number and the type information of a control given its name. A control name may befor example XPRS_PRESOLVE. Names are case-insensitive and may or may not have the XPRS_ prefix.The id number is the constant used to identify the control for calls to functions such as
XPRSgetintcontrol.
The function will return an id number of 0 and a type value of XPRS_TYPE_NOTDEFINED if the name isnot recognized as a control name. Note that this will occur if the name is an attribute name and not acontrol name.
The type information returned will be one of the below integer constants defined in the xprs.h headerfile.XPRS_TYPE_NOTDEFINED The name was not recognized.XPRS_TYPE_INT 32 bit integer.XPRS_TYPE_INT64 64 bit integer.XPRS_TYPE_DOUBLE Double precision floating point.XPRS_TYPE_STRING String.

Synopsis
int XPRS_CC XPRSgetcontrolinfo(XPRSprob prob, const char⁎ sCaName, int⁎

iHeaderId, int⁎ iTypeinfo);

Arguments
prob The current problem.
sCaName The name of the control to be queried. Names are case-insensitive and may or may nothave the XPRS_ prefix. A full list of all controls may be found in 9, or from the list in the

xprs.h header file.
iHeaderId Pointer to an integer where the id number will be returned.
iTypeInfo Pointer to an integer where the type information will be returned.

Example The following code example obtains the id number and the type information of the control or attributewith name given by sCaName. Note that the name happens to be a control name in this example:
const char ⁎sCaName = "presolve";
int iHeaderId, iTypeInfo;
...
if(XPRSgetattribinfo(prob, sCaName, &iHeaderId,

&iTypeInfo) || iHeaderId==0) {
if(XPRSgetcontrolinfo(prob, sCaName, &iHeaderId,

&iTypeInfo) || iHeaderId==0) {
printf("Unrecognized name: %s\n", sCaName);

}
}

Related topics
XPRSgetattribinfo.

Fair Isaac Corporation Confidential and Proprietary Information 192

Console and Library Functions

XPRSgetcpcutlist

Purpose Returns a list of cut indices from the cut pool.
Synopsis

int XPRS_CC XPRSgetcpcutlist(XPRSprob prob, int itype, int interp, double
delta, int ⁎ncuts, int size, XPRScut mcutind[], double dviol[]);

Arguments
prob The current problem.
itype The user defined type of the cuts to be returned.
interp Way in which the cut type is interpreted:

-1 get all cuts;
1 treat cut types as numbers;
2 treat cut types as bit maps - get cut if any bit matches any bit set in itype;
3 treat cut types as bit maps - get cut if all bits match those set in itype.

delta Only those cuts with a signed violation greater than delta will be returned.
ncuts Pointer to the integer where the number of cuts of type itype in the cut pool will bereturned.
size Maximum number of cuts to be returned.
mcutind Array of length size where the pointers to the cuts will be returned.
dviol Double array of length size where the values of the signed violations of the cuts will bereturned.

Further information

1. The violated cuts can be obtained by setting the delta parameter to the size of the (signed) violationrequired. If unviolated cuts are required as well, deltamay be set to XPRS_MINUSINFINITY which isdefined in the library header file.
2. If the number of active cuts is greater than size, only size cuts will be returned and ncuts will be setto the number of active cuts. If ncuts is less than size, then only ncuts positions will be filled in

mcutind.
3. In case of a cut of type ’L’, the violation equals the negative of the slack associated with the row of thecut. In case of a cut of type ’G’, the violation equals the slack associated with the row of the cut. Forcuts of type ’E’, the violation equals the absolute value of the slack.
4. Please note that the violations returned are absolute violations, while feasibility is checked by theOptimizer in the scaled problem.

Related topics
XPRSdelcpcuts, XPRSgetcpcuts, XPRSgetcutlist, XPRSloadcuts, XPRSgetcutmap,
XPRSgetcutslack, Section 5.9.

Fair Isaac Corporation Confidential and Proprietary Information 193

Console and Library Functions

XPRSgetcpcuts, XPRSgetcpcuts64

Purpose Returns cuts from the cut pool. A list of cut pointers in the array mindexmust be passed to the routine.The columns and elements of the cut will be returned in the regions pointed to by the mcols and
dmatval parameters. The columns and elements will be stored contiguously and the starting point ofeach cut will be returned in the region pointed to by the mstart parameter.

Synopsis
int XPRS_CC XPRSgetcpcuts(XPRSprob prob, const XPRScut mindex[], int ncuts,

int size, int mtype[], char qrtype[], int mstart[], int mcols[],
double dmatval[], double drhs[]);

int XPRS_CC XPRSgetcpcuts64(XPRSprob prob, const XPRScut mindex[], int
ncuts, XPRSint64 size, int mtype[], char qrtype[], XPRSint64
mstart[], int mcols[], double dmatval[], double drhs[]);

Arguments
prob The current problem.
mindex Array of length ncuts containing the pointers to the cuts.
ncuts Number of cuts to be returned.
size Maximum number of column indices of the cuts to be returned.
mtype Integer array of length at least ncuts where the cut types will be returned. May be NULLif not required.
qrtype Character array of length at least ncuts where the sense of the cuts (L, G, or E) will bereturned. May be NULL if not required.
mstart Integer array of length at least ncuts+1 containing the offsets into the mcols and

dmatval arrays. The last element indicates where cut ncuts+1 would start. May beNULL if not required.
mcols Integer array of length size where the column indices of the cuts will be returned. Maybe NULL if not required.
dmatval Double array of length size where the matrix values will be returned. May be NULL ifnot required.
drhs Double array of length at least ncuts where the right hand side elements for the cutswill be returned. May be NULL if not required.

Example The following example gets the first two cuts:
int mtype[2], mstart[3];
int ⁎mcols;
int mindex[] = { 0, 1 };
double drhs[2];
double ⁎dmatval;
char ⁎ qrtype;
...
XPRSgetcpcuts(prob,mindex,2,0,NULL,NULL,mstart,NULL,NULL,NULL);
mcols = (int⁎) malloc(mstart[2]⁎sizeof(int));
dmatval = (double⁎) malloc(mstart[2]⁎sizeof(double));
XPRSgetcpcuts(prob,mindex,2,0,mtype,qrtype,mstart,mcols,dmatval,drhs);

Further informationIt is possible to obtain just the number of nonzeros in the range of queried cuts by calling the functionswith all output arays except for mstart equaling NULL and checking the value of mstart[ncuts]. In

Fair Isaac Corporation Confidential and Proprietary Information 194

Console and Library Functions

this case, sizemust be set to 0 to indicate that the length of arrays passed is 0.
Related topics

XPRSgetcpcutlist, XPRSgetcutlist, 5.9.

Fair Isaac Corporation Confidential and Proprietary Information 195

Console and Library Functions

XPRSgetcutlist

Purpose Retrieves a list of cut pointers for the cuts active at the current node.
Synopsis

int XPRS_CC XPRSgetcutlist(XPRSprob prob, int itype, int interp, int
⁎ncuts, int size, XPRScut mcutind[]);

Arguments
prob The current problem.
itype User defined type of the cuts to be returned. A value of -1 indicates return all active cuts.
interp Way in which the cut type is interpreted:

-1 get all cuts;
1 treat cut types as numbers;
2 treat cut types as bit maps - get cut if any bit matches any bit set in itype;
3 treat cut types as bit maps - get cut if all bits match those set in itype.

ncuts Pointer to the integer where the number of active cuts of type itype will be returned.
size Maximum number of cuts to be retrieved.
mcutind Array of length size where the pointers to the cuts will be returned.

Further informationIf the number of active cuts is greater than size, then size cuts will be returned and ncuts will be setto the number of active cuts. If ncuts is less than size, then only ncuts positions will be filled in
mcutind.

Related topics
XPRSgetcpcutlist, XPRSgetcpcuts, Section 5.9.

Fair Isaac Corporation Confidential and Proprietary Information 196

Console and Library Functions

XPRSgetcutmap

Purpose Used to return in which rows a list of cuts are currently loaded into the Optimizer. This is useful forexample to retrieve the duals associated with active cuts.
Synopsis

int XPRS_CC XPRSgetcutmap(XPRSprob prob, int ncuts, const XPRScut cuts[],
int cutmap[]);

Arguments
prob The current problem.
ncuts Number of cuts in the cuts array.
cuts Pointer array to the cuts for which the row index is requested.
cutmap Integer array of length ncuts, where the row indices are returned.

Further informationFor cuts currently not loaded into the problem, a row index of -1 is returned.
Related topics

XPRSgetcpcutlist, XPRSdelcpcuts, XPRSgetcutlist, XPRSloadcuts, XPRSgetcutslack,
XPRSgetcpcuts, Section 5.9.

Fair Isaac Corporation Confidential and Proprietary Information 197

Console and Library Functions

XPRSgetcutslack

Purpose Used to calculate the slack value of a cut with respect to the current LP relaxation solution. The slack iscalculated from the cut itself, and might be requested for any cut (even if it is not currently loaded intothe problem).
Synopsis

int XPRS_CC XPRSgetcutslack(XPRSprob prob, XPRScut cut, double⁎ dslack);

Arguments
prob The current problem.
cuts Pointer of the cut for which the slack is to be calculated.
dslack Double pointer where the value of the slack is returned.

Related topics
XPRSgetcpcutlist, XPRSdelcpcuts, XPRSgetcutlist, XPRSloadcuts, XPRSgetcutmap,
XPRSgetcpcuts, Section 5.9.

Fair Isaac Corporation Confidential and Proprietary Information 198

Console and Library Functions

XPRSgetdaysleft

Purpose Returns the number of days left until the license expires.
Synopsis

int XPRS_CC XPRSgetdaysleft(int ⁎days);

Argument
days Pointer to an integer where the number of days is to be returned. For a permanentlicense, the return value will be XPRS_MAXINT

Example The following calls XPRSgetdaysleft to print information about the license:
int days;
...
XPRSinit(NULL);
if(XPRSgetdaysleft(&days) != 0) {

printf("An error occurred\n");
} else if (days==XPRS_MAXINT) {

printf("License will never expire\n");
} else {

printf("License expires in %d days\n", days);
}

Related topics
XPRSgetbanner.

Fair Isaac Corporation Confidential and Proprietary Information 199

Console and Library Functions

XPRSgetdblattrib

Purpose Enables users to retrieve the values of various double problem attributes. Problem attributes are setduring loading and optimization of a problem.
Synopsis

int XPRS_CC XPRSgetdblattrib(XPRSprob prob, int ipar, double ⁎dval);

Arguments
prob The current problem.
ipar Problem attribute whose value is to be returned. A full list of all available problemattributes may be found in Chapter 10, or from the list in the xprs.h header file.
dval Pointer to a double where the value of the problem attribute will be returned.

Example The following obtains the optimal value of the objective function and displays it to the console:
double lpobjval;
...
XPRSlpoptimize(prob,"");
XPRSgetdblattrib(prob,XPRS_LPOBJVAL,&lpobjval);
printf("The maximum profit is %f\n",lpobjval);

Related topics
XPRSgetintattrib, XPRSgetstrattrib.

Fair Isaac Corporation Confidential and Proprietary Information 200

Console and Library Functions

XPRSgetdblcontrol

Purpose Retrieves the value of a given double control parameter.
Synopsis

int XPRS_CC XPRSgetdblcontrol(XPRSprob prob, int ipar, double ⁎dgval);

Arguments
prob The current problem.
ipar Control parameter whose value is to be returned. A full list of all controls may be foundin Chapter 9, or from the list in the xprs.h header file.
dgval Pointer to the location where the control value will be returned.

Example The following returns the integer feasibility tolerance:
XPRSgetdblcontrol(prob,XPRS_MIPTOL,&miptol);

Related topics
XPRSsetdblcontrol, XPRSgetintcontrol, XPRSgetstrcontrol.

Fair Isaac Corporation Confidential and Proprietary Information 201

Console and Library Functions

XPRSgetdirs

Purpose Used to return the directives that have been loaded into a matrix. Priorities, forced branching directionsand pseudo costs can be returned. If called after presolve, XPRSgetdirs will get the directives for thepresolved problem.
Synopsis

int XPRS_CC XPRSgetdirs(XPRSprob prob, int ⁎ndir, int mcols[], int mpri[],
char qbr[], double dupc[], double ddpc[]);

Arguments
prob The current problem.
ndir Pointer to an integer where the number of directives will be returned.
mcols Integer array of length ndir containing the column numbers (0, 1, 2,...) or negativevalues corresponding to special ordered sets (the first set numbered -1, the secondnumbered -2,...). May be NULL if not required.
mpri Integer array of length ndir containing the priorities for the columns and sets, wherecolumns/sets with smallest priority will be branched on first. May be NULL if notrequired.
qbr Character array of length ndir specifying the branching direction for each column orset:

U the entity is to be forced up;
D the entity is to be forced down;
N not specified.

dupc Double array of length ndir containing the up pseudo costs for the columns and sets.May be NULL if not required.
ddpc Double array of length ndir containing the down pseudo costs for the columns andsets. May be NULL if not required.

Further informationThe value ndir denotes the number of directives, at most MIPENTS, obtainable with
XPRSgetintattrib(prob,XPRS_MIPENTS,& mipents);.

Related topics
XPRSloaddirs, XPRSloadpresolvedirs.

Fair Isaac Corporation Confidential and Proprietary Information 202

Console and Library Functions

XPRSgetdualray

Purpose Retrieves a dual ray (dual unbounded direction) for the current problem, if the problem is found to beinfeasible.
Synopsis

int XPRS_CC XPRSgetdualray(XPRSprob prob, double dray[], int ⁎hasRay);

Arguments
prob The current problem.
dray Double array of length ROWS to hold the ray. May be NULL if not required.
hasRay This variable will be set to 1 if the Optimizer is able to return a dual ray, 0 otherwise.

Example The following code tries to retrieve a dual ray:
int rows;
double ⁎dualRay;
int hasRay;
...
XPRSgetintattrib(prob, XPRS_ROWS, &rows);
dualRay = malloc(rows⁎sizeof(double));
XPRSgetdualray(prob, dualRay, &hasRay);
if(!hasRay) printf("Could not retrieve a dual ray\n");

Further information

1. It is possible to retrieve a dual ray only when, after solving an LP problem, the final status (LPSTATUS)is XPRS_LP_INFEAS.
2. Dual rays are not post-solved. If the problem is in a presolved state, the dual ray that is returned will befor the presolved problem. If the problem was solved with presolve on and has been restored to theoriginal state (the default behavior), this function will not be able to return a ray. To ensure that a dualray can be obtained, it is recommended to solve a problem with presolve turned off (PRESOLVE = 0).

Related topics
XPRSgetprimalray.

Fair Isaac Corporation Confidential and Proprietary Information 203

Console and Library Functions

XPRSgetgencons, XPRSgetgencons64

Purpose Returns the general constraints y = f(x1, ..., xn, c1, ..., cm) in a given range.
Synopsis

int XPRS_CC XPRSgetgencons(XPRSprob prob, int type[], int resultant[], int
colstart[], int col[], int colsize, int ⁎ncols, int valstart[],
double val[], int valsize, int ⁎nvals, int first, int last);

int XPRS_CC XPRSgetgencons64(XPRSprob prob, int type[], int resultant[],
XPRSint64 colstart[], int col[], XPRSint64 colsize, XPRSint64 ⁎ncols,
XPRSint64 valstart[], double val[], XPRSint64 valsize, XPRSint64
⁎nvals, int first, int last);

Arguments
prob The current problem.
type NULL if not required or an integer array of length at least last-first+1 whichwill be filled with the types of the general constraints:

XPRS_GENCONS_MAX (0) indicates a maximum constraint;
XPRS_GENCONS_MIN (1) indicates a minimum constraint;
XPRS_GENCONS_AND (2) indicates an and constraint.
XPRS_GENCONS_OR (3) indicates an or constraint;
XPRS_GENCONS_ABS (4) indicates an absolute value constraint.

resultant Integer array which will be filled with the indices of the output variables y. It mustbe of length at least last-first+1. May be NULL if not required.
colstart Integer array of length at least last-first+2 which will be filled with the startindex of each general constraint in the col array. May be NULL if not required.
col Integer array which will be filled with the indices of the input variables xi. May be

NULL if not required.
colsize Maximum number of input columns to be retrieved.
ncols Pointer to return the number of input columns in the col array. If the number ofinput columns is greater than colsize, then only colsize elements will bereturned. May be NULL if not required.
valstart Integer array of length at least last-first+2 which will be filled with the startindex of each general constraint in the val array. May be NULL if not required.
val Integer array which will be filled with the constant values ci. May be NULL if notrequired.
valsize Maximum number of constant values to be retrieved.
nvals Pointer to return the number of constant values in the val array. If the number ofconstant values is greater than valsize, then only valsize elements will bereturned.May be NULL if not required.
first First general constraint in the range.
last Last general constraint in the range.

Example The following example retrieves all general constraints:
int ngencons;
int ⁎type;
int ⁎resultant;
int ⁎colstart;
int ⁎col;

Fair Isaac Corporation Confidential and Proprietary Information 204

Console and Library Functions

int colsize;
int ncols;
int ⁎valstart;
int ⁎val;
int valsize;
int nvals;
...
XPRSgetdblattrib(prob, XPRS_GENCONS, &ngencons);
XPRSgetgencons(prob, NULL, NULL, NULL, NULL, 0, &colsize, NULL, NULL, 0, &valsize, 0, ngencons - 1);
type = (int⁎) malloc(ngencons⁎sizeof(int));
resultant = (int⁎) malloc(ngencons⁎sizeof(int));
colstart = (int⁎) malloc((ngencons+1)⁎sizeof(int));
col = (int⁎) malloc(colsize⁎sizeof(int));
valstart = (int⁎) malloc((ngencons+1)⁎sizeof(int));
val = (double⁎) malloc(valsize⁎sizeof(double));
XPRSgetgencons(prob, type, resultant, colstart, col, colsize, &ncols, valstart, val, valsize, &nvals, 0, ngencons - 1);
...

Further informationIt is possible to obtain just the number of input columns and/or constant values in the range of generalconstraints by calling this function with colsize and valsize set to 0, in which case the requiredsize for the arrays will be returned in ncols and nvals (one of them may be NULL if only the other isrequired).
Related topics

XPRSaddgencons, XPRSdelgencons.

Fair Isaac Corporation Confidential and Proprietary Information 205

Console and Library Functions

XPRSgetglobal, XPRSgetglobal64

Purpose Retrieves global information about a problem. It must be called before XPRSmipoptimize if thepresolve option is used.
Synopsis

int XPRS_CC XPRSgetglobal(XPRSprob prob, int ⁎nglents, int ⁎sets, char
qgtype[], int mgcols[], double dlim[], char qstype[], int msstart[],
int mscols[], double dref[]);

int XPRS_CC XPRSgetglobal64(XPRSprob prob, int ⁎nglents, int ⁎sets, char
qgtype[], int mgcols[], double dlim[], char qstype[], XPRSint64
msstart[], int mscols[], double dref[]);

Arguments
prob The current problem.
nglents Pointer to the integer where the number of binary, integer, semi-continuous,semi-continuous integer and partial integer entities will be returned. This is equal to theproblem attribute MIPENTS.
sets Pointer to the integer where the number of SOS1 and SOS2 sets will be returned. It canbe retrieved from the problem attribute SETS.
qgtype Character array of length nglents where the entity types will be returned. The types willbe one of:

B binary variables;
I integer variables;
P partial integer variables;
S semi-continuous variables;
R semi-continuous integer variables.

mgcols Integer array of length nglents where the column indices of the global entities will bereturned.
dlim Double array of length nglents where the limits for the partial integer variables andlower bounds for the semi-continuous and semi-continuous integer variables will bereturned (any entries in the positions corresponding to binary and integer variables willbe meaningless).
qstype Character array of length sets where the set types will be returned. The set types willbe one of:

1 SOS1 type sets;
2 SOS2 type sets.

msstart Integer array where the offsets into the mscols and dref arrays indicating the start ofthe sets will be returned. This array must be of length sets+1, the final element willcontain the offset where set sets+1 would start and equals the length of the mscolsand dref arrays, SETMEMBERS.
mscols Integer array of length SETMEMBERS where the columns in each set will be returned.
dref Double array of length SETMEMBERS where the reference row entries for each memberof the sets will be returned.

Example The following obtains the global variables and their types in the arrays mgcols and qrtype:
int nglents, nsets, ⁎mgcols;
char ⁎qgtype;
...
XPRSgetglobal(prob,&nglents,&nsets,NULL,NULL,NULL,NULL,

Fair Isaac Corporation Confidential and Proprietary Information 206

Console and Library Functions

NULL,NULL,NULL);
mgcols = malloc(nglents⁎sizeof(int));
qgtype = malloc(nglents⁎sizeof(char));
XPRSgetglobal(prob,&nglents,&nsets,qgtype,ngcols,NULL,

NULL,NULL,NULL,NULL);

Further informationAny of the arguments except prob, nglents and setsmay be NULL if not required.
Related topics

XPRSloadglobal, XPRSloadqglobal.

Fair Isaac Corporation Confidential and Proprietary Information 207

Console and Library Functions

XPRSgetiisdata

Purpose Returns information for an Irreducible Infeasible Set: size, variables (row and column vectors) andconflicting sides of the variables, duals and reduced costs.
Synopsis

int XPRS_CC XPRSgetiisdata(XPRSprob prob, int num, int ⁎rownumber, int
⁎colnumber, int miisrow[], int miiscol[], char constrainttype[], char
colbndtype[], double duals[], double rdcs[], char isolationrows[],
char isolationcols[]);

Arguments
prob The current problem.
num The ordinal number of the IIS to get data for.
rownumber Pointer to an integer where the number of rows in the IIS will be returned.
colnumber Pointer to an integer where the number of bounds in the IIS will be returned.
miisrow Indices of rows in the IIS. Can be NULL if not required.
miiscol Indices of bounds (columns) in the IIS. Can be NULL if not required.
constrainttype Sense of rows in the IIS:

L for less or equal row;
G for greater or equal row.
E for an equality row (for a non LP IIS);
1 for a SOS1 row;
2 for a SOS2 row;
I for an indicator row.Can be NULL if not required.

colbndtype Sense of bound in the IIS:
U for upper bound;
L for lower bound.
F for fixed columns (for a non LP IIS);
B for a binary column;
I for an integer column;
P for a partial integer columns;
S for a semi-continuous column;
R for a semi-continuous integer column.Can be NULL if not required.

duals The dual multipliers associated with the rows. Can be NULL if not required.
rdcs The dual multipliers (reduced costs) associated with the bounds. Can be NULL if notrequired.
isolationrows The isolation status of the rows:

-1 if isolation information is not available for row (run iis isolations);
0 if row is not in isolation;
1 if row is in isolation.Can be NULL if not required.

isolationcols The isolation status of the bounds:
-1 if isolation information is not available for column (run iis isolations);
0 if column is not in isolation;
1 if column is in isolation. Can be NULL if not required.

Example This example first retrieves the size of IIS 1, then gets the detailed information for the IIS.
XPRSgetiisdata(myprob, 1, &nrow, &ncol, NULL, NULL, NULL, NULL,

Fair Isaac Corporation Confidential and Proprietary Information 208

Console and Library Functions

NULL,NULL,NULL,NULL);

rows = malloc(nrow⁎sizeof(int));
cols = malloc(ncol⁎sizeof(int));
constrainttype = malloc(nrow);
colbndtype = malloc(ncol);
duals = malloc(nrow⁎sizeof(double));
rdcs = malloc(ncol⁎sizeof(double));
isolationrows = malloc(nrow);
isolationcols = malloc(ncol);
XPRSgetiisdata(myprob, 1, &nrow, &ncol, rows, cols, constrainttype,

colbndtype, duals, rdcs, isolationrows, isolationcols);

Further information
1. Calling IIS from the console automatically prints most of the above IIS information to the screen.Extra information can be printed with the IIS -p command.
2. IISs are numbered from 1 to NUMIIS. Index number 0 refers to the IIS approximation.
3. If miisrow and miiscol both are NULL, only the rownumber and colnumber are returned.
4. The arrays may be NULL if not required. However, arrays constrainttype, duals and

isolationrows are only returned if miisrow is not NULL. Similarly, arrays colbndtype, rdcs and
isolationcols are only returned if miiscol is not NULL.

5. All the non NULL arrays should be of length rownumber or colnumber, respectively.
6. For the initial IIS approximation (num = 0) the number of rows and columns with a nonzero Lagrangemultiplier (dual/reduced cost respectively) are returned. Please note that, in such cases, it might benecessary to call XPRSiisstatus to retrieve the necessary size of the return arrays.
7. If there are Special Ordered Sets in the IIS, their number is included in the miisrow array.
8. For non LP IISs, some column indices may appear more than once in the miiscol array, for examplean integrality and a bound restriction for the same column.
9. Duals, reduced cost and isolation information is not available for nonlinear IIS problems, and for thosethe arrays are filled with zero values in case they are provided.

Related topics
XPRSiisall, XPRSiisclear, XPRSiisfirst, XPRSiisisolations, XPRSiisnext,
XPRSiisstatus, XPRSiiswrite, IIS, Section A.7.

Fair Isaac Corporation Confidential and Proprietary Information 209

Console and Library Functions

XPRSgetindex

Purpose Returns the index for a specified row or column name.
Synopsis

int XPRS_CC XPRSgetindex(XPRSprob prob, int type, const char ⁎name, int
⁎seq);

Arguments
prob The current problem.
type 1 if a row index is required;

2 if a column index is required.
name Null terminated string.
seq Pointer of the integer where the row or column index number will be returned. A value of

-1 will be returned if the row or column does not exist.
Example The following example loads problem and checks to see if "n 0203" is the name of a row or column:

int seqr, seqc;
...
XPRSreadprob(prob,"problem","");

XPRSgetindex(prob,1,"n 0203", &seqr);
XPRSgetindex(prob,2,"n 0203", &seqc);
if(seqr==-1 && seqc ==-1) printf("n 0203 not there\n");
if(seqr!= -1) printf("n 0203 is row %d\n",seqr);
if(seqc!= -1) printf"n 0203 is column %d\n",seqc);

Related topics
XPRSaddnames.

Fair Isaac Corporation Confidential and Proprietary Information 210

Console and Library Functions

XPRSgetindicators

Purpose Returns the indicator constraint condition (indicator variable and complement flag) associated to therows in a given range.
Synopsis

int XPRS_CC XPRSgetindicators(XPRSprob prob, int inds[], int comps[], int
first, int last);

Arguments
prob The current problem.
inds Integer array of length last-first+1 where the column indices of the indicatorvariables are to be placed.
comps Integer array of length last-first+1 where the indicator complement flags will bereturned:

0 not an indicator constraint (in this case the corresponding entry in the indsarray is ignored);
1 for indicator constraints with condition "bin = 1";
-1 for indicator constraints with condition "bin = 0";

first First row in the range.
last Last row in the range (inclusive).

Example The following example retrieves information about all indicator constraints in the matrix and prints alist of their indices.
int i, rows;
double ⁎inds, ⁎comps;
...
XPRSgetintattrib(prob,XPRS_ROWS,&rows);
inds = malloc(rows⁎(sizeof(int)));
comps = malloc(rows⁎(sizeof(int)));
XPRSgetindicators(prob,inds,comps,0,rows-1);

printf("Indicator rows:");
for(i=0; i<rows; i++) if(comps[i]!=0) printf(" %d", i);
printf("\n");

Related topics
XPRSsetindicators, XPRSdelindicators.

Fair Isaac Corporation Confidential and Proprietary Information 211

Console and Library Functions

XPRSgetinfeas

Purpose Returns a list of infeasible primal and dual variables.
Synopsis

int XPRS_CC XPRSgetinfeas(XPRSprob prob, int ⁎npv, int ⁎nps, int ⁎nds, int
⁎ndv, int mx[], int mslack[], int mdual[], int mdj[]);

Arguments
prob The current problem.
npv Pointer to an integer where the number of primal infeasible variables is returned.
nps Pointer to an integer where the number of primal infeasible rows is returned.
nds Pointer to an integer where the number of dual infeasible rows is returned.
ndv Pointer to an integer where the number of dual infeasible variables is returned.
mx Integer array of length npv where the primal infeasible variables will be returned. Maybe NULL if not required.
mslack Integer array of length nps where the primal infeasible rows will be returned. May be

NULL if not required.
mdual Integer array of length nds where the dual infeasible rows will be returned. May be NULLif not required.
mdj Integer array of length ndv where the dual infeasible variables will be returned. May be

NULL if not required.
Error values

91 A current problem is not available.
422 A solution is not available.

Related controls
Double

FEASTOL Tolerance on RHS.
OPTIMALITYTOL Reduced cost tolerance.

Example In this example, XPRSgetinfeas is first called with nulled integer arrays to get the number ofinfeasible entries. Then space is allocated for the arrays and the function is again called to fill them in:
int npv, nps, nds, ndv, ⁎mx, ⁎mslack, ⁎mdual, ⁎mdj;
...
XPRSgetinfeas(prob, &npv, &nps, &nds, &ndv,

NULL, NULL, NULL, NULL);
mx = malloc(npv ⁎ sizeof(⁎mx));
mslack = malloc(nps ⁎ sizeof(⁎mslack));
mdual = malloc(nds ⁎ sizeof(⁎mdual));
mdj = malloc(ndv ⁎ sizeof(⁎mdj));
XPRSgetinfeas(prob, &npv, &nps, &nds, &ndv,

mx, mslack, mdual, mdj);

Further information
1. To find the infeasibilities in a previously saved solution, the solution must first be loaded into memorywith the XPRSreadbinsol (READBINSOL) function.
2. If any of the last four arguments are set to NULL, the corresponding number of infeasibilities is stillreturned.

Fair Isaac Corporation Confidential and Proprietary Information 212

Console and Library Functions

Related topics
XPRSgetscaledinfeas, XPRSgetiisdata, XPRSiisall, XPRSiisclear, XPRSiisfirst,
XPRSiisisolations, XPRSiisnext, XPRSiisstatus, XPRSiiswrite, IIS.

Fair Isaac Corporation Confidential and Proprietary Information 213

Console and Library Functions

XPRSgetintattrib, XPRSgetintattrib64

Purpose Enables users to recover the values of various integer problem attributes. Problem attributes are setduring loading and optimization of a problem.
Synopsis

int XPRS_CC XPRSgetintattrib(XPRSprob prob, int ipar, int ⁎ival);

int XPRS_CC XPRSgetintattrib64(XPRSprob prob, int ipar, XPRSint64 ⁎ival);

Arguments
prob The current problem.
ipar Problem attribute whose value is to be returned. A full list of all problem attributes maybe found in Chapter 10, or from the list in the xprs.h header file.
ival Pointer to an integer where the value of the problem attribute will be returned.

Example The following obtains the number of columns in the matrix and allocates space to obtain lower boundsfor each column:
int cols;
double ⁎lb;
...
XPRSgetintattrib(prob,XPRS_COLS,&cols);
lb = (double ⁎) malloc(sizeof(double)⁎cols);
XPRSgetlb(prob,lb,0,cols-1);

Related topics
XPRSgetdblattrib, XPRSgetstrattrib.

Fair Isaac Corporation Confidential and Proprietary Information 214

Console and Library Functions

XPRSgetintcontrol, XPRSgetintcontrol64

Purpose Enables users to recover the values of various integer control parameters
Synopsis

int XPRS_CC XPRSgetintcontrol(XPRSprob prob, int ipar, int ⁎igval);

int XPRS_CC XPRSgetintcontrol64(XPRSprob prob, int ipar, XPRSint64 ⁎igval);

Arguments
prob The current problem.
ipar Control parameter whose value is to be returned. A full list of all controls may be foundin Chapter 9, or from the list in the xprs.h header file.
igval Pointer to an integer where the value of the control will be returned.

Example The following obtains the value of DEFAULTALG and outputs it to screen:
int defaultalg;
...
XPRSlpoptimize(prob,"");
XPRSgetintcontrol(prob,XPRS_DEFAULTALG,&defaultalg);
printf("DEFAULTALG is %d\n",defaultalg);

Further informationSome control parameters, such as SCALING, are bitmaps. Each bit controls a different behavior. If set,bit 0 has value 1, bit 1 has value 2, bit 2 has value 4, and so on.
Related topics

XPRSsetintcontrol, XPRSgetdblcontrol, XPRSgetstrcontrol.

Fair Isaac Corporation Confidential and Proprietary Information 215

Console and Library Functions

XPRSgetlastbarsol

Purpose Used to obtain the last barrier solution values following optimization that used the barrier solver.
Synopsis

int XPRS_CC XPRSgetastbarsol(XPRSprob prob, double x[], double slack[],
double dual[], double dj[], int ⁎barsolstatus);

Arguments
prob The current problem.
x Double array of length COLS where the values of the primal variables will be returned.May be NULL if not required.
slack Double array of length ROWS where the values of the slack variables will be returned.May be NULL if not required.
dual Double array of length ROWS where the values of the dual variables (cTBB–1) will bereturned. May be NULL if not required.
dj Double array of length COLS where the reduced cost for each variable (cT – cTBB

–1A) willbe returned. May be NULL if not required.
barsolstatus Status of the last barrier solve. Value matches that of XPRS_LPSTATUS should thesolve have been stopped immediately after the barrier.

Further information
1. If the barrier solver has not been used, barsolstatus will return XPRS_LP_UNSOLVED.
2. The barrier solution or the solution candidate is always available if the status is not

XPRS_LP_UNSOLVED.
3. The last barrier solution is available until the next solve, and is not invalidated by otherwise workingwith the problem.

Related topics
XPRSgetlpsol

Fair Isaac Corporation Confidential and Proprietary Information 216

Console and Library Functions

XPRSgetlasterror

Purpose Returns the error message corresponding to the last error encountered by a library function.
Synopsis

int XPRS_CC XPRSgetlasterror(XPRSprob prob, char ⁎errmsg);

Arguments
prob The current problem.
errmsg A 512 character buffer where the last error message will be returned.

Example The following shows how this function might be used in error-checking:
void error(XPRSprob myprob, char ⁎function)
{

char errmsg[512];
XPRSgetlasterror(myprob,errmsg);
printf("Function %s did not execute correctly: %s\n",

function, errmsg);
XPRSdestroyprob(myprob);
XPRSfree();
exit(1);

}

where the main function might contain lines such as:
XPRSprob prob;
...
if(XPRSreadprob(prob,"myprob",""))

error(prob,"XPRSreadprob");

Related topics
ERRORCODE, XPRSaddcbmessage, XPRSsetlogfile, Chapter 11.

Fair Isaac Corporation Confidential and Proprietary Information 217

Console and Library Functions

XPRSgetlb

Purpose Returns the lower bounds for the columns in a given range.
Synopsis

int XPRS_CC XPRSgetlb(XPRSprob prob, double lb[], int first, int last);

Arguments
prob The current problem.
lb Double array of length last-first+1 where the lower bounds are to be placed.
first First column in the range.
last Last column in the range.

Example The following example retrieves the lower bounds for the columns of the current problem:
int cols;
double ⁎lb;
...
XPRSgetintattrib(prob,XPRS_COLS,&cols);
lb = (double ⁎) malloc(sizeof(double)⁎cols);
XPRSgetlb(prob,lb,0,cols-1);

Further informationValues greater than or equal to XPRS_PLUSINFINITY should be interpreted as infinite; values lessthan or equal to XPRS_MINUSINFINITY should be interpreted as infinite and negative.
Related topics

XPRSchgbounds, XPRSgetub.

Fair Isaac Corporation Confidential and Proprietary Information 218

Console and Library Functions

XPRSgetlicerrmsg

Purpose Retrieves an error message describing the last licensing error, if any occurred.
Synopsis

int XPRS_CC XPRSgetlicerrmsg(char ⁎buffer, int length);

Arguments
buffer Buffer long enough to hold the error message (including a null terminator).
length Length of the buffer.

Example The following calls XPRSgetlicerrmsg to find out why XPRSinit failed:
char message[512];
...
if(XPRSinit(NULL))
{

XPRSgetlicerrmsg(message,512);
printf("%s\n", message);

}

Further information
1. The error message includes an error code, which in case the user wishes to use it is also returned bythe function. If there was no licensing error the function returns 0.
2. It’s recommended that you pass a buffer of at least 2048 bytes as licensing errors can be qute long. Ifthe error message is too large to fit in the buffer, the first length-1 characters will be returned.

Related topics
XPRSinit.

Fair Isaac Corporation Confidential and Proprietary Information 219

Console and Library Functions

XPRSgetlpsol

Purpose Used to obtain the LP solution values following optimization.
Synopsis

int XPRS_CC XPRSgetlpsol(XPRSprob prob, double x[], double slack[], double
dual[], double dj[]);

Arguments
prob The current problem.
x Double array of length COLS where the values of the primal variables will be returned.May be NULL if not required.
slack Double array of length ROWS where the values of the slack variables will be returned.May be NULL if not required.
dual Double array of length ROWS where the values of the dual variables (cTBB–1) will bereturned. May be NULL if not required.
dj Double array of length COLS where the reduced cost for each variable (cT – cTBB

–1A) willbe returned. May be NULL if not required.
Example The following sequence of commands will get the LP solution (x) at the top node of a MIP and theoptimal MIP solution (y):

int cols;
double ⁎x, ⁎y;
...
XPRSmipoptimize(prob,"l");
XPRSgetintattrib(prob,XPRS_ORIGINALCOLS,&cols);
x = malloc(cols⁎sizeof(double));
XPRSgetlpsol(prob,x,NULL,NULL,NULL);
XPRSmipoptimize(prob,"");
y = malloc(cols⁎sizeof(double));
XPRSgetmipsol(prob,y,NULL);

Further information
1. If called during a global callback the solution of the current node will be returned.
2. When an integer solution is found during a global search, it is always set up as a solution to the currentnode; therefore the integer solution is available as the current node solution and can be retrieved with

XPRSgetlpsol and XPRSgetpresolvesol.
3. If the matrix is modified after calling XPRSlpoptimize, then the solution will no longer be available.
4. If the problem has been presolved, then XPRSgetlpsol returns the solution to the original problem.The only way to obtain the presolved solution is to call the related function, XPRSgetpresolvesol.

Related topics
XPRSgetlpsolval, XPRSgetpresolvesol, XPRSgetmipsol, XPRSwriteprtsol,
XPRSwritesol.

Fair Isaac Corporation Confidential and Proprietary Information 220

Console and Library Functions

XPRSgetlpsolval

Purpose Used to obtain a single LP solution value following optimization.
Synopsis

int XPRS_CC XPRSgetlpsolval(XPRSprob prob, int col, int row, double ⁎x,
double ⁎slack, double ⁎dual, double ⁎dj);

Arguments
prob The current problem.
col Column index of the variable for which to return the solution value.
row Row index of the constraint for which to return the solution value.
x Double pointer where the value of the primal variable will be returned. May be NULL ifnot required.
slack Double pointer where the value of the slack variable will be returned. May be NULL if notrequired.
dual Double pointer where the value of the dual variable (cTBB–1) will be returned. May be

NULL if not required.
dj Double pointer where the reduced cost for the variable (cT – cTBB

–1A) will be returned.May be NULL if not required.
Further informationThis function is currently not supported if the problem is in a presolved state.
Related topics

XPRSgetlpsol, XPRSgetpresolvesol, XPRSgetmipsol, XPRSwriteprtsol, XPRSwritesol.

Fair Isaac Corporation Confidential and Proprietary Information 221

Console and Library Functions

XPRSgetmessagestatus

Purpose Retrieves the current suppression status of a message.
Synopsis

int XPRS_CC XPRSgetmessagestatus(XPRSprob prob, int errcode, int ⁎status);

Arguments
prob The problem to check for the suppression status of the message error code. Use NULLto check for the global suppression status of the message errcode.
errcode The id number of the message. Refer to Chapter 11 for a list of possible messagenumbers.
status Non-zero if the message is not suppressed; 0 otherwise.

Further informationIf a message is suppressed globally then the message will always have status return zero from
XPRSgetmessagestatus when prob is non-NULL.

Related topics
XPRSsetmessagestatus.

Fair Isaac Corporation Confidential and Proprietary Information 222

Console and Library Functions

XPRSgetmipsol

Purpose Used to obtain the solution values of the last MIP solution that was found.
Synopsis

int XPRS_CC XPRSgetmipsol(XPRSprob prob, double x[], double slack[]);

Arguments
prob The current problem.
x Double array of length COLS where the values of the primal variables will be returned.May be NULL if not required.
slack Double array of length ROWS where the values of the slack variables will be returned.May be NULL if not required.

Example The following sequence of commands will get the solution (x) of the last MIP solution for a problem:
int cols;
double ⁎x;
...
XPRSmipoptimize(prob,"");
XPRSgetintattrib(prob,XPRS_ORIGINALCOLS,&cols);
x = malloc(cols⁎sizeof(double));
XPRSgetmipsol(prob,x,NULL);

Further information
1. Warning: If allocating space for the MIP solution the row and column sizes must be obtained for theoriginal problem and not for the presolve problem. They can be obtained before optimizing or aftercalling XPRSpostsolve for the case where the global search has not completed.
2. During a global intsol or preintsol callback, in order to retrieve the corresponding integer solution,use either XPRSgetlpsol or XPRSgetpresolvesol, not XPRSgetmipsol (see the documentationof these callbacks for an explanation).

Related topics
XPRSgetmipsolval, XPRSgetpresolvesol, XPRSwriteprtsol, XPRSwritesol.

Fair Isaac Corporation Confidential and Proprietary Information 223

Console and Library Functions

XPRSgetmipsolval

Purpose Used to obtain a single solution value of the last MIP solution that was found.
Synopsis

int XPRS_CC XPRSgetmipsolval(XPRSprob prob, int col, int row, double ⁎x,
double ⁎slack);

Arguments
prob The current problem.
col Column index of the variable for which to return the solution value.
row Row index of the constraint for which to return the solution value.
x Double pointer where the value of the primal variable will be returned. May be NULL ifnot required.
slack Double pointer where the value of the slack variable will be returned. May be NULL if notrequired.

Related topics
XPRSgetmipsol, XPRSgetpresolvesol, XPRSwriteprtsol, XPRSwritesol.

Fair Isaac Corporation Confidential and Proprietary Information 224

Console and Library Functions

XPRSgetmqobj, XPRSgetmqobj64

Purpose Returns the nonzeros in the quadratic objective coefficients matrix for the columns in a given range. Toachieve maximum efficiency, XPRSgetmqobj returns the lower triangular part of this matrix only.
Synopsis

int XPRS_CC XPRSgetmqobj (XPRSprob prob, int mstart[], int mclind[], double
dobjval[], int size, int ⁎nels, int first, int last);

int XPRS_CC XPRSgetmqobj64 (XPRSprob prob, XPRSint64 mstart[], int
mclind[], double dobjval[], XPRSint64 size, XPRSint64 ⁎nels, int
first, int last);

Arguments
prob The current problem.
mstart Integer array which will be filled with indices indicating the starting offsets in the

mclind and dobjval arrays for each requested column. It must be length of at least
last-first+2. Column i starts at position mstart[i] in the mrwind and dmatvalarrays, and has mstart[i+1]-mstart[i] elements in it. May be NULL if size is 0.

mclind Integer array of length size which will be filled with the column indices of the nonzeroelements in the lower triangular part of Q. May be NULL if size is 0.
dobjval Double array of length size which will be filled with the nonzero element values. May be

NULL if size is 0.
size The maximum number of elements to be returned (size of the arrays).
nels Pointer to an integer where the number of nonzero quadratic objective coefficients willbe returned. If the number of nonzero coefficients is greater than size, then only sizeelements will be returned. If nels is smaller than size, then only nels will be returned.
first First column in the range.
last Last column in the range.

Further informationThe objective function is of the form cTx+0.5xTQx where Q is positive semi-definite for minimizationproblems and negative semi-definite for maximization problems. If this is not the case the optimizationalgorithms may converge to a local optimum or may not converge at all. Note that only the upper orlower triangular part of the Qmatrix is returned.
Related topics

XPRSchgmqobj, XPRSchgqobj, XPRSgetqobj.

Fair Isaac Corporation Confidential and Proprietary Information 225

Console and Library Functions

XPRSgetnamelist

Purpose Returns the names for the rows, columns, sets, piecewise linear of general constraints in a given range.The names will be returned in a character buffer, with no trailing whitespace and with each name beingseparated by a NULL character.
Synopsis

int XPRS_CC XPRSgetnamelist(XPRSprob prob, int type, char names[], int
names_len, int ⁎ names_len_reqd, int first, int last);

Arguments
prob The current problem.
type 1 if row names are required;

2 if column names are required.
3 if set names are required.
4 if piecewise linear constraint names are required.
5 if general constraint names are required.

names A buffer into which the names will be returned as a sequence of null-terminated strings.The buffer should be of length names_len bytes. May be NULL if names_len is 0.
names_len The maximum number of bytes that may be written to the buffer names.
names_len_reqd A pointer to a variable into which will be written the number of bytes required tocontain the names in the specified range. May be NULL if not required.
first First row, column, set, piecewise linear or general constraint in the range.
last Last row, column, set, piecewise linear or general constraint in the range.

Example The following example retrieves and outputs the row and column names for the current problem.
int i, o, cols, rows, cnames_len, rnames_len;
char ⁎cnames, ⁎rnames;
...
/⁎ Get problem size ⁎/
XPRSgetintattrib(prob,XPRS_COLS,&cols);
XPRSgetintattrib(prob,XPRS_ROWS,&rows);
/⁎ Request number of bytes required to retrieve the names ⁎/
XPRSgetnamelist(prob,1,NULL,0,&rnames_len,0,rows-1);
XPRSgetnamelist(prob,2,NULL,0,&cnames_len,0,cols-1);

/⁎ Now allocate buffers big enough then fetch the names ⁎/
cnames = (char ⁎) malloc(sizeof(char)⁎cnames_len);
rnames = (char ⁎) malloc(sizeof(char)⁎rnames_len);
XPRSgetnamelist(prob,1,rnames,rnames_len,NULL,0,rows-1);
XPRSgetnamelist(prob,2,cnames,cnames_len,NULL,0,cols-1);

/⁎ Output row names ⁎/
o=0;
for (i=0;i<rows;i++) {

printf("Row #%d: %s\n", i, rnames+o);
o += strlen(rnames+o)+1;

}
/⁎ Output column names ⁎/
o=0;
for (i=0;i<cols;i++) {

printf("Col #%d: %s\n", i, cnames+o);

Fair Isaac Corporation Confidential and Proprietary Information 226

Console and Library Functions

o += strlen(cnames+o)+1;
}

Related topics
XPRSaddnames.

Fair Isaac Corporation Confidential and Proprietary Information 227

Console and Library Functions

XPRSgetnamelistobject

Purpose Returns the XPRSnamelist object for the rows, columns or sets of a problem. The names stored inthis object can be queried using the XPRS_nml_ functions.
Synopsis

int XPRS_CC XPRSgetnamelistobject(XPRSprob prob, int itype, XPRSnamelist
⁎r_nml);

Arguments
prob The current problem.
itype 1 if the row name list is required;

2 if the column name list is required;
3 if the set name list is required.
4 if piecewise linear constraint name list is required.
5 if general constraint name list is required.

r_nml Pointer to a variable holding the name list contained by the problem.
Further informationThe XPRSnamelist object is a map of names to and from indices.
Related topicsNone.

Fair Isaac Corporation Confidential and Proprietary Information 228

Console and Library Functions

XPRSgetnames

Purpose Returns the names for the rows, columns, sets, piecewise linear or general constraints in a given range.The names will be returned in a character buffer, each name being separated by a null character.
Synopsis

int XPRS_CC XPRSgetnames(XPRSprob prob, int type, char names[], int first,
int last);

Arguments
prob The current problem.
type 1 if row names are required;

2 if column names are required.
3 if set names are required.
4 if piecewise linear constraint names are required.
5 if general constraint names are required.

names Buffer long enough to hold the names. Since each name is 8⁎NAMELENGTH characterslong (plus a null terminator), the array, names, would be required to be at least as long as(first-last+1)*(8⁎NAMELENGTH+1) characters. The names of the row/column/set
first+i will be written into the names buffer starting at position i⁎8⁎NAMELENGTH+i.

first First row, column, set, piecewise linear or general constraint in the range.
last Last row, column, set, piecewise linear or general constraint in the range.

Example The following example retrieves the row and column names of the current problem:
int cols, rows, nl;
...
XPRSgetintattrib(prob,XPRS_COLS,&cols);
XPRSgetintattrib(prob,XPRS_ROWS,&rows);
XPRSgetintattrib(prob,XPRS_NAMELENGTH,&nl);

cnames = (char ⁎) malloc(sizeof(char)⁎(8⁎nl+1)⁎cols);
rnames = (char ⁎) malloc(sizeof(char)⁎(8⁎nl+1)⁎rows);
XPRSgetnames(prob,1,rnames,0,rows-1);
XPRSgetnames(prob,2,cnames,0,cols-1);

To display names[i], use
int namelength;
...

XPRSgetintattrib(prob,XPRS_NAMELENGTH,&namelength);
printf("%s",names + i⁎(8⁎namelength+1));

Related topics
XPRSaddnames, XPRSgetnamelist.

Fair Isaac Corporation Confidential and Proprietary Information 229

Console and Library Functions

XPRSgetobj

Purpose Returns the objective function coefficients for the columns in a given range.
Synopsis

int XPRS_CC XPRSgetobj(XPRSprob prob, double obj[], int first, int last);

Arguments
prob The current problem.
obj Double array of length last-first+1 where the objective function coefficients are tobe placed.
first First column in the range.
last Last column in the range.

Example The following example retrieves the objective function coefficients of the current problem:
int cols;
double ⁎obj;
...
XPRSgetintattrib(prob,XPRS_COLS,&cols);
obj = (double ⁎) malloc(sizeof(double)⁎cols);
XPRSgetobj(prob, obj, 0, cols-1);

Related topics
XPRSchgobj.

Fair Isaac Corporation Confidential and Proprietary Information 230

Console and Library Functions

XPRSgetobjecttypename

Purpose Function to access the type name of an object referenced using the generic Optimizer object pointer
XPRSobject.

Synopsis
int XPRS_CC XPRSgetobjecttypename(XPRSobject object, const char

⁎⁎sObjectName);

Arguments
object The object for which the type name will be retrieved.
sObjectName Pointer to a char pointer returning a reference to the null terminated string containingthe object’s type name. For example, if the object is of type XPRSprob then the returnedpointer points to the string "XPRSprob".

Further informationThis function is intended to be used typically from within the message callback function registered withthe XPRS_ge_addcbmsghandler function. In such cases the user will need to identify the type ofobject sending the message since the message callback is passed only a generic pointer to theOptimizer object (XPRSobject) sending the message.
Related topics

XPRS_ge_addcbmsghandler.

Fair Isaac Corporation Confidential and Proprietary Information 231

Console and Library Functions

XPRSgetpivotorder

Purpose Returns the pivot order of the basic variables.
Synopsis

int XPRS_CC XPRSgetpivotorder(XPRSprob prob, int mpiv[]);

Arguments
prob The current problem.
mpiv Integer array of length ROWS where the pivot order will be returned.

Example The following returns the pivot order of the variables into an array pPivot :
XPRSgetintattrib(prob,XPRS_ROWS,&rows);
pPivot = malloc(rows⁎(sizeof(int)));
XPRSgetpivotorder(prob,pPivot);

Further informationRow indices are in the range 0 to ROWS-1, whilst columns are in the range ROWS+SPAREROWS to
ROWS+SPAREROWS+COLS-1.

Related topics
XPRSgetpivots, XPRSpivot.

Fair Isaac Corporation Confidential and Proprietary Information 232

Console and Library Functions

XPRSgetpivots

Purpose Returns a list of potential leaving variables if a specified variable enters the basis.
Synopsis

int XPRS_CC XPRSgetpivots(XPRSprob prob, int in, int outlist[], double x[],
double ⁎dobj, int ⁎npiv, int maxpiv);

Arguments
prob The current problem.
in Index of the specified row or column to enter basis.
outlist Integer array of length at least maxpiv to hold list of potential leaving variables. May be

NULL if not required.
x Double array of length ROWS+SPAREROWS+COLS to hold the values of all the variablesthat would result if in entered the basis. May be NULL if not required.
dobj Pointer to a double where the objective function value that would result if in entered thebasis will be returned.
npiv Pointer to an integer where the actual number of potential leaving variables will bereturned.
maxpiv Maximum number of potential leaving variables to return.

Error value
425 Indicates in is invalid (out of range or already basic).

Example The following retrieves a list of up to 5 potential leaving variables if variable 6 enters the basis:
int npiv, outlist[5];
double dobj;
...
XPRSgetpivots(prob,6,outlist,NULL,&dobj,&npiv,5);

Further information
1. If the variable in enters the basis and the problem is degenerate then several basic variables arecandidates for leaving the basis, and the number of potential candidates is returned in npiv. A list of atmost maxpiv of these candidates is returned in outlist which must be at least maxpiv long. Ifvariable in were to be pivoted in, then because the problem is degenerate, the resulting values of theobjective function and all the variables do not depend on which of the candidates from outlist ischosen to leave the basis. The value of the objective is returned in dobj and the values of the variablesinto x.
2. Row indices are in the range 0 to ROWS-1, whilst columns are in the range ROWS+SPAREROWS to

ROWS+SPAREROWS+COLS-1.
Related topics

XPRSgetpivotorder, XPRSpivot.

Fair Isaac Corporation Confidential and Proprietary Information 233

Console and Library Functions

XPRSgetpresolvebasis

Purpose Returns the current basis from memory into the user’s data areas. If the problem is presolved, thepresolved basis will be returned. Otherwise the original basis will be returned.
Synopsis

int XPRS_CC XPRSgetpresolvebasis(XPRSprob prob, int rstatus[], int
cstatus[]);

Arguments
prob The current problem.
rstatus Integer array of length ROWS to the basis status of the stack, surplus or artificial variableassociated with each row. The status will be one of:

0 slack, surplus or artificial is non-basic at lower bound;
1 slack, surplus or artificial is basic;
2 slack or surplus is non-basic at upper bound.May be NULL if not required.

cstatus Integer array of length COLS to hold the basis status of the columns in the constraintmatrix. The status will be one of:
0 variable is non-basic at lower bound, or superbasic at zero if the variable hasno lower bound;
1 variable is basic;
2 variable is at upper bound;
3 variable is super-basic.May be NULL if not required.

Example The following obtains and outputs basis information on a presolved problem prior to the global search:
XPRSprob prob;
int i, cols, ⁎cstatus;
...
XPRSreadprob(prob,"myglobalprob","");
XPRSmipoptimize(prob,"l");
XPRSgetintattrib(prob,XPRS_COLS,&cols);
cstatus = malloc(cols⁎sizeof(int));
XPRSgetpresolvebasis(prob,NULL,cstatus);
for(i=0;i<cols;i++)
printf("Column %d: %d\n", i, cstatus[i]);
XPRSmipoptimize(prob);

Related topics
XPRSgetbasis, XPRSloadbasis, XPRSloadpresolvebasis.

Fair Isaac Corporation Confidential and Proprietary Information 234

Console and Library Functions

XPRSgetpresolvemap

Purpose Returns the mapping of the row and column numbers from the presolve problem back to the originalproblem.
Synopsis

int XPRS_CC XPRSgetpresolvemap(XPRSprob prob, int rowmap[], int colmap[]);

Arguments
prob The current problem.
rowmap Integer array of length ROWS where the row maps will be returned.
colmap Integer array of length COLS where the column maps will be returned.

Example The following reads in a (Mixed) Integer Programming problem and gets the mapping for the rows andcolumns back to the original problem following optimization of the linear relaxation. The eliminationoperations of the presolve are turned off so that a one-to-one mapping between the presolve problemand the original problem.
XPRSreadprob(prob,"MyProb","");
XPRSsetintcontrol(prob,XPRS_PRESOLVEOPS,255);
XPRSmipoptimize(prob,"l");
XPRSgetintattrib(prob,XPRS_COLS,&cols);
colmap = malloc(cols⁎sizeof(int));
XPRSgetintattrib(prob,XPRS_ROWS,&rows);
rowmap = malloc(rows⁎sizeof(int));
XPRSgetpresolvemap(prob,rowmap,colmap);

Further informationThe presolved problem can contain rows or columns that do not map to anything in the originalproblem. An example of this are cuts created during the MIP solve and temporarily added to thepresolved problem. It is also possible that the presolver will introduce new rows or columns. For anyrow or column that does not have a mapping to a row or column in the original problem, thecorresponding entry in the returned rowmap and colmap arrays will be -1.
Related topics5.3.

Fair Isaac Corporation Confidential and Proprietary Information 235

Console and Library Functions

XPRSgetpresolvesol

Purpose Returns the solution for the presolved problem from memory.
Synopsis

int XPRS_CC XPRSgetpresolvesol(XPRSprob prob, double x[], double slack[],
double dual[], double dj[]);

Arguments
prob The current problem.
x Double array of length COLS where the values of the primal variables will be returned.May be NULL if not required.
slack Double array of length ROWS where the values of the slack variables will be returned.May be NULL if not required.
dual Double array of length ROWS where the values of the dual variables will be returned. Maybe NULL if not required.
dj Double array of length COLS where the reduced cost for each variable will be returned.May be NULL if not required.

Example The following reads in a (Mixed) Integer Programming problem and displays the solution to thepresolved problem following optimization of the linear relaxation:
XPRSreadprob(prob,"MyProb","");
XPRSmipoptimize(prob,"l");
XPRSgetintattrib(prob,XPRS_COLS,&cols);
x = malloc(cols⁎sizeof(double));
XPRSgetpresolvesol(prob,x,NULL,NULL,NULL);
for(i=0;i<cols;i++)
printf("Presolved x(%d) = %g\n",i,x[i]);
XPRSmipoptimize(prob,"");

Further information
1. If the problem has not been presolved, the solution in memory will be returned.
2. The solution to the original problem should be returned using the related function XPRSgetlpsol.
3. If called during a global callback the solution of the current node will be returned.
4. When an integer solution is found during a global search, it is always set up as a solution to the currentnode; therefore the integer solution is available as the current node solution and can be retrieved with

XPRSgetlpsol and XPRSgetpresolvesol.
Related topics

XPRSgetlpsol, 5.3.

Fair Isaac Corporation Confidential and Proprietary Information 236

Console and Library Functions

XPRSgetprimalray

Purpose Retrieves a primal ray (primal unbounded direction) for the current problem, if the problem is found tobe unbounded.
Synopsis

int XPRS_CC XPRSgetprimalray(XPRSprob prob, double dray[], int ⁎hasRay);

Arguments
prob The current problem.
dray Double array of length COLS to hold the ray. May be NULL if not required.
hasRay This variable will be set to 1 if the Optimizer is able to return a primal ray, 0 otherwise.

Example The following code tries to retrieve a primal ray:
int cols;
double ⁎primalRay;
int hasRay;
...
XPRSgetintattrib(prob, XPRS_COLS, &cols);
primalRay = malloc(cols⁎sizeof(double));
XPRSgetprimalray(prob, primalRay, &hasRay);
if(!hasRay) printf("Could not retrieve a primal ray\n");

Further information
1. It is possible to retrieve a primal ray only when, after solving an LP problem, the final status(LPSTATUS) is XPRS_LP_UNBOUNDED.
2. Primal rays are not post-solved. If the problem is in a presolved state, the primal ray that is returned willbe for the presolved problem. If the problem was solved with presolve on and has been restored to theoriginal state (the default behavior), this function will not be able to return a ray. To ensure that a primalray can be obtained, it is recommended to solve a problem with presolve turned off (PRESOLVE = 0).

Related topics
XPRSgetdualray.

Fair Isaac Corporation Confidential and Proprietary Information 237

Console and Library Functions

XPRSgetprobname

Purpose Returns the current problem name.
Synopsis

int XPRS_CC XPRSgetprobname(XPRSprob prob, char ⁎probname);

Arguments
prob The current problem.
probname A string of up to MAXPROBNAMELENGTH characters to contain the current problem name.

Related topics
XPRSsetprobname, MAXPROBNAMELENGTH.

Fair Isaac Corporation Confidential and Proprietary Information 238

Console and Library Functions

XPRSgetpwlcons, XPRSgetpwlcons64

Purpose Returns the piecewise linear constraints y = f(x) in a given range.
Synopsis

int XPRS_CC XPRSgetpwlcons(XPRSprob prob, int col[], int resultant[], int
start[], double xval[], double yval[], int size, int ⁎npoints, int
first, int last);

int XPRS_CC XPRSgetpwlcons64(XPRSprob prob, int col[], int resultant[],
XPRSint64 start[], double xval[], double yval[], XPRSint64 size,
XPRSint64 ⁎npoints, int first, int last);

Arguments
prob The current problem.
col Integer array which will be filled with the indices of the input variables x. It must be oflength at least last-first+1. May be NULL if not required.
resultant Integer array which will be filled with the indices of the output variables y. It must be oflength at least last-first+1. May be NULL if not required.
start Integer array which will be filled with the start indices of the different constraints in thebreakpoint arrays. It must be of length at least last-first+2. The x-values of thebreakpoints of piecewise linear constraint i < last will be given in xval[start[i]]to xval[start[i+1]]. May be NULL if not required.
xval Double array of length size which will be filled with the x-values of the breakpoints.May be NULL if not required.
yval Double array of length size which will be filled with the y-values of the breakpoints.May be NULL if not required.
size Maximum number of breakpoints to be retrieved.
npoints Pointer to return the number of breakpoints in the selected constraints. If the number ofbreakpoints is greater than size, then only size elements will be returned in the xvaland yval arrays. May be NULL if not required.
first First piecewise linear constraint in the range.
last Last piecewise linear constraint in the range.

Example The following example retrieves all variables and breakpoints in the first two piecewise linearconstraints:
int ⁎col;
int ⁎resultant;
int ⁎start;
double ⁎xval;
double ⁎yval;
int size;
int npoints;
...
XPRSgetpwlcons(prob, NULL, NULL, NULL, NULL, NULL, 0, &size, 0, 1);
col = (int⁎) malloc(2⁎sizeof(int));
resultant = (int⁎) malloc(2⁎sizeof(int));
start = (int⁎) malloc(3⁎sizeof(int));
xval = (double⁎) malloc(size⁎sizeof(double);
yval = (double⁎) malloc(size⁎sizeof(double);
XPRSgetpwlcons(prob, col, resultant, start, xval, yval, size, &npoints, 0, 1);

Fair Isaac Corporation Confidential and Proprietary Information 239

Console and Library Functions
...

Further informationIt is possible to obtain just the number of breakpoints in the range of piecewise linear constraints bycalling this function with size set to 0, in which case the required size for the breakpoint arrays will bereturned in npoints.
Related topics

XPRSaddpwlcons, XPRSdelpwlcons.

Fair Isaac Corporation Confidential and Proprietary Information 240

Console and Library Functions

XPRSgetqobj

Purpose Returns a single quadratic objective function coefficient corresponding to the variable pair (icol,
jcol) of the Hessian matrix.

Synopsis
int XPRS_CC XPRSgetqobj(XPRSprob prob, int icol, int jcol, double ⁎dval);

Arguments
prob The current problem.
icol Column index for the first variable in the quadratic term.
jcol Column index for the second variable in the quadratic term.
dval Pointer to a double value where the objective function coefficient is to be placed.

Example The following returns the coefficient of the x02 term in the objective function, placing it in the variable
value :

double value;
...
XPRSgetqobj(prob,0,0,&value);

Further information
dval is the coefficient in the quadratic Hessian matrix. For example, if the objective function has theterm [3x1x2 + 3x2x1]/2 the value retrieved by XPRSgetqobj is 3.0 and if the objective function has theterm [6x12]/2 the value retrieved by XPRSgetqobj is 6.0.

Related topics
XPRSgetmqobj, XPRSchgqobj, XPRSchgmqobj.

Fair Isaac Corporation Confidential and Proprietary Information 241

Console and Library Functions

XPRSgetqrowcoeff

Purpose Returns a single quadratic constraint coefficient corresponding to the variable pair (icol, jcol) of theHessian of a given constraint.
Synopsis

int XPRS_CC XPRSgetqrowcoeff (XPRSprob prob, int row, int icol, int jcol,
double ⁎dval);

Arguments
prob The current problem.
row The quadratic row where the coefficient is to be looked up.
icol Column index for the first variable in the quadratic term.
jcol Column index for the second variable in the quadratic term.
dval Pointer to a double value where the objective function coefficient is to be placed.

Example The following returns the coefficient of the x02 term in the second row, placing it in the variable value :
double value;
...
XPRSgetqrowcoeff(prob,1,0,0,&value);

Further informationThe coefficient returned corresponds to the Hessian of the constraint. That means the for constraint x
+ [x̂2 + 6 xy] <= 10 XPRSgetqrowcoeff would return 1 as the coefficient of x̂2 and 3 as thecoefficient of xy.

Related topics
XPRSloadqcqp, XPRSaddqmatrix, XPRSchgqrowcoeff, XPRSgetqrowqmatrix,
XPRSgetqrowqmatrixtriplets, XPRSgetqrows, XPRSchgqobj, XPRSchgmqobj, XPRSgetqobj.

Fair Isaac Corporation Confidential and Proprietary Information 242

Console and Library Functions

XPRSgetqrowqmatrix

Purpose Returns the nonzeros in a quadratic constraint coefficients matrix for the columns in a given range. Toachieve maximum efficiency, XPRSgetqrowqmatrix returns the lower triangular part of this matrixonly.
Synopsis

int XPRS_CC XPRSgetqrowqmatrix(XPRSprob prob, int irow, int mstart[], int
mclind[], double dqe[], int size, int ⁎ nels, int first, int last);

Arguments
prob The current problem.
irow Index of the row for which the quadratic coefficients are to be returned.
mstart Integer array which will be filled with indices indicating the starting offsets in the

mclind and dobjval arrays for each requested column. It must be length of at least
last-first+2. Column i starts at position mstart[i] in the mrwind and dmatvalarrays, and has mstart[i+1]-mstart[i] elements in it. May be NULL if size is 0.

mclind Integer array of length size which will be filled with the column indices of the nonzeroelements in the lower triangular part of Q. May be NULL if size is 0.
dqe Double array of length size which will be filled with the nonzero element values. May beNULL if size is 0.
size Number of elements to be saved in mclind and dqe. If size < ⁎nels, only sizeelements are written.
nels Pointer to the integer where the number of nonzero elements in the queried columns willbe returned. If the number of nonzero elements is greater than size, then only sizeelements will be returned. If nels is smaller than size, then only nels will be returned.
first First column in the range.
last Last column in the range.

Related topics
XPRSloadqcqp, XPRSgetqrowcoeff, XPRSaddqmatrix, XPRSchgqrowcoeff,
XPRSgetqrowqmatrixtriplets, XPRSgetqrows, XPRSchgqobj, XPRSchgmqobj, XPRSgetqobj.

Fair Isaac Corporation Confidential and Proprietary Information 243

Console and Library Functions

XPRSgetqrowqmatrixtriplets

Purpose Returns the nonzeros in a quadratic constraint coefficients matrix as triplets (index pairs withcoefficients). To achieve maximum efficiency, XPRSgetqrowqmatrixtriplets returns the lowertriangular part of this matrix only.
Synopsis

int XPRS_CC XPRSgetqrowqmatrixtriplets(XPRSprob prob, int irow, int ⁎
nqelem, int mqcol1[], int mqcol2[], double dqe[]);

Arguments
prob The current problem.
irow Index of the row for which the quadratic coefficients are to be returned.
nqelem Argument used to return the number of quadratic coefficients in the row.
mqcol1 First index in the triplets. May be NULL if not required.
mqcol2 Second index in the triplets. May be NULL if not required.
dqe Coefficients in the triplets. May be NULL if not required.

Further informationIf a row index of -1 is used, the function returns the quadratic coefficients for the objective function.
Related topics

XPRSloadqcqp, XPRSgetqrowcoeff, XPRSaddqmatrix, XPRSchgqrowcoeff,
XPRSgetqrowqmatrix, XPRSgetqrows, XPRSchgqobj, XPRSchgmqobj, XPRSgetqobj.

Fair Isaac Corporation Confidential and Proprietary Information 244

Console and Library Functions

XPRSgetqrows

Purpose Returns the list indices of the rows that have quadratic coefficients.
Synopsis

int XPRS_CC XPRSgetqrows(XPRSprob prob, int ⁎ qmn, int qcrows[]);

Arguments
prob The current problem.
qmn Used to return the number of quadratic constraints in the matrix.
qcrows Array of length ⁎qmn used to return the indices of rows with quadratic coefficients inthem. May be NULL if not required.

Related topics
XPRSloadqcqp, XPRSgetqrowcoeff, XPRSaddqmatrix, XPRSchgqrowcoeff,
XPRSgetqrowqmatrix, XPRSgetqrowqmatrixtriplets, XPRSchgqobj, XPRSchgmqobj,
XPRSgetqobj.

Fair Isaac Corporation Confidential and Proprietary Information 245

Console and Library Functions

XPRSgetrhs

Purpose Returns the right hand side elements for the rows in a given range.
Synopsis

int XPRS_CC XPRSgetrhs(XPRSprob prob, double rhs[], int first, int last);

Arguments
prob The current problem.
rhs Double array of length last-first+1 where the right hand side elements are to beplaced.
first First row in the range.
last Last row in the range.

Example The following example retrieves the right hand side values of the problem:
int rows;
double ⁎rhs;
...
XPRSgetintattrib(prob,XPRS_ROWS,&rows);
rhs = (double ⁎) malloc(sizeof(double)⁎rows);
XPRSgetrhs(prob,rhs,0,rows-1);

Related topics
XPRSchgrhs, XPRSchgrhsrange, XPRSgetrhsrange.

Fair Isaac Corporation Confidential and Proprietary Information 246

Console and Library Functions

XPRSgetrhsrange

Purpose Returns the right hand side range values for the rows in a given range.
Synopsis

int XPRS_CC XPRSgetrhsrange(XPRSprob prob, double range[], int first, int
last);

Arguments
prob The current problem.
range Double array of length last-first+1 where the right hand side range values are to beplaced.
first First row in the range.
last Last row in the range.

Example The following returns right hand side range values for all rows in the matrix:
int rows;
double ⁎range;
...
XPRSgetintattrib(prob,XPRS_ROWS,&rows);
range = malloc(rows⁎sizeof(double));
XPRSgetrhsrange(prob,range,0,rows);

Related topics
XPRSchgrhs, XPRSchgrhsrange, XPRSgetrhs, XPRSrange.

Fair Isaac Corporation Confidential and Proprietary Information 247

Console and Library Functions

XPRSgetrowrange

Purpose Returns the row ranges computed by XPRSrange.
Synopsis

int XPRS_CC XPRSgetrowrange(XPRSprob prob, double upact[], double loact[],
double uup[], double udn[]);

Arguments
prob The current problem.
upact Double array of length ROWS for the upper row activities.
loact Double array of length ROWS for the lower row activities.
uup Double array of length ROWS for the upper row unit costs.
udn Double array of length ROWS for the lower row unit costs.

Example The following computes row ranges and returns them:
int rows;
double ⁎upact, ⁎loact, ⁎uup, ⁎udn;
...
XPRSrange(prob);
XPRSgetintattrib(prob,XPRS_ROWS,&rows);
upact = malloc(rows⁎sizeof(double));
loact = malloc(rows⁎sizeof(double));
uup = malloc(rows⁎sizeof(double));
udn = malloc(rows⁎sizeof(double));
...
XPRSgetrowrange(prob,upact,loact,uup,udn);

Further informationThe activities and unit costs are obtained from the range file (problem_name.rng). The meaning of theupper and lower column activities and upper and lower unit costs in the ASCII range files is described inAppendix A.
Related topics

XPRSchgrhsrange, XPRSgetcolrange.

Fair Isaac Corporation Confidential and Proprietary Information 248

Console and Library Functions

XPRSgetrows, XPRSgetrows64

Purpose Returns the nonzeros in the constraint matrix for the rows in a given range.
Synopsis

int XPRS_CC XPRSgetrows(XPRSprob prob, int mstart[], int mclind[], double
dmatval[], int size, int ⁎nels, int first, int last);

int XPRS_CC XPRSgetrows64(XPRSprob prob, XPRSint64 mstart[], int mclind[],
double dmatval[], XPRSint64 size, XPRSint64 ⁎nels, int first, int
last);

Arguments
prob The current problem.
mstart Integer array which will be filled with the indices indicating the starting offsets in the

mrwind and dmatval arrays for each requested row. It must be of length at least
last-first+2. Row i starts at position mstart[i] in the mrwind and dmatvalarrays, and has mstart[i+1]-mstart[i] elements in it. May be NULL if not required.

mrwind Integer arrays of length size which will be filled with the column indices of the nonzeroelements for each row. May be NULL if not required.
dmatval Double array of length size which will be filled with the nonzero element values. May be

NULL if not required.
size Maximum number of elements to be retrieved.
nels Pointer to the integer where the number of nonzero elements in the selected rows willbe returned. If the number of nonzero elements is greater than size, then only sizeelements will be returned. If nels is smaller than size, then only nels will be returned.
first First row in the range.
last Last row in the range.

Example The following example returns and displays at most six nonzero matrix entries in the first two rows:
int size=6, nels, nreturnedels, mstart[3], mrwind[6];
double dmatval[6];
...
XPRSgetrows(prob,mstart,mrwind,dmatval,size,&nels,0,1);

nreturnedels = nels > size ? size : nels;
for(i=0;i<nreturnedels;i++) printf("\t%2.1f\n",dmtval[i]);

Further informationIt is possible to obtain just the number of elements in the range of columns by replacing mstart,
mrwind and dmatval by NULL. In this case, sizemust be set to 0 to indicate that the length of arrayspassed is 0.

Related topics
XPRSgetcols, XPRSgetrowrange, XPRSgetrowtype.

Fair Isaac Corporation Confidential and Proprietary Information 249

Console and Library Functions

XPRSgetrowtype

Purpose Returns the row types for the rows in a given range.
Synopsis

int XPRS_CC XPRSgetrowtype(XPRSprob prob, char qrtype[], int first, int
last);

Arguments
prob The current problem.
qrtype Character array of length last-first+1 characters where the row types will bereturned:

N indicates a free constraint;
L indicates a ≤ constraint;
E indicates an = constraint;
G indicates a ≥ constraint;
R indicates a range constraint.

first First row in the range.
last Last row in the range.

Example The following example retrieves row types into an array qrtype :
int rows;
char ⁎qrtype;
...
XPRSgetintattrib(prob,XPRS_ROWS,&rows);
qrtype = (char ⁎) malloc(sizeof(char)⁎rows);
XPRSgetrowtype(prob,qrtype,0,rows-1);

Related topics
XPRSchgrowtype, XPRSgetrowrange, XPRSgetrows.

Fair Isaac Corporation Confidential and Proprietary Information 250

Console and Library Functions

XPRSgetscale

Purpose Returns the the current scaling of the matrix.
Synopsis

int XPRS_CC XPRSgetscale(XPRSprob prob, int mrscal[], int mcscal[]);

Arguments
prob The current problem.
mrscal Integer array of size ROWS that will contain the powers of 2 with which the rows arecurrently scaled.
mcscal Integer array of size COLS that will contain the powers of 2 with which the columns arecurrently scaled.

Related topics
XPRSscale (SCALE).

Fair Isaac Corporation Confidential and Proprietary Information 251

Console and Library Functions

XPRSgetscaledinfeas

Purpose Returns a list of scaled infeasible primal and dual variables for the original problem. If the problem iscurrently presolved, it is postsolved before the function returns.
Synopsis

int XPRS_CC XPRSgetscaledinfeas(XPRSprob prob, int ⁎npv, int ⁎nps, int
⁎nds, int ⁎ndv, int mx[], int mslack[], int mdual[], int mdj[]);

Arguments
prob The current problem.
npv Number of primal infeasible variables.
nps Number of primal infeasible rows.
nds Number of dual infeasible rows.
ndv Number of dual infeasible variables.
mx Integer array of length npv where the primal infeasible variables will be returned. Maybe NULL if not required.
mslack Integer array of length nps where the primal infeasible rows will be returned. May be

NULL if not required.
mdual Integer array of length nds where the dual infeasible rows will be returned. May be NULLif not required.
mdj Integer array of length ndv where the dual infeasible variables will be returned. May be

NULL if not required.
Error value

422 A solution is not available.
Related controls

Double
FEASTOL Tolerance on RHS.
OPTIMALITYTOL Reduced cost tolerance.

Example In this example, XPRSgetscaledinfeas is first called with nulled integer arrays to get the number ofinfeasible entries. Then space is allocated for the arrays and the function is again called to fill them in.
int ⁎mx, ⁎mslack, ⁎mdual, ⁎mdj, npv, nps, nds, ndv;
...
XPRSgetscaledinfeas(prob, &npv, &nps, &nds, &ndv,

NULL, NULL, NULL, NULL);

mx = malloc(npv ⁎ sizeof(int));
mslack = malloc(nps ⁎ sizeof(int));
mdual = malloc(nds ⁎ sizeof(int));
mdj = malloc(ndv ⁎ sizeof(int));
XPRSgetscaledinfeas(prob, &npv, &nps, &nds, &ndv,

mx, mslack, mdual, mdj);

Further informationIf any of the last four arguments are set to NULL, the corresponding number of infeasibilities is stillreturned.

Fair Isaac Corporation Confidential and Proprietary Information 252

Console and Library Functions

Related topics
XPRSgetinfeas, XPRSgetiisdata, XPRSiisall, XPRSiisclear, XPRSiisfirst,
XPRSiisisolations, XPRSiisnext, XPRSiisstatus, XPRSiiswrite, IIS.

Fair Isaac Corporation Confidential and Proprietary Information 253

Console and Library Functions

XPRSgetstrattrib, XPRSgetstringattrib

Purpose Enables users to recover the values of various string problem attributes. Problem attributes are setduring loading and optimization of a problem.
Synopsis

int XPRS_CC XPRSgetstrattrib(XPRSprob prob, int ipar, char ⁎cval);

int XPRS_CC XPRSgetstringattrib(XPRSprob prob, int ipar, char ⁎cgval, int
cgvalsize, int⁎ controlsize);

Arguments
prob The current problem.
ipar Problem attribute whose value is to be returned. A full list of all problem attributes maybe found in 10, or from the list in the xprs.h header file.
cval Pointer to a string where the value of the attribute (plus null terminator) will be returned.
cgvalsize Maximum number of bytes to be written into the cgval argument.
controlsize Returns the length of the string control including the null terminator.

Related topics
XPRSgetdblattrib, XPRSgetintattrib.

Fair Isaac Corporation Confidential and Proprietary Information 254

Console and Library Functions

XPRSgetstrcontrol, XPRSgetstringcontrol

Purpose Returns the value of a given string control parameters.
Synopsis

int XPRS_CC XPRSgetstrcontrol(XPRSprob prob, int ipar, char ⁎cgval);

int XPRS_CC XPRSgetstringcontrol(XPRSprob prob, int ipar, char ⁎cgval, int
cgvalsize, int⁎ controlsize);

Arguments
prob The current problem.
ipar Control parameter whose value is to be returned. A full list of all controls may be foundin 9, or from the list in the xprs.h header file.
cgval Pointer to a string where the value of the control (plus null terminator) will be returned.
cgvalsize Maximum number of bytes to be written into the cgval argument.
controlsize Returns the length of the string control including the null terminator.

Related topics
XPRSgetdblcontrol, XPRSgetintcontrol, XPRSsetstrcontrol.

Fair Isaac Corporation Confidential and Proprietary Information 255

Console and Library Functions

XPRSgetub

Purpose Returns the upper bounds for the columns in a given range.
Synopsis

int XPRS_CC XPRSgetub(XPRSprob prob, double ub[], int first, int last);

Arguments
prob The current problem.
ub Double array of length last-first+1 where the upper bounds are to be placed.
first First column in the range.
last Last column in the range.

Example The following example retrieves the upper bounds for the columns of the current problem:
int cols;
double ⁎ub;
...
XPRSgetintattrib(prob, XPRS_COLS, &cols);
ub = (double ⁎) malloc(sizeof(double)⁎ncol);
XPRSgetub(prob, ub, 0, ncol-1);

Further informationValues greater than or equal to XPRS_PLUSINFINITY should be interpreted as infinite; values lessthan or equal to XPRS_MINUSINFINITY should be interpreted as infinite and negative.
Related topics

XPRSchgbounds, XPRSgetlb.

Fair Isaac Corporation Confidential and Proprietary Information 256

Console and Library Functions

XPRSgetunbvec

Purpose Returns the index vector which causes the primal simplex or dual simplex algorithm to determine that amatrix is primal or dual unbounded respectively.
Synopsis

int XPRS_CC XPRSgetunbvec(XPRSprob prob, int ⁎junb);

Arguments
prob The current problem.
junb Pointer to an integer where the vector causing the problem to be detected as beingprimal or dual unbounded will be returned. In the dual simplex case, the vector is theleaving row for which the dual simplex detected dual unboundedness. In the primalsimplex case, the vector is the entering row junb (if junb is in the range 0 to ROWS-1)or column (variable) junb-ROWS-SPAREROWS (if junb is between ROWS+SPAREROWSand ROWS+SPAREROWS+COLS-1) for which the primal simplex detected primalunboundedness.

Error value
91 A current problem is not available.

Further informationWhen solving using the dual simplex method, if the problem is primal infeasible then
XPRSgetunbvec returns the pivot row where dual unboundedness was detected. Also note that whensolving using the dual simplex method, if the problem is primal unbounded then XPRSgetunbvecreturns -1 since the problem is dual infeasible and not dual unbounded.

Related topics
XPRSgetinfeas, XPRSlpoptimize.

Fair Isaac Corporation Confidential and Proprietary Information 257

Console and Library Functions

XPRSgetversion

Purpose Returns the full Optimizer version number in the form 15.10.03, where 15 is the major release, 10 is theminor release, and 03 is the build number.
Synopsis

int XPRS_CC XPRSgetversion(char ⁎version);

Argument
version Buffer long enough to hold the version string (plus a null terminator). This should be atleast 16 characters.

Related controls
Integer

VERSION The Optimizer version number
Example The following calls XPRSgetversion to return version information at the start of the program:

char version[16];
XPRSgetversion(version);
printf("Xpress Optimizer version %s\n",version);
XPRSinit(NULL);

Further informationThis function supersedes the VERSION control, which only returns the first two parts of the versionnumber. Release 2004 versions of the Optimizer have a three-part version number.
Related topics

XPRSinit.

Fair Isaac Corporation Confidential and Proprietary Information 258

Console and Library Functions

XPRSglobal GLOBAL

Purpose Starts the global search for an integer solution after solving the LP relaxation with XPRSmaxim (MAXIM)or XPRSminim (MINIM) or continues a global search if it has been interrupted. This function isdeprecated and might be removed in a future release. XPRSmipoptimize should be used instead.
Synopsis

int XPRS_CC XPRSglobal(XPRSprob prob);
GLOBAL

Argument
prob The current problem.

Related controls
Integer

BACKTRACK Node selection criterion.
BRANCHCHOICE Once a global entity has been selected for branching, this control determineswhether the branch with the minimum or maximum estimate is followed first.
BREADTHFIRST Limit for node selection criterion.
COVERCUTS Number of rounds of lifted cover inequalities at top node.
CPUTIME 1 for CPU time; 0 for elapsed time.
CUTDEPTH Maximum depth in the tree at which cuts are generated.
CUTFREQ Frequency at which cuts are generated in the tree search.
CUTSTRATEGY Specifies the cut strategy.
DEFAULTALG Algorithm to use with the tree search.
GOMCUTS Number of rounds of Gomory cuts at the top node.
MAXMIPSOL Maximum number of MIP solutions to find.
MAXNODE Maximum number of nodes in Branch and Bound search.
MAXTIME Maximum time allowed.
MIPLOG Global print flag.
MIPPRESOLVE Type of integer preprocessing to be performed.
MIPTHREADS Number of threads used for parallel MIP search.
NODESELECTION Node selection control.
REFACTOR Indicates whether to re-factorize the optimal basis.
SBBEST Number of infeasible global entities on which to perform strong branching.
SBITERLIMIT Number of dual iterations to perform strong branching.
SBSELECT The size of the candidate list of global entities for strong branching.
TREECOVERCUTS Number of rounds of lifted cover inequalities in the tree.
TREEGOMCUTS Number of rounds of Gomory cuts in the tree.
VARSELECTION Node selection degradator estimate control.

Double
MIPABSCUTOFF Cutoff set after an LP Optimizer command.
MIPABSSTOP Absolute optimality stopping criterion.
MIPADDCUTOFF Amount added to objective function to give new cutoff.
MIPRELCUTOFF Percentage cutoff.
MIPRELSTOP Relative optimality stopping criterion.
MIPTOL Integer feasibility tolerance.
PSEUDOCOST Default pseudo cost in node degradation estimation.

Fair Isaac Corporation Confidential and Proprietary Information 259

Console and Library Functions

Example 1 (Library)The following example inputs a problem fred.mat, solves the LP and the global problem beforeprinting the solution to file.
XPRSreadprob(prob,"fred","");
XPRSmaxim(prob,"");
XPRSglobal(prob);
XPRSwriteprtsol(prob);

Example 2 (Console)The equivalent set of commands for the Console Optimizer are:
READPROB fred
MAXIM
GLOBAL
WRITEPRTSOL

Further information

1. When an optimal LP solution has been found with XPRSmaxim (MAXIM) or XPRSminim (MINIM), thesearch for an integer solution is started using XPRSglobal (GLOBAL). In many cases XPRSglobal(GLOBAL) is to be called directly after XPRSmaxim (MAXIM)/XPRSminim (MINIM). In suchcircumstances this can be achieved slightly more efficiently using the g flag to XPRSmaxim(MAXIM)/XPRSminim (MINIM).
2. If a global search is interrupted and XPRSglobal (GLOBAL) is subsequently called again, the searchwill continue where it left off. To restart the search at the top node you need to call either

XPRSinitglobal or XPRSpostsolve (POSTSOLVE).
3. The controls described for XPRSmaxim (MAXIM) and XPRSminim (MINIM) can also be used to controlthe XPRSglobal (GLOBAL) algorithm.
4. (Console) The global search may be interrupted by typing CTRL-C as long as the user has not alreadytyped ahead.
5. A summary log of six columns of information is output every n nodes, where -n is the value of MIPLOG(see A.10).
6. Optimizer library users can check the final status of the global search using the MIPSTATUS problemattribute.
7. The Optimizer may create global files (used for storing parts of the tree when there is insufficientavailable memory) in excess of 2 GigaBytes. If your filing system does not support files this large, youcan instruct the Optimizer to spread the data over multiple files by setting the MAXGLOBALFILESIZEcontrol.

Related topics
XPRSfixglobals (FIXGLOBALS), XPRSinitglobal, XPRSmaxim (MAXIM)/XPRSminim (MINIM),A.10.

Fair Isaac Corporation Confidential and Proprietary Information 260

Console and Library Functions

XPRSgoal GOAL

Purpose This function is deprecated, and will be removed in future releases. Perform goal programming.
Synopsis

int XPRS_CC XPRSgoal(XPRSprob prob, const char ⁎filename, const char
⁎flags);

GOAL [filename] [-flags]

Arguments
prob The current problem.
filename A string of up to MAXPROBNAMELENGTH characters containing the file name from whichthe directives are to be read (a .gol extension will be added).
flags Flags to pass to XPRSgoal (GOAL):

o optimization process logs to be displayed;
l treat integer variables as linear;
f write output into a file filename.grp.

Example 1 (Library)In the following example, goal programming is carried out on a problem, goalex, taking instructionsfrom the file gb1.gol:
XPRSreadprob(prob,"goalex","");
XPRSgoal(prob,"gb1","fo");

Example 2 (Console)Suppose we have a problem where the weight for objective function OBJ1 is unknown and we wish toperform goal programming, maximizing this row and relaxing the resulting constraint by 5% of theoptimal value, then the following sequence will solve this problem:
READPROB
GOAL
P
O
OBJ1
MAX
P
5
<empty line>

Fair Isaac Corporation Confidential and Proprietary Information 261

Console and Library Functions

Further information

1. The command XPRSgoal (GOAL) used with objective functions allows the user to find solutions ofproblems with more than one objective function. XPRSgoal (GOAL) used with constraints enables theuser to find solutions to infeasible problems. The goals are the constraints relaxed at the beginning tomake the problem feasible. Then one can see how many of these relaxed constraints can be met,knowing the penalty of making the problem feasible (in the Archimedean case) or knowing whichrelaxed constraints will never be met (in the pre-emptive case).
2. (Console) If the optional filename is specified when GOAL is used, the responses to the prompts areread from filename.gol. If there is an invalid answer to a prompt, goal programming will stop andcontrol will be returned to the Optimizer.
3. It is not always possible to use the output of one of the goal problems as an input for further studybecause the coefficients for the objective function, the right hand side and the row type may all havechanged.
4. In the Archimedean/objective function option, the fixed value of the resulting objective function will bethe linear combination of the right hand sides of the objective functions involved.

Related topics7.

Fair Isaac Corporation Confidential and Proprietary Information 262

Console and Library Functions

HELP

Purpose Provides quick reference help for console users of the Optimizer.
Synopsis

HELP
HELP commands
HELP controls
HELP attributes
HELP [command-name]
HELP [control-name]
HELP [attribute-name]

Example This command is used by calling it at the Console Optimizer command line:
HELP MAXTIME

Related topicsNone.

Fair Isaac Corporation Confidential and Proprietary Information 263

Console and Library Functions

IIS

Purpose Provides the Irreducible Infeasible Set (IIS) functionality for the console.
Synopsis

IIS [-flags]

Arguments
IIS Finds an IIS.
IIS -a Performs an automated search for a set of independent IISs.
IIS -c Resets the search for IISs (deletes already found ones).
IIS -e [num fn] Writes a CSV file named fn containing the IIS data of IIS num.
IIS -f Generate an approximation of an IIS only.
IIS -i num Performs the isolation identification for IIS with ordinal number num.
IIS -n Finds another (independent) IIS if any.
IIS -p [num] Prints the IIS with ordinal number num to the screen.
IIS -s Returns statistics on the IISs found.
IIS -w [num fn type] Writes an LP or MPS file named fn containing the IIS subproblem of IIS

num depending on the type flags.
Example 1 (Console)This example reads in an infeasible problem, executes an automated search for the IISs, prints the IISto the screen and then displays a summary on the results.

READPROB PROB.LP
IIS -a -s

Example 2 (Console)This example reads in an infeasible problem, identifies an IIS and its isolations, then writes the IIS as anLP for easier viewing and as a CSV file to contain the supplementary information.
READPROB PROB.LP
IIS
IIS -i -p 1
IIS -w 1 "IIS.LP" lp
IIS -e 1 "IIS.CSV"

Fair Isaac Corporation Confidential and Proprietary Information 264

Console and Library Functions

Further information
1. The IISs are numbered from 1 to NUMIIS. If no IIS number is provided, the functions take the last IISidentified as default. When applicable, IIS 0 refers to the initial infeasible IIS (the IIS approximation).
2. A model may have several infeasibilities. Repairing a single IIS may not make the model feasible. Forthis reason the Optimizer attempts to find an IIS for each of the infeasibilities in a model. You may callthe IIS -n function repeatedly, or use the IIS -a function to retrieve all IIS at once.
3. An IIS isolation is a special constraint or bound in an IIS. Removing an IIS isolation constraint or boundwill remove all infeasibilities in the IIS without increasing the infeasibilities in any row or column outsidethe IIS, thus in any other IISs. The IIS isolations thus indicate the likely cause of each independentinfeasibility and give an indication of which constraint or bound to drop or modify. It is not alwayspossible to find IIS isolations. IIS isolations are only available for linear problems.
4. Generally, one should first look for rows or columns in the IIS which are both in isolation, and have ahigh dual multiplier relative to the others.
5. Initial infeasible subproblem: The subproblem identified after the sensitivity filter is referred to as initialinfeasible subproblem. Its size is crucial to the running time of the deletion filter and it contains all theinfeasibilities of the first phase simplex, thus if the corresponding rows and bounds are removed theproblem becomes feasible
6. IIS -f performs the initial sensitivity analysis on rows and columns to reduce the problem size, andsets up the initial infeasible subproblem. This subproblem significantly speeds up the generation ofIISs, however in itself it may serve as an approximation of an IIS, since its identification typically takesonly a fraction of time compared to the identification of an IIS.
7. The num parameter cannot be zero for IIS -i: the concept of isolations is meaningless for the initialinfeasible subproblem.
8. If IIS -n [num] is called, the return status is 1 if less than num IISs have been found and zerootherwise. The total number of IISs found is stored in NUMIIS.
9. The type flags passed to IIS -w are directly passed to the WRITEPROB command.
10. The LP or MPS files created by IIS -w corresponding to an IIS contain no objective function, sinceinfeasibility is independent from the objective.
11. Please note that there are problems on the boundary of being infeasible or not. For such problems,feasibility or infeasibility often depends on tolerances or even on scaling. This phenomenon makes itpossible that after writing an IIS out as an LP file and reading it back, it may report feasibility. As a firstcheck it is advised to consider the following options:

(a) Turn presolve off (e.g. in console presolve = 0) since the nature of an IIS makes it necessarythat during their identification the presolve is turned off.
(b) Use the primal simplex method to solve the problem (e.g. in console lpoptimize -p).

12. Note that the original sense of the original objective function plays no role in an IIS.
13. The supplementary information provided in the CSV file created by IIS -e is identical to that returnedby the XPRSgetiisdata function.
14. The IIS approximation and the IISs generated so far are always available.

Related topics
XPRSgetiisdata, XPRSiisall, XPRSiisclear, XPRSiisfirst, XPRSiisisolations,
XPRSiisnext, XPRSiisstatus, XPRSiiswrite.

Fair Isaac Corporation Confidential and Proprietary Information 265

Console and Library Functions

XPRSiisall

Purpose Performs an automated search for independent Irreducible Infeasible Sets (IIS) in an infeasibleproblem.
Synopsis

int XPRS_CC XPRSiisall(XPRSprob prob);

Argument
prob The current problem.

Related controls
Integer

MAXIIS Number of Irreducible Infeasible Sets to be found.
Example This example searches for IISs and then questions the problem attribute NUMIIS to determine howmany were found:

int iis;
...
XPRSiisall(prob);
XPRSgetintattrib(prob, XPRS_NUMIIS, &iis);
printf("number of IISs = %d\n", iis);

Further information
1. Calling IIS -a from the console has the same effect as this function.
2. A model may have several infeasibilities. Repairing a single IIS may not make the model feasible. Forthis reason the Optimizer can find an IIS for each of the infeasibilities in a model. If the control MAXIISis set to a positive integer value then the XPRSiisall command will stop if MAXIIS IISs have beenfound. By default the control MAXIIS is set to -1, in which case an IIS is found for each of theinfeasibilities in the model.
3. The problem attribute NUMIIS allows the user to recover the number of IISs found in a particularsearch. Alternatively, the XPRSiisstatus function may be used to retrieve the number of IISs foundby XPRSiisfirst (IIS), XPRSiisnext (IIS -n) or XPRSiisall (IIS -a) functions.

Related topics
XPRSgetiisdata, XPRSiisclear, XPRSiisfirst, XPRSiisisolations, XPRSiisnext,
XPRSiisstatus, XPRSiiswrite, IIS.

Fair Isaac Corporation Confidential and Proprietary Information 266

Console and Library Functions

XPRSiisclear

Purpose Resets the search for Irreducible Infeasible Sets (IIS).
Synopsis

int XPRS_CC XPRSiisclear(XPRSprob prob);

Argument
prob The current problem.

Example

XPRSiisclear(prob);

Further information
1. Calling IIS -c from the console has the same effect as this function.
2. The information stored internally about the IISs identified by XPRSiisfirst, XPRSiisnext or

XPRSiisall are cleared. Functions XPRSgetiisdata, XPRSiisstatus, XPRSiiswrite and
XPRSiisisolations cannot be called until the IIS identification procedure is started again.

3. This function is automatically called by XPRSiisfirst and XPRSiisall
Related topics

XPRSgetiisdata, XPRSiisall, XPRSiisfirst, XPRSiisisolations, XPRSiisnext,
XPRSiisstatus, XPRSiiswrite, IIS.

Fair Isaac Corporation Confidential and Proprietary Information 267

Console and Library Functions

XPRSiisfirst

Purpose Initiates a search for an Irreducible Infeasible Set (IIS) in an infeasible problem.
Synopsis

int XPRS_CC XPRSiisfirst(XPRSprob prob, int iismode, int ⁎status_code);

Arguments
prob The current problem.
iismode The IIS search mode:
0 stops after finding the initial infeasible subproblem;
1 find an IIS, emphasizing simplicity of the IIS;
2 find an IIS, emphasizing a quick result.
status_code The status after the search:
0 success;
1 if problem is feasible;
2 error (when the function returns nonzero).

Example This looks for the first IIS.
XPRSiisfirst(myprob,1,&status);

Further information
1. Calling IIS from the console has the same effect as this function.
2. A model may have several infeasibilities. Repairing a single IIS may not make the model feasible. Forthis reason the Optimizer can find an IIS for each of the infeasibilities in a model. For the generation ofseveral independent IISs use functions XPRSiisnext (IIS -n) or XPRSiisall (IIS -a).
3. IIS sensitivity filter: after an optimal but infeasible first phase primal simplex, it is possible to identify asubproblem containing all the infeasibilities (corresponding to the given basis) to reduce the size of theIIS working problem dramatically, i.e., rows with zero duals (thus with artificials of zero reduced cost)and columns that have zero reduced costs may be deleted. Moreover, for rows and columns withnonzero costs, the sign of the cost is used to relax equality rows either to less than or greater thanequal rows, and to drop either possible upper or lower bounds on columns.
4. Initial infeasible subproblem: The subproblem identified after the sensitivity filter is referred to as initialinfeasible subproblem. Its size is crucial to the running time of the deletion filter and it contains all theinfeasibilities of the first phase simplex, thus if the corresponding rows and bounds are removed theproblem becomes feasible.
5. XPRSiisfirst performs the initial sensitivity analysis on rows and columns to reduce the problemsize, and sets up the initial infeasible subproblem. This subproblem significantly speeds up thegeneration of IISs, however in itself it may serve as an approximation of an IIS, since its identificationtypically takes only a fraction of time compared to the identification of an IIS.
6. The IIS approximation and the IISs generated so far are always available.

Related topics
XPRSgetiisdata, XPRSiisall, XPRSiisclear, XPRSiisisolations, XPRSiisnext,
XPRSiisstatus, XPRSiiswrite, IIS.

Fair Isaac Corporation Confidential and Proprietary Information 268

Console and Library Functions

XPRSiisisolations

Purpose Performs the isolation identification procedure for an Irreducible Infeasible Set (IIS).
Synopsis

int XPRS_CC XPRSiisisolations(XPRSprob prob, int num);

Arguments
prob The current problem.
num The number of the IIS identified by either XPRSiisfirst (IIS), XPRSiisnext (IIS

-n) or XPRSiisall (IIS -a) in which the isolations should be identified.
Example This example finds the first IIS and searches for the isolations in that IIS.

XPRSiisfirst(prob,1,&status);
XPRSiisisolations (prob,1);

Further information
1. Calling IIS -i [num] from the console has the same effect as this function.
2. An IIS isolation is a special constraint or bound in an IIS. Removing an IIS isolation constraint or boundwill remove all infeasibilities in the IIS without increasing the infeasibilities in any row or column outsidethe IIS, thus in any other IISs. The IIS isolations thus indicate the likely cause of each independentinfeasibility and give an indication of which constraint or bound to drop or modify. It is not alwayspossible to find IIS isolations.
3. Generally, one should first look for rows or columns in the IIS which are both in isolation, and have ahigh dual multiplier relative to the others.
4. The num parameter cannot be zero: the concept of isolations is meaningless for the initial infeasiblesubproblem.

Related topics
XPRSgetiisdata, XPRSiisall, XPRSiisclear, XPRSiisfirst, XPRSiisnext,
XPRSiisstatus, XPRSiiswrite, IIS.

Fair Isaac Corporation Confidential and Proprietary Information 269

Console and Library Functions

XPRSiisnext

Purpose Continues the search for further Irreducible Infeasible Sets (IIS), or calls XPRSiisfirst (IIS) if no IIShas been identified yet.
Synopsis

int XPRS_CC XPRSiisnext(XPRSprob prob, int ⁎status_code);

Arguments
prob The current problem.
status_code The status after the search:
0 success;
1 no more IIS could be found, or problem is feasible if no XPRSiisfirst call preceded;
2 on error (when the function returns nonzero).

Example This looks for a further IIS.
XPRSiisnext(prob,&status_code);

Further information
1. Calling IIS -n from the console has the same effect as this function.
2. A model may have several infeasibilities. Repairing a single IIS may not make the model feasible. Forthis reason the Optimizer attempts to find an IIS for each of the infeasibilities in a model. You may callthe XPRSiisnext function repeatedly, or use the XPRSiisall (IIS -a) function to retrieve all IIS atonce.
3. This function is not affected by the control MAXIIS.
4. If the problem has been modified since the last call to XPRSiisfirst or XPRSiisnext, thegeneration process has to be started from scratch.

Related topics
XPRSgetiisdata, XPRSiisall, XPRSiisclear, XPRSiisfirst, XPRSiisisolations,
XPRSiisstatus, XPRSiiswrite, IIS.

Fair Isaac Corporation Confidential and Proprietary Information 270

Console and Library Functions

XPRSiisstatus

Purpose Returns statistics on the Irreducible Infeasible Sets (IIS) found so far by XPRSiisfirst (IIS),
XPRSiisnext (IIS -n) or XPRSiisall (IIS -a).

Synopsis
int XPRS_CC XPRSiisstatus(XPRSprob prob, int ⁎iiscount, int rowsizes[], int

colsizes[], double suminfeas[], int numinfeas[]);

Arguments
prob The current problem.
iiscount The number of IISs found so far.
rowsizes Number of rows in the IISs.
colsizes Number of bounds in the IISs.
suminfeas The sum of infeasibilities in the IISs after the first phase simplex.
numinfeas The number of infeasible variables in the IISs after the first phase simplex.

Example This example first retrieves the number of IISs found so far, and then retrieves their main properties.Note that the arrays have size count+1, since the first index is reserved for the initial infeasible subset.
XPRSiisstatus(myprob,&count,NULL,NULL,NULL,NULL);
rowsizes = malloc((count+1)⁎sizeof(int));
colsizes = malloc((count+1)⁎sizeof(int));
suminfeas = malloc((count+1)⁎sizeof(double));
numinfeas = malloc((count+1)⁎sizeof(int));
XPRSiisstatus(myprob,&count,rowsizes,colsizes,suminfeas,numinfeas);

Further information
1. Calling IIS -s from the console has the same effect as this function.
2. All arrays should be of dimension iiscount+1. The arrays are 0 based, index 0 corresponding to theinitial infeasible subproblem.
3. The arrays may be NULL if not required.
4. For the initial infeasible problem (at position 0) the subproblem size is returned (which may be differentfrom the number of bounds), while for the IISs the number of bounds is returned (usually much smallerthan the number of columns in the IIS).
5. Note that the values in suminfeas and numinfeas heavily depend on the actual basis where thesimplex has stopped.
6. iiscount is set to -1 if the search for IISs has not yet started.

Related topics
XPRSgetiisdata, XPRSiisall, XPRSiisclear, XPRSiisfirst, XPRSiisisolations,
XPRSiisnext, XPRSiiswrite, IIS.

Fair Isaac Corporation Confidential and Proprietary Information 271

Console and Library Functions

XPRSiiswrite

Purpose Writes an LP/MPS/CSV file containing a given Irreducible Infeasible Set (IIS). If 0 is passed as the IISnumber parameter, the initial infeasible subproblem is written.
Synopsis

int XPRS_CC XPRSiiswrite(XPRSprob prob, int num, const char ⁎fn, int type,
const char ⁎typeflags);

Arguments
prob The current problem.
num The ordinal number of the IIS to be written.
fn The name of the file to be created.
type Type of file to be created:
0 creates an lp/mps file containing the IIS as a linear programming problem;
1 creates a comma separated (csv) file containing the description and supplementaryinformation on the given IIS.
typeflags Flags passed to the XPRSwriteprob function.

Example This writes the first IIS (if one exists and is already found) as an lp file.
XPRSiiswrite(prob,1,"iis.lp",0,"l")

Further information
1. Calling IIS -w [num] fn and IIS -e [num] fn from the console have the same effect as thisfunction.
2. Please note that there are problems on the boundary of being infeasible or not. For such problems,feasibility or infeasibility often depends on tolerances or even on scaling. This phenomenon makes itpossible that after writing an IIS out as an LP file and reading it back, it may report feasibility. As a firstcheck it is advised to consider the following options:

(a) turn presolve off (e.g. in console presolve = 0) since the nature of an IIS makes it necessarythat during their identification the presolve is turned off.
(b) use the primal simplex method to solve the problem (e.g. in console LPOPTIMIZE -p).

3. Note that the original sense of the original objective function plays no role in an IIS.
4. Even though an attempt is made to identify the most infeasible IISs first by the XPRSiisfirst (IIS),

XPRSiisnext (IIS -n) and XPRSiisall (IIS -a) functions, it is also possible that an IIS becomesjust infeasible in problems that are otherwise highly infeasible. In such cases, you may try to deal withthe more stable IISs first, and consider to use the infeasibility breaker tool if only slight infeasibilitiesremain.
5. The LP or MPS files created by XPRSiiswrite corresponding to an IIS contain no objective function,since infeasibility is independent from the objective.

Related topics
XPRSgetiisdata, XPRSiisall, XPRSiisclear, XPRSiisfirst, XPRSiisisolations,
XPRSiisnext, XPRSiisstatus, IIS.

Fair Isaac Corporation Confidential and Proprietary Information 272

Console and Library Functions

XPRSinit

Purpose Initializes the Optimizer library. This must be called before any other library routines.
Synopsis

int XPRS_CC XPRSinit(const char ⁎xpress);

Argument
xpress The directory where the FICO Xpress password file is located. Users should employ avalue of NULL unless otherwise advised, allowing the standard initialization directoriesto be checked.

Example The following is the usual way of calling XPRSinit :
if(XPRSinit(NULL)) printf("Problem with XPRSinit\n");

Further information
1. Whilst error checking should always be used on all library function calls, it is especially important to doso with the initialization functions, since a majority of errors encountered by users are caused at theinitialization stage. Any nonzero return code indicates that no license could be found. In suchcircumstances the application should be made to exit. A return code of 32, however, indicates that astudent license has been found and the software will work, but with restricted functionality and problemcapacity. It is possible to retrieve a message describing the error by calling XPRSgetlicerrmsg.
2. In multi-threaded applications where all threads are equal, XPRSinitmay be called by each threadprior to using the library. Whilst the process of initialization will be carried out only once, thisguarantees that the library functions will be available to each thread as necessary. In applications witha clear master thread, spawning other Optimizer threads, initialization need only be called by themaster thread.

Related topics
XPRScreateprob, XPRSfree, XPRSgetlicerrmsg.

Fair Isaac Corporation Confidential and Proprietary Information 273

Console and Library Functions

XPRSinitglobal

Purpose Reinitializes the global tree search. By default if a global search is interrupted and called again theglobal search will continue from where it left off. If XPRSinitglobal is called after the first call to
XPRSmipoptimize, the global search will start from the top node when XPRSmipoptimize is calledagain. This function is deprecated and might be removed in a future release. XPRSpostsolve shouldbe used instead.

Synopsis
int XPRS_CC XPRSinitglobal(XPRSprob prob);

Argument
prob The current problem.

Example The following initializes the global search before attempting to solve the problem again:
XPRSinitglobal(prob);
XPRSmipoptimize(prob,"");

Related topics
XPRSmipoptimize (MIPOPTIMIZE).

Fair Isaac Corporation Confidential and Proprietary Information 274

Console and Library Functions

XPRSinterrupt

Purpose Interrupts the Optimizer algorithms.
Synopsis

int XPRS_CC XPRSinterrupt(XPRSprob prob, int reason);

Arguments
prob The current problem.
reason The reason for stopping. Possible reasons are:

XPRS_STOP_TIMELIMIT time limit hit;
XPRS_STOP_CTRLC control C hit;
XPRS_STOP_NODELIMIT node limit hit;
XPRS_STOP_ITERLIMIT iteration limit hit;
XPRS_STOP_MIPGAP MIP gap is sufficiently small;
XPRS_STOP_SOLLIMIT solution limit hit;
XPRS_STOP_USER user interrupt.

Further informationThe XPRSinterrupt command can be called from any callback.
Related topicsNone.

Fair Isaac Corporation Confidential and Proprietary Information 275

Console and Library Functions

XPRSloadbasis

Purpose Loads a basis from the user’s areas.
Synopsis

int XPRS_CC XPRSloadbasis(XPRSprob prob, const int rstatus[], const int
cstatus[]);

Arguments
prob The current problem.
rstatus Integer array of length ROWS containing the basis status of the slack, surplus or artificialvariable associated with each row. The status must be one of:

0 slack, surplus or artificial is non-basic at lower bound;
1 slack, surplus or artificial is basic;
2 slack or surplus is non-basic at upper bound.
3 slack or surplus is super-basic.

cstatus Integer array of length COLS containing the basis status of each of the columns in theconstraint matrix. The status must be one of:
0 variable is non-basic at lower bound or superbasic at zero if the variable has nolower bound;
1 variable is basic;
2 variable is at upper bound;
3 variable is super-basic.

Example This example loads a problem and then reloads a (previously optimized) basis from a similar problemto speed up the optimization:
XPRSreadprob(prob,"problem","");
XPRSloadbasis(prob,rstatus,cstatus);
XPRSlpoptimize(prob,"");

Further informationIf the problem has been altered since saving an advanced basis, you may want to alter the basis asfollows before loading it:
� Make new variables non-basic at their lower bound (cstatus[icol]=0), unless a variable has aninfinite lower bound and a finite upper bound, in which case make the variable non-basic at itsupper bound (cstatus[icol]=2);
� Make new constraints basic (rstatus[jrow]=1);
� Try not to delete basic variables, or non-basic constraints.

Related topics
XPRSgetbasis, XPRSgetpresolvebasis, XPRSloadpresolvebasis.

Fair Isaac Corporation Confidential and Proprietary Information 276

Console and Library Functions

XPRSloadbranchdirs

Purpose Loads directives into the current problem to specify which global entities the Optimizer should continueto branch on when a node solution is global feasible.
Synopsis

int XPRS_CC XPRSloadbranchdirs(XPRSprob prob, int ndirs, const int mcols[],
const int mbranch[]);

Arguments
prob The current problem.
ndirs Number of directives.
mcols Integer array of length ndirs containing the column numbers. A negative valueindicates a set number (the first set being -1, the second -2, and so on).
mbranch Integer array of length ndirs containing either 0 or 1 for the entities given in mcols.Entities for which mbranch is set to 1 will be branched on until fixed before a globalfeasible solution is returned. If mbranch is NULL, the branching directive will be set forall entities in mcols.

Related topics
XPRSloaddirs, XPRSreaddirs, A.6.

Fair Isaac Corporation Confidential and Proprietary Information 277

Console and Library Functions

XPRSloadcuts

Purpose Loads cuts from the cut pool into the matrix. Without calling XPRSloadcuts the cuts will remain in thecut pool but will not be active at the node. Cuts loaded at a node remain active at all descendant nodesunless they are deleted using XPRSdelcuts.
Synopsis

int XPRS_CC XPRSloadcuts(XPRSprob prob, int itype, int interp, int ncuts,
const XPRScut mcutind[]);

Arguments
prob The current problem.
itype Cut type.
interp The way in which the cut type is interpreted:

-1 load all cuts;
1 treat cut types as numbers;
2 treat cut types as bit maps - load cut if any bit matches any bit set in

itype;
3 treat cut types as bit maps - 0 load cut if all bits match those set in itype.

ncuts Number of cuts to load.
mcutind Array of length ncuts containing pointers to the cuts to be loaded into the matrix.These are pointers returned by either XPRSstorecuts or XPRSgetcpcutlist.

Further informationThis function should be called only from within callback functions set by either XPRSaddcboptnode or
XPRSaddcbcutmgr.

Related topics
XPRSaddcuts, XPRSdelcpcuts, XPRSdelcuts, XPRSgetcpcutlist, 5.9.

Fair Isaac Corporation Confidential and Proprietary Information 278

Console and Library Functions

XPRSloaddelayedrows

Purpose Specifies that a set of rows in the matrix will be treated as delayed rows during a global search. Theseare rows that must be satisfied for any integer solution, but will not be loaded into the active set ofconstraints until required.
Synopsis

int XPRS_CC XPRSloaddelayedrows(XPRSprob prob, int nrows, const int
mrows[]);

Arguments
prob The current problem.
nrows The number of delayed rows.
mrows An array of row indices to treat as delayed rows.

Example This sets the first six matrix rows as delayed rows in the global problem prob.
int mrows[] = {0,1,2,3,4,5}
...
XPRSloaddelayedrows(prob,6,mrows);
XPRSmipoptimize(prob,"");

Further informationDelayed rows must be set up before solving the problem. Any delayed rows will be removed from thematrix after presolve and added to a special pool. A delayed row will be added back into the activematrix only when such a row is violated by an integer solution found by the Optimizer.
Related topics

XPRSloadmodelcuts.

Fair Isaac Corporation Confidential and Proprietary Information 279

Console and Library Functions

XPRSloaddirs

Purpose Loads directives into the matrix.
Synopsis

int XPRS_CC XPRSloaddirs(XPRSprob prob, int ndir, const int mcols[], const
int mpri[], const char qbr[], const double dupc[], const double
ddpc[]);

Arguments
prob The current problem.
ndir Number of directives.
mcols Integer array of length ndir containing the column numbers. A negative value indicatesa set number (the first set being -1, the second -2, and so on).
mpri Integer array of length ndir containing the priorities for the columns or sets. Prioritiesmust be between 0 and 1000, where columns/sets with smallest priority will bebranched on first. May be NULL if not required.
qbr Character array of length ndir specifying the branching direction for each column orset:

U the entity is to be forced up;
D the entity is to be forced down;
N not specified.May be NULL if not required.

dupc Double array of length ndir containing the up pseudo costs for the columns or sets.May be NULL if not required.
ddpc Double array of length ndir containing the down pseudo costs for the columns or sets.May be NULL if not required.

Related topics
XPRSgetdirs, XPRSloadpresolvedirs, XPRSreaddirs.

Fair Isaac Corporation Confidential and Proprietary Information 280

Console and Library Functions

XPRSloadglobal, XPRSloadglobal64

Purpose Used to load a global problem in to the Optimizer data structures. Integer, binary, partial integer,semi-continuous and semi-continuous integer variables can be defined, together with sets of type 1 and2. The reference row values for the set members are passed as an array rather than specifying areference row.
Synopsis

int XPRS_CC XPRSloadglobal(XPRSprob prob, const char ⁎probname, int ncol,
int nrow, const char qrtype[], const double rhs[], const double
range[], const double obj[], const int mstart[], const int mnel[],
const int mrwind[], const double dmatval[], const double dlb[], const
double dub[], int ngents, int nsets, const char qgtype[], const int
mgcols[], const double dlim[], const char qstype[], const int
msstart[], const int mscols[], const double dref[]);

int XPRS_CC XPRSloadglobal64(XPRSprob prob, const char ⁎probname, int ncol,
int nrow, const char qrtype[], const double rhs[], const double
range[], const double obj[], const XPRSint64 mstart[], const int
mnel[], const int mrwind[], const double dmatval[], const double
dlb[], const double dub[], int ngents, int nsets, const char
qgtype[], const int mgcols[], const double dlim[], const char
qstype[], const XPRSint64 msstart[], const int mscols[], const double
dref[]);

Arguments
prob The current problem.
probname A string of up to MAXPROBNAMELENGTH characters containing a name for the problem.
ncol Number of structural columns in the matrix.
nrow Number of rows in the matrix not (including the objective row). Objective coefficientsmust be supplied in the obj array, and the objective function should not be included inany of the other arrays.
qrtype Character array of length nrow containing the row types:

L indicates a ≤ constraint;
E indicates an = constraint;
G indicates a ≥ constraint;
R indicates a range constraint;
N indicates a nonbinding constraint.

rhs Double array of length nrow containing the right hand side coefficients. The right handside value for a range row gives the upper bound on the row.
range Double array of length nrow containing the range values for range rows. Values for allother rows will be ignored. May be NULL if not required. The lower bound on a range rowis the right hand side value minus the range value. The sign of the range value is ignored- the absolute value is used in all cases.
obj Double array of length ncol containing the objective function coefficients.
mstart Integer array containing the offsets in the mrwind and dmatval arrays of the start ofthe elements for each column. This array is of length ncol or, if mnel is NULL, length

ncol+1. If mnel is NULL, the extra entry of mstart, mstart[ncol], contains theposition in the mrwind and dmatval arrays at which an extra column would start, if itwere present. In C, this value is also the length of the mrwind and dmatval arrays.
mnel Integer array of length ncol containing the number of nonzero elements in eachcolumn. May be NULL if not required. This array is not required if the non-zero

Fair Isaac Corporation Confidential and Proprietary Information 281

Console and Library Functions

coefficients in the mrwind and dmatval arrays are continuous, and the mstart arrayhas ncol+1 entries as described above. It may be NULL if not required.
mrwind Integer arrays containing the row indices for the nonzero elements in each column. Ifthe indices are input contiguously, with the columns in ascending order, then the lengthof mrwind is mstart[ncol-1]+mnel[ncol-1] or, if mnel is NULL, mstart[ncol].
dmatval Double array containing the nonzero element values length as for mrwind.
dlb Double array of length ncol containing the lower bounds on the columns. Use

XPRS_MINUSINFINITY to represent a lower bound of minus infinity.
dub Double array of length ncol containing the upper bounds on the columns. Use

XPRS_PLUSINFINITY to represent an upper bound of plus infinity.
ngents Number of binary, integer, semi-continuous, semi-continuous integer and partial integerentities.
nsets Number of SOS1 and SOS2 sets.
qgtype Character array of length ngents containing the entity types:

B binary variables;
I integer variables;
P partial integer variables;
S semi-continuous variables;
R semi-continuous integer variables.

mgcols Integer array of length ngents containing the column indices of the global entities.
dlim Double array of length ngents containing the integer limits for the partial integervariables and lower bounds for semi-continuous and semi-continuous integer variables(any entries in the positions corresponding to binary and integer variables will beignored). May be NULL if not required.
qstype Character array of length nsets containing the set types:

1 SOS1 type sets;
2 SOS2 type sets.
May be NULL if not required.

msstart Integer array containing the offsets in the mscols and dref arrays indicating the startof the sets. This array is of length nsets+1, the last member containing the offsetwhere set nsets+1 would start. May be NULL if not required.
mscols Integer array of length msstart[nsets]-1 containing the columns in each set. Maybe NULL if not required.
dref Double array of length msstart[nsets]-1 containing the reference row entries foreach member of the sets. May be NULL if not required.

Related controls
Integer

EXTRACOLS Number of extra columns to be allowed for.
EXTRAELEMS Number of extra matrix elements to be allowed for.
EXTRAMIPENTS Number of extra global entities to be allowed for.
EXTRAPRESOLVE Number of extra elements to allow for in presolve.
EXTRAROWS Number of extra rows to be allowed for.
KEEPNROWS Status for nonbinding rows.
SCALING Type of scaling.

Double
MATRIXTOL Tolerance on matrix elements.
SOSREFTOL Minimum gap between reference row entries.

Example The following specifies an integer problem, globalEx, corresponding to:

Fair Isaac Corporation Confidential and Proprietary Information 282

Console and Library Functions

minimize: x + 2y
subject to: 3x + 2y ≤ 400

x + 3y ≤ 200
with both x and y integral:

char probname[] = "globalEx";
int ncol = 2, nrow = 2;
char qrtype[] = {'L','L'};
double rhs[] = {400.0, 200.0};
int mstart[] = {0, 2, 4};
int mrwind[] = {0, 1, 0, 1};
double dmatval[] = {3.0, 1.0, 2.0, 3.0};
double objcoefs[] = {1.0, 2.0};
double dlb[] = {0.0, 0.0};
double dub[] = {200.0, 200.0};

int ngents = 2;
int nsets = 0;
char qgtype[] = {"I","I"};
int mgcols[] = {0,1};
...
XPRSloadglobal(prob, probname, ncol, nrow, qrtype, rhs, NULL,

objcoefs, mstart, NULL, mrwind,
dmatval, dlb, dub, ngents, nsets, qgtype, mgcols,
NULL, NULL, NULL, NULL, NULL);

Further information
1. The row and column indices follow the usual C convention of going from 0 to nrow-1 and 0 to ncol-1respectively.
2. The double constants XPRS_PLUSINFINITY and XPRS_MINUSINFINITY are defined in the Optimizerlibrary header file.
3. Semi-continuous lower bounds are taken from the dlim array. If this is NULL then they are given adefault value of 1.0. If a semi-continuous variable has a positive lower bound then this will be used asthe semi-continuous lower bound and the lower bound on the variable will be set to zero.

Related topics
XPRSaddsetnames, XPRSloadlp, XPRSloadqglobal, XPRSloadqp, XPRSreadprob.

Fair Isaac Corporation Confidential and Proprietary Information 283

Console and Library Functions

XPRSloadlp, XPRSloadlp64

Purpose Enables the user to pass a matrix directly to the Optimizer, rather than reading the matrix from a file.
Synopsis

int XPRS_CC XPRSloadlp(XPRSprob prob, const char ⁎probname, int ncol, int
nrow, const char qrtype[], const double rhs[], const double range[],
const double obj[], const int mstart[], const int mnel[], const int
mrwind[], const double dmatval[], const double dlb[], const double
dub[]);

int XPRS_CC XPRSloadlp64(XPRSprob prob, const char ⁎probname, int ncol, int
nrow, const char qrtype[], const double rhs[], const double range[],
const double obj[], const XPRSint64 mstart[], const int mnel[], const
int mrwind[], const double dmatval[], const double dlb[], const
double dub[]);

Arguments
prob The current problem.
probname A string of up to MAXPROBNAMELENGTH characters containing a names for the problem.
ncol Number of structural columns in the matrix.
nrow Number of rows in the matrix (not including the objective). Objective coefficients mustbe supplied in the obj array, and the objective function should not be included in any ofthe other arrays.
qrtype Character array of length nrow containing the row types:

L indicates a ≤ constraint;
E indicates an = constraint;
G indicates a ≥ constraint;
R indicates a range constraint;
N indicates a nonbinding constraint.

rhs Double array of length nrow containing the right hand side coefficients of the rows. Theright hand side value for a range row gives the upper bound on the row.
range Double array of length nrow containing the range values for range rows. Values for allother rows will be ignored. May be NULL if not required. The lower bound on a range rowis the right hand side value minus the range value. The sign of the range value is ignored- the absolute value is used in all cases.
obj Double array of length ncol containing the objective function coefficients.
mstart Integer array containing the offsets in the mrwind and dmatval arrays of the start ofthe elements for each column. This array is of length ncol or, if mnel is NULL, length

ncol+1. If mnel is NULL, the extra entry of mstart, mstart[ncol], contains theposition in the mrwind and dmatval arrays at which an extra column would start, if itwere present. In C, this value is also the length of the mrwind and dmatval arrays.
mnel Integer array of length ncol containing the number of nonzero elements in eachcolumn. May be NULL if not required. This array is not required if the non-zerocoefficients in the mrwind and dmatval arrays are continuous, and the mstart arrayhas ncol+1 entries as described above.
mrwind Integer array containing the row indices for the nonzero elements in each column. If theindices are input contiguously, with the columns in ascending order, the length of the

mrwind is mstart[ncol-1]+mnel[ncol-1] or, if mnel is NULL, mstart[ncol].
dmatval Double array containing the nonzero element values; length as for mrwind.
dlb Double array of length ncol containing the lower bounds on the columns. Use

Fair Isaac Corporation Confidential and Proprietary Information 284

Console and Library Functions

XPRS_MINUSINFINITY to represent a lower bound of minus infinity.
dub Double array of length ncol containing the upper bounds on the columns. Use

XPRS_PLUSINFINITY to represent an upper bound of plus infinity.
Related controls

Integer
EXTRACOLS Number of extra columns to be allowed for.
EXTRAELEMS Number of extra matrix elements to be allowed for.
EXTRAPRESOLVE Number of extra elements to allow for in presolve.
EXTRAROWS Number of extra rows to be allowed for.
KEEPNROWS Status for nonbinding rows.
SCALING Type of scaling.

Double
MATRIXTOL Tolerance on matrix elements.

Example Given an LP problem:
minimize: x + y
subject to: 2x ≥ 3

x + 2y ≥ 3
x + y ≥ 1

the following shows how this may be loaded into the Optimizer using XPRSloadlp:
char probname[] = "small";
int ncol = 2, nrow = 3;
char qrtype[] = {'G','G','G'};
double rhs[] = { 3 , 3 , 1 };
double obj[] = { 1 , 1 };
int mstart[] = { 0 , 3 , 5 };
int mrwind[] = { 0 , 1 , 2 , 1 , 2 };
double dmatval[] = { 2 , 1 , 1 , 2 , 1 };
double dlb[] = { 0 , 0 };
double dub[] = {XPRS_PLUSINFINITY,XPRS_PLUSINFINITY};

XPRSloadlp(prob, probname, ncol, nrow, qrtype, rhs, NULL,
obj, mstart, NULL, mrwind, dmatval, dlb, dub)

Further information
1. The row and column indices follow the usual C convention of going from 0 to nrow-1 and 0 to ncol-1respectively.
2. The double constants XPRS_PLUSINFINITY and XPRS_MINUSINFINITY are defined in the Optimizerlibrary header file.
3. For a range constraint, the value in the rhs array specifies the upper bound on the constraint, while thevalue in the range array specifies the range on the constraint. So a range constraint j is interpreted as:

rhsj – |rangej| ≤∑
i

aijxi ≤ rhsj

Related topics
XPRSloadglobal, XPRSloadqglobal, XPRSloadqp, XPRSreadprob.

Fair Isaac Corporation Confidential and Proprietary Information 285

Console and Library Functions

XPRSloadlpsol

Purpose Loads an LP solution for the problem into the Optimizer.
Synopsis

int XPRS_CC XPRSloadlpsol(XPRSprob prob, const double x[], const double
slack[], const double dual[], const double dj[], int ⁎status);

Arguments
prob The current problem.
x Optional: Double array of length COLS (for the original problem and not the presolveproblem) containing the values of the variables.
slack Optional: double array of length ROWS containing the values of slack variables.
dual Optional: double array of length ROWS containing the values of dual variables.
dj Optional: double array of length COLS containing the values of reduced costs.
status Pointer to an int where the status will be returned. The status is one of:

0 Solution is loaded.
1 Solution is not loaded because the problem is in presolved status.

Example This example loads a problem, loads a solution for the problem and then uses XPRScrossoverlpsolto find a basic optimal solution.
XPRSreadprob(prob, "problem", "");
XPRSloadlpsol(prob, x, NULL, dual, NULL, &status);
XPRScrossoverlpsol(prob, &status);

Further information
1. At least one of variables x and dual variables dualmust be provided.
2. When variables x is NULL, the variables will be set to their bounds.
3. When slack variables slack is NULL, it will be computed from variables x. If slacks are provided,variables cannot be omitted.
4. When dual variables dual is NULL, both dual variables and reduced costs will be set to zero.
5. When reduced costs dj is NULL, it will be computed from dual variables dual. If reduced costs areprovided, dual variables cannot be omitted.

Related topics
XPRSgetlpsol, XPRScrossoverlpsol.

Fair Isaac Corporation Confidential and Proprietary Information 286

Console and Library Functions

XPRSloadmipsol

Purpose Loads a starting MIP solution for the problem into the Optimizer.
Synopsis

int XPRS_CC XPRSloadmipsol(XPRSprob prob, const double dsol[], int
⁎status);

Arguments
prob The current problem.
dsol Double array of length COLS (for the original problem and not the presolve problem)containing the values of the variables.
status Pointer to an int where the status will be returned. The status is one of:
-1 Solution rejected because an error occurred;
0 Solution accepted. When loading a solution before a MIP solve, the solution is alwaysaccepted. See Further Information below.
1 Solution rejected because it is infeasible;
2 Solution rejected because it is cut off;
3 Solution rejected because the LP reoptimization was interrupted.

Example This example loads a problem and then loads a solution found previously for the problem to help speedup the MIP search:
XPRSreadprob(prob,"problem","");
XPRSloadmipsol(prob,dsol,&status);
XPRSmipoptimize(prob,"");

Further information
1. When a solution is loaded before a MIP solve, the solution is placed in temporary storage until the MIPsolve is started. Only after the MIP solve has commenced and any presolve has been applied, will theloaded solution be checked and possibly accepted as a new incumbent integer solution. There are nochecks performed on the solution before the MIP solve and the returned status in XPRSloadmipsolwill always be 0 for accepted.
2. Loaded solution values will automatically be adjusted to fit within the current problem bounds.
3. It is recommended to use XPRSaddmipsol instead of XPRSloadmipsol. XPRSaddmipsol can becalled both before a solve, to load a starting solution, and during a MIP solve, to load new solutionswithin callbacks. XPRSaddmipsol also allows for loading of infeasible or partial solutions and comeswith a callback to check the status of loaded solutions.

Related topics
XPRSaddmipsol, XPRSgetmipsol.

Fair Isaac Corporation Confidential and Proprietary Information 287

Console and Library Functions

XPRSloadmodelcuts

Purpose Specifies that a set of rows in the matrix will be treated as model cuts.
Synopsis

int XPRS_CC XPRSloadmodelcuts(XPRSprob prob, int nmod, const int mrows[]);

Arguments
prob The current problem.
nmod The number of model cuts.
mrows An array of row indices to be treated as cuts.

Error value
268 Cannot perform operation on presolved matrix.

Example This sets the first six matrix rows as model cuts in the global problem myprob.
int mrows[] = {0,1,2,3,4,5}
...
XPRSloadmodelcuts(prob,6,mrows);
XPRSmipoptimize(prob,"");

Further information
1. During presolve the model cuts are removed from the matrix and added to an internal cut pool. Duringthe global search, the Optimizer will regularly check this cut pool for any violated model cuts and addthose that cuts off a node LP solution.
2. The model cuts must be "true" model cuts, in the sense that they are redundant at the optimal MIPsolution. The Optimizer does not guarantee to add all violated model cuts, so they must not be requiredto define the optimal MIP solution.

Related topics5.9.

Fair Isaac Corporation Confidential and Proprietary Information 288

Console and Library Functions

XPRSloadpresolvebasis

Purpose Loads a presolved basis from the user’s areas.
Synopsis

int XPRS_CC XPRSloadpresolvebasis(XPRSprob prob, const int rstatus[], const
int cstatus[]);

Arguments
prob The current problem.
rstatus Integer array of length ROWS containing the basis status of the slack, surplus or artificialvariable associated with each row. The status must be one of:

0 slack, surplus or artificial is non-basic at lower bound;
1 slack, surplus or artificial is basic;
2 slack or surplus is non-basic at upper bound.

cstatus Integer array of length COLS containing the basis status of each of the columns in thematrix. The status must be one of:
0 variable is non-basic at lower bound or superbasic at zero if the variable has nolower bound;
1 variable is basic;
2 variable is at upper bound;
3 variable is super-basic.

Example The following example saves the presolved basis for one problem, loading it into another:
int rows, cols, ⁎rstatus, ⁎cstatus;
...
XPRSreadprob(prob,"myprob","");
XPRSmipoptimize(prob,"l");
XPRSgetintattrib(prob,XPRS_ROWS,&rows);
XPRSgetintattrib(prob,XPRS_COLS,&cols);
rstatus = malloc(rows⁎sizeof(int));
cstatus = malloc(cols⁎sizeof(int));
XPRSgetpresolvebasis(prob,rstatus,cstatus);
XPRSreadprob(prob2,"myotherprob","");
XPRSmipoptimize(prob2,"l");
XPRSloadpresolvebasis(prob2,rstatus,cstatus);

Related topics
XPRSgetbasis, XPRSgetpresolvebasis, XPRSloadbasis.

Fair Isaac Corporation Confidential and Proprietary Information 289

Console and Library Functions

XPRSloadpresolvedirs

Purpose Loads directives into the presolved matrix.
Synopsis

int XPRS_CC XPRSloadpresolvedirs(XPRSprob prob, int ndir, const int
mcols[], const int mpri[], const char qbr[], const double dupc[],
const double ddpc[]);

Arguments
prob The current problem.
ndir Number of directives.
mcols Integer array of length ndir containing the column numbers. A negative value indicatesa set number (-1 being the first set, -2 the second, and so on).
mpri Integer array of length ndir containing the priorities for the columns or sets. May be

NULL if not required.
qbr Character array of length ndir specifying the branching direction for each column orset:

U the entity is to be forced up;
D the entity is to be forced down;
N not specified.May be NULL if not required.

dupc Double array of length ndir containing the up pseudo costs for the columns or sets.May be NULL if not required.
ddpc Double array of length ndir containing the down pseudo costs for the columns or sets.May be NULL if not required.

Example The following loads priority directives for column 0 in the matrix:
int mcols[] = {0}, mpri[] = {1};
...
XPRSmipoptimize(prob,"l");
XPRSloadpresolvedirs(prob,1,mcols,mpri,NULL,NULL,NULL);
XPRSmipoptimize(prob,"");

Related topics
XPRSgetdirs, XPRSloaddirs.

Fair Isaac Corporation Confidential and Proprietary Information 290

Console and Library Functions

XPRSloadqcqp, XPRSloadqcqp64

Purpose Used to load a quadratic problem with quadratic side constraints into the Optimizer data structure.Such a problem may have quadratic terms in its objective function as well as in its constraints.
Synopsis

int XPRS_CC XPRSloadqcqp(XPRSprob prob, const char ⁎ probname, int ncol,
int nrow, const char qrtypes[], const double rhs[], const double
range[], const double obj[], const int mstart[], const int mnel[],
const int mrwind[], const double dmatval[], const double dlb[], const
double dub[], int nqtr, const int mqcol1[], const int mqcol2[], const
double dqe[], int qmn, const int qcrows[], const int qcnquads[],
const int qcmqcol1[], const int qcmqcol2[], const double qcdqval[]);

int XPRS_CC XPRSloadqcqp64(XPRSprob prob, const char ⁎ probname, int ncol,
int nrow, const char qrtypes[], const double rhs[], const double
range[], const double obj[], const XPRSint64 mstart[], const int
mnel[], const int mrwind[], const double dmatval[], const double
dlb[], const double dub[], XPRSint64 nqtr, const int mqcol1[], const
int mqcol2[], const double dqe[], int qmn, const int qcrows[], const
XPRSint64 qcnquads[], const int qcmqcol1[], const int qcmqcol2[],
const double qcdqval[]);

Arguments
prob The current problem.
probname A string of up to MAXPROBNAMELENGTH characters containing a name for the problem.
ncol Number of structural columns in the matrix.
nrow Number of rows in the matrix (not including the objective row). Objective coefficientsmust be supplied in the obj array, and the objective function should not be included inany of the other arrays.
qrtype Character array of length nrow containing the row types:

L indicates a <= constraint (use this one for quadratic constraints as well);
E indicates an = constraint;
G indicates a >= constraint;
R indicates a range constraint;
N indicates a nonbinding constraint.

rhs Double array of length nrow containing the right hand side coefficients of the rows. Theright hand side value for a range row gives the upper bound on the row.
range Double array of length nrow containing the range values for range rows. Values for allother rows will be ignored. May be NULL if there are no ranged constraints. The lowerbound on a range row is the right hand side value minus the range value. The sign of therange value is ignored - the absolute value is used in all cases.
obj Double array of length ncol containing the objective function coefficients.
mstart Integer array containing the offsets in the mrwind and dmatval arrays of the start ofthe elements for each column. This array is of length ncol or, if mnel is NULL, length

ncol+1. If mnel is NULL the extra entry of mstart, mstart[ncol], contains theposition in the mrwind and dmatval arrays at which an extra column would start, if itwere present. In C, this value is also the length of the mrwind and dmatval arrays.
mnel Integer array of length ncol containing the number of nonzero elements in eachcolumn. May be NULL if all elements are contiguous and mstart[ncol] contains theoffset where the elements for column ncol+1 would start. This array is not required ifthe non-zero coefficients in the mrwind and dmatval arrays are continuous, and the

Fair Isaac Corporation Confidential and Proprietary Information 291

Console and Library Functions

mstart array has ncol+1 entries as described above. It may be NULL if not required.
mrwind Integer array containing the row indices for the nonzero elements in each column. If theindices are input contiguously, with the columns in ascending order, the length of the

mrwind is mstart[ncol-1]+mnel[ncol-1] or, if mnel is NULL, mstart[ncol].
dmatval Double array containing the nonzero element values; length as for mrwind.
dlb Double array of length ncol containing the lower bounds on the columns. Use

XPRS_MINUSINFINITY to represent a lower bound of minus infinity.
dub Double array of length ncol containing the upper bounds on the columns. Use

XPRS_PLUSINFINITY to represent an upper bound of plus infinity.
nqtr Number of quadratic terms.
mqc1 Integer array of size nqtr containing the column index of the first variable in eachquadratic term.
mqc2 Integer array of size nqtr containing the column index of the second variable in eachquadratic term.
dqe Double array of size nqtr containing the quadratic coefficients.
qmn Number of rows containing quadratic matrices.
qcrows Integer array of size qmn, containing the indices of rows with quadratic matrices inthem. Note that the rows are expected to be defined in qrtype as type L.
qcnquads Integer array of size qmn, containing the number of nonzeros in each quadraticconstraint matrix.
qcmqcol1 Integer array of size nqcelem, where nqcelem equals the sum of the elements in

qcnquads (i.e. the total number of quadratic matrix elements in all the constraints). Itcontains the first column indices of the quadratic matrices. Indices for the first matrixare listed from 0 to qcnquads[0]-1, for the second matrix from qcnquads[0] to
qcnquads[0]+ qcnquads[1]-1, etc.

qcmqcol2 Integer array of size nqcelem, containing the second index for the quadratic constraintmatrices.
qcdqval Integer array of size nqcelem, containing the coefficients for the quadratic constraintmatrices.

Related controls
Integer

EXTRACOLS Number of extra columns to be allowed for.
EXTRAELEMS Number of extra matrix elements to be allowed for.
EXTRAMIPENTS Number of extra global entities to be allowed for.
EXTRAPRESOLVE Number of extra elements to allow for in presolve.
EXTRAQCELEMENTS Number of extra qcqp elements to be allowed for.
EXTRAQCROWS Number of extra qcqpmatrices to be allowed for.
EXTRAROWS Number of extra rows to be allowed for.
KEEPNROWS Status for nonbinding rows.
SCALING Type of scaling.

Double
MATRIXTOL Tolerance on matrix elements.

Example To load the following problem presented in LP format:
minimize [x^2]
s.t.
4 x + y <= 4
x + y + [z^2] <= 5

Fair Isaac Corporation Confidential and Proprietary Information 292

Console and Library Functions

[x^2 + 2 x⁎y + y^2 + 4 y⁎z + z^2] <= 10
x + 2 y >= 8
[3 y^2] <= 20
end

the following code may be used:
{

int ncols = 3;
int nrows = 5;
char rowtypes[] = {'L','L','L','G','L'};
double rhs[] = {4,5,10,8,20};
double range[] = {0,0,0,0,0};
double obj[] = {0,0,0,0,0};
int mstart[] = {0,3,6,6};
int⁎ mnel = NULL;
int mrind[] = {0,1,3,0,1,3};
double dmatval[] = {4,1,1,1,1,2};
double lb[] = {0,0,0};
double ub[] = {XPRS_PLUSINFINITY,XPRS_PLUSINFINITY,
XPRS_PLUSINFINITY};

int nqtr = 1;
int mqc1[] = {0};
int mqc2[] = {0};
double dqe[] = {1};

int qmn = 3;
int qcrows[] = {1,2,4};
int qcnquads[] = {1,5,1};
int qcmcol1[] = {2,0,0,1,1,2,1};
int qcmcol2[] = {2,0,1,1,2,2,1};
// ! to have 2xy define 1xy (1yx will be assumed to be implicitly present)
double qcdqval[] = {1,9,1,8,2,7,3};

}

XPRSloadqcqp(xprob,"qcqp",ncols,nrows,rowtypes,rhs,range,obj,mstart,
mnel,mrind,dmatval,lb,ub,nqtr,mqc1,mqc2,dqe,qmn,qcrows,qcnquads,
qcmcol1,qcmcol2,qcdqval);

}

Further information

1. The objective function is of the form cTx+ 0.5 xTQx where Q is positive semi-definite forminimization problems and negative semi-definite for maximization problems. If this is not the casethe optimization algorithms may converge to a local optimum or may not converge at all. Note that onlythe upper or lower triangular part of the Qmatrix is specified.
2. All Qmatrices in the constraints must be positive semi-definite. Note that only the upper or lowertriangular part of the Qmatrix is specified for constraints as well.
3. The row and column indices follow the usual C convention of going from 0 to nrow-1 and 0 to ncol-1respectively.
4. The double constants XPRS_PLUSINFINITY and XPRS_MINUSINFINITY are defined in the Optimizerlibrary header file.

Fair Isaac Corporation Confidential and Proprietary Information 293

Console and Library Functions

Related topics
XPRSloadglobal, XPRSloadlp, XPRSloadqglobal, XPRSloadqp, XPRSreadprob.

Fair Isaac Corporation Confidential and Proprietary Information 294

Console and Library Functions

XPRSloadqcqpglobal, XPRSloadqcqpglobal64

Purpose Used to load a global, quadratic problem with quadratic side constraints into the Optimizer datastructure. Such a problem may have quadratic terms in its objective function as well as in itsconstraints. Integer, binary, partial integer, semi-continuous and semi-continuous integer variables canbe defined, together with sets of type 1 and 2. The reference row values for the set members arepassed as an array rather than specifying a reference row.
Synopsis

int XPRS_CC XPRSloadqcqpglobal(XPRSprob prob, const char ⁎ probname, int
ncol, int nrow, const char qrtypes[], const double rhs[], const
double range[], const double obj[], const int mstart[], const int
mnel[], const int mrwind[], const double dmatval[], const double
dlb[], const double dub[], int nqtr, const int mqcol1[], const int
mqcol2[], const double dqe[], int qmn, const int qcrows[], const int
qcnquads[], const int qcmqcol1[], const int qcmqcol2[], const double
qcdqval[], const int ngents, const int nsets, const char qgtype[],
const int mgcols[], const double dlim[], const char qstype[], const
int msstart[], const int mscols[], const double dref[]);

int XPRS_CC XPRSloadqcqpglobal64(XPRSprob prob, const char ⁎ probname, int
ncol, int nrow, const char qrtypes[], const double rhs[], const
double range[], const double obj[], const XPRSint64 mstart[], const
int mnel[], const int mrwind[], const double dmatval[], const double
dlb[], const double dub[], XPRSint64 nqtr, const int mqcol1[], const
int mqcol2[], const double dqe[], int qmn, const int qcrows[], const
XPRSint64 qcnquads[], const int qcmqcol1[], const int qcmqcol2[],
const double qcdqval[], const int ngents, const int nsets, const char
qgtype[], const int mgcols[], const double dlim[], const char
qstype[], const XPRSint64 msstart[], const int mscols[], const double
dref[]);

Arguments
prob The current problem.
probname A string of up to MAXPROBNAMELENGTH characters containing a name for the problem.
ncol Number of structural columns in the matrix.
nrow Number of rows in the matrix (not including the objective row). Objective coefficientsmust be supplied in the obj array, and the objective function should not be included inany of the other arrays.
qrtype Character array of length nrow containing the row types:

L indicates a <= constraint (use this one for quadratic constraints as well);
E indicates an = constraint;
G indicates a >= constraint;
R indicates a range constraint;
N indicates a nonbinding constraint.

rhs Double array of length nrow containing the right hand side coefficients of the rows. Theright hand side value for a range row gives the upper bound on the row.
range Double array of length nrow containing the range values for range rows. Values for allother rows will be ignored. May be NULL if there are no ranged constraints. The lowerbound on a range row is the right hand side value minus the range value. The sign of therange value is ignored - the absolute value is used in all cases.
obj Double array of length ncol containing the objective function coefficients.

Fair Isaac Corporation Confidential and Proprietary Information 295

Console and Library Functions

mstart Integer array containing the offsets in the mrwind and dmatval arrays of the start ofthe elements for each column. This array is of length ncol or, if mnel is NULL, length
ncol+1. If mnel is NULL the extra entry of mstart, mstart[ncol], contains theposition in the mrwind and dmatval arrays at which an extra column would start, if itwere present. In C, this value is also the length of the mrwind and dmatval arrays.

mnel Integer array of length ncol containing the number of nonzero elements in eachcolumn. May be NULL if all elements are contiguous and mstart[ncol] contains theoffset where the elements for column ncol+1 would start. This array is not required ifthe non-zero coefficients in the mrwind and dmatval arrays are continuous, and the
mstart array has ncol+1 entries as described above. It may be NULL if not required.

mrwind Integer array containing the row indices for the nonzero elements in each column. If theindices are input contiguously, with the columns in ascending order, the length of the
mrwind is mstart[ncol-1]+mnel[ncol-1] or, if mnel is NULL, mstart[ncol].

dmatval Double array containing the nonzero element values; length as for mrwind.
dlb Double array of length ncol containing the lower bounds on the columns. Use

XPRS_MINUSINFINITY to represent a lower bound of minus infinity.
dub Double array of length ncol containing the upper bounds on the columns. Use

XPRS_PLUSINFINITY to represent an upper bound of plus infinity.
nqtr Number of quadratic terms.
mqc1 Integer array of size nqtr containing the column index of the first variable in eachquadratic term.
mqc2 Integer array of size nqtr containing the column index of the second variable in eachquadratic term.
dqe Double array of size nqtr containing the quadratic coefficients.
qmn Number of rows containing quadratic matrices.
qcrows Integer array of size qmn, containing the indices of rows with quadratic matrices inthem. Note that the rows are expected to be defined in qrtype as type L.
qcnquads Integer array of size qmn, containing the number of nonzeros in each quadraticconstraint matrix.
qcmqcol1 Integer array of size nqcelem, where nqcelem equals the sum of the elements in

qcnquads (i.e. the total number of quadratic matrix elements in all the constraints). Itcontains the first column indices of the quadratic matrices. Indices for the first matrixare listed from 0 to qcnquads[0]-1, for the second matrix from qcnquads[0] to
qcnquads[0]+ qcnquads[1]-1, etc.

qcmqcol2 Integer array of size nqcelem, containing the second index for the quadratic constraintmatrices.
qcdqval Integer array of size nqcelem, containing the coefficients for the quadratic constraintmatrices.
ngents Number of binary, integer, semi-continuous, semi-continuous integer and partial integerentities.
nsets Number of SOS1 and SOS2 sets.
qgtype Character array of length ngents containing the entity types:

B binary variables;
I integer variables;
P partial integer variables;
S semi-continuous variables;
R semi-continuous integer variables.

mgcols Integer array of length ngents containing the column indices of the global entities.
dlim Double array of length ngents containing the integer limits for the partial integervariables and lower bounds for semi-continuous and semi-continuous integer variables

Fair Isaac Corporation Confidential and Proprietary Information 296

Console and Library Functions

(any entries in the positions corresponding to binary and integer variables will beignored). May be NULL if not required.
qstype Character array of length nsets containing the set types:

1 SOS1 type sets;
2 SOS2 type sets.
May be NULL if not required.

msstart Integer array containing the offsets in the mscols and dref arrays indicating the startof the sets. This array is of length nsets+1, the last member containing the offsetwhere set nsets+1 would start. May be NULL if not required.
mscols Integer array of length msstart[nsets]-1 containing the columns in each set. Maybe NULL if not required.
dref Double array of length msstart[nsets]-1 containing the reference row entries foreach member of the sets. May be NULL if not required.

Related controls
Integer

EXTRACOLS Number of extra columns to be allowed for.
EXTRAELEMS Number of extra matrix elements to be allowed for.
EXTRAMIPENTS Number of extra global entities to be allowed for.
EXTRAPRESOLVE Number of extra elements to allow for in presolve.
EXTRAQCELEMENTS Number of extra qcqp elements to be allowed for.
EXTRAQCROWS Number of extra qcqpmatrices to be allowed for.
EXTRAROWS Number of extra rows to be allowed for.
KEEPNROWS Status for nonbinding rows.
SCALING Type of scaling.

Double
MATRIXTOL Tolerance on matrix elements.

Further information

1. The objective function is of the form cTx+ 0.5 xTQx where Q is positive semi-definite forminimization problems and negative semi-definite for maximization problems. If this is not the casethe optimization algorithms may converge to a local optimum or may not converge at all. Note that onlythe upper or lower triangular part of the Qmatrix is specified.
2. All Qmatrices in the constraints must be positive semi-definite. Note that only the upper or lowertriangular part of the Qmatrix is specified for constraints as well.
3. The row and column indices follow the usual C convention of going from 0 to nrow-1 and 0 to ncol-1respectively.
4. The double constants XPRS_PLUSINFINITY and XPRS_MINUSINFINITY are defined in the Optimizerlibrary header file.
5. The row and column indices follow the usual C convention of going from 0 to nrow-1 and 0 to ncol-1respectively.
6. The double constants XPRS_PLUSINFINITY and XPRS_MINUSINFINITY are defined in the Optimizerlibrary header file.
7. Semi-continuous lower bounds are taken from the dlim array. If this is NULL then they are given adefault value of 1.0. If a semi-continuous variable has a positive lower bound then this will be used asthe semi-continuous lower bound and the lower bound on the variable will be set to zero.

Related topics
XPRSloadglobal, XPRSloadlp, XPRSloadqcqp, XPRSloadqglobal, XPRSloadqp,

Fair Isaac Corporation Confidential and Proprietary Information 297

Console and Library Functions

XPRSreadprob.

Fair Isaac Corporation Confidential and Proprietary Information 298

Console and Library Functions

XPRSloadqglobal, XPRSloadqglobal64

Purpose Used to load a global problem with quadratic objective coefficients in to the Optimizer data structures.Integer, binary, partial integer, semi-continuous and semi-continuous integer variables can be defined,together with sets of type 1 and 2. The reference row values for the set members are passed as anarray rather than specifying a reference row.
Synopsis

int XPRS_CC XPRSloadqglobal(XPRSprob prob, const char ⁎probname, int ncol,
int nrow, const char qrtype[], const double rhs[], const double
range[], const double obj[], const int mstart[], const int mnel[],
const int mrwind[], const double dmatval[], const double dlb[], const
double dub[], int nqtr, const int mqc1[], const int mqc2[], const
double dqe[], const int ngents, const int nsets, const char qgtype[],
const int mgcols[], const double dlim[], const char qstype[], const
int msstart[], const int mscols[], const double dref[]);

int XPRS_CC XPRSloadqglobal64(XPRSprob prob, const char ⁎probname, int
ncol, int nrow, const char qrtype[], const double rhs[], const double
range[], const double obj[], const XPRSint64 mstart[], const int
mnel[], const int mrwind[], const double dmatval[], const double
dlb[], const double dub[], XPRSint64 nqtr, const int mqc1[], const
int mqc2[], const double dqe[], const int ngents, const int nsets,
const char qgtype[], const int mgcols[], const double dlim[], const
char qstype[], const XPRSint64 msstart[], const int mscols[], const
double dref[]);

Arguments
prob The current problem.
probname A string of up to MAXPROBNAMELENGTH characters containing a name for the problem.
ncol Number of structural columns in the matrix.
nrow Number of rows in the matrix (not including the objective). Objective coefficients mustbe supplied in the obj array, and the objective function should not be included in any ofthe other arrays.
qrtype Character array of length nrow containing the row type:

L indicates a ≤ constraint;
E indicates an = constraint;
G indicates a ≥ constraint;
R indicates a range constraint;
N indicates a nonbinding constraint.

rhs Double array of length nrow containing the right hand side coefficients. The right handside value for a range row gives the upper bound on the row.
range Double array of length nrow containing the range values for range rows. The values inthe range array will only be read for R type rows. The entries for other type rows will beignored. May be NULL if not required. The lower bound on a range row is the right handside value minus the range value. The sign of the range value is ignored - the absolutevalue is used in all cases.
obj Double array of length ncol containing the objective function coefficients.
mstart Integer array containing the offsets in the mrwind and dmatval arrays of the start ofthe elements for each column. This array is of length ncol or, if mnel is NULL, length

ncol+1.
mnel Integer array of length ncol containing the number of nonzero elements in each

Fair Isaac Corporation Confidential and Proprietary Information 299

Console and Library Functions

column. May be NULL if not required. This array is not required if the non-zerocoefficients in the mrwind and dmatval arrays are continuous, and the mstart arrayhas ncol+1 entries as described above. It may be NULL if not required.
mrwind Integer arrays containing the row indices for the nonzero elements in each column. Ifthe indices are input contiguously, with the columns in ascending order, then the lengthof mrwind is mstart[ncol-1]+mnel[ncol-1] or, if mnel is NULL, mstart[ncol].
dmatval Double array containing the nonzero element values length as for mrwind.
dlb Double array of length ncol containing the lower bounds on the columns. Use

XPRS_MINUSINFINITY to represent a lower bound of minus infinity.
dub Double array of length ncol containing the upper bounds on the columns. Use

XPRS_PLUSINFINITY to represent an upper bound of plus infinity.
nqtr Number of quadratic terms.
mqc1 Integer array of size nqtr containing the column index of the first variable in eachquadratic term.
mqc2 Integer array of size nqtr containing the column index of the second variable in eachquadratic term.
dqe Double array of size nqtr containing the quadratic coefficients.
ngents Number of binary, integer, semi-continuous, semi-continuous integer and partial integerentities.
nsets Number of SOS1 and SOS2 sets.
qgtype Character array of length ngents containing the entity types:

B binary variables;
I integer variables;
P partial integer variables;
S semi-continuous variables;
R semi-continuous integers.

mgcols Integer array of length ngents containing the column indices of the global entities.
dlim Double array of length ngents containing the integer limits for the partial integervariables and lower bounds for semi-continuous and semi-continuous integer variables(any entries in the positions corresponding to binary and integer variables will beignored). May be NULL if not required.
qstype Character array of length nsets containing:

1 SOS1 type sets;
2 SOS2 type sets.
May be NULL if not required.

msstart Integer array containing the offsets in the mscols and dref arrays indicating the startof the sets. This array is of length nsets+1, the last member containing the offsetwhere set nsets+1 would start. May be NULL if not required.
mscols Integer array of length msstart[nsets]-1 containing the columns in each set. Maybe NULL if not required.
dref Double array of length msstart[nsets]-1 containing the reference row entries foreach member of the sets. May be NULL if not required.

Related controls
Integer

EXTRACOLS Number of extra columns to be allowed for.
EXTRAELEMS Number of extra matrix elements to be allowed for.
EXTRAMIPENTS Number of extra global entities to be allowed for.
EXTRAPRESOLVE Number of extra elements to allow for in presolve.
EXTRAROWS Number of extra rows to be allowed for.

Fair Isaac Corporation Confidential and Proprietary Information 300

Console and Library Functions

KEEPNROWS Status for nonbinding rows.
SCALING Type of scaling.

Double
MATRIXTOL Tolerance on matrix elements.
SOSREFTOL Minimum gap between reference row entries.

Example Minimize -6x1 + 2x12 - 2x1x2 + 2x22 subject to x1 + x2 ≤ 1.9, where x1 must be an integer:
int nrow = 1, ncol = 2, nquad = 3;
int mstart[] = {0, 1, 2};
int mrwind[] = {0, 0};
double dmatval[] = {1, 1};
double rhs[] = {1.9};
char qrtype[] = {'L'};
double lbound[] = {0, 0};
double ubound[] = {XPRS_PLUSINFINITY, XPRS_PLUSINFINITY};

double obj[] = {-6, 0};
int mqc1[] = {0, 0, 1};
int mqc2[] = {0, 1, 1};
double dquad[] = {4, -2, 4};

int ngents = 1, nsets = 0;
int mgcols[] = {0};
char qgtype[]={'I'};

double ⁎primal, ⁎dual;

primal = malloc(ncol⁎sizeof(double));
dual = malloc(nrow⁎sizeof(double));
...
XPRSloadqglobal(prob, "myprob", ncol, nrow, qrtype, rhs,

NULL, obj, mstart, NULL, mrwind,
dmatval, lbound, ubound, nquad, mqc1, mqc2,
dquad, ngents, nsets, qgtype, mgcols, NULL,
NULL, NULL, NULL, NULL)

Further information
1. The objective function is of the form c’x+ 0.5 x’Qx where Q is positive semi-definite forminimization problems and negative semi-definite for maximization problems. If this is not the casethe optimization algorithms may converge to a local optimum or may not converge at all. Note that onlythe upper or lower triangular part of the Qmatrix is specified.
2. The row and column indices follow the usual C convention of going from 0 to nrow-1 and 0 to ncol-1respectively.
3. The double constants XPRS_PLUSINFINITY and XPRS_MINUSINFINITY are defined in the Optimizerlibrary header file.

Related topics
XPRSaddsetnames, XPRSloadglobal, XPRSloadlp, XPRSloadqp, XPRSreadprob.

Fair Isaac Corporation Confidential and Proprietary Information 301

Console and Library Functions

XPRSloadqp, XPRSloadqp64

Purpose Used to load a quadratic problem into the Optimizer data structure. Such a problem may have quadraticterms in its objective function, although not in its constraints.
Synopsis

int XPRS_CC XPRSloadqp(XPRSprob prob, const char ⁎probname, int ncol, int
nrow, const char qrtype[], const double rhs[], const double range[],
const double obj[], const int mstart[], const int mnel[], const int
mrwind[], const double dmatval[], const double dlb[], const double
dub[], int nqtr, const int mqc1[], const int mqc2[], const double
dqe[]);

int XPRS_CC XPRSloadqp64(XPRSprob prob, const char ⁎probname, int ncol, int
nrow, const char qrtype[], const double rhs[], const double range[],
const double obj[], const XPRSint64 mstart[], const int mnel[], const
int mrwind[], const double dmatval[], const double dlb[], const
double dub[], XPRSint64 nqtr, const int mqc1[], const int mqc2[],
const double dqe[]);

Arguments
prob The current problem.
probname A string of up to MAXPROBNAMELENGTH characters containing a names for the problem.
ncol Number of structural columns in the matrix.
nrow Number of rows in the matrix (not including the objective row). Objective coefficientsmust be supplied in the obj array, and the objective function should not be included inany of the other arrays.
qrtype Character array of length nrow containing the row types:

L indicates a ≤ constraint;
E indicates an = constraint;
G indicates a ≥ constraint;
R indicates a range constraint;
N indicates a nonbinding constraint.

rhs Double array of length nrow containing the right hand side coefficients of the rows. Theright hand side value for a range row gives the upper bound on the row.
range Double array of length nrow containing the range values for range rows. Values for allother rows will be ignored. May be NULL if there are no ranged constraints. The lowerbound on a range row is the right hand side value minus the range value. The sign of therange value is ignored - the absolute value is used in all cases.
obj Double array of length ncol containing the objective function coefficients.
mstart Integer array containing the offsets in the mrwind and dmatval arrays of the start ofthe elements for each column. This array is of length ncol or, if mnel is NULL, length

ncol+1. If mnel is NULL the extra entry of mstart, mstart[ncol], contains theposition in the mrwind and dmatval arrays at which an extra column would start, if itwere present. In C, this value is also the length of the mrwind and dmatval arrays.
mnel Integer array of length ncol containing the number of nonzero elements in eachcolumn. May be NULL if all elements are contiguous and mstart[ncol] contains theoffset where the elements for column ncol+1 would start. This array is not required ifthe non-zero coefficients in the mrwind and dmatval arrays are continuous, and the

mstart array has ncol+1 entries as described above. It may be NULL if not required.
mrwind Integer array containing the row indices for the nonzero elements in each column. If theindices are input contiguously, with the columns in ascending order, the length of the

Fair Isaac Corporation Confidential and Proprietary Information 302

Console and Library Functions

mrwind is mstart[ncol-1]+mnel[ncol-1] or, if mnel is NULL, mstart[ncol].
dmatval Double array containing the nonzero element values; length as for mrwind.
dlb Double array of length ncol containing the lower bounds on the columns. Use

XPRS_MINUSINFINITY to represent a lower bound of minus infinity.
dub Double array of length ncol containing the upper bounds on the columns. Use

XPRS_PLUSINFINITY to represent an upper bound of plus infinity.
nqtr Number of quadratic terms.
mqc1 Integer array of size nqtr containing the column index of the first variable in eachquadratic term.
mqc2 Integer array of size nqtr containing the column index of the second variable in eachquadratic term.
dqe Double array of size nqtr containing the quadratic coefficients.

Related controls
Integer

EXTRACOLS Number of extra columns to be allowed for.
EXTRAELEMS Number of extra matrix elements to be allowed for.
EXTRAPRESOLVE Number of extra elements to allow for in presolve.
EXTRAROWS Number of extra rows to be allowed for.
KEEPNROWS Status for nonbinding rows.
SCALING Type of scaling.

Double
MATRIXTOL Tolerance on matrix elements.

Example Minimize -6x1 + 2x12 - 2x1x2 + 2x22 subject to x1 + x2 ≤ 1.9:
int nrow = 1, ncol = 2, nquad = 3;
int mstart[] = {0, 1, 2};
int mrwind[] = {0, 0};
double dmatval[] = {1, 1};
double rhs[] = {1.9};
char qrtype[] = {'L'};
double lbound[] = {0, 0};
double ubound[] = {XPRS_PLUSINFINITY,XPRS_PLUSINFINITY};

double obj[] = {-6, 0};
int mqc1[] = {0, 0, 1};
int mqc2[] = {0, 1, 1};
double dquad[] = {4, -2, 4};

double ⁎primal, ⁎dual;

primal = malloc(ncol⁎sizeof(double));
dual = malloc(nrow⁎sizeof(double));
...
XPRSloadqp(prob, "example", ncol, nrow, qrtype, rhs,

NULL, obj, mstart, NULL, mrwind, dmatval,
lbound, ubound, nquad, mqc1, mqc2, dquad)

Fair Isaac Corporation Confidential and Proprietary Information 303

Console and Library Functions

Further information
1. The objective function is of the form c’x+ 0.5 x’Qx where Q is positive semi-definite forminimization problems and negative semi-definite for maximization problems. If this is not the casethe optimization algorithms may converge to a local optimum or may not converge at all. Note that onlythe upper or lower triangular part of the Q matrix is specified.
2. The row and column indices follow the usual C convention of going from 0 to nrow-1 and 0 to ncol-1respectively.
3. The double constants XPRS_PLUSINFINITY and XPRS_MINUSINFINITY are defined in the Optimizerlibrary header file.

Related topics
XPRSloadglobal, XPRSloadlp, XPRSloadqglobal, XPRSreadprob.

Fair Isaac Corporation Confidential and Proprietary Information 304

Console and Library Functions

XPRSloadsecurevecs

Purpose Allows the user to mark rows and columns in order to prevent the presolve removing these rows andcolumns from the matrix.
Synopsis

int XPRS_CC XPRSloadsecurevecs(XPRSprob prob, int nr, int nc, const int
mrow[], const int mcol[]);

Arguments
prob The current problem.
nr Number of rows to be marked.
nc Number of columns to be marked.
mrow Integer array of length nr containing the rows to be marked. May be NULL if notrequired.
mcol Integer array of length nc containing the columns to be marked. May be NULL if notrequired.

Example This sets the first six rows and the first four columns to not be removed during presolve.
int mrow[] = {0,1,2,3,4,5};
int mcol[] = {0,1,2,3};
...
XPRSreadprob(prob,"myprob","");
XPRSloadsecurevecs(prob,6,4,mrow,mcol);
XPRSmipoptimize(prob,"");

Related topics5.3.

Fair Isaac Corporation Confidential and Proprietary Information 305

Console and Library Functions

XPRSlpoptimize LPOPTIMIZE

Purpose This function begins a search for the optimal continuous (LP) solution. The direction of optimization isgiven by OBJSENSE. The status of the problem when the function completes can be checked using
LPSTATUS. Any global entities in the problem will be ignored.

Synopsis
int XPRS_CC XPRSlpoptimize(XPRSprob prob, const char ⁎flags);
LPOPTIMIZE [-flags]

Arguments
prob The current problem.
flags Flags to pass to XPRSlpoptimize (LPOPTIMIZE). The default is "" or NULL, in whichcase the algorithm used is determined by the DEFAULTALG control. If the argumentincludes:

b the model will be solved using the Newton barrier method;
p the model will be solved using the primal simplex algorithm;
d the model will be solved using the dual simplex algorithm;
n (lower case N), the network part of the model will be identified and solved usingthe network simplex algorithm;

Further information
1. The algorithm used to optimize is determined by the DEFAULTALG control if no flags are provided. Bydefault, the dual simplex is used for linear problems and the barrier is used for non-linear problems.
2. The d and p flags can be used with the n flag to complete the solution of the model with either the dualor primal algorithms once the network algorithm has solved the network part of the model.
3. The b flag cannot be used with the n flag.

Related topics
XPRSmipoptimize (MIPOPTIMIZE), 4.

Fair Isaac Corporation Confidential and Proprietary Information 306

Console and Library Functions

XPRSmaxim, XPRSminim MAXIM, MINIM

Purpose Begins a search for the optimal LP solution. These functions are deprecated and might be removed in afuture release. XPRSlpoptimize or XPRSmipoptimize should be used instead.
Synopsis

int XPRS_CC XPRSmaxim(XPRSprob prob, const char ⁎flags);
int XPRS_CC XPRSminim(XPRSprob prob, const char ⁎flags);
MAXIM [-flags]
MINIM [-flags]

Arguments
prob The current problem.
flags Flags to pass to XPRSmaxim (MAXIM) or XPRSminim (MINIM). The default is "" or

NULL, in which case the algorithm used is determined by the DEFAULTALG control. Ifthe argument includes:
b the model will be solved using the Newton barrier method;
p the model will be solved using the primal simplex algorithm;
d the model will be solved using the dual simplex algorithm;
l (lower case L), the model will be solved as a linear model ignoring thediscreteness of global variables;
n (lower case N), the network part of the model will be identified and solved usingthe network simplex algorithm;
g the global model will be solved, calling XPRSglobal (GLOBAL).
Certain combinations of options may be used where this makes sense so, for example,
pg will solve the LP with the primal algorithm and then go on to perform the globalsearch.

Related controls
Integer

AUTOPERTURB Whether automatic perturbation is performed.
BARITERLIMIT Maximum number of Newton Barrier iterations.
BARORDER Ordering algorithm for the Cholesky factorization.
BARORDERTHREADS Maximum number of theads for the ordering algorithm.
BAROUTPUT Newton barrier: level of solution output.
BARTHREADS Max number of threads to run.
BIGMMETHOD Specifies "Big M" method, or phaseI/phaseII.
CACHESIZE Cache size in Kbytes for the Newton barrier.
CPUTIME 1 for CPU time; 0 for elapsed time.
CRASH Type of crash.
CROSSOVER Newton barrier crossover control.
DEFAULTALG Algorithm to use with the tree search.
DENSECOLLIMIT Columns with this many elements are considered dense.
DUALGRADIENT Pricing method for the dual algorithm.
INVERTFREQ Invert frequency.
INVERTMIN Minimum number of iterations between inverts.
KEEPBASIS Whether to use previously loaded basis.
LPITERLIMIT Iteration limit for the simplex algorithm.
LPLOG Frequency and type of simplex algorithm log.
MAXTIME Maximum time allowed.

Fair Isaac Corporation Confidential and Proprietary Information 307

Console and Library Functions

PRESOLVE Degree of presolving to perform.
PRESOLVEOPS Specifies the operations performed during presolve.
PRICINGALG Type of pricing to be used.
REFACTOR Indicates whether to re-factorize the optimal basis.
TRACE Control of the infeasibility diagnosis during presolve.

Double
BARDUALSTOP Newton barrier tolerance for dual infeasibilities.
BARGAPSTOP Newton barrier tolerance for relative duality gap.
BARPRIMALSTOP Newton barrier tolerance for primal infeasibilities.
BARSTEPSTOP Newton barrier minimal step size.
BIGM Infeasibility penalty.
CHOLESKYTOL Tolerance in the Cholesky decomposition.
ELIMTOL Markowitz tolerance for elimination phase of presolve.
ETATOL Tolerance on eta elements.
FEASTOL Tolerance on RHS.
MARKOWITZTOL Markowitz tolerance for the factorization.
MIPABSCUTOFF Cutoff set after an LP Optimizer command. (Dual only)
OPTIMALITYTOL Reduced cost tolerance.
PENALTY Maximum absolute penalty variable coefficient.
PERTURB Perturbation value.
PIVOTTOL Pivot tolerance.
PPFACTOR Partial pricing candidate list sizing parameter.
RELPIVOTTOL Relative pivot tolerance.

Example 1 (Library)

XPRSmaxim(prob,"b");

This maximizes the current problem using the Newton barrier method.
Example 2 (Console)

MINIM -g

This minimizes the current problem and commences the global search.
Further information

1. The algorithm used to optimize is determined by the DEFAULTALG control. By default, the dual simplexis used for LP and MIP problems and the barrier is used for QP problems.
2. The d and p flags can be used with the n flag to complete the solution of the model with either the dualor primal algorithms once the network algorithm has solved the network part of the model.
3. The b flag cannot be used with the n flag.
4. The dual simplex algorithm is a two phase algorithm which can remove dual infeasibilities.
5. (Console) If the user prematurely terminates the solution process by typing CTRL-C, the iterativeprocedure will terminate at the first "safe" point.

Related topics
XPRSglobal (GLOBAL), XPRSreadbasis (READBASIS), XPRSgoal (GOAL), 4, A.8.

Fair Isaac Corporation Confidential and Proprietary Information 308

Console and Library Functions

XPRSmipoptimize MIPOPTIMIZE

Purpose This function begins a global search for the optimal MIP solution. The direction of optimization is givenby OBJSENSE. The status of the problem when the function completes can be checked using
MIPSTATUS.

Synopsis
int XPRS_CC XPRSmipoptimize(XPRSprob prob, const char ⁎flags);
MIPOPTIMIZE [-flags]

Arguments
prob The current problem.
flags Flags to pass to XPRSmipoptimize (MIPOPTIMIZE), which specifies how to solve theinitial continuous problem where the global entities are relaxed. If the argumentincludes:

b the initial continuous relaxation will be solved using the Newton barrier method;
p the initial continuous relaxation will be solved using the primal simplexalgorithm;
d the initial continuous relaxation will be solved using the dual simplex algorithm;
n the network part of the initial continuous relaxation will be identified andsolved using the network simplex algorithm;
l stop after having solved the initial continous relaxation.

Further information
1. If the l flag is used, the Optimizer will stop immediately after solving the initial continuous relaxation.The status of the continuous solve can be checked with LPSTATUS and standard LP results areavailable, such as the objective value (LPOBJVAL) and solution (use XPRSgetlpsol), depending on
LPSTATUS.

2. It is possible for the Optimizer to find integer solutions before solving the initial continuous relaxation,either through heuristics or by having the user load an initial integer solution. This can potentially resultin the global search finishing before solving the continuous relaxation to optimality.
3. If the function returns without having completed the search for an optimal solution, the search can beresumed from where it stopped by calling XPRSmipoptimize again.
4. The algorithm used to reoptimize the continuous relaxations during the global search is given by

DEFAULTALG. The default is to use the dual simplex algorithm.
Related topics

XPRSlpoptimize (LPOPTIMIZE), 4.

Fair Isaac Corporation Confidential and Proprietary Information 309

Console and Library Functions

XPRSobjsa

Purpose Returns upper and lower sensitivity ranges for specified objective function coefficients. If the objectivecoefficients are varied within these ranges the current basis remains optimal and the reduced costsremain valid.
Synopsis

int XPRS_CC XPRSobjsa(XPRSprob prob, int nels, const int mindex[], double
lower[], double upper[]);

Arguments
prob The current problem.
nels Number of objective function coefficients whose sensitivity is sought.
mindex Integer array of length nels containing the indices of the columns whose objectivefunction coefficients sensitivity ranges are required.
lower Double array of length nels where the objective function lower range values are to bereturned.
upper Double array of length nels where the objective function upper range values are to bereturned.

Example Here we obtain the objective function ranges for the three columns: 2, 6 and 8:
mindex[0] = 2; mindex[1] = 8; mindex[2] = 6;
XPRSobjsa(prob,3,mindex,lower,upper);

After which lower and upper contain:
lower[0] = 5.0; upper[0] = 7.0;
lower[1] = 3.8; upper[1] = 5.2;
lower[2] = 5.7; upper[2] = 1e+20;

Meaning that the current basis remains optimal when 5.0 ≤ C2 ≤ 7.0, 3.8 ≤ C8 ≤ 5.2 and 5.7 ≤ C6, Cibeing the objective coefficient of column i.
Further information

XPRSobjsa can only be called when an optimal solution to the current LP has been found. It cannot beused when the problem is MIP presolved.
Related topics

XPRSrhssa.

Fair Isaac Corporation Confidential and Proprietary Information 310

Console and Library Functions

XPRSpivot

Purpose Performs a simplex pivot by bringing variable in into the basis and removing out.
Synopsis

int XPRS_CC XPRSpivot(XPRSprob prob, int in, int out);

Arguments
prob The current problem.
in Index of row or column to enter basis.
out Index of row or column to leave basis.

Error values
425 in is invalid (out of range or already basic).
426 out is invalid (out of range or not eligible, e.g. nonbasic, zero pivot, etc.).

Related controls
Double

PIVOTTOL Pivot tolerance.
RELPIVOTTOL Relative pivot tolerance.

Example The following brings the 7th variable into the basis and removes the 5th:
XPRSpivot(prob,6,4)

Further informationRow indices are in the range 0 to ROWS-1, whilst columns are in the range ROWS+SPAREROWS to
ROWS+SPAREROWS+COLS-1.

Related topics
XPRSgetpivotorder, XPRSgetpivots.

Fair Isaac Corporation Confidential and Proprietary Information 311

Console and Library Functions

XPRSpostsolve POSTSOLVE

Purpose Postsolve the current matrix when it is in a presolved state.
Synopsis

int XPRS_CC XPRSpostsolve(XPRSprob prob);
POSTSOLVE

Argument
prob The current problem.

Further informationA problem is left in a presolved state whenever a LP or MIP optimization does not complete. In thesecases XPRSpostsolve (POSTSOLVE) can be called to get the problem back into its original state.
Related topics

XPRSlpoptimize, XPRSmipoptimize

Fair Isaac Corporation Confidential and Proprietary Information 312

Console and Library Functions

XPRSpresolverow

Purpose Presolves a row formulated in terms of the original variables such that it can be added to a presolvedmatrix.
Synopsis

int XPRS_CC XPRSpresolverow(XPRSprob prob, char qrtype, int nzo, const int
mcolso[], const double dvalo[], double drhso, int maxcoeffs, int ⁎
nzp, int mcolsp[], double dvalp[], double ⁎ drhsp, int ⁎ status);

Arguments
prob The current problem.
qrtype The type of the row:

L indicates a ≤ row;
G indicates a ≥ row.

nzo Number of elements in the mcolso and dvalo arrays.
mcolso Integer array of length nzo containing the column indices of the row to presolve.
dvalo Double array of length nzo containing the non-zero coefficients of the row to presolve.
drhso The right-hand side constant of the row to presolve.
maxcoeffs Maximum number of elements to return in the mcolsp and dvalp arrays.
nzp Pointer to the integer where the number of elements in the mcolsp and dvalp arrayswill be returned.
mcolsp Integer array which will be filled with the column indices of the presolved row. It must beallocated to hold at least COLS elements.
dvalp Double array which will be filled with the coefficients of the presolved row. It must beallocated to hold at least COLS elements.
drhsp Pointer to the double where the presolved right-hand side will be returned.
status Status of the presolved row:

-3 Failed to presolve the row due to presolve dual reductions;
-2 Failed to presolve the row due to presolve duplicate column reductions;
-1 Failed to presolve the row due to an error. Check the Optimizer error code forthe cause;
0 The row was successfully presolved;
1 The row was presolved, but may be relaxed.

Related controls
Integer

PRESOLVE Turns presolve on or off.
PRESOLVEOPS Selects the presolve operations.

Example Suppose we want to add the row 2x1 + x2 ≤ 1 to our presolved matrix. This could be done in thefollowing way:
int mindo[] = { 1, 2 };
int dvalo[] = { 2.0, 1.0 };
char qrtype = 'L';
double drhso = 1.0;
int nzp, status, mtype, mstart[2], ⁎mindp;
double drhsp, ⁎dvalp;
...
XPRSgetintattrib(prob, XPRS_COLS, &ncols);
mindp = (int⁎) malloc(ncols⁎sizeof(int));

Fair Isaac Corporation Confidential and Proprietary Information 313

Console and Library Functions

dvalp = (double⁎) malloc(ncols⁎sizeof(double));
XPRSpresolverow(prob, qrtype, 2, mindo, dvalo, drhso, ncols,

&nzp, mindp, dvalp, &drhsp, &status);
if (status >= 0) {

mtype = 0;
mstart[0] = 0; mstart[1] = nzp;
XPRSaddcuts(prob, 1, &mtype, &qrtype, &drhsp, mstart, mindp,

dvalp);
}

Further informationThere are certain presolve operations that can prevent a row from being presolved exactly. If the rowcontains a coefficient for a column that was eliminated due to duplicate column reductions orsingleton column reductions, the row might have to be relaxed to remain valid for the presolvedproblem. The relaxation will be done automatically by the XPRSpresolverow function, but a returnstatus of +1 will be returned. If it is not possible to relax the row, a status of -2 will be returned instead.Likewise, it is possible that certain dual reductions prevents the row from being presolved. In such acase a status of -3 will be returned instead.
If XPRSpresolverow will be used for presolving e.g. branching bounds or constraints, then dualreductions and duplicate column reductions should be disabled, by clearing the corresponding bits of
PRESOLVEOPS. By clearing these bits, the default value for PRESOLVEOPS changes to 471.
If the user knows in advance which columns will have non-zero coefficients in rows that will bepresolved, it is possible to protect these individual columns through the XPRSloadsecurevecsfunction. This way the Optimizer is left free to apply all possible reductions to the remaining columns.

Related topics
XPRSaddcuts, XPRSloadsecurevecs, XPRSsetbranchcuts, XPRSstorecuts.

Fair Isaac Corporation Confidential and Proprietary Information 314

Console and Library Functions

PRINTRANGE

Purpose Writes the ranging information to the screen. The binary range file (.rng) must already exist, createdby XPRSrange (RANGE).
Synopsis

PRINTRANGE

Related controls
Integer

MAXPAGELINES Number of lines between page breaks.
Double

OUTPUTTOL Tolerance on print values.
Further informationSee WRITEPRTRANGE for more information.
Related topics

XPRSgetcolrange, XPRSgetrowrange, XPRSrange (RANGE), XPRSwriteprtsol,
XPRSwriterange, A.6.

Fair Isaac Corporation Confidential and Proprietary Information 315

Console and Library Functions

PRINTSOL

Purpose Writes the current solution to the screen.
Synopsis

PRINTSOL

Related controls
Integer

MAXPAGELINES Number of lines between page breaks.
Double

OUTPUTTOL Tolerance on print values.
Further informationSee WRITEPRTSOL for more information.
Related topics

XPRSgetlpsol, XPRSgetmipsol, XPRSwriteprtsol.

Fair Isaac Corporation Confidential and Proprietary Information 316

Console and Library Functions

QUIT

Purpose Terminates the Console Optimizer, returning a zero exit code to the operating system. Alias for EXIT.
Synopsis

QUIT

Example The command is called simply as:
QUIT

Further information
1. Fatal error conditions return nonzero exit values which may be of use to the host operating system.These are described in 11.
2. If you wish to return an exit code reflecting the final solution status, then use the STOP commandinstead.

Related topics
STOP, XPRSsave (SAVE).

Fair Isaac Corporation Confidential and Proprietary Information 317

Console and Library Functions

XPRSrange RANGE

Purpose Calculates the ranging information for a problem and saves it to the binary ranging file
problem_name.rng.

Synopsis
int XPRS_CC XPRSrange(XPRSprob prob);
RANGE

Argument
prob The current problem.

Example 1 (Library)This example computes the ranging information following optimization and outputs the solution to afile leonor.rrt:
XPRSreadprob(prob,"leonor","");
XPRSlpoptimize(prob,"");
XPRSrange(prob);
XPRSwriteprtrange(prob);

Example 2 (Console)The following example is equivalent for the console, except the output is sent to the screen instead of afile:
READPROB leonor
LPOPTIMIZE
RANGE
PRINTRANGE

Further information

1. A basic optimal solution to the problem must be available, i.e. XPRSlpoptimize (LPOPTIMIZE) musthave been called (with crossover used if the Newton Barrier algorithm is being used) and an optimalsolution found.
2. The information calculated by XPRSrange (RANGE) enables the user to do sophisticated postoptimalanalysis of the problem. In particular, the user may find the ranges over which the right hand sides canvary without the optimal basis changing, the ranges over which the shadow prices hold, and theactivities which limit these changes. See functions XPRSgetcolrange, XPRSgetrowrange,

XPRSwriteprtrange (WRITEPRTRANGE) and/or XPRSwriterange (WRITERANGE) to obtain thevalues calculated
3. It is not impossible to range on a MIP problem. The global entities should be fixed using

XPRSfixglobals (FIXGLOBALS) first and the remaining LP resolved - see XPRSfixglobals(FIXGLOBALS).
Related topics

XPRSgetcolrange, XPRSgetrowrange, XPRSwriteprtrange (WRITEPRTRANGE),
XPRSwriterange (WRITERANGE).

Fair Isaac Corporation Confidential and Proprietary Information 318

Console and Library Functions

XPRSreadbasis READBASIS

Purpose Instructs the Optimizer to read in a previously saved basis from a file.
Synopsis

int XPRS_CC XPRSreadbasis(XPRSprob prob, const char ⁎filename, const char
⁎flags);

READBASIS [-flags] [filename]

Arguments
prob The current problem.
filename A string of up to MAXPROBNAMELENGTH characters containing the file name from whichthe basis is to be read. If omitted, the default problem_name is used with a .bssextension.
flags Flags to pass to XPRSreadbasis (READBASIS):

i output the internal presolved basis.
t input a compact advanced form of the basis.

Example 1 (Library)If an advanced basis is available for the current problem the Optimizer input might be:
XPRSreadprob(prob,"filename","");
XPRSreadbasis(prob,"","");
XPRSmipoptimize(prob,"");

This reads in a matrix file, inputs an advanced starting basis and maximizes the MIP.
Example 2 (Console)An equivalent set of commands for the Console user may look like:

READPROB
READBASIS
MIPOPTIMIZE

Further information
1. The only check done when reading compact basis is that the number of rows and columns in the basisagrees with the current number of rows and columns.
2. XPRSreadbasis (READBASIS) will read the basis for the original problem even if the matrix has beenpresolved. The Optimizer will read the basis, checking that it is valid, and will display error messages ifit detects inconsistencies.

Related topics
XPRSloadbasis, XPRSwritebasis (WRITEBASIS).

Fair Isaac Corporation Confidential and Proprietary Information 319

Console and Library Functions

XPRSreadbinsol READBINSOL

Purpose Reads a solution from a binary solution file.
Synopsis

int XPRS_CC XPRSreadbinsol(XPRSprob prob, const char ⁎filename, const char
⁎flags);

READBINSOL [-flags] [filename]

Arguments
prob The current problem.
filename A string of up to MAXPROBNAMELENGTH characters containing the file name from whichthe solution is to be read. If omitted, the default problem_name is used with a .solextension.
flags Flags to pass to XPRSreadbinsol (READBINSOL):

m load the solution as a solution for the MIP.
Example 1 (Library)A previously saved solution can be loaded into memory and a print file created from it with thefollowing commands:

XPRSreadprob(prob, "myprob", "");
XPRSreadbinsol(prob, "", "");
XPRSwriteprtsol(prob, "", "");

Example 2 (Console)An equivalent set of commands to the above for console users would be:
READPROB
READBINSOL
WRITEPRTSOL

Related topics
XPRSgetlpsol, XPRSgetmipsol, XPRSwritebinsol (WRITEBINSOL), XPRSwritesol(WRITESOL), XPRSwriteprtsol (WRITEPRTSOL).

Fair Isaac Corporation Confidential and Proprietary Information 320

Console and Library Functions

XPRSreaddirs READDIRS

Purpose Reads a directives file to help direct the global search.
Synopsis

int XPRS_CC XPRSreaddirs(XPRSprob prob, const char ⁎filename);
READDIRS [filename]

Arguments
prob The current problem.
filename A string of up to MAXPROBNAMELENGTH characters containing the file name from whichthe directives are to be read. If omitted (or NULL), the default problem_name is usedwith a .dir extension.

Related controls
Double

PSEUDOCOST Default pseudo cost in node degradation estimation.
Example 1 (Library)The following example reads in directives from the file sue.dir for use with the problem, steve:

XPRSreadprob(prob,"steve","");
XPRSreaddirs(prob,"sue");
XPRSmipoptimize(prob,"");

Example 2 (Console)

READPROB
READDIRS
MIPOPTIMIZE

This is the most usual form at the console. It will attempt to read in a directives file with the currentproblem name and an extension of .dir.

Fair Isaac Corporation Confidential and Proprietary Information 321

Console and Library Functions

Further information
1. Directives cannot be read in after a model has been presolved, so unless presolve has been disabled bysetting PRESOLVE to 0, this command must be issued before XPRSmipoptimize (MIPOPTIMIZE).
2. Directives can be given relating to priorities, forced branching directions, pseudo costs and model cuts.There is a priority value associated with each global entity. The lower the number, the more likely theentity is to be selected for branching; the higher, the less likely. By default, all global entities have apriority value of 500 which can be altered with a priority entry in the directives file. In general, it isadvantageous for the entity’s priority to reflect its relative importance in the model. Priority entries withvalues in excess of 1000 are illegal and are ignored. A full description of the directives file format maybe found in A.6.
3. By default, XPRSmipoptimize (MIPOPTIMIZE) will explore the branch expected to yield the bestinteger solution from each node, irrespective of whether this forces the global entity up or down. Thiscan be overridden with an UP or DN entry in the directives file, which forces XPRSmipoptimize(MIPOPTIMIZE) to branch up first or down first on the specified entity.
4. Pseudo-costs are estimates of the unit cost of forcing an entity up or down. By default

XPRSmipoptimize (MIPOPTIMIZE) uses dual information to calculate estimates of the unit up anddown costs and these are added to the default pseudo costs which are set to the PSEUDOCOST control.The default pseudo costs can be overridden by a PU or PD entry in the directives file.
5. If model cuts are used, then the specified constraints are removed from the matrix and added to theOptimizer cut pool, and only put back in the matrix when they are violated by an LP solution at one ofthe nodes in the global search.
6. If creating a directives file by hand, wild cards can be used to specify several vectors at once, forexample PR x1⁎ 2 will give all global entities whose names start with x1 a priority of 2.

Related topics
XPRSloaddirs, A.6.

Fair Isaac Corporation Confidential and Proprietary Information 322

Console and Library Functions

XPRSreadprob READPROB

Purpose Reads an (X)MPS or LP format matrix from file.
Synopsis

int XPRS_CC XPRSreadprob(XPRSprob prob, const char ⁎probname, const char
⁎flags);

READPROB [-flags] [probname]

Arguments
prob The current problem.
probname The path and file name from which the problem is to be read. Limited to

MAXPROBNAMELENGTH characters. If omitted (console users only), the default
problem_name is used with various extensions - see below.

flags Flags to be passed:
l only probname.lp is searched for;
z read input file in gzip format from a .gz file [Console only]

Related controls
Integer

EXTRACOLS Number of extra columns to be allowed for.
EXTRAELEMS Number of extra matrix elements to be allowed for.
EXTRAMIPENTS Number of extra global entities to be allowed for.
EXTRAPRESOLVE Number of extra elements to allow for in presolve.
EXTRAROWS Number of extra rows to be allowed for.
KEEPNROWS Status for nonbinding rows.
MPSECHO Whether MPS comments are to be echoed.
MPSFORMAT Specifies format of MPS files.
SCALING Type of scaling.

Double
MATRIXTOL Tolerance on matrix elements.
SOSREFTOL Minimum gap between reference row entries.

String
MPSBOUNDNAME The active bound name.
MPSOBJNAME Name of objective function row.
MPSRANGENAME Name of range.
MPSRHSNAME Name of right hand side.

Example 1 (Library)

XPRSreadprob(prob,"myprob","");

This instructs the Optimizer to read an MPS format matrix from the first file found out of myprob.mat,
myprob.mps or (in LP format) myprob.lp.

Example 2 (Console)

READPROB -l

This instructs the Optimizer to read an LP format matrix from the file problem_name .lp.

Fair Isaac Corporation Confidential and Proprietary Information 323

Console and Library Functions

Further information
1. If no flags are given, file types are searched for in the order: .mat, .mps, .lp. Matrix files are assumedto be in XMPS or MPS format unless their file extension is .lp in which case they must be LP files.
2. If probname has been specified, the problem name is changed to probname, ignoring any extension.
3. XPRSreadprob (READPROB) will take as the objective function the first N type row in the matrix, unlessthe string parameter MPSOBJNAME has been set, in which case the objective row sought will be the onenamed by MPSOBJNAME. Similarly, if non-blank, the string parameters MPSRHSNAME, MPSBOUNDNAMEand MPSRANGENAME specify the right hand side, bound and range sets to be taken. For example:

MPSOBJNAME="Cost"
MPSRHSNAME="RHS 1"
READPROBThe treatment of N type rows other than the objective function depends on the KEEPNROWS control. If
KEEPNROWS is 1 the rows and their elements are kept in memory; if it is 0 the rows are retained, buttheir elements are removed; and if it is -1 the rows are deleted entirely. The performance impact ofretaining such N type rows will be small unless the presolve has been disabled by setting PRESOLVE to
0 prior to optimization.

4. The Optimizer checks that the matrix file is in a legal format and displays error messages if it detectserrors. When the Optimizer has read and verified the problem, it will display summary problemstatistics.
5. By default, the MPSFORMAT control is set to -1 and XPRSreadprob (READPROB) determinesautomatically whether the MPS files are in free or fixed format. If MPSFORMAT is set to 0, fixed format isassumed and if it is set to 1, free format is assumed. Fields in free format MPS files are delimited byone or more blank characters. The keywords NAME, ROWS, COLUMNS, QUADOBJ / QMATRIX,QCMATRIX, DELAYEDROWS, MODELCUTS, SETS, RHS, RANGES, BOUNDS and ENDATAmust start incolumn one and no vector name may contain blanks. If a special ordered set is specified with areference row, its name may not be the same as that of a column. Note that numeric values whichcontain embedded spaces (for example after unary minus sign) will not be read correctly unless

MPSFORMAT is set to 0.
6. If the problem is not to be scaled automatically, set the parameter SCALING to 0 before issuing the

XPRSreadprob (READPROB) command.
Related topics

XPRSloadglobal, XPRSloadlp, XPRSloadqglobal, XPRSloadqp.

Fair Isaac Corporation Confidential and Proprietary Information 324

Console and Library Functions

XPRSreadslxsol READSLXSOL

Purpose Reads an ASCII solution file (.slx) created by the XPRSwriteslxsol function.
Synopsis

int XPRS_CC XPRSreadslxsol(XPRSprob prob, const char ⁎filename, const char
⁎flags);

READSLXSOL -[flags] [filename]

Arguments
prob The current problem.
filename A string of up to MAXPROBNAMELENGTH characters containing the file name to whichthe solution is to be read. If omitted, the default problem_name is used with a .slxextension.
flags Flags to pass to XPRSwriteslxsol (WRITESLXSOL):

l read the solution as an LP solution in case of a MIP problem;
m read the solution as a solution for the MIP problem;
a reads multiple MIP solutions from the .slx file and adds them to the MIPproblem;

Example 1 (Library)

XPRSreadslxsol(prob,"lpsolution","");

This loads the solution to the MIP problem if the problem contains global entities, or otherwise loads itas an LP (barrier in case of quadratic problems) solution into the problem.
Example 2 (Console)

READSLXSOL lpsolution

Further information
1. When XPRSreadslxsol is called before a MIP solve, the loaded solutions will not be checked beforecalling XPRSmipoptimize. By default, only the last MIP solution read from the .slx file will be stored.Use the a flag to store all MIP solutions read from the file.
2. When using the a flag, read solutions will be queued similarly to the user of the XPRSaddmipsolfunction. Each name string given by the NAME field in the .slx file will be associated with thecorresponding solution. Any registered usersolnotify callback will be fired when the solution hasbeen checked, and will include the read name string as one of its arguments.
3. Refer to the Appendix on Log and File Formats for a description of the ASCII Solution (.slx) File formatA.4.4.

Related topics
XPRSreadbinsol (READBINSOL), XPRSwriteslxsol (WRITESLXSOL), XPRSwritebinsol
WRITEBINSOL, XPRSreadbinsol (READBINSOL), XPRSaddmipsol, XPRSaddcbusersolnotify.

Fair Isaac Corporation Confidential and Proprietary Information 325

Console and Library Functions

XPRSrefinemipsol REFINEMIPSOL

Purpose Executes the MIP solution refiner.
Synopsis

int XPRS_CC XPRSrefinemipsol(XPRSprob prob, int options, const char⁎ flags,
const double solution[], double refined_solution[], int⁎
refinestatus);

REFINEMIPSOL

Arguments
prob The current problem.
options Refinement options:

0 Reducing MIP fractionality is priority.
1 Reducing LP infeasibility is priority

flags Flags passed to any optimization calls during refinement.
solution The MIP solution to refine. Must be a valid MIP solution.
refined_solution The refined MIP solution in case of success
refinestatus Refinement results:

0 An error has occurred
1 The solution has been refined
2 Current solution meets target criteria
3 Solution cannot be refined

Further informationThe function provides a mechanism to refine the MIP solution by attempting to round any fractionalglobal entity and by attempting to reduce LP infeasibility.
Related topics

REFINEOPS.

Fair Isaac Corporation Confidential and Proprietary Information 326

Console and Library Functions

XPRSremovecbbariteration

Purpose Removes a barrier iteration callback function previously added by XPRSaddcbbariteration. Thespecified callback function will no longer be called after it has been removed.
Synopsis

int XPRS_CC XPRSremovecbbariteration(XPRSprob prob, void (XPRS_CC
⁎f_bariteration)(XPRSprob prob, void⁎ vContext, int⁎ barrier_action),
void⁎ object);

Arguments
prob The current problem.
f_bariteration The callback function to remove. If NULL then all bariteration callback functionsadded with the given user-defined object value will be removed.
object The object value that the callback was added with. If NULL, then the object value will notbe checked and all barrier iteration callbacks with the function pointer

f_bariteration will be removed.
Related topics

XPRSaddcbbariteration.

Fair Isaac Corporation Confidential and Proprietary Information 327

Console and Library Functions

XPRSremovecbcomputerestart

Purpose Removes a computerestart callback function previously added by XPRSaddcbcomputerestart. Thespecified callback function will no longer be called after it has been removed.
Synopsis

int XPRS_CC XPRSremovecbpcomputerestart(XPRSprob prob, void (XPRS_CC
⁎f_computerestart)(XPRSprob prob, void⁎ vContext), void⁎ object);

Arguments
prob The current problem.
f_presolve The callback function to remove. If NULL then all computerestart callback functionsadded with the given user-defined object value will be removed.
object The object value that the callback was added with. If NULL, then the object value will notbe checked and all computerestart callbacks with the function pointer

f_computerestart will be removed.
Related topics

XPRSaddcbcomputerestart.

Fair Isaac Corporation Confidential and Proprietary Information 328

Console and Library Functions

XPRSremovecbpresolve

Purpose Removes a presolve callback function previously added by XPRSaddcbpresolve. The specifiedcallback function will no longer be called after it has been removed.
Synopsis

int XPRS_CC XPRSremovecbpresolve(XPRSprob prob, void (XPRS_CC
⁎f_presolve)(XPRSprob prob, void⁎ vContext), void⁎ object);

Arguments
prob The current problem.
f_presolve The callback function to remove. If NULL then all presolve callback functions addedwith the given user-defined object value will be removed.
object The object value that the callback was added with. If NULL, then the object value will notbe checked and all barrier iteration callbacks with the function pointer f_presolve willbe removed.

Related topics
XPRSaddcbpresolve.

Fair Isaac Corporation Confidential and Proprietary Information 329

Console and Library Functions

XPRSremovecbbarlog

Purpose Removes a Newton barrier log callback function previously added by XPRSaddcbbarlog. Thespecified callback function will no longer be called after it has been removed.
Synopsis

int XPRS_CC XPRSremovecbbarlog(XPRSprob prob, int (XPRS_CC
⁎f_barlog)(XPRSprob prob, void⁎ object), void⁎ object);

Arguments
prob The current problem.
f_barlog The callback function to remove. If NULL then all barrier log callback functions addedwith the given user-defined object value will be removed.
object The object value that the callback was added with. If NULL, then the object value will notbe checked and all barrier log callbacks with the function pointer f_barlog will beremoved.

Related topics
XPRSaddcbbarlog.

Fair Isaac Corporation Confidential and Proprietary Information 330

Console and Library Functions

XPRSremovecbchgbranch

Purpose Removes a variable branching callback function previously added by XPRSaddcbchgbranch. Thespecified callback function will no longer be called after it has been removed.
Synopsis

int XPRS_CC XPRSremovecbchgbranch(XPRSprob prob, void (XPRS_CC
⁎f_chgbranch)(XPRSprob prob, void⁎ vContext, int⁎ entity, int⁎ up,
double⁎ estdeg), void⁎ object);

Arguments
prob The current problem.
f_chgbranch The callback function to remove. If NULL then all variable branching callbackfunctions added with the given user-defined object value will be removed.
object The object value that the callback was added with. If NULL, then the object value will notbe checked and all variable branching callbacks with the function pointer f_chgbranchwill be removed.

Related topics
XPRSaddcbchgbranch.

Fair Isaac Corporation Confidential and Proprietary Information 331

Console and Library Functions

XPRSremovecbchgbranchobject

Purpose Removes a callback function previously added by XPRSaddcbchgbranchobject. The specifiedcallback function will no longer be called after it has been removed.
Synopsis

int XPRS_CC XPRSremovecbchgbranchobject(XPRSprob prob, void (XPRS_CC
⁎f_chgbranchobject)(XPRSprob my_prob, void⁎ my_object,
XPRSbranchobject obranch, XPRSbranchobject⁎ p_newobject), void⁎
object);

Arguments
prob The current problem.
f_chgbranchobject The callback function to remove. If NULL then all branch object callbackfunctions added with the given user-defined object value will be removed.
object The object value that the callback was added with. If NULL, then the object value will notbe checked and all branch object callbacks with the function pointer

f_chgbranchobject will be removed.
Related topics

XPRSaddcbchgbranchobject

Fair Isaac Corporation Confidential and Proprietary Information 332

Console and Library Functions

XPRSremovecbchecktime

Purpose Removes a callback function previously added by XPRSaddcbchecktime. The specified callbackfunction will no longer be called after it has been removed.
Synopsis

int XPRS_CC XPRSremovecbchecktime(XPRSprob prob, int (XPRS_CC
⁎f_checktime)(XPRSprob prob, void⁎ object), void⁎ object);

Arguments
prob The current problem.
f_checktime The callback function to remove. If NULL then all checktime callback functions addedwith the given user-defined object value will be removed.
object The object value that the callback was added with. If NULL, then the object value will notbe checked and all checktime callbacks with the function pointer f_checktime will beremoved.

Related topics
XPRSaddcbchecktime

Fair Isaac Corporation Confidential and Proprietary Information 333

Console and Library Functions

XPRSremovecbchgnode

Purpose
This function is deprecated and may be removed in future releases. Please use branching objects instead.
Removes a node selection callback function previously added by XPRSaddcbchgnode. The specifiedcallback function will no longer be called after it has been removed.

Synopsis
int XPRS_CC XPRSremovecbchgnode(XPRSprob prob, void (XPRS_CC

⁎f_chgnode)(XPRSprob prob, void⁎ object, int⁎ nodnum), void⁎ object);

Arguments
prob The current problem.
f_chgnode The callback function to remove. If NULL then all node selection callback functionsadded with the given user-defined object value will be removed.
object The object value that the callback was added with. If NULL, then the object value will notbe checked and all node selection callbacks with the function pointer f_chgnode willbe removed.

Related topics
XPRSaddcbchgnode

Fair Isaac Corporation Confidential and Proprietary Information 334

Console and Library Functions

XPRSremovecbcutlog

Purpose Removes a cut log callback function previously added by XPRSaddcbcutlog. The specified callbackfunction will no longer be called after it has been removed.
Synopsis

int XPRS_CC XPRSremovecbcutlog(XPRSprob prob, int (XPRS_CC
⁎f_cutlog)(XPRSprob prob, void⁎ object), void⁎ object);

Arguments
prob The current problem.
f_cutlog The callback function to remove. If NULL then all cut log callback functions added withthe given user-defined object value will be removed.
object The object value that the callback was added with. If NULL, then the object value will notbe checked and all cut log callbacks with the function pointer f_cutlog will beremoved.

Related topics
XPRSaddcbcutlog

Fair Isaac Corporation Confidential and Proprietary Information 335

Console and Library Functions

XPRSremovecbcutmgr

Purpose Removes a cut manager callback function previously added by XPRSaddcbcutmgr. The specifiedcallback function will no longer be called after it has been removed.
Synopsis

int XPRS_CC XPRSremovecbcutmgr(XPRSprob prob, int (XPRS_CC
⁎f_cutmgr)(XPRSprob prob, void⁎ object), void⁎ object);

Arguments
prob The current problem.
f_cutmgr The callback function to remove. If NULL then all cut manager callback functions addedwith the given user-defined object value will be removed.
object The object value that the callback was added with. If NULL, then the object value will notbe checked and all cut manager callbacks with the function pointer f_cutmgr will beremoved.

Related topics
XPRSaddcbcutmgr

Fair Isaac Corporation Confidential and Proprietary Information 336

Console and Library Functions

XPRSremovecbdestroymt

Purpose Removes a slave thread destruction callback function previously added by XPRSaddcbdestroymt.The specified callback function will no longer be called after it has been removed.
Synopsis

int XPRS_CC XPRSremovecbdestroymt(XPRSprob prob, void (XPRS_CC
⁎f_destroymt)(XPRSprob prob, void⁎ vContext), void⁎ object);

Arguments
prob The current problem.
f_destroymt The callback function to remove. If NULL then all thread destruction callbackfunctions added with the given user-defined object value will be removed.
object The object value that the callback was added with. If NULL, then the object value will notbe checked and all thread destruction callbacks with the function pointer f_destroymtwill be removed.

Related topics
XPRSaddcbdestroymt

Fair Isaac Corporation Confidential and Proprietary Information 337

Console and Library Functions

XPRSremovecbestimate

Purpose Removes an estimate callback function previously added by XPRSaddcbestimate. The specifiedcallback function will no longer be called after it has been removed.
Synopsis

int XPRS_CC XPRSremovecbestimate(XPRSprob prob, int (XPRS_CC
⁎f_estimate)(XPRSprob prob, void⁎ vContext, int⁎ iglsel, int⁎ iprio,
double⁎ degbest, double⁎ degworst, double⁎ curval, int⁎ ifupx, int⁎
nglinf, double⁎ degsum, int⁎ nbr), void⁎ object);

Arguments
prob The current problem.
f_estimate The callback function to remove. If NULL then all integer solution callback functionsadded with the given user-defined object value will be removed.
object The object value that the callback was added with. If NULL, then the object value will notbe checked and all estimate callbacks with the function pointer f_estimate will beremoved.

Related topics
XPRSaddcbestimate

Fair Isaac Corporation Confidential and Proprietary Information 338

Console and Library Functions

XPRSremovecbgapnotify

Purpose Removes a callback function previously added by XPRSaddcbgapnotify. The specified callbackfunction will no longer be removed after it has been returned.
Synopsis

int XPRS_CC XPRSremovecbgapnotify(XPRSprob prob, void (XPRS_CC
⁎f_gapnotify)(XPRSprob prob, void⁎ vContext, double⁎
newRelGapNotifyTarget, double⁎ newAbsGapNotifyTarget, double⁎
newAbsGapNotifyObjTarget, double⁎ newAbsGapNotifyBoundTarget), void⁎
p);

Arguments
prob The current problem.
f_gapnotify The callback function to remove. If NULL then all gapnotify callback functionsadded with the given user-defined pointer value will be removed.
p The user-defined pointer value that the callback was added with. If NULL then thepointer value will not be checked and all the gapnotify callbacks with the functionpointer f_gapnotify will be removed.

Related topics
XPRSaddcbgapnotify.

Fair Isaac Corporation Confidential and Proprietary Information 339

Console and Library Functions

XPRSremovecbgloballog

Purpose Removes a global log callback function previously added by XPRSaddcbgloballog. The specifiedcallback function will no longer be called after it has been removed.
Synopsis

int XPRS_CC XPRSremovecbgloballog(XPRSprob prob, int (XPRS_CC
⁎f_globallog)(XPRSprob prob, void⁎ vContext), void⁎ object);

Arguments
prob The current problem.
f_globallog The callback function to remove. If NULL then all global log callback functions addedwith the given user-defined object value will be removed.
object The object value that the callback was added with. If NULL, then the object value will notbe checked and all global log callbacks with the function pointer f_globallog will beremoved.

Example The following code sets and removes a callback function:
XPRSsetintcontrol(prob, XPRS_MIPLOG, 3);
XPRSaddcbgloballog(prob, globalLog, NULL, 0);
XPRSmipoptimize(prob,"");
XPRSremovecbgloballog(prob,globalLog,NULL);
}

Related topics
XPRSaddcbgloballog

Fair Isaac Corporation Confidential and Proprietary Information 340

Console and Library Functions

XPRSremovecbinfnode

Purpose Removes a user infeasible node callback function previously added by XPRSaddcbinfnode. Thespecified callback function will no longer be called after it has been removed.
Synopsis

int XPRS_CC XPRSremovecbinfnode(XPRSprob prob, void (XPRS_CC
⁎f_infnode)(XPRSprob prob, void⁎ object), void⁎ object);

Arguments
prob The current problem.
f_infnode The callback function to remove. If NULL then all user infeasible node callbackfunctions added with the given user-defined object value will be removed.
object The object value that the callback was added with. If NULL, then the object value will notbe checked and all user infeasible node callbacks with the function pointer f_infnodewill be removed.

Related topics
XPRSaddcbinfnode

Fair Isaac Corporation Confidential and Proprietary Information 341

Console and Library Functions

XPRSremovecbintsol

Purpose Removes an integer solution callback function previously added by XPRSaddcbintsol. The specifiedcallback function will no longer be called after it has been removed.
Synopsis

int XPRS_CC XPRSremovecbintsol(XPRSprob prob, void (XPRS_CC
⁎f_intsol)(XPRSprob prob, void⁎ my_object), void⁎ object);

Arguments
prob The current problem.
f_intsol The callback function to remove. If NULL then all integer solution callback functionsadded with the given user-defined object value will be removed.
object The object value that the callback was added with. If NULL, then the object value will notbe checked and all integer solution callbacks with the function pointer f_intsol will beremoved.

Related topics
XPRSaddcbintsol

Fair Isaac Corporation Confidential and Proprietary Information 342

Console and Library Functions

XPRSremovecblplog

Purpose Removes a simplex log callback function previously added by XPRSaddcblplog. The specifiedcallback function will no longer be called after it has been removed.
Synopsis

int XPRS_CC XPRSremovecblplog(XPRSprob prob, int (XPRS_CC
⁎f_lplog)(XPRSprob prob, void⁎ object), void⁎ object);

Arguments
prob The current problem.
f_lplog The callback function to remove. If NULL then all lplog callback functions added withthe given user-defined object value will be removed.
object The object value that the callback was added with. If NULL, then the object value will notbe checked and all lplog callbacks with the function pointer f_lplog will be removed.

Example The following code sets and removes a callback function:
XPRSsetintcontrol(prob,XPRS_LPLOG,10);
XPRSaddcblplog(prob,lpLog,NULL,0);
XPRSreadprob(prob,"problem","");
XPRSlpoptimize(prob,"");
XPRSremovecblplog(prob,lpLog,NULL);
}

Related topics
XPRSaddcblplog

Fair Isaac Corporation Confidential and Proprietary Information 343

Console and Library Functions

XPRSremovecbmessage

Purpose Removes a message callback function previously added by XPRSaddcbmessage. The specifiedcallback function will no longer be called after it has been removed.
Synopsis

int XPRS_CC XPRSremovecbmessage(XPRSprob prob, void (XPRS_CC
⁎f_message)(XPRSprob prob, void⁎ vContext, const char⁎ msg, int len,
int msgtype), void⁎ object);

Arguments
prob The current problem.
f_message The callback function to remove. If NULL then all message callback functions addedwith the given user-defined object value will be removed.
object The object value that the callback was added with. If NULL, then the object value will notbe checked and all message callbacks with the function pointer f_message will beremoved.

Related topics
XPRSaddcbmessage

Fair Isaac Corporation Confidential and Proprietary Information 344

Console and Library Functions

XPRSremovecbmipthread

Purpose Removes a callback function previously added by XPRSaddcbmipthread. The specified callbackfunction will no longer be called after it has been removed.
Synopsis

int XPRS_CC XPRSremovecbmipthread(XPRSprob prob, void (XPRS_CC
⁎f_mipthread)(XPRSprob master_prob, void⁎ vContext, XPRSprob prob),
void⁎ object);

Arguments
prob The current problem.
f_mipthread The callback function to remove. If NULL then all variable branching callbackfunctions added with the given user-defined object value will be removed.
object The object value that the callback was added with. If NULL, then the object value will notbe checked and all variable branching callbacks with the function pointer f_mipthreadwill be removed.

Related topics
XPRSaddcbmipthread

Fair Isaac Corporation Confidential and Proprietary Information 345

Console and Library Functions

XPRSremovecbnewnode

Purpose Removes a new-node callback function previously added by XPRSaddcbnewnode. The specifiedcallback function will no longer be called after it has been removed.
Synopsis

int XPRS_CC XPRSremovecbnewnode(XPRSprob prob, void (XPRS_CC
⁎f_newnode)(XPRSprob my_prob, void⁎ my_object, int parentnode, int
newnode, int branch), void⁎ object);

Arguments
prob The current problem.
f_newnode The callback function to remove. If NULL then all separation callback functions addedwith the given user-defined object value will be removed.
object The object value that the callback was added with. If NULL, then the object value will notbe checked and all separation callbacks with the function pointer f_newnode will beremoved.

Related topics
XPRSaddcbnewnode

Fair Isaac Corporation Confidential and Proprietary Information 346

Console and Library Functions

XPRSremovecbnodecutoff

Purpose Removes a node-cutoff callback function previously added by XPRSaddcbnodecutoff. The specifiedcallback function will no longer be called after it has been removed.
Synopsis

int XPRS_CC XPRSremovecbnodecutoff(XPRSprob prob, void (XPRS_CC
⁎f_nodecutoff)(XPRSprob my_prob, void ⁎my_object, int nodnum), void⁎
object);

Arguments
prob The current problem.
f_nodecutoff The callback function to remove. If NULL then all node-cutoff callback functionsadded with the given user-defined object value will be removed.
object The object value that the callback was added with. If NULL, then the object value will notbe checked and all node-cutoff callbacks with the function pointer f_nodecutoff willbe removed.

Related topics
XPRSaddcbnodecutoff

Fair Isaac Corporation Confidential and Proprietary Information 347

Console and Library Functions

XPRSremovecboptnode

Purpose Removes a node-optimal callback function previously added by XPRSaddcboptnode. The specifiedcallback function will no longer be called after it has been removed.
Synopsis

int XPRS_CC XPRSremovecboptnode(XPRSprob prob, void (XPRS_CC
⁎f_optnode)(XPRSprob my_prob, void ⁎my_object, int ⁎feas), void⁎
object);

Arguments
prob The current problem.
f_optnode The callback function to remove. If NULL then all node-optimal callback functionsadded with the given user-defined object value will be removed.
object The object value that the callback was added with. If NULL, then the object value will notbe checked and all node-optimal callbacks with the function pointer f_optnode will beremoved.

Related topics
XPRSaddcboptnode

Fair Isaac Corporation Confidential and Proprietary Information 348

Console and Library Functions

XPRSremovecbpreintsol

Purpose Removes a pre-integer solution callback function previously added by XPRSaddcbpreintsol. Thespecified callback function will no longer be called after it has been removed.
Synopsis

int XPRS_CC XPRSremovecbpreintsol(XPRSprob prob, void (XPRS_CC
⁎f_preintsol)(XPRSprob my_prob, void ⁎my_object, int soltype, int
⁎ifreject, double ⁎cutoff), void⁎ object);

Arguments
prob The current problem.
f_preintsol The callback function to remove. If NULL then all user infeasible node callbackfunctions added with the given user-defined object value will be removed.
object The object value that the callback was added with. If NULL, then the object value will notbe checked and all user infeasible node callbacks with the function pointer

f_preintsol will be removed.
Related topics

XPRSaddcbpreintsol

Fair Isaac Corporation Confidential and Proprietary Information 349

Console and Library Functions

XPRSremovecbprenode

Purpose Removes a preprocess node callback function previously added by XPRSaddcbprenode. Thespecified callback function will no longer be called after it has been removed.
Synopsis

int XPRS_CC XPRSremovecbprenode(XPRSprob prob, void (XPRS_CC
⁎f_prenode)(XPRSprob prob, void⁎ my_object, int⁎ nodinfeas), void⁎
object);

Arguments
prob The current problem.
f_prenode The callback function to remove. If NULL then all preprocess node callback functionsadded with the given user-defined object value will be removed.
object The object value that the callback was added with. If NULL, then the object value will notbe checked and all preprocess node callbacks with the function pointer f_prenode willbe removed.

Related topics
XPRSaddcbprenode

Fair Isaac Corporation Confidential and Proprietary Information 350

Console and Library Functions

XPRSremovecbsepnode

Purpose
This function is deprecated and may be removed in future releases. Please use branching objects instead.
Removes a pre-integer solution callback function previously added by XPRSaddcbsepnode. Thespecified callback function will no longer be called after it has been removed.

Synopsis
int XPRS_CC XPRSremovecbsepnode(XPRSprob prob, int (XPRS_CC

⁎f_sepnode)(XPRSprob prob, void⁎ vContext, int ibr, int iglsel, int
ifup, double curval), void⁎ object);

Arguments
prob The current problem.
f_sepnode The callback function to remove. If NULL then all separation callback functions addedwith the given user-defined object value will be removed.
object The object value that the callback was added with. If NULL, then the object value will notbe checked and all separation callbacks with the function pointer f_sepnode will beremoved.

Related topics
XPRSaddcbsepnode

Fair Isaac Corporation Confidential and Proprietary Information 351

Console and Library Functions

XPRSremovecbusersolnotify

Purpose Removes a user solution notification callback previously added by XPRSaddcbusersolnotify. Thespecified callback function will no longer be called after it has been removed.
Synopsis

int XPRS_CC XPRSremovecbusersolnotify(XPRSprob prob, void (XPRS_CC
⁎f_usersolnotify)(XPRSprob my_prob, void⁎ my_object, const char⁎
solname, int status), void⁎ object);

Arguments
prob The current problem.
f_usersolnotify The callback function to remove. If NULL then all user solution notificationcallback functions added with the given user defined object value will be removed.
object The object value that the callback was added with. If NULL, then the object value will notbe checked and all integer solution callbacks with the function pointer

f_usersolnotify will be removed.
Related topics

XPRSaddcbusersolnotify.

Fair Isaac Corporation Confidential and Proprietary Information 352

Console and Library Functions

XPRSrepairinfeas

Purpose Provides a simplified interface for XPRSrepairweightedinfeas.
Synopsis

int XPRS_CC XPRSrepairinfeas (XPRSprob prob, int ⁎scode, char pflags, char
oflags, char gflags, double lrp, double grp, double lbp, double ubp,
double delta);

Arguments
prob The current problem.
scode The status after the relaxation:

0 relaxed optimum found;
1 relaxed problem is infeasible;
2 relaxed problem is unbounded;
3 solution of the relaxed problem regarding the original objective is nonoptimal;
4 error (when return code is nonzero);
5 numerical instability;
6 analysis of an infeasible relaxation was performed, but the relaxation isfeasible.

pflags The type of penalties created from the preferences:
c each penalty is the reciprocal of the preference (default);
s the penalties are placed in the scaled problem.

oflags Controls the second phase of optimization:
o use the objective sense of the original problem (default);
x maximize the relaxed problem using the original objective;
f skip optimization regarding the original objective;
n minimize the relaxed problem using the original objective;
i if the relaxation is infeasible, generate an irreducible infeasible subset for theanalys of the problem;
a if the relaxation is infeasible, generate all irreducible infeasible subsets for theanalys of the problem.

gflags Specifies if the global search should be done:
g do the global search (default);
l solve as a linear model ignoring the discreteness of variables.

lrp Preference for relaxing the less or equal side of row.
grp Preference for relaxing the greater or equal side of a row.
lbp Preferences for relaxing lower bounds.
ubp Preferences for relaxing upper bounds.
delta The relaxation multiplier in the second phase -1. For console use -d value. A positivevalue means a relative relaxation by multiplying the first phase objective with(delta-1), while a negative value means an absolute relaxation, by adding

abs(delta) to the first phase objective.
Related controls

Integer
DEFAULTALG Forced algorithm selection (default for repairinfeas is primal).

Example

READPROB MYPROB.LP
REPAIRINFEAS -a -d 0.002

Fair Isaac Corporation Confidential and Proprietary Information 353

Console and Library Functions

Further information
1. A row or bound is relaxed by introducing a new nonnegative variable that will contain the infeasibility ofthe row or bound. Suppose for example that row aTx = b is relaxed from below. Then a new variable(infeasibility breaker) s ≥ 0 is added to the row, which becomes aTx +s = b. Observe that aTx may nowtake smaller values than b. To minimize such violations, the weighted sum of these new variables isminimized.
2. A preference of 0 results in the row or bound not being relaxed.
3. A negative preference indicates that a quadratic penalty cost should be applied. This can specified on aper constraint side or bound basis.
4. Note that the set of preferences are scaling independent.
5. If a feasible solution is identified for the relaxed problem, with a sum of violations p, then the sum ofviolations is restricted to be no greater than (1+delta)p, and the problem is optimized with respect tothe original objective function. A nonzero delta increases the freedom of the original problem.
6. Note that on some problems, slight modifications of delta may affect the value of the original objectivedrastically.
7. The default value for delta in the console is 0.001.
8. Note that because of their special associated modeling properties, binary and semi-continuousvariables are not relaxed.
9. The default algorithm for the first phase is the simplex algorithm, since the primal problem can beefficiently warm started in case of the extended problem. These may be altered by setting the value ofcontrol DEFAULTALG.
10. If pflags is set such that each penalty is the reciprocal of the preference, the following rules areapplied while introducing the auxiliary variables:

Preference Affects Relaxation Cost if pref.>0 Cost if pref.<0
lrp = rows aTx - aux_var = b 1/lrp⁎aux_var 1/lrp⁎aux_var2
lrp <= rows aTx - aux_var <= b 1/lrp⁎aux_var 1/lrp⁎aux_var2
grp = rows aTx + aux_var = b 1/grp⁎aux_var 1/grp⁎aux_var2
grp >= rows aTx + aux_var >= b 1/grp⁎aux_var 1/grp⁎aux_var2
ubp upper bounds xi - aux_var <= u 1/ubp⁎aux_var 1/ubp⁎aux_var2
lbp lower bounds xi + aux_var >= l 1/lbp⁎aux_var 1/lbp⁎aux_var2

11. If an irreducible infeasible set (IIS) has been identified, the generated IIS(s) are accessible through theIIS retrieval functions, see NUMIIS and XPRSgetiisdata.
Related topics

XPRSrepairweightedinfeas, 6.1.4.

Fair Isaac Corporation Confidential and Proprietary Information 354

Console and Library Functions

XPRSrepairweightedinfeas

Purpose By relaxing a set of selected constraints and bounds of an infeasible problem, it attempts to identify a’solution’ that violates the selected set of constraints and bounds minimally, while satisfying all otherconstraints and bounds. Among such solution candidates, it selects one that is optimal regarding tothe original objective function. For the console version, see REPAIRINFEAS.
Synopsis

int XPRS_CC XPRSrepairweightedinfeas(XPRSprob prob, int ⁎ scode, const
double lrp_array[], const double grp_array[], const double
lbp_array[], const double ubp_array[], char phase2, double delta,
const char ⁎optflags);

Arguments
prob The current problem.
scode The status after the relaxation:

1 relaxed problem is infeasible;
2 relaxed problem is unbounded;
3 solution of the relaxed problem regarding the original objective is nonoptimal;
4 error (when return code is nonzero);
5 numerical instability;
6 analysis of an infeasible relaxation was performed, but the relaxation isfeasible.

lrp_array Array of size ROWS containing the preferences for relaxing the less or equal side of row.
grp_array Array of size ROWS containing the preferences for relaxing the greater or equal side of arow.
lbp_array Array of size COLS containing the preferences for relaxing lower bounds.
ubp_array Array of size COLS containing preferences for relaxing upper bounds.
phase2 Controls the second phase of optimization:

o use the objective sense of the original problem (default);
x maximize the relaxed problem using the original objective;
f skip optimization regarding the original objective;
n minimize the relaxed problem using the original objective;
i if the relaxation is infeasible, generate an irreducible infeasible subset for theanalys of the problem;
a if the relaxation is infeasible, generate all irreducible infeasible subsets for theanalys of the problem.

delta The relaxation multiplier in the second phase -1.
optflags Specifies flags to be passed to the Optimizer.

Related controls
Double

PENALTYVALUE The weighted sum of violations if a solution is identified to the relaxed problem.

Fair Isaac Corporation Confidential and Proprietary Information 355

Console and Library Functions

Further information
1. A row or bound is relaxed by introducing a new nonnegative variable that will contain the infeasibility ofthe row or bound. Suppose for example that row aTx = b is relaxed from below. Then a new variable(’infeasibility breaker’) s ≥ 0 is added to the row, which becomes aTx +s = b. Observe that aTx may nowtake smaller values than b. To minimize such violations, the weighted sum of these new variables isminimized.
2. A preference of 0 results in the row or bound not being relaxed. The higher the preference, the morewilling the modeller is to relax a given row or bound.
3. The weight of each infeasibility breaker in the objective minimizing the violations is 1/p, where p is thepreference associated with the infeasibility breaker. Thus the higher the preference is, the lower apenalty is associated with the infeasibility breaker while minimizing the violations.
4. If a feasible solution is identified for the relaxed problem, with a sum of violations p, then the sum ofviolations is restricted to be no greater than (1+delta)p, and the problem is optimized with respect tothe original objective function. A nonzero delta increases the freedom of the original problem.
5. Note that on some problems, slight modifications of delta may affect the value of the original objectivedrastically.
6. The default value for delta in the console is 0.001.
7. Note that because of their special associated modeling properties, binary and semi-continuousvariables are not relaxed.
8. If pflags is set such that each penalty is the reciprocal of the preference, the following rules areapplied while introducing the auxiliary variables:

Pref. array Affects Relaxation Cost if pref.>0 Cost if pref.<0
lrp_array = rows aTx - aux_var = b 1/lrp⁎aux_var 1/lrp⁎aux_var2
lrp_array <= rows aTx - aux_var <= b 1/lrp⁎aux_var 1/lrp⁎aux_var2
grp_array = rows aTx + aux_var = b 1/grp⁎aux_var 1/grp⁎aux_var2
grp_array >= rows aTx + aux_var >= b 1/grp⁎aux_var 1/grp⁎aux_var2
ubp_array upper bounds xi - aux_var <= u 1/ubp⁎aux_var 1/ubp⁎aux_var2
lbp_array lower bounds xi + aux_var >= l 1/lbp⁎aux_var 1/lbp⁎aux_var2

9. If an irreducible infeasible set (IIS) has been identified, the generated IIS(s) are accessible through theIIS retrieval functions, see NUMIIS and XPRSgetiisdata.
Related topics

XPRSrepairinfeas (REPAIRINFEAS), XPRSrepairweightedinfeasbounds, 6.1.4.

Fair Isaac Corporation Confidential and Proprietary Information 356

Console and Library Functions

XPRSrepairweightedinfeasbounds REPAIRINFEAS

Purpose An extended version of XPRSrepairweightedinfeas that allows for bounding the level of relaxationallowed.
Synopsis

int XPRS_CC XPRSrepairweightedinfeasbounds(XPRSprob prob, int ⁎ scode,
const double lrp_array[], const double grp_array[], const double
lbp_array[], const double ubp_array[], const double lrb_array[],
const double grb_array[], const double lbb_array[], const double
ubb_array[], char phase2, double delta, const char ⁎optflags);

REPAIRINFEAS -[pflags] -[oflags] -[gflags] -[lrp value] -[grp value] -[lbp
value] -[ubp value] -[lrb value] -[grb value] -[lbb value] -[ubb
value] -[d value] -[r]

Arguments
prob The current problem.
scode The status after the relaxation:

1 relaxed problem is infeasible;
2 relaxed problem is unbounded;
3 solution of the relaxed problem regarding the original objective is nonoptimal;
4 error (when return code is nonzero);
5 numerical instability;
6 analysis of an infeasible relaxation was performed, but the relaxation isfeasible.

lrp_array Array of size ROWS containing the preferences for relaxing the less or equal side of row.For the console use -lrp value.
grp_array Array of size ROWS containing the preferences for relaxing the greater or equal side of arow. For the console use -grp value.
lbp_array Array of size COLS containing the preferences for relaxing lower bounds. For theconsole use -lbp value.
ubp_array Array of size COLS containing preferences for relaxing upper bounds. For the consoleuse -ubp value.
lrb_array Array of size ROWS containing the upper bounds on the amount the less or equal side ofa row can be relaxed. For the console use -lrb value.
grb_array Array of size ROWS containing the upper bounds on the amount the greater or equal sideof a row can be relaxed. For the console use -grb value.
lbb_array Array of size COLS containing the upper bounds on the amount the lower bounds can berelaxed. For the console use -lbb value.
ubb_array Array of size COLS containing the upper bounds on the amount the upper bounds can berelaxed. For the console use -ubb value.
phase2 Controls the second phase of optimization:

o use the objective sense of the original problem (default);
x maximize the relaxed problem using the original objective;
f skip optimization regarding the original objective;
n minimize the relaxed problem using the original objective;
i if the relaxation is infeasible, generate an irreducible infeasible subset for theanalys of the problem;
a if the relaxation is infeasible, generate all irreducible infeasible subsets for theanalys of the problem.

delta The relaxation multiplier in the second phase -1.
optflags Specifies flags to be passed to the Optimizer.

Fair Isaac Corporation Confidential and Proprietary Information 357

Console and Library Functions

r If a summary of the violated variables and constraints should be printed after therelaxed solution is determined.
Related controls

Double
PENALTYVALUE The weighted sum of violations if a solution is identified to the relaxed problem.

Further information
1. The console command REPAIRINFEAS assumes that all preferences are 1 by default. Use the options
-lrp, -grp, -lbp or -ubp to change them. The default limit on the maximum allowed relaxation perrow or bound in plus infinity.

2. A row or bound is relaxed by introducing a new nonnegative variable that will contain the infeasibility ofthe row or bound. Suppose for example that row aTx = b is relaxed from below. Then a new variable(’infeasibility breaker’) s ≥ 0 is added to the row, which becomes aTx +s = b. Observe that aTx may nowtake smaller values than b. To minimize such violations, the weighted sum of these new variables isminimized.
3. A preference of 0 results in the row or bound not being relaxed. The higher the preference, the morewilling the modeller is to relax a given row or bound.
4. A negative preference indicates that a quadratic penalty cost should be applied. This can specified on aper constraint side or bound basis.
5. If a feasible solution is identified for the relaxed problem, with a sum of violations p, then the sum ofviolations is restricted to be no greater than (1+delta)p, and the problem is optimized with respect tothe original objective function. A nonzero delta increases the freedom of the original problem.
6. Note that on some problems, slight modifications of delta may affect the value of the original objectivedrastically.
7. The default value for delta in the console is 0.001.
8. Note that because of their special associated modeling properties, binary and semi-continuousvariables are not relaxed.
9. Given any row j with preferences lrp=lrp_array[j] and grp=grp_array[j], or variable i withbound preferences ubp=ubp_array[i] and lbp=lbp_array[i], the following rules are appliedwhile introducing the auxiliary variables:

Preference Affects Relaxation Cost if pref.>0 Cost if pref.<0
lrp = rows aTx - aux_var = b 1/lrp⁎aux_var 1/lrp⁎aux_var2
lrp <= rows aTx - aux_var <= b 1/lrp⁎aux_var 1/lrp⁎aux_var2
grp = rows aTx + aux_var = b 1/grp⁎aux_var 1/grp⁎aux_var2
grp >= rows aTx + aux_var >= b 1/grp⁎aux_var 1/grp⁎aux_var2
ubp upper bounds xi - aux_var <= u 1/ubp⁎aux_var 1/ubp⁎aux_var2
lbp lower bounds xi + aux_var >= l 1/lbp⁎aux_var 1/lbp⁎aux_var2

10. Only positive bounds are applied; a zero or negative bound is ignored and the amount of relaxationallowed for the corresponding row or bound is not limited. The effect of a zero bound on a row orbound would be equivalent with not relaxing it, and can be achieved by setting its preference array valueto zero instead, or not including it in the preference arrays.
11. If an irreducible infeasible set (IIS) has been identified, the generated IIS(s) are accessible through theIIS retrieval functions, see NUMIIS and XPRSgetiisdata.

Fair Isaac Corporation Confidential and Proprietary Information 358

Console and Library Functions

Related topics
XPRSrepairinfeas (REPAIRINFEAS), 6.1.4.

Fair Isaac Corporation Confidential and Proprietary Information 359

Console and Library Functions

XPRSrestore RESTORE

Purpose Restores the Optimizer’s data structures from a file created by XPRSsave (SAVE). Optimization maythen recommence from the point at which the file was created.
Synopsis

int XPRS_CC XPRSrestore(XPRSprob prob, const char ⁎probname, const char
⁎flags);

RESTORE [probname] [flags]

Arguments
prob The current problem.
probname A string of up to MAXPROBNAMELENGTH characters containing the problem name.
flags f Force the restoring of a save file even if it is from a different version.

Example 1 (Library)

XPRSrestore(prob,"","");

Example 2 (Console)

RESTORE

Further information
1. This routine restores the data structures from the file problem_name.svf that was created by aprevious execution of XPRSsave (SAVE). Note that .svf files are particular to the release of theOptimizer used to create them. They can only be read using the same release Optimizer as used tocreate them.
2. (Console) The main use for XPRSsave (SAVE) and XPRSrestore (RESTORE) is to enable the user tointerrupt a long optimization run using CTRL-C, and save the Optimizer status with the ability to restartit later from where it left off. It might also be used to save the optimal status of a problem when theuser then intends to implement several uses of XPRSalter (ALTER) on the problem, re-optimizingeach time from the saved status.
3. The use of the ’f’ flag is not recommended and can cause unexpected results.

Related topics
XPRSalter (ALTER), XPRSsave (SAVE).

Fair Isaac Corporation Confidential and Proprietary Information 360

Console and Library Functions

XPRSrhssa

Purpose Returns upper and lower sensitivity ranges for specified right hand side (RHS) function coefficients. Ifthe RHS coefficients are varied within these ranges the current basis remains optimal and the reducedcosts remain valid.
Synopsis

int XPRS_CC XPRSrhssa(XPRSprob prob, int nels, const int mindex[], double
lower[], double upper[]);

Arguments
prob The current problem.
nels The number of RHS coefficients for which sensitivity ranges are required.
mindex Integer array of length nels containing the indices of the rows whose RHS coefficientssensitivity ranges are required.
lower Double array of length nels where the RHS lower range values are to be returned.
upper Double array of length nels where the RHS upper range values are to be returned.

Example Here we obtain the RHS function ranges for the three columns: 2, 6 and 8:
mindex[0] = 2; mindex[1] = 8; mindex[2] = 6;
XPRSrhssa(prob,3,mindex,lower,upper);

After which lower and upper contain:
lower[0] = 5.0; upper[0] = 7.0;
lower[1] = 3.8; upper[1] = 5.2;
lower[2] = 5.7; upper[2] = 1e+20;

Meaning that the current basis remains optimal when 5.0 ≤ rhs2, 3.8 ≤ rhs8 ≤ 5.2 and 5.7 ≤ rhs6, rhsibeing the RHS coefficient of row i.
Further information

XPRSrhssa can only be called when an optimal solution to the current LP has been found. It cannot beused when the problem is MIP presolved.
Related topics

XPRSobjsa.

Fair Isaac Corporation Confidential and Proprietary Information 361

Console and Library Functions

XPRSsave, XPRSsaveas SAVE

Purpose Saves the current data structures, i.e. matrices, control settings and problem attribute settings to fileand terminates the run so that optimization can be resumed later.
Synopsis

int XPRS_CC XPRSsave(XPRSprob prob);
int XPRS_CC XPRSsaveas(XPRSprob prob, const char ⁎probname);
SAVE

Arguments
prob The current problem.
probname The name of the file (without .svf) to save to.

Example 1 (Library)

XPRSsave(prob);

Example 2 (Console)

SAVE

Further information
1. The data structures are written to the file problem_name.svf. Optimization may recommence from thesame point when the data structures are restored by a call to XPRSrestore (RESTORE). Note that the
.svf files created are particular to the release of the Optimizer used to create them. They can only beread using the same release Optimizer as used to create them.

2. The function XPRSsaveas is equivalent to XPRSsave with the exception of allowing to adjust thename of the file created. The name of the file must not be greater than MAXPROBNAMELENGTH.
Related topics

XPRSrestore (RESTORE).

Fair Isaac Corporation Confidential and Proprietary Information 362

Console and Library Functions

XPRSscale SCALE

Purpose Re-scales the current matrix.
Synopsis

int XPRS_CC XPRSscale(XPRSprob prob, const int mrscal[], const int
mcscal[]);

SCALE

Arguments
prob The current problem.
mrscal Integer array of size ROWS containing the powers of 2 with which to scale the rows, or

NULL if not required.
mcscal Integer array of size COLS containing the powers of 2 with which to scale the columns,or NULL if not required.

Related controls
Integer

SCALING Type of scaling.
Example 1 (Library)

XPRSreadprob(prob,"jovial","");
XPRSalter(prob,"serious");
XPRSscale(prob,NULL,NULL);
XPRSlpoptimize(prob,"");

This reads the MPS file jovial.mat, modifies it according to instructions in the file serious.alt,rescales the matrix and seeks the minimum objective value.
Example 2 (Console)The equivalent set of commands for the Console user would be:

READPROB jovial
ALTER serious
SCALE
LPOPTIMIZE

Further information
1. If mrscal and mcscal are both non-NULL then they will be used to scale the matrix. Otherwise thematrix will be scaled according to the control SCALING. This routine may be useful when the currentmatrix has been modified by calls to routines such as XPRSalter (ALTER), XPRSchgmcoef and
XPRSaddrows.

2. XPRSscale (SCALE) cannot be called if the current matrix is presolved.
Related topics

XPRSalter (ALTER), XPRSreadprob (READPROB).

Fair Isaac Corporation Confidential and Proprietary Information 363

Console and Library Functions

XPRSsetbranchbounds

Purpose Specifies the bounds previously stored using XPRSstorebounds that are to be applied in order tobranch on a user global entity. This routine can only be called from the user separate callback function,
XPRSaddcbsepnode.

Synopsis
int XPRS_CC XPRSsetbranchbounds(XPRSprob prob, void ⁎mindex);

Arguments
prob The current problem.
mindex Pointer previously defined in a call to XPRSstorebounds that references the storedbounds to be used to separate the node.

Example This example defines a user separate callback function for the global search:
XPRSaddcbsepnode(prob,nodeSep,NULL,0);

where the function nodeSep is defined as follows:
int nodeSep(XPRSprob prob, void ⁎obj, int ibr, int iglsel,

int ifup, double curval)
{

void ⁎index;
double dbd;

if(ifup)
{

dbd = ceil(curval);
XPRSstorebounds(prob, 1, &iglsel, "L", &dbd, &index);

}
else
{

dbd = floor(curval);
XPRSstorebounds(prob, 1, &iglsel, "U", &dbd, &index);

}
XPRSsetbranchbounds(prob, index);
return 0;

}

Related topics
XPRSloadcuts, XPRSaddcbestimate, XPRSaddcbsepnode, XPRSstorebounds, Section 5.9.

Fair Isaac Corporation Confidential and Proprietary Information 364

Console and Library Functions

XPRSsetbranchcuts

Purpose Specifies the pointers to cuts in the cut pool that are to be applied in order to branch on a user globalentity. This routine can only be called from the user separate callback function, XPRSaddcbsepnode.
Synopsis

int XPRS_CC XPRSsetbranchcuts(XPRSprob prob, int ncuts, const XPRScut
mindex[]);

Arguments
prob The current problem.
ncuts Number of cuts to apply.
mindex Array containing the pointers to the cuts in the cut pool that are to be applied. Typicallyobtained from XPRSstorecuts.

Related topics
XPRSgetcpcutlist, XPRSaddcbestimate, XPRSaddcbsepnode, XPRSstorecuts, Section 5.9.

Fair Isaac Corporation Confidential and Proprietary Information 365

Console and Library Functions

XPRSsetcheckedmode

Purpose You can use this function to disable some of the checking and validation of function calls and functioncall parameters for calls to the Xpress Optimizer API. This checking is relatively lightweight butdisabling it can improve performance in cases where non-intensive Xpress Optimizer functions arecalled repeatedly in a short space of time.
Please note: after disabling function call checking and validation, invalid usage of Xpress Optimizerfunctions may not be detected and may cause the Xpress Optimizer process to behave unexpectedly orcrash. It is not recommended that you disable function call checking and validation during applicationdevelopment.

Synopsis
int XPRS_CC XPRSsetcheckedmode(int checked_mode);

Argument
checked_mode Pass as 0 to disable much of the validation for all Xpress function calls from thecurrent process. Pass 1 to re-enable validation. By default, validation is enabled.

Related topics
XPRSgetcheckedmode.

Fair Isaac Corporation Confidential and Proprietary Information 366

Console and Library Functions

XPRSsetdblcontrol

Purpose Sets the value of a given double control parameter.
Synopsis

int XPRS_CC XPRSsetdblcontrol(XPRSprob prob, int ipar, double dsval);

Arguments
prob The current problem.
ipar Control parameter whose value is to be set. A full list of all controls may be found in 9,or from the list in the xprs.h header file.
dsval Value to which the control parameter is to be set.

Related topics
XPRSgetdblcontrol, XPRSsetintcontrol, XPRSsetstrcontrol.

Fair Isaac Corporation Confidential and Proprietary Information 367

Console and Library Functions

XPRSsetdefaultcontrol SETDEFAULTCONTROL

Purpose Sets a single control to its default value.
Synopsis

int XPRS_CC XPRSsetdefaultcontrol(XPRSprob prob, int ipar);
SETDEFAULTCONTROL controlname

Arguments
prob The current problem.
ipar Integer, double or string control parameter whose default value is to be set.
controlname Integer, double or string control parameter whose default value is to be set.

Example The following turns off presolve to solve a problem, before resetting it to its default value and solving itagain:
XPRSsetintcontrol(prob, XPRS_PRESOLVE, 0);
XPRSmipoptimize(prob, "");
XPRSwriteprtsol(prob);
XPRSsetdefaultcontrol(prob, XPRS_PRESOLVE);
XPRSmipoptimize(prob, "");

Further informationA full list of all controls may be found in Chapter 9, or from the list in the xprs.h header file.
Related topics

XPRSsetdefaults, XPRSsetintcontrol, XPRSsetdblcontrol, XPRSsetstrcontrol.

Fair Isaac Corporation Confidential and Proprietary Information 368

Console and Library Functions

XPRSsetdefaults SETDEFAULTS

Purpose Sets all controls to their default values. Must be called before the problem is read or loaded by
XPRSreadprob, XPRSloadglobal, XPRSloadlp, XPRSloadqglobal, XPRSloadqp.

Synopsis
int XPRS_CC XPRSsetdefaults(XPRSprob prob);
SETDEFAULTS

Argument
prob The current problem.

Example The following turns off presolve to solve a problem, before resetting the control defaults, reading it andsolving it again:
XPRSsetintcontrol(prob, XPRS_PRESOLVE, 0);
XPRSmipoptimize(prob, "");
XPRSwriteprtsol(prob);
XPRSsetdefaults(prob);
XPRSreadprob(prob);
XPRSmipoptimize(prob, "");

Related topics
XPRSsetdefaultcontrol, XPRSsetintcontrol, XPRSsetdblcontrol, XPRSsetstrcontrol.

Fair Isaac Corporation Confidential and Proprietary Information 369

Console and Library Functions

XPRSsetindicators

Purpose Specifies that a set of rows in the matrix will be treated as indicator constraints, during a global search.An indicator constraint is made of a condition and a linear constraint. The condition is ofthe type "bin = value", where bin is a binary variable and value is either 0 or 1. The linear
constraint is any linear row. During global search, a row configured as an indicator constraint isenforced only when condition holds, that is only if the indicator variable bin has the specified value.

Synopsis
int XPRS_CC XPRSsetindicators(XPRSprob prob, int nrows, const int mrows[],

const int inds[], const int comps[]);

Arguments
prob The current problem.
nrows The number of indicator constraints.
mrows Integer array of length nrows containing the indices of the rows that define the linearconstraint part for the indicator constraints.
inds Integer array of length nrows containing the column indices of the indicator variables.
comps Integer array of length nrows with the complement flags:

0 not an indicator constraint (in this case the corresponding entry in the indsarray is ignored);
1 for indicator constraints with condition "bin = 1";
-1 for indicator constraints with condition "bin = 0";

Example This sets the first two matrix rows as indicator rows in the global problem prob; the first row controlledby condition x4=1 and the second row controlled by condition x5=0 (assuming x4 and x5 correspondto columns indices 4 and 5).
int mrows[] = {0,1};
int inds[] = {4,5};
int comps[] = {1,-1};

...
XPRSsetindicators(prob,2,mrows,inds,comps);
XPRSmipoptimize(prob,"");

Further informationIndicator rows must be set up before solving the problem. Any indicator row will be removed from thematrix after presolve and added to a special pool. An indicator row will be added back into the activematrix only when its associated condition holds. An indicator variable can be used in multiple indicatorrows and can also appear in normal rows and in the objective function.
Related topics

XPRSgetindicators, XPRSdelindicators.

Fair Isaac Corporation Confidential and Proprietary Information 370

Console and Library Functions

XPRSsetintcontrol, XPRSsetintcontrol64

Purpose Sets the value of a given integer control parameter.
Synopsis

int XPRS_CC XPRSsetintcontrol(XPRSprob prob, int ipar, int isval);

int XPRS_CC XPRSsetintcontrol64(XPRSprob prob, int ipar, XPRSint64 isval);

Arguments
prob The current problem.
ipar Control parameter whose value is to be set. A full list of all controls may be found in 9,or from the list in the xprs.h header file.
isval Value to which the control parameter is to be set.

Example The following sets the control PRESOLVE to 0, turning off the presolve facility prior to optimization:
XPRSsetintcontrol(prob, XPRS_PRESOLVE, 0);
XPRSlpoptimize(prob, "");

Further informationSome of the integer control parameters, such as SCALING, are bitmaps, with each bit controllingdifferent behavior. Bit 0 has value 1, bit 1 has value 2, bit 2 has value 4, and so on.
Related topics

XPRSgetintcontrol, XPRSsetdblcontrol, XPRSsetstrcontrol.

Fair Isaac Corporation Confidential and Proprietary Information 371

Console and Library Functions

XPRSsetlogfile SETLOGFILE

Purpose This directs all Optimizer output to a log file.
Synopsis

int XPRS_CC XPRSsetlogfile(XPRSprob prob, const char ⁎filename);
SETLOGFILE filename

Arguments
prob The current problem.
filename A string of up to MAXPROBNAMELENGTH characters containing the file name to which alllogging output should be written. If set to NULL, redirection of the output will stop andall screen output will be turned back on (except for library users where screen output isalways turned off).

Example The following directs output to the file logfile.log:
XPRSinit(NULL);
XPRScreateprob(&prob);
XPRSsetlogfile(prob,"logfile.log");

Further information
1. It is recommended that a log file be set up for each problem being worked on, since it provides a meansfor obtaining any errors or warnings output by the Optimizer during the solution process.
2. If output is redirected with XPRSsetlogfile all screen output will be turned off.
3. Alternatively, an output callback can be defined using XPRSaddcbmessage, which will be called everytime a line of text is output. To discard all output messages the OUTPUTLOG integer control can be setto 0.

Related topics
XPRSaddcbmessage.

Fair Isaac Corporation Confidential and Proprietary Information 372

Console and Library Functions

XPRSsetmessagestatus

Purpose Manages suppression of messages.
Synopsis

int XPRS_CC XPRSsetmessagestatus(XPRSprob prob, int errcode, int status);

Arguments
prob The problem for which message errcode is to have its suppression status changed;pass NULL if the message should have the status apply globally to all problems.
errcode The id number of the message. Refer to the section 11 for a list of possible messagenumbers.
status Non-zero if the message is not suppressed; 0 otherwise. If a value for status is notsupplied in the command-line call then the console Optimizer prints the value of thesuppression status to screen i.e., non-zero if the message is not suppressed; 0otherwise.

Example Attempting to optimize a problem that has no matrix loaded gives error 91. The following code uses
XPRSsetmessagestatus to suppress the error message:

XPRScreateprob(&prob);
XPRSsetmessagestatus(prob,91,0);
XPRSlpoptimize(prob,"");

Further informationIf a message is suppressed globally then the message can only be enabled for any problem once theglobal suppression is removed with a call to XPRSsetmessagestatus with prob passed as NULL.
Related topics

XPRSgetmessagestatus.

Fair Isaac Corporation Confidential and Proprietary Information 373

Console and Library Functions

XPRSsetprobname SETPROBNAME

Purpose Sets the current default problem name. This command is rarely used.
Synopsis

int XPRS_CC XPRSsetprobname(XPRSprob prob, const char ⁎probname);
SETPROBNAME probname

Arguments
prob The current problem.
probname A string of up to MAXPROBNAMELENGTH characters containing the problem name.

Example

READPROB bob
LPOPTIMIZE
SETPROBNAME jim
READPROB

The above will read the problem bob and then read the problem jim.
Related topics

XPRSreadprob (READPROB), XPRSgetprobname, MAXPROBNAMELENGTH.

Fair Isaac Corporation Confidential and Proprietary Information 374

Console and Library Functions

XPRSsetstrcontrol

Purpose Used to set the value of a given string control parameter.
Synopsis

int XPRS_CC XPRSsetstrcontrol(XPRSprob prob, int ipar, const char ⁎csval);

Arguments
prob The current problem.
ipar Control parameter whose value is to be set. A full list of all controls may be found in 9,or from the list in the xprs.h header file.
csval A string containing the value to which the control is to be set (plus a null terminator).

Example The following sets the control MPSOBJNAME to "Profit":
XPRSsetstrcontrol(prob, XPRS_MPSOBJNAME, "Profit");

Related topics
XPRSgetstrcontrol, XPRSsetdblcontrol, XPRSsetintcontrol.

Fair Isaac Corporation Confidential and Proprietary Information 375

Console and Library Functions

STOP

Purpose Terminates the Console Optimizer, returning an exit code to the operating system. This is useful forbatch operations.
Synopsis

STOP

Example The following example inputs a matrix file, lama.mat, runs a global optimization on it and then exits:
READPROB lama
MIPOPTIMIZE
STOP

Further informationThis command may be used to terminate the Optimizer as with the QUIT command. It sets an exitvalue which may be inspected by the host operating system or invoking program.
Related topics

QUIT.

Fair Isaac Corporation Confidential and Proprietary Information 376

Console and Library Functions

XPRSstorebounds

Purpose Stores bounds for node separation using user separate callback function.
Synopsis

int XPRS_CC XPRSstorebounds(XPRSprob prob, int nbnds, const int mcols[],
const char qbtype[], const double dbds[], void ⁎⁎mindex);

Arguments
prob The current problem.
nbnds Number of bounds to store.
mcols Array containing the column indices.
qbtype Array containing the bounds types:

U indicates an upper bound;
L indicates a lower bound.

dbds Array containing the bound values.
mindex Pointer that the user will use to reference the stored bounds for the Optimizer in

XPRSsetbranchbounds.
Example This example defines a user separate callback function for the global search:

XPRSaddcbsepnode(prob,nodeSep,void,0);

where the function nodeSep is defined as follows:
int nodeSep(XPRSprob prob, void ⁎obj int ibr, int iglsel,

int ifup, double curval)
{

void ⁎index;
double dbd;

if(ifup)
{

dbd = ceil(curval);
XPRSstorebounds(prob, 1, &iglsel, "L", &dbd, &index);

}
else
{

dbd = floor(curval);
XPRSstorebounds(prob, 1, &iglsel, "U", &dbd, &index);

}
XPRSsetbranchbounds(prob, index);
return 0;

}

Related topics
XPRSsetbranchbounds, XPRSaddcbestimate, XPRSaddcbsepnode.

Fair Isaac Corporation Confidential and Proprietary Information 377

Console and Library Functions

XPRSstorecuts, XPRSstorecuts64

Purpose Stores cuts into the cut pool, but does not apply them to the current node. These cuts must be explicitlyloaded into the matrix using XPRSloadcuts or XPRSsetbranchcuts before they become active.
Synopsis

int XPRS_CC XPRSstorecuts(XPRSprob prob, int ncuts, int nodupl, const int
mtype[], const char qrtype[], const double drhs[], const int
mstart[], XPRScut mindex[], const int mcols[], const double
dmatval[]);

int XPRS_CC XPRSstorecuts64(XPRSprob prob, int ncuts, int nodupl, const int
mtype[], const char qrtype[], const double drhs[], const XPRSint64
mstart[], XPRScut mindex[], const int mcols[], const double
dmatval[]);

Arguments
prob The current problem.
ncuts Number of cuts to add.
nodupl 0 do not exclude duplicates from the cut pool;

1 duplicates are to be excluded from the cut pool;
2 duplicates are to be excluded from the cut pool, ignoring cut type.

mtype Integer array of length ncuts containing the cut types. The cut types can be any integerand are used to identify the cuts.
qrtype Character array of length ncuts containing the row types:

L indicates a ≤ row;
E indicates an = row;
G indicates a ≥ row.

drhs Double array of length ncuts containing the right hand side elements for the cuts.
mstart Integer array containing offsets into the mcols and dmtval arrays indicating the startof each cut. This array is of length ncuts+1 with the last element mstart[ncuts]being where cut ncuts+1 would start.
mindex Array of length ncuts where the pointers to the cuts will be returned.
mcols Integer array of length mstart[ncuts] containing the column indices in the cuts.
dmatval Double array of length mstart[ncuts] containing the matrix values for the cuts.

Related controls
Double

MATRIXTOL Tolerance on matrix elements.

Fair Isaac Corporation Confidential and Proprietary Information 378

Console and Library Functions

Further information
1. XPRSstorecuts can be used to eliminate duplicate cuts. If the nodupl parameter is set to 1, the cutpool will be checked for duplicate cuts with a cut type identical to the cuts being added. If a duplicatecut is found the new cut will only be added if its right hand side value makes the cut stronger. If the cutin the pool is weaker than the added cut it will be removed unless it has been applied to an active nodeof the tree. If nodupl is set to 2 the same test is carried out on all cuts, ignoring the cut type.
2. XPRSstorecuts returns a list of the cuts added to the cut pool in the mindex array. If the cut is notadded to the cut pool because a stronger cut exits a NULL will be returned. The mindex array can bepassed directly to XPRSloadcuts or XPRSsetbranchcuts to load the most recently stored cuts intothe matrix.
3. The columns and elements of the cuts must be stored contiguously in the mcols and dmtval arrayspassed to XPRSstorecuts. The starting point of each cut must be stored in the mstart array. Todetermine the length of the final cut the mstart array must be of length ncuts+1 with the last elementof this array containing where the cut ncuts+1 would start.

Related topics
XPRSloadcuts XPRSsetbranchcuts, XPRSaddcbestimate, XPRSaddcbsepnode, 5.9.

Fair Isaac Corporation Confidential and Proprietary Information 379

Console and Library Functions

XPRSstrongbranch

Purpose Performs strong branching iterations on all specified bound changes. For each candidate boundchange, XPRSstrongbranch performs dual simplex iterations starting from the current optimalsolution of the base LP, and returns both the status and objective value reached after these iterations.
Synopsis

int XPRS_CC XPRSstrongbranch(XPRSprob prob, const int nbnds, const int
mbndind[], const char cbndtype[], const double dbndval[], const int
itrlimit, double dsobjval[], int msbstatus[]);

Arguments
prob The current problem.
nbnds Number of bound changes to try.
mbndind Integer array of size nbnds containing the indices of the columns on which the boundswill change.
cbndtype Character array of length nbnds indicating the type of bound to change:

U indicates change the upper bound;
L indicates change the lower bound;
B indicates change both bounds, i.e. fix the column.

dbndval Double array of length nbnds giving the new bound values.
itrlimit Maximum number of LP iterations to perform for each bound change.
dsobjval Objective value of each LP after performing the strong branching iterations.
msbstatus Status of each LP after performing the strong branching iterations, as detailed for the

LPSTATUS attribute.
Example Suppose that the current LP relaxation has two integer columns (columns 0 and 1 which are fractionalsat 0.3 and 1.5, respectively, and we want to perform strong branching in order to choose which tobranch on. This could be done in the following way:

int mbndind[] = { 0, 0, 1, 1 };
char cbndtype[] = "LULU";
double dbndval[] = {1, 0, 2, 1};
double dsobjval[4];
int msbstatus[4];
...
XPRSstrongbranch(prob, 4, mbndind, cbndtype, dbndval, 1000,

dsobjval, msbstatus);

Further informationPrior to calling XPRSstrongbranch, the current LP problem must have been solved to optimality and anoptimal basis must be available.

Fair Isaac Corporation Confidential and Proprietary Information 380

Console and Library Functions

XPRSstrongbranchcb

Purpose Performs strong branching iterations on all specified bound changes. For each candidate boundchange, XPRSstrongbranchcb performs dual simplex iterations starting from the current optimalsolution of the base LP, and returns both the status and objective value reached after these iterations.
Synopsis

int XPRS_CC XPRSstrongbranchcb(XPRSprob prob, const int nbnds, const int
mbndind[], const char cbndtype[], const double dbndval[], const int
itrlimit, double dsbobjval[], int msbstatus[], int (XPRS_CC
⁎sbsolvecb)(XPRSprob prob, void⁎ vContext, int ibnd), void⁎
vContext);

Arguments
prob The current problem.
nbnds Number of bound changes to try.
mbndind Integer array of size nbnds containing the indices of the columns on which the boundswill change.
cbndtype Character array of length nbnds indicating the type of bound to change:

U indicates change the upper bound;
L indicates change the lower bound;
B indicates change both bounds, i.e. fix the column.

dbndval Double array of length nbnds giving the new bound values.
itrlimit Maximum number of LP iterations to perform for each bound change.
dsobjval Objective value of each LP after performing the strong branching iterations.
msbstatus Status of each LP after performing the strong branching iterations, as detailed for the

LPSTATUS attribute.
sbsolvecb Function to be called after each strong branch has been reoptimized.
vContext User context to be provided for sbsolvecb.
ibnd The index of bound for which sbsolvecb is called.

Further informationPrior to calling XPRSstrongbranchcb, the current LP problem must have been solved to optimalityand an optimal basis must be available.
XPRSstrongbranchcb is an extension to XPRSstrongbranch. If identical input arguments areprovided both will return identical results, the difference being that for the case of
XPRSstrongbranchcb the sbsolvecb function is called at the end of each LP reoptimization.
For each branch optimized, the LP can be interrogated: the LP status of the branch is available throughchecking LPSTATUS, and the objective function value is available through LPOBJVAL. It is possible toaccess the full current LP solution by using XPRSgetlpsol.

Fair Isaac Corporation Confidential and Proprietary Information 381

Console and Library Functions

TUNE

Purpose This command can start a tuner session for the current problem. In this case, the tuner will solve theproblem multiple times while evaluating a list of control settings and promising combinations of them.When finished, the tuner will select and set the best control setting on the problem. Note that thedirection of optimization is given by OBJSENSE. This command can also handle the input and output oftuner method files.
Synopsis

TUNE [-flags] [subcommand [filename]]

Arguments
flags Flags to pass to TUNE, which specify whether to tune the current problem as an LP or aMIP problem, and the algorithm for solving the LP problem or the initial LP relaxationof the MIP. The flags are optional. If the argument includes:

l will tune the problem as an LP (mutually exclusive with flag g);
g will tune the problem as a MIP (mutually exclusive with flag l);
d will use the dual simplex method;
p will use the primal simplex method;
b will use the barrier method;
n will use the network simplex method.

subcommand Subcommand to pass to TUNE for handling tuner method files. It can be one of:
pm / printmethod Print the tuner method on the console.
wm / writemethod Write the tuner method to a file.
rm / readmethod Read the tuner method from a file.
probset Tune a set of problems.
mipset Tune a set of MIP problems.
lpset Tune a set of LP problems.

filename Tuner method file or problem set file. This is an optional argument of thesubcommand.
Related controls

Integer
TUNERHISTORY Whether to reuse and append to previous tuner result.
TUNERMAXTIME Maximum total time allowed for the tuner.
TUNERMETHOD Selects a factory tuner method.
TUNERMODE Enable or disable the tuner.
TUNEROUTPUT Whether to write tuner result and logs to file system.
TUNERPERMUTE Number of permutations to solve with each control setting.
TUNERTARGET Defines the criterion by which individual runs are compared.
TUNERTHREADS Number of threads to be used by the tuner.

String
TUNERMETHODFILE A file which contains a user-defined tuner method.
TUNEROUTPUTPATH The root path for all tuner result output.
TUNERSESSIONNAME When defined, will override the problem name within the tuner.

Example 1 (Console)

TUNE -l

This tunes the current problem as an LP problem.
Example 2 (Console)

Fair Isaac Corporation Confidential and Proprietary Information 382

Console and Library Functions

TUNE pm

TUNE printmethod

Both commands print the tuner method to the console.
Example 3 (Console)

TUNE rm method

TUNE readmethod method

Both commands read the tuner method from the method.xtm file.
Example 4 (Console)

TUNE wm method

TUNE writemethod method

Both commands write the tuner method to the method.xtm file.
Example 5 (Console)

TUNE probset problem.set

Tune a set of problems defined by the problem.set file.
Example 6 (Console)

TUNE lpset problem.set

Tune a set of LP problems defined by the problem.set file.
Further information

1. When both flags and subcommand are provided with the TUNE command, the subcommand will beignored.
2. Please refer to Section 5.12 for a detailed guide of how to use the tuner.
3. Please refer to Section 5.12.8 for more information about tuning a set of problems.

Fair Isaac Corporation Confidential and Proprietary Information 383

Console and Library Functions

XPRStune

Purpose This function begins a tuner session for the current problem. The tuner will solve the problem multipletimes while evaluating a list of control settings and promising combinations of them. When finished,the tuner will select and set the best control setting on the problem. Note that the direction ofoptimization is given by OBJSENSE.
Synopsis

int XPRS_CC XPRStune(XPRSprob prob, const char ⁎flags);

Arguments
prob The current problem.
flags Flags to pass to XPRStune, which specify whether to tune the current problem as anLP or a MIP problem, and the algorithm for solving the LP problem or the initial LPrelaxation of the MIP. The flags are optional. If the argument includes:

l will tune the problem as an LP (mutually exclusive with flag g);
g will tune the problem as a MIP (mutually exclusive with flag l);
d will use the dual simplex method;
p will use the primal simplex method;
b will use the barrier method;
n will use the network simplex method.

Example

XPRStune(prob, "dp");

This tunes the current problem. The problem type is automatically determined. If it is an LP problem, itwill be solved with a concurrent run of the dual and primal simplex method. If it is a MIP problem, theinitial LP relaxation of the MIP will be solved with a concurrent run of primal and dual simplex.
Further information

1. Please refer to command TUNE for a list of related controls.
2. Please refer to Section 5.12 for a detailed guide of how to use the tuner.

Fair Isaac Corporation Confidential and Proprietary Information 384

Console and Library Functions

XPRStunerreadmethod

Purpose This function loads a user defined tuner method from the given file.
Synopsis

int XPRS_CC XPRStunerreadmethod(XPRSprob prob, const char⁎ methodfile);

Arguments
prob The current problem.
methodfile The method file name, from which the tuner can load a user-defined tuner method.

Example

XPRStunerreadmethod(prob, "method.xtm");

This loads the tuner method from the method.xtm file.
Further informationPlease refer to Section 5.12.2 for more information about the tuner method, and Appendix A.9 for theformat of the tuner method file.

Fair Isaac Corporation Confidential and Proprietary Information 385

Console and Library Functions

XPRStunerwritemethod

Purpose This function writes the current tuner method to a given file or prints it to the console.
Synopsis

int XPRS_CC XPRStunerwritemethod(XPRSprob prob, const char⁎ methodfile);

Arguments
prob The current problem.
methodfile The method file name, to which the tuner will write the current tuner method. If theinput is stdout or STDOUT, then the tuner will print the method to the console instead.

Example 1 (Library)

XPRStunerwritemethod(prob, "method.xtm");

This writes the tuner method to the method.xtm file.
Example 2 (Library)

XPRStunerwritemethod(prob, "stdout");

This prints the tuner method to the console.
Further informationPlease refer to Section 5.12.2 for more information about the tuner method, and Appendix A.9 for theformat of the tuner method file.

Fair Isaac Corporation Confidential and Proprietary Information 386

Console and Library Functions

XPRSunloadprob

Purpose Unloads and frees all memory associated with the current problem. It also invalidates the currentproblem (as opposed to reading in an empty problem).
Synopsis

int XPRS_CC XPRSunloadprob(XPRSprob prob);

Argument
prob The current problem.

Related topics
XPRSreadprob, XPRSloadlp, XPRSloadglobal, XPRSloadqglobal, XPRSloadqp.

Fair Isaac Corporation Confidential and Proprietary Information 387

Console and Library Functions

XPRSwritebasis WRITEBASIS

Purpose Writes the current basis to a file for later input into the Optimizer.
Synopsis

int XPRS_CC XPRSwritebasis(XPRSprob prob, const char ⁎filename, const char
⁎flags);

WRITEBASIS [-flags] [filename]

Arguments
prob The current problem.
filename A string of up to MAXPROBNAMELENGTH characters containing the file name from whichthe basis is to be written. If omitted, the default problem_name is used with a .bssextension.
flags Flags to pass to XPRSwritebasis (WRITEBASIS):

i output the internal presolved basis.
t output a compact advanced form of the basis.
n output basis file containing current solution values.
h output values in single precision.
p obsolete flag (now default behavior).

Example 1 (Library)After an LP has been solved it may be desirable to save the basis for future input as an advancedstarting point for other similar problems. This may save significant amounts of time if the LP iscomplex. The Optimizer input commands might then be:
XPRSreadprob(prob, "myprob", "");
XPRSlpoptimize(prob, "");
XPRSwritebasis(prob, "", "");

This reads in a matrix file, maximizes the LP and saves the basis. Loading a basis for a MIP problemcan disable some MIP presolve operations which can result in a large increase in solution times so it isgenerally not recommended.
Example 2 (Console)An equivalent set of commands to the above for console users would be:

READPROB
LPOPTIMIZE
WRITEBASIS

Further information
1. The t flag is only useful for later input to a similar problem using the t flag with XPRSreadbasis(READBASIS).
2. If the Newton barrier algorithm has been used for optimization then crossover must have beenperformed before there is a valid basis. This basis can then only be used for restarting the simplex(primal or dual) algorithm.
3. XPRSwritebasis (WRITEBASIS) will output the basis for the original problem even if the matrix hasbeen presolved.

Related topics
XPRSgetbasis, XPRSreadbasis (READBASIS).

Fair Isaac Corporation Confidential and Proprietary Information 388

Console and Library Functions

XPRSwritebinsol WRITEBINSOL

Purpose Writes the current MIP or LP solution to a binary solution file for later input into the Optimizer.
Synopsis

int XPRS_CC XPRSwritebinsol(XPRSprob prob, const char ⁎filename, const char
⁎flags);

WRITEBINSOL [-flags] [filename]

Arguments
prob The current problem.
filename A string of up to MAXPROBNAMELENGTH characters containing the file name to whichthe solution is to be written. If omitted, the default problem_name is used with a .solextension.
flags Flags to pass to XPRSwritebinsol (WRITEBINSOL):

x output the LP solution.
Example 1 (Library)After an LP has been solved or a MIP solution has been found the solution can be saved to file. If a MIPsolution exists it will be written to file unless the -x flag is passed to XPRSwritebinsol(WRITEBINSOL) in which case the LP solution will be written. The Optimizer input commands mightthen be:

XPRSreadprob(prob, "myprob", "");
XPRSmipoptimize(prob, "");
XPRSwritebinsol(prob, "", "");

This reads in a matrix file, maximizes the MIP and saves the last found MIP solution.
Example 2 (Console)An equivalent set of commands to the above for console users would be:

READPROB
MIPOPTIMIZE
WRITEBINSOL

Related topics
XPRSgetlpsol, XPRSgetmipsol, XPRSreadbinsol (READBINSOL), XPRSwritesol (WRITESOL),
XPRSwriteprtsol (WRITEPRTSOL).

Fair Isaac Corporation Confidential and Proprietary Information 389

Console and Library Functions

XPRSwritedirs WRITEDIRS

Purpose Writes the global search directives from the current problem to a directives file.
Synopsis

int XPRS_CC XPRSwritedirs(XPRSprob prob, const char ⁎filename);
WRITEDIRS [filename]

Arguments
prob The current problem.
filename A string of up to MAXPROBNAMELENGTH characters containing the file name to whichthe directives should be written. If omitted (or NULL), the default problem_name is usedwith a .dir extension.

Further informationIf the problem has been presolved, only the directives for columns in the presolved problem will bewritten to file.
Related topics

XPRSloaddirs, A.6.

Fair Isaac Corporation Confidential and Proprietary Information 390

Console and Library Functions

XPRSwriteprob WRITEPROB

Purpose Writes the current problem to an MPS or LP file.
Synopsis

int XPRS_CC XPRSwriteprob(XPRSprob prob, const char ⁎filename, const char
⁎flags);

WRITEPROB [-flags] [filename]

Arguments
prob The current problem.
filename A string of up to MAXPROBNAMELENGTH characters to contain the file name to which theproblem is to be written. If omitted, the default problem_name is used with a .mpsextension, unless the l flag is used in which case the extension is .lp.
flags Flags, which can be one or more of the following:

o one element per line;
n scaled;
s scrambled vector names;
l output in LP format;
p full precision of numerical values (obsolete as this is now default behavior).
t omit the Xpress header in LP format;

Example The following example outputs the current problem in LP format with scrambled vector names to thefile problem_name.lp.
XPRSwriteprob(prob, "", "ls");

Further information
1. If XPRSloadlp, XPRSloadglobal, XPRSloadqglobal or XPRSloadqp is used to obtain a matrixthen there is no association between the objective function and the N rows in the matrix and so aseparate N row (called __OBJ___) is created when you do an XPRSwriteprob (WRITEPROB). Also ifyou do an XPRSreadprob (READPROB) and then change either the objective row or the N row in thematrix corresponding to the objective row, you lose the association between the two and the __OBJ___row is created when you do an XPRSwriteprob (WRITEPROB). To remove the objective row from thematrix when doing an XPRSreadprob (READPROB), set KEEPNROWS to -1 before XPRSreadprob(READPROB).
2. Warning: If XPRSreadprob (READPROB) is used to input a problem, then the input file will beoverwritten by XPRSwriteprob (WRITEPROB) if a new filename is not specified.

Related topics
XPRSreadprob (READPROB).

Fair Isaac Corporation Confidential and Proprietary Information 391

Console and Library Functions

XPRSwriteprtrange WRITEPRTRANGE

Purpose Writes the ranging information to a fixed format ASCII file, problem_name.rrt. The binary range file(.rng) must already exist, created by XPRSrange (RANGE).
Synopsis

int XPRS_CC XPRSwriteprtrange(XPRSprob prob);
WRITEPRTRANGE

Argument
prob The current problem.

Related controls
Integer

MAXPAGELINES Number of lines between page breaks.
Double

OUTPUTTOL Tolerance on print values.
Example 1 (Library)The following example solves the LP problem and then calls XPRSrange (RANGE) before outputting theresult to file for printing:

XPRSreadprob(prob, "myprob", "");
XPRSlpoptimize(prob, "");
XPRSrange(prob);
XPRSwriteprttange(prob);

Example 2 (Console)An equivalent set of commands for the Console user would be:
READPROB
LPOPTIMIZE
RANGE
WRITEPRTRANGE

Further information

1. (Console) There is an equivalent command PRINTRANGE which outputs the same information to thescreen. The format is the same as that output to file by XPRSwriteprtrange (WRITEPRTRANGE),except that the user is permitted to enter a response after each screen if further output is required.
2. The fixed width ASCII format created by this command is not as readily useful as that produced by

XPRSwriterange (WRITERANGE). The main purpose of XPRSwriteprtrange (WRITEPRTRANGE) isto create a file that can be printed. The format of this fixed format range file is described in Appendix A.
Related topics

XPRSgetcolrange, XPRSgetrowrange, XPRSrange (RANGE), XPRSwriteprtsol,
XPRSwriterange, A.6.

Fair Isaac Corporation Confidential and Proprietary Information 392

Console and Library Functions

XPRSwriteprtsol WRITEPRTSOL

Purpose Writes the current solution to a fixed format ASCII file, problem_name .prt.
Synopsis

int XPRS_CC XPRSwriteprtsol(XPRSprob prob, const char ⁎filename, const char
⁎flags);

WRITEPRTSOL [filename] [-flags]

Arguments
prob The current problem.
filename A string of up to MAXPROBNAMELENGTH characters containing the file name to whichthe solution is to be written. If omitted, the default problem_name will be used. Theextension .prt will be appended.
flags Flags for XPRSwriteprtsol (WRITEPRTSOL) are:

x write the LP solution instead of the current MIP solution.
Related controls

Integer
MAXPAGELINES Number of lines between page breaks.

Double
OUTPUTTOL Tolerance on print values.

Example 1 (Library)This example shows the standard use of this function, outputting the solution to file immediatelyfollowing optimization:
XPRSreadprob(prob, "myprob", "");
XPRSlpoptimize(prob, "");
XPRSwriteprtsol(prob, "", "");

Example 2 (Console)

READPROB
LPOPTIMIZE
PRINTSOL

are the equivalent set of commands for Console users who wish to view the output directly on screen.
Further information

1. (Console) There is an equivalent command PRINTSOL which outputs the same information to thescreen. The format is the same as that output to file by XPRSwriteprtsol (WRITEPRTSOL), exceptthat the user is permitted to enter a response after each screen if further output is required.
2. The fixed width ASCII format created by this command is not as readily useful as that produced by

XPRSwritesol (WRITESOL). The main purpose of XPRSwriteprtsol (WRITEPRTSOL) is to create afile that can be sent directly to a printer. The format of this fixed format ASCII file is described inAppendix A.
3. To create a prt file for a previously saved solution, the solution must first be loaded with the

XPRSreadbinsol (READBINSOL) function.
Related topics

XPRSgetlpsol, XPRSgetmipsol, XPRSreadbinsol XPRSwritebinsol, XPRSwriteprtrange,
XPRSwritesol, A.4.

Fair Isaac Corporation Confidential and Proprietary Information 393

Console and Library Functions

XPRSwriterange WRITERANGE

Purpose Writes the ranging information to a CSV format ASCII file, problem_name.rsc (and .hdr). The binaryrange file (.rng) must already exist, created by XPRSrange (RANGE) and an associated header file.
Synopsis

int XPRS_CC XPRSwriterange(XPRSprob prob, const char ⁎filename, const char
⁎flags);

WRITERANGE [filename] [-flags]

Arguments
prob The current problem.
filename A string of up to MAXPROBNAMELENGTH characters containing the file name to whichthe ranging information is to be written. If omitted, the default problem_name will beused. The extensions .hdr and .rsc will be appended to the filename.
flags Flags to control which optional fields are output:

s sequence number;
n name;
t type;
b basis status;
a activity;
c cost (column), slack (row).
If no flags are specified, all fields are output.

Related controls
Double

OUTPUTTOL Tolerance on print values.
String

OUTPUTMASK Mask to restrict the row and column names output to file.
Example 1 (Library)At its most basic, the usage of XPRSwriterange (WRITERANGE) is similar to that of

XPRSwriteprtrange (WRITEPRTRANGE), except that the output is intended as input to anotherprogram. The following example shows its use:
XPRSreadprob(prob, "myprob", "");
XPRSlpoptimize(prob, "");
XPRSrange(prob);
XPRSwriterange(prob, "", "");

Example 2 (Console)

RANGE
WRITERANGE -nbac

This example would output just the name, basis status, activity, and cost (for columns) or slack (forrows) for each vector to the file problem_name.rsc. It would also output a number of other fields ofranging information which cannot be enabled/disabled by the user.

Fair Isaac Corporation Confidential and Proprietary Information 394

Console and Library Functions

Further information
1. The following fields are always present in the .rsc file, in the order specified. See the description of theASCII range files in Appendix A for details of their interpretation.For rows, the lower and upper costentries are zero. If a limiting process or activity does not exist, the field is blank, delimited by doublequotes.

� lower activity
� unit cost down
� upper cost (or lower profit if maximizing)
� limiting process down
� status of down limiting process
� upper activity
� unit cost up
� lower cost (or upper profit if maximizing)
� limiting process up
� status of up limiting process

2. The control OUTPUTMASKmay be used to control which vectors are reported to the ASCII file. Onlyvectors whose names match OUTPUTMASK are output. This is set to "????????" by default, so that allvectors are output.
Related topics

XPRSgetlpsol, XPRSgetmipsol, XPRSwriteprtrange (WRITEPRTRANGE), XPRSrange (RANGE),
XPRSwritesol (WRITESOL), A.6.

Fair Isaac Corporation Confidential and Proprietary Information 395

Console and Library Functions

XPRSwriteslxsol WRITESLXSOL

Purpose Creates an ASCII solution file (.slx) using a similar format to MPS files. These files can be read backinto the Optimizer using the XPRSreadslxsol function.
Synopsis

int XPRS_CC XPRSwriteslxsol(XPRSprob prob, const char ⁎filename, const char
⁎flags);

WRITESLXSOL -[flags] [filename]

Arguments
prob The current problem.
filename A string of up to MAXPROBNAMELENGTH characters containing the file name to whichthe solution is to be written. If omitted, the default problem_name is used with a .slxextension.
flags Flags to pass to XPRSwriteslxsol (WRITESLXSOL):

l write the LP solution in case of a MIP problem;
m write the MIP solution;
p use full precision for numerical values;
d LP solution only: including dual variables;
s LP solution only: including slack variables;
r LP solution only: including reduced cost.

Example 1 (Library)

XPRSwriteslxsol(prob,"lpsolution","");

This saves the MIP solution if the problem contains global entities, or otherwise saves the LP (barrier incase of quadratic problems) solution of the problem.
Example 2 (Console)

WRITESLXSOL lpsolution

Which is equivalent to the library example above.
Related topics

XPRSreadslxsol (READSLXSOL, XPRSwriteprtsol (WRITEPRTSOL), XPRSwritebinsol(WRITEBINSOL), XPRSreadbinsol (READBINSOL).

Fair Isaac Corporation Confidential and Proprietary Information 396

Console and Library Functions

XPRSwritesol WRITESOL

Purpose Writes the current solution to a CSV format ASCII file, problem_name.asc (and .hdr).
Synopsis

int XPRS_CC XPRSwritesol(XPRSprob prob, const char ⁎filename, const char
⁎flags);

WRITESOL [filename] [-flags]

Arguments
prob The current problem.
filename A string of up to MAXPROBNAMELENGTH characters containing the file name to whichthe solution is to be written. If omitted, the default problem_name will be used. Theextensions .hdr and .asc will be appended.
flags Flags to control which optional fields are output:

s sequence number;
n name;
t type;
b basis status;
a activity;
c cost (columns), slack (rows);
l lower bound;
u upper bound;
d dj (column; reduced costs), dual value (rows; shadow prices);
r right hand side (rows).
If no flags are specified, all fields are output.Additional flags:
p outputs in full precision;
q only outputs vectors with nonzero optimum value;
x output the current LP solution instead of the MIP solution.

Related controls
Double

OUTPUTTOL Tolerance on print values.
String

OUTPUTMASK Mask to restrict the row and column names output to file.
Example 1 (Library)In this example the basis status is output (along with the sequence number) following optimization:

XPRSreadprob(prob, "richard", "");
XPRSlpoptimize(prob, "");
XPRSwritesol(prob, "", "sb");

Example 2 (Console)Suppose we wish to produce files containing
� the names and values of variables starting with the letter X which are nonzero and
� the names, values and right hand sides of constraints starting with CO2.

The Optimizer commands necessary to do this are:
OUTPUTMASK = "X???????"
WRITESOL XVALS -naq
OUTPUTMASK = "CO2?????"
WRITESOL CO2 -nar

Fair Isaac Corporation Confidential and Proprietary Information 397

Console and Library Functions

Further information

1. The command produces two readable files: filename.hdr (the solution header file) and
filename.asc (the CSV foramt solution file). The header file contains summary information, all inone line. The ASCII file contains one line of information for each row and column in the problem. Anyfields appearing in the .asc file will be in the order the flags are described above. The order that theflags are specified by the user is irrelevant.

2. Additionally, the mask control OUTPUTMASKmay be used to control which names are reported to theASCII file. Only vectors whose names match OUTPUTMASK are output. OUTPUTMASK is set by default to"????????", so that all vectors are output.
Related topics

XPRSgetlpsol, XPRSgetmipsol, XPRSwriterange (WRITERANGE), XPRSwriteprtsol(WRITEPRTSOL).

Fair Isaac Corporation Confidential and Proprietary Information 398

CHAPTER 9

Control Parameters

Various controls exist within the Optimizer to govern the solution procedure and the form of output.The majority of these take integer values and act as switches between various types of behavior. Thetolerances on values are double precision, and there are a few controls which are character strings,setting names to structures. Any of these may be altered by the user to enhance performance of theOptimizer. However, it should be noted that the default values provided have been found to work well inpractice over a range of problems and caution should be exercised if they are changed.

9.1 Retrieving and Changing Control Values

Console Xpress users may obtain control values by issuing the control name at the Optimizer prompt,
>, and hitting the RETURN key. Controls may be set using the assignment syntax:

control_name = new_value

where new_value is an integer value, double or string as appropriate. For character strings, the namemust be enclosed in single quotes and all eight characters must be given.
Users of the FICO Xpress Libraries are provided with the following set of functions for setting andobtaining control values:
XPRSgetintcontrol XPRSgetdblcontrol XPRSgetstrcontrol
XPRSsetintcontrol XPRSsetdblcontrol XPRSsetstrcontrol

It is an important point that the controls as listed in this chapter must be prefixed with XPRS_ to beused with the FICO Xpress Libraries and failure to do so will result in an error. An example of theirusage is as follows:
XPRSgetintcontrol(prob, XPRS_PRESOLVE, &presolve);
printf("The value of PRESOLVE is %d\n", presolve);
XPRSsetintcontrol(prob, XPRS_PRESOLVE, 1-presolve);
printf("The value of PRESOLVE is now %d\n", 1-presolve);

ALGAFTERCROSSOVER

Description The algorithm to be used for the final clean up step after the crossover.
Type Integer

Fair Isaac Corporation Confidential and Proprietary Information 399

Control Parameters

Values 1 Automatically determined.
2 Dual simplex.
3 Primal simplex.
4 Concurrent.

Default value 1

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE) (when the barrier isused), XPRScrossoverlpsol.

ALGAFTERNETWORK

Description The algorithm to be used for the clean up step after the network simplex solver.
Type Integer
Values -1 Automatically determined.

2 Dual simplex.
3 Primal simplex.

Default value -1

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE) (when the barrier isused).

AUTOSCALING

Description Whether the Optimizer should automatically select between different scaling algorithms. Ifthe SCALING control is set, no automatic scaling will be applied.
Values -1 Automatic.

0 Disabled.
1 Cautious strategy. Non-standard scaling will only be selected if it appears to beclearly superior.
2 Moderate strategy.
3 Aggressive strategy. Standard scaling will only be selected if it appears to be clearlysuperior.

Default value -1
Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).
See also SCALING, OBJSCALEFACTOR.

AUTOPERTURB

Description Simplex: This indicates whether automatic perturbation is performed. If this is set to 1, theproblem will be perturbed whenever the simplex method encounters an excessive number ofdegenerate pivot steps, thus preventing the Optimizer being hindered by degeneracies.

Fair Isaac Corporation Confidential and Proprietary Information 400

Control Parameters

Type Integer
Values 0 No perturbation performed.

1 Automatic perturbation is performed.
Default value 1

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

BACKTRACK

Description Branch and Bound: Specifies how to select the next node to work on when a full backtrack isperformed.
Type Integer
Values -1 Automatically determined.

1 Unused.
2 Select the node with the best estimated solution.
3 Select the node with the best bound on the solution.
4 Select the deepest node in the search tree (equivalent to depth-first search).
5 Select the highest node in the search tree (equivalent to breadth-first search).
6 Select the earliest node created.
7 Select the latest node created.
8 Select a node randomly.
9 Select the node whose LP relaxation contains the fewest number of infeasible globalentities.
10 Combination of 2 and 9.
11 Combination of 2 and 4.
12 Combination of 3 and 4.

Default value 3

Note Note When two nodes are rated the same according to the BACKTRACK selection, asecondary rating is performed using the method set by BACKTRACKTIE.
Affects routines XPRSmipoptimize (MIPOPTIMIZE).
See also BACKTRACKTIE.

BACKTRACKTIE

Description Branch and Bound: Specifies how to break ties when selecting the next node to work on whena full backtrack is performed. The options are the same as for the BACKTRACK control.
Type Integer

Fair Isaac Corporation Confidential and Proprietary Information 401

Control Parameters

Values -1 Default selection.
1 Unused.
2 Select the node with the best estimated solution.
3 Select the node with the best bound on the solution.
4 Select the deepest node in the search tree (equivalent to depth-first search).
5 Select the highest node in the search tree (equivalent to breadth-first search).
6 Select the earliest node created.
7 Select the latest node created.
8 Select a node randomly.
9 Select the node whose LP relaxation contains the fewest number of infeasible globalentities.
10 Combination of 2 and 9.
11 Combination of 2 and 4.
12 Combination of 3 and 4.

Default value -1

Affects routines XPRSmipoptimize (MIPOPTIMIZE).
See also BACKTRACK.

BARALG

Description This control determines which barrier algorithm is to be used to solve the problem.
Type Integer
Values -1 Determined automatically.

0 Unused.
1 Use the infeasible-start barrier algorithm.
2 Use the homogeneous self-dual barrier algorithm.
3 Start with 2 and optionally switch to 1 during the execution.

Default value -1

Note The automatic setting uses 1 for LP and QP problems and 3 for QCQP problems. Usually thedetection of primal or dual infeasibility is more robust with settings 2 or 3, therefore, it isadvantageous to use one of these values if the model is presumably infeasible.
Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE), XPRSminim(MINIM), XPRSmaxim (MAXIM), XPRSglobal (GLOBAL).

BARCRASH

Description Newton barrier: This determines the type of crash used for the crossover. During the crashprocedure, an initial basis is determined which attempts to speed up the crossover. A goodchoice at this stage will significantly reduce the number of iterations required to crossover toan optimal solution. The possible values increase proportionally to their time-consumption.

Fair Isaac Corporation Confidential and Proprietary Information 402

Control Parameters

Type Integer
Values 0 Turns off all crash procedures.

1-6 Available strategies with 1 being conservative and 6 being aggressive.
Default value 4

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

BARDUALSTOP

Description Newton barrier: This is a convergence parameter, representing the tolerance for dualinfeasibilities. If the difference between the constraints and their bounds in the dual problemfalls below this tolerance in absolute value, optimization will stop and the current solution willbe returned.
Type Double
Default value 0 (determine automatically)
Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

BARFREESCALE

Description Defines how the barrier algorithm scales free variables.
Type Double
Default value 1e-6

Note When using smaller values the barrier algorithm scales free variables more aggressivelywhich can improve performance but may impact numerical stability.
Affects routines XPRSlpoptimize (LPOPTIMIZE).
See also SCALING.

BARGAPSTOP

Description Newton barrier: This is a convergence parameter, representing the tolerance for the relativeduality gap. When the difference between the primal and dual objective function values fallsbelow this tolerance, the Optimizer determines that the optimal solution has been found.
Type Double
Default value 0 (determine automatically)
Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

Fair Isaac Corporation Confidential and Proprietary Information 403

Control Parameters

BARGAPTARGET

Description Newton barrier: The target tolerance for the relative duality gap. The barrier algorithm willkeep iterating until either BARGAPTARGET is satisfied or until no further improvements arepossible. In the latter case, if BARGAPSTOP is satisfied, it will declare the problem optimal.
Type Double
Default value 0 (determine automatically)
Note When a solution returned by the barrier algorithm has not converged tightly enough for anapplication, for example if the dual solution is not accurate enough or crossover is taking toolong, setter BARGAPTARGET to a small value often resolves the problem, without the risk ofthe solve failing due to a complementarity level not being numerically achievable. Typicalsuggested values can be between 1–10 and 1–18.
Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

BARFAILITERLIMIT

Description Newton barrier: The maximum number of consecutive iterations that fail to improve thesolution in the barrier algorithm.
Type Integer
Values 0 Determined automatically

>0 Maximum number of consecutive barrier iterations allowed without progress.
Default value 0

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

BARINDEFLIMIT

Description Newton Barrier. This limits the number of consecutive indefinite barrier iterations that will beperformed. The optimizer will try to minimize (resp. maximize) a QP problem even if the Qmatrix is not positive (resp. negative) semi-definite. However, the optimizer may detect thatthe Q matrix is indefinite and this can result in the optimizer not converging. This controlspecifies how many indefinite iterations may occur before the optimizer stops and reportsthat the problem is indefinite. It is usual to specify a value greater than one, and only stopafter a series of indefinite matrices, as the problem may be found to be indefinite incorrectlyon a few iterations for numerical reasons.
Type Integer
Default value 15

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

Fair Isaac Corporation Confidential and Proprietary Information 404

Control Parameters

BARITERLIMIT

Description Newton barrier: The maximum number of iterations. While the simplex method usuallyperforms a number of iterations which is proportional to the number of constraints (rows) in aproblem, the barrier method standardly finds the optimal solution to a given accuracy after anumber of iterations which is independent of the problem size. The penalty is rather that thetime for each iteration increases with the size of the problem. BARITERLIMIT specifies themaximum number of iterations which will be carried out by the barrier.
Type Integer
Default value 500

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

BARKERNEL

Description Newton barrier: Defines how centrality is weighted in the barrier algorithm.
Type Double
Values >=+1.0 Increases the emphasis on centrality when larger value is set.

<=-1.0 Selects a value adaptively in every iteration from [+1, -BARKERNEL].
Default value 0.0

Note Increasing this parameter may increase the number of iterations, therefore the recommendedrange is [1,2] and [-2,-1].
Affects routines XPRSlpoptimize (LPOPTIMIZE).
See also BARALG.

BAROBJSCALE

Description Defines how the barrier scales the objective.
Type Double
Values -1 Let the optimizer decide.

0 Scale by geometric mean.
>=0 Scale such that the largest objective coefficient’s largest element does not exceedthis number. In quadratic problems, the quadratic diagonal is used as referencevaluses instead of the linear objective.

Default value -1

Note The scaling perfromed by the barrier is applied on top of any other scaling in the problem andonly affects the barrier solve.
Affects routines XPRSlpoptimize (LPOPTIMIZE).
See also SCALING.

Fair Isaac Corporation Confidential and Proprietary Information 405

Control Parameters

BARORDER

Description Newton barrier: This controls the Cholesky factorization in the Newton-Barrier.
Type Integer
Values 0 Choose automatically.

1 Minimum degree method. This selects diagonal elements with the smallest numberof nonzeros in their rows or columns.
2 Minimum local fill method. This considers the adjacency graph of nonzeros in thematrix and seeks to eliminate nodes that minimize the creation of new edges.
3 Nested dissection method. This considers the adjacency graph and recursivelyseeks to separate it into non-adjacent pieces.

Default value 0

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

BARORDERTHREADS

Description If set to a positive integer it determines the number of concurrent threads for the sparsematrix ordering algorithm in the Newton-barrier method.
Type Integer
Default value 0 (determine automatically)
Note Larger values than BARCORES will be automatically reduced to the value of BARCORES.
Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).
See also BARORDER, BARCORES.

BAROUTPUT

Description Newton barrier: This specifies the level of solution output provided. Output is provided eitherafter each iteration of the algorithm, or else can be turned off completely by this parameter.
Type Integer
Values 0 No output.

1 At each iteration.
Default value 1

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

Fair Isaac Corporation Confidential and Proprietary Information 406

Control Parameters

BARPRESOLVEOPS

Description Newton barrier: This controls the Newton-Barrier specific presolve operations.
Type Integer
Values 0 Use standard presolve.

1 Extra effort is spent in barrier specific presolve.
2 Do full matrix eliminations (reduce matrix size).

Default value 0

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

BARPRIMALSTOP

Description Newton barrier: This is a convergence parameter, indicating the tolerance for primalinfeasibilities. If the difference between the constraints and their bounds in the primalproblem falls below this tolerance in absolute value, the Optimizer will terminate and returnthe current solution.
Type Double
Default value 0 (determine automatically)
Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

BARREGULARIZE

Description This control determines how the barrier algorithm applies regularization on the KKT system.
Type Integer
Values -1 Determined automatically.
Values Bit Meaning

0 Standard regularization is turned on/off.
1 Reduced regularization is turned on/off. This option reduces the perturbation effectof the standard regularization.
2 Forces to keep dependent rows in the KKT system.
3 Forces to preserve degenerate rows in the KKT system.

Default value -1

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE), XPRSminim(MINIM), XPRSmaxim (MAXIM), XPRSglobal (GLOBAL).

Fair Isaac Corporation Confidential and Proprietary Information 407

Control Parameters

BARRHSSCALE

Description Defines how the barrier scales the right hand side.
Type Double
Values -1 Let the optimizer decide.

0 Scale by geometric mean.
>=0 Scale such that the largest right hand side coefficient’s largest element does notexceed this number.

Default value -1

Note The scaling perfromed by the barrier is applied on top of any other scaling in the problem andonly affects the barrier solve.
Affects routines XPRSlpoptimize (LPOPTIMIZE).
See also SCALING.

BARSOLUTION

Description This determines whether the barrier has to decide which is the best solution found or returnthe solution computed by te last barrier iteration.
Type Integer
Values -1 (callback only: do not save current soulution as the best one).

0 return the best solution found (in callback: let the barrier decide the current solutionis the best or not).
1 return the last barrier iteration (in callback: save current solution as the best solutionso far).

Default value 0

Affects routines The barrier algorithm.

BARSTART

Description Newton barrier: Controls the computation of the starting point for the barrier algorithm.
Type Integer
Values -1 Uses the available solution for warm-start.

0 Determine automatically.
1 Uses simple heuristics to compute the starting point based on the magnitudes of thematrix entries.
2 Uses the pseudoinverse of the constraint matrix to determine primal and dual initialsolutions. Less sensitive to scaling and numerically more robust, but in several caseless efficient than 1.
3 Uses the unit starting point for the homogeneous self-dual barrier algorithm.

Fair Isaac Corporation Confidential and Proprietary Information 408

Control Parameters

Default value 0
Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

BARSTARTWEIGHT

Description Newton barrier: This sets a weight for the warm-start point when warm-start is set for thebarrier algorithm. Using larger weight gives more emphasis for the supplied starting point.
Type Double
Default value 0.85
Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).
See also BARSTART.

BARSTEPSTOP

Description Newton barrier: A convergence parameter, representing the minimal step size. On eachiteration of the barrier algorithm, a step is taken along a computed search direction. If thatstep size is smaller than BARSTEPSTOP, the Optimizer will terminate and return the currentsolution.
Type Double
Default value 1.0E-16

Note If the barrier method is making small improvements on BARGAPSTOP on later iterations, itmay be better to set this value higher, to return a solution after a close approximation to theoptimum has been found.
Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

BARTHREADS

Description If set to a positive integer it determines the number of threads implemented to run theNewton-barrier algorithm. If the value is set to the default value (-1), the THREADS control willdetermine the number of threads used.
Type Integer
Default value -1(determined by the THREADS control)
Note There is a practical upper limit of 50 on the number of parallel threads the optimizer willcreate.
Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).
See also MIPTHREADS, CONCURRENTTHREADS, THREADS.

Fair Isaac Corporation Confidential and Proprietary Information 409

Control Parameters

BARCORES

Description If set to a positive integer it determines the number of physical CPU cores assumed to bepresent in the system by the barrier algorithm. If the value is set to the default value (-1),Xpress will automatically detect the number of cores.
Type Integer
Default value -1(automatically detected)
Note The control is provided for cross-hardware reproducibility purposes. The count does notinclude logical cores created by Hyper-Threading.
Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).
See also BARTHREADS.

BIGM

Description The infeasibility penalty used if the "Big M" method is implemented.
Type Double
Default value Dependent on the matrix characteristics.
Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

BIGMMETHOD

Description Simplex: This specifies whether to use the "Big M" method, or the standard phase I (achievingfeasibility) and phase II (achieving optimality). In the "Big M" method, the objectivecoefficients of the variables are considered during the feasibility phase, possibly leading to aninitial feasible basis which is closer to optimal. The side-effects involve possible round-offerrors due to the presence of the "Big M" factor in the problem.
Type Integer
Values 0 For phase I / phase II.

1 If "Big M" method to be used.
Default value 1

Note Reset by XPRSreadprob (READPROB), XPRSloadglobal, XPRSloadlp,
XPRSloadqglobal and XPRSloadqp.

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

Fair Isaac Corporation Confidential and Proprietary Information 410

Control Parameters

BRANCHCHOICE

Description Once a global entity has been selected for branching, this control determines which of thebranches is solved first.
Type Integer
Values 0 Minimum estimate branch first.

1 Maximum estimate branch first.
2 If an incumbent solution exists, solve the branch satisfied by that solution first.Otherwise solve the minimum estimate branch first (option 0).
3 Solve first the branch that forces the value of the branching variable to move fartheraway from the value it had at the root node. If the branching entity is not a simplevariable, solve the minimum estimate branch first (option 0).

Default value 0

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

BRANCHDISJ

Description Branch and Bound: Determines whether the optimizer should attempt to branch on generalsplit disjunctions during the branch and bound search.
Type Integer
Values -1 Automatic selection of the strategy.

0 Disabled.
1 Cautious strategy. Disjunctive branches will be created only for general integers witha wide range.
2 Moderate strategy.
3 Aggressive strategy. Disjunctive branches will be created for both binaries andintegers.

Default value -1
Note Note Split disjunctions are a special form of disjunctions that can be written as∑

j mjxj ≤ m0 ∨∑
j mjxj ≥ m0 + 1

The split disjunctions created by the optimizer will use a combination of binary or integervariables xj, with integer coefficients mj.
Split disjunctions for branching will always be created with a default priority value of 400instead of the default value of 500 for regular entity branches.

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

Fair Isaac Corporation Confidential and Proprietary Information 411

Control Parameters

BRANCHSTRUCTURAL

Description Branch and Bound: Determines whether the optimizer should search for special structure inthe problem to branch on during the branch and bound search.
Type Integer
Values -1 Automatically determined.

0 Disabled.
1 Enabled.

Default value -1
Note Structural branches will often involve branching on more than a single global entity at a time.As a result of a structural branch, a parent node could therefore end up with more than twochild nodes, unlike the standard single entity branches.

Structural branches will always be created with a default priority value of 400 instead of thedefault value of 500 for regular entity branches.
Affects routines XPRSmipoptimize (MIPOPTIMIZE).

BREADTHFIRST

Description The number of nodes to include in the best-first search before switching to the local firstsearch (NODESELECTION = 4).
Type Integer
Default value 11

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

CACHESIZE

Description Newton Barrier: L2 or L3 (see notes) cache size in kB (kilobytes) of the CPU. On Intel (orcompatible) platforms a value of -1may be used to determine the cache size automatically.If the CPU model is new then the cache size may not be correctly detected by an older releaseof the software.
Type Integer
Default value -1
Note Specifying the correct cache size can give a significant performance advantage with theNewton barrier algorithm. If the size is unknown, it is better to specify a smaller size.

If the size cannot be determined automatically, a default size of 128kB is assumed.
Where present, the L3 cache size should be chosen rather than the L2 cache size.

Fair Isaac Corporation Confidential and Proprietary Information 412

Control Parameters

For multi-core CPUs, the cache is shared between a subset of the cores. The Optimizer willdivide the CACHESIZE value by the number of cores sharing the cache if >1 Barrier threadsare running.
Where the CPU is described as having multiple caches ie. 2x6M then the correct cache size touse is 6M not 12M.
Examples:
Intel Core 2 Duo E6400 (2M Cache, 2.13GHz), CACHESIZE=2048 Intel Xeon x5570 (8MCache, 2.93GHz), CACHESIZE=8192 Intel Core 2 QX6700 (2x4M Cache, 2.93 GHz),
CACHESIZE=4096
If in doubt, please contact Support for advice.

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).
See also L1CACHE.

CALLBACKFROMMASTERTHREAD

Description Branch and Bound: specifies whether the MIP callbacks should only be called on the masterthread.
Type Integer
Values 0 Invoke callbacks on worker threads during parallel MIP;

1 Only ever invoke a callback on the thread that called XPRSmipoptimize.
Default value 0

Affects routines XPRSmipoptimize.

CHOLESKYALG

Description Newton barrier: type of Cholesky factorization used.
Type Integer

Fair Isaac Corporation Confidential and Proprietary Information 413

Control Parameters

Values Bit Meaning
0 matrix blocking:0: automatic setting;1: manual setting.
1 if manual selection of matrix blocking:0: multi-pass;1: single-pass.
2 nonseparable QP relaxation:0: off;1: on.
3 corrector weight:0: automatic setting;1: manual setting.
4 if manual selection of corrector weight:0: off;1: on.
5 refinement:0: automatic setting;1: manual setting.
6 preconditioned conjugate gradient method (PCGM):0: PCGM off;1: PCGM on.
7 Preconditioned quasi minimal residual (QMR) to refine solution:0: QMR off;1: QMR on.
8 Perform refinement on the augmented system0: off;1: on.
9 Force highest accuracy in refinement0: off;1: on.

Default value -1 (automatic)

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

CHOLESKYTOL

Description Newton barrier: The tolerance for pivot elements in the Cholesky decomposition of thenormal equations coefficient matrix, computed at each iteration of the barrier algorithm. Ifthe absolute value of the pivot element is less than or equal to CHOLESKYTOL, it meritsspecial treatment in the Cholesky decomposition process.
Type Double
Default value 1.0E-15

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

Fair Isaac Corporation Confidential and Proprietary Information 414

Control Parameters

CLAMPING

Description This control allows the pushing the final solution values to be always within bounds.
Type Integer
Values -1 Determined automatically.
Values Bit Meaning

0 Adjust primal solution to always be within primal bounds. Slacks if provided will beadjusted accordingly.
1 Adjust primal slack values to always be within constraint bounds.
2 Adjust dual solution to always be within the dual bounds implied by the slacks.Reduced costs, if provided, will be adjusted accordingly.
3 Adjust reduced costs to always be within dual bounds implied by the primal solution.

Default value 0

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE), XPRSminim(MINIM), XPRSmaxim (MAXIM), XPRSglobal (GLOBAL).

COMPUTEEXECSERVICE

Description Selects the Insight execution service that will be used for solving remote optimizations.
Type String
Default value Empty string
Note Set to the name of the execution service you want to use.
Note When an empty string, the Insight server’s default execution service will be used.
Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

CONFLICTCUTS

Description Branch and Bound: Specifies how cautious or aggressive the optimizer should be whensearching for and applying conflict cuts. Conflict cuts are in-tree cuts derived from nodesfound to be infeasible or cut off, which can be used to cut off other branches of the searchtree.
Type Integer
Values -1 Automatic.

0 Disable conflict cuts.
1 Cautious application of conflict cuts.
2 Medium application of conflict cuts.
3 Aggressive application of conflict cuts.

Default value -1

Affects routines XPRSmipoptimize (MIPOPTIMIZE)

Fair Isaac Corporation Confidential and Proprietary Information 415

Control Parameters

CONCURRENTTHREADS

Description Determines the number of threads used by the concurrent solver.
Type Integer
Values -1 Determined automatically

>0 Number of threads to use.
Default value -1

Note Please refer to section 5.10.1 for a detailed description of the concurrent solver.
Affects routines XPRSlpoptimize (LPOPTIMIZE).
See also DETERMINISTIC, DUALTHREADS, BARTHREADS, THREADS.

CORESPERCPU

Description Used to override the detected value of the number of cores on a CPU. The cache size (eitherdetected or specified via the CACHESIZE control) used in Barrier methods will be divided bythis amount, and this scaled-down value will be the amount of cache allocated to each Barrierthread
Type Integer
Default value -1

Affects routines CACHESIZE

COVERCUTS

Description Branch and Bound: The number of rounds of lifted cover inequalities at the top node. A liftedcover inequality is an additional constraint that can be particularly effective at reducing thesize of the feasible region without removing potential integral solutions. The process ofgenerating these can be carried out a number of times, further reducing the feasible region,albeit incurring a time penalty. There is usually a good payoff from generating these at the topnode, since these inequalities then apply to every subsequent node in the tree search.
Type Integer
Default value -1 — determined automatically.
Affects routines XPRSmipoptimize (MIPOPTIMIZE).

Fair Isaac Corporation Confidential and Proprietary Information 416

Control Parameters

CPUPLATFORM

Description Newton Barrier: Selects the AMD or Intel x86 vectorization instruction set that Barrier shouldrun optimized code for.
Type Integer
Values -2 Highest supported [Generic, SSE2, AVX or AVX2].

-1 Highest supported solve path consistent code [Generic, SSE2 or AVX].
0 Use generic code compatible with all CPUs.
1 Use SSE2 optimized code.
2 Use AVX optimized code.
3 Use AVX2 optimized code.

Default value -1

Note Generic code, SSE2 and AVX optimized code will all result in the same solution path. UsingAVX2 might result in a different solution path.
Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

CPUTIME

Description How time should be measured when timings are reported in the log and when checkingagainst time limits
Type Integer
Values -1 Disable the timer.

0 Use elapsed time.
1 Use process time.

Default value 0

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

CRASH

Description Simplex: This determines the type of crash used when the algorithm begins. During the crashprocedure, an initial basis is determined which is as close to feasibility and triangularity aspossible. A good choice at this stage will significantly reduce the number of iterationsrequired to find an optimal solution. The possible values increase proportionally to theirtime-consumption.
Type Integer

Fair Isaac Corporation Confidential and Proprietary Information 417

Control Parameters

Values 0 Turns off all crash procedures.
1 For singletons only (one pass).
2 For singletons only (multi pass).
3 Multiple passes through the matrix considering slacks.
4 Multiple (≤ 10) passes through the matrix but only doing slacks at the very end.
n>10 As for value 4 but performing at most n - 10 passes.

Default value 2

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

CROSSOVER

Description Newton barrier: This control determines whether the barrier method will cross over to thesimplex method when at optimal solution has been found, to provide an end basis (see
XPRSgetbasis, XPRSwritebasis) and advanced sensitivity analysis information (see
XPRSrange).

Type Integer
Values -1 Determined automatically.

0 No crossover.
1 Primal crossover first.
2 Dual crossover first.

Default value -1

Note The full primal and dual solution is available whether or not crossover is used. The crossovermust not be disabled if the barrier is used to reoptimize nodes of a MIP. By default crossoverwill not be performed on QP and MIQP problems.
Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

CROSSOVERACCURACYTOL

Description Newton barrier: This control determines how crossover adjusts the default relative pivottolerance. When re-inversion is necessary, crossover will compare the recalculated workingbasic solution with the assumed ones just before re-inversion took place. If the error is abovethis threshold, crossover will adjust the relative pivot tolerance to address the build-up ofnumerical inaccuracies.
Type Double
Default value 1e-6

Note The full primal and dual solution is available whether or not crossover is used. The crossovermust not be disabled if the barrier is used to reoptimize nodes of a MIP. By default crossoverwill not be performed on QP and MIQP problems.
Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

Fair Isaac Corporation Confidential and Proprietary Information 418

Control Parameters

CROSSOVERITERLIMIT

Description Newton barrier: The maximum number of iterations that will be performed in the crossoverprocedure before the optimization process terminates.
Type Integer
Default value 2147483647

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).
See also CROSSOVER.

CROSSOVEROPS

Description Newton barrier: a bit vector for adjusting the behavior of the crossover procedure.
Type Integer
Values Bit Meaning

0 Returned solution when the crossover terminates prematurely:0: Return the last basis from the crossover;1: Return the barrier solution.
1 Select the crossover stages to be performed:0: Perform both crossover stages;1: Skip second crossover stage.
2 Set crossover behaviour:0: Force to perform all pivots;1: Skip pivots that are numerically less reliable.
3 Set crossover behaviour:0: Perform standard crossover;1: Perform a slower, but numerically more careful crossover.

Default value 0

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).
See also CROSSOVER.

CROSSOVERTHREADS

Description Determines the maximum number of threads that parallel crossover is allowed to use. If
CROSSOVERTHREADS is set to the default value (-1), the BARTHREADS control will determinethe number of threads used.

Type Integer
Default value -1 (determined by the BARTHREADS control)
Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).
See also BARTHREADS, CONCURRENTTHREADS, THREADS.

Fair Isaac Corporation Confidential and Proprietary Information 419

Control Parameters

CSTYLE

Description This control is deprecated, and will be removed from future versions of the optimizer. Thecontrol was used for numbering arrays.
Type Integer
Values 0 Indicates that the FORTRAN convention should be used for arrays (i.e. starting from

1).
1 Indicates that the C convention should be used for arrays (i.e. starting from 0).

Default value 1

Affects routines All library routines which take arrays as arguments.

CUTDEPTH

Description Branch and Bound: Sets the maximum depth in the tree search at which cuts will begenerated. Generating cuts can take a lot of time, and is often less important at deeper levelsof the tree since tighter bounds on the variables have already reduced the feasible region. Avalue of 0 signifies that no cuts will be generated.
Type Integer
Default value -1 — determined automatically.
Note Does not affect cutting on the root node.
Affects routines XPRSmipoptimize (MIPOPTIMIZE).
See also CUTFREQ.

CUTFACTOR

Description Limit on the number of cuts and cut coefficients the optimizer is allowed to add to the matrixduring global search. The cuts and cut coefficients are limited by CUTFACTOR times thenumber of rows and coefficients in the initial matrix.
Type Double
Values Bit Meaning

-1 Let the optimizer decide on the maximum amount of cuts based on CUTSTRATEGY.
>=0 Multiple of number of rows and coefficients to use.

Default value -1

Note A value of 0.0 prevents cuts from being added, and a value of e.g. 1.0 will allow the problem togrow to twice the initial number of rows and coefficients.
Affects routines XPRSmipoptimize (MIPOPTIMIZE).
See also CUTSTRATEGY.

Fair Isaac Corporation Confidential and Proprietary Information 420

Control Parameters

CUTFREQ

Description Branch and Bound: This specifies the frequency at which cuts are generated in the treesearch. If the depth of the node modulo CUTFREQ is zero, then cuts will be generated.
Type Integer
Default value -1 — determined automatically.
Affects routines XPRSmipoptimize (MIPOPTIMIZE).

CUTSTRATEGY

Description Branch and Bound: This specifies the cut strategy. A more aggressive cut strategy, generatinga greater number of cuts, will result in fewer nodes to be explored, but with an associatedtime cost in generating the cuts. The fewer cuts generated, the less time taken, but thegreater subsequent number of nodes to be explored.
Type Integer
Values -1 Automatic selection of the cut strategy.

0 No cuts.
1 Conservative cut strategy.
2 Moderate cut strategy.
3 Aggressive cut strategy.

Default value -1

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

CUTSELECT

Description A bit vector providing detailed control of the cuts created for the root node of a global solve.Use TREECUTSELECT to control cuts during the tree search.
Type Integer

Fair Isaac Corporation Confidential and Proprietary Information 421

Control Parameters

Values Bit Meaning
5 Clique cuts.
6 Mixed Integer Rounding (MIR) cuts.
7 Lifted cover cuts.
8 Turn on row aggregation for MIR cuts.
11 Flow path cuts.
12 Implication cuts.
13 Turn on automatic Lift-and-Project cutting strategy.
14 Disable cutting from cut rows.
15 Lifted GUB cover cuts.
16 Zero-half cuts.
17 Indicator constraint cuts.

Default value -1

Note The default value is -1 which enables all bits. Any bits not listed in the above table should beleft in their default ’on’ state, since the interpretation of such bits might change in futureversions of the optimizer.
Affects routines XPRSmipoptimize (MIPOPTIMIZE).
See also COVERCUTS, GOMCUTS, TREECUTSELECT.

DEFAULTALG

Description This selects the algorithm that will be used to solve the LP if no algorithm flag is passed tothe optimization routines.
Type Integer
Values 1 Automatically determined.

2 Dual simplex.
3 Primal simplex.
4 Newton barrier.

Default value 1

Note Please note that this will affect how the MIP node LP problems are solved during the globalsearch. To change how the root LP is solved only, please use the appropriate flags to
XPRSlpoptimize or XPRSmipoptimize.

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

DENSECOLLIMIT

Description Newton barrier: Columns with more than DENSECOLLIMIT elements are considered to bedense. Such columns will be handled specially in the Cholesky factorization of this matrix.
Type Integer

Fair Isaac Corporation Confidential and Proprietary Information 422

Control Parameters

Default value 0 — determined automatically.
Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

DETERMINISTIC

Description Branch and Bound: Specifies whether the parallel MIP search should be deterministic.
Type Integer
Values 0 Use non-deterministic parallel MIP.

1 Use deterministic parallel MIP.
Default value 1

Affects routines XPRSmipoptimize (MIPOPTIMIZE).
See also MIPTHREADS.

DUALGRADIENT

Description Simplex: This specifies the dual simplex pricing method.
Type Integer
Values -1 Determine automatically.

0 Devex.
1 Steepest edge.
2 Direct steepest edge.
3 Sparse Devex.

Default value -1

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).
See also PRICINGALG.

DUALIZE

Description This specifies whether presolve should form the dual of the problem.
Type Integer
Values -1 Determine automatically.

0 Solve the primal problem.
1 Solve the dual problem.

Default value -1

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).
See also DUALIZEOPS

Fair Isaac Corporation Confidential and Proprietary Information 423

Control Parameters

DUALIZEOPS

Description Bit-vector control for adjusting the behavior when a problem is dualized.
Type Integer
Values Bit Meaning

0 Swap the simplex algorithm to run. If dual simplex is selected for the originalproblem then primal simplex will be run on the dualized problem, and simiarly ifprimal simplex is selected.
Default value 1 (bit 0 is set)
Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).
See also DUALIZE

DUALPERTURB

Description The factor by which the problem will be perturbed prior to optimization by dual simplex. Avalue of 0.0 results in no perturbation prior to optimization. DUALPERTURB, if set to anon-negative value, overrules the value of PERTURB. The control PERTURB is deprecated, theuse of PRIMALPERTURB and DUALPERTURB is advised instead.
Note the interconnection to the AUTOPERTURB control. If AUTOPERTURB is set to 1, thedecision whether to perturb or not is left to the Optimizer. When the problem is automaticallyperturbed in dual simplex, however, the value of DUALPERTURB will be used for perturbation.

Type Double
Default value -1 — determined automatically.
Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).
See also AUTOPERTURB, PERTURB, PRIMALPERTURB.

DUALSTRATEGY

Description This bit-vector control specifies the dual simplex strategy.
Type Integer
Values Bit Meaning

0 Switch to primal when re-optimization goes dual infeasible and numerically unstable.
1 When dual intend to switch to primal, stop the solve instead of switching to primal.
2 Use more aggressive cut-off in MIP search.
3 Use dual simplex to remove cost perturbations.
4 Enable more aggressive dual pivoting strategy.
5 Keep using dual simplex even when it’s numerically unstable.

Fair Isaac Corporation Confidential and Proprietary Information 424

Control Parameters

Default value 1

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

DUALTHREADS

Description Determines the maximum number of threads that dual simplex is allowed to use. If
DUALTHREADS is set to the default value (-1), the THREADS control will determine thenumber of threads used.

Type Integer
Default value -1 (determined by the THREADS control)
Note When solving a linear MIP, the dual simplex algorithm will use multiple threads only whensolving the initial LP relaxation or when reoptimizing between rounds of cuts on the root node.

The parallel dual simplex algorithm differs from the sequential dual simplex algorithm andmight follow a different solve path. For DUALTHREADS > 1 the solve path is independent ofthe number of threads used, although the practical limit for observing performance benefits isaround DUALTHREADS = 8.
Affects routines XPRSlpoptimize (LPOPTIMIZE).
See also CONCURRENTTHREADS, THREADS.

EIGENVALUETOL

Description A quadratic matrix is considered not to be positive semi-definite, if its smallest eigenvalue issmaller than the negative of this value.
Type Double
Default value 1E-6

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE),
CHECKCONVEXITY.

See also IFCHECKCONVEXITY.

ELIMFILLIN

Description Amount of fill-in allowed when performing an elimination in presolve .
Type Integer
Default value 10

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

Fair Isaac Corporation Confidential and Proprietary Information 425

Control Parameters

ELIMTOL

Description The Markowitz tolerance for the elimination phase of the presolve.
Type Double
Default value 0.001

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

ETATOL

Description Tolerance on eta elements. During each iteration, the basis inverse is premultiplied by anelementary matrix, which is the identity except for one column - the eta vector. Elements ofeta vectors whose absolute value is smaller than ETATOL are taken to be zero in this step.
Type Double
Default value 1.0E-13

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE), XPRSbtran,
XPRSftran.

EXTRACOLS

Description The initial number of extra columns to allow for in the matrix. If columns are to be added tothe matrix, then, for maximum efficiency, space should be reserved for the columns beforethe matrix is input by setting the EXTRACOLS control. If this is not done, resizing will occurautomatically, but more space may be allocated than the user actually requires.
Type Integer
Default value 0

Affects routines XPRSreadprob (READPROB), XPRSloadglobal, XPRSloadlp, XPRSloadqglobal,
XPRSloadqp.

See also EXTRAROWS, EXTRAELEMS, EXTRAMIPENTS.

EXTRAELEMS

Description The initial number of extra matrix elements to allow for in the matrix, including coefficientsfor cuts. If rows or columns are to be added to the matrix, then, for maximum efficiency,space should be reserved for the extra matrix elements before the matrix is input by settingthe EXTRAELEMS control. If this is not done, resizing will occur automatically, but more spacemay be allocated than the user actually requires.

Fair Isaac Corporation Confidential and Proprietary Information 426

Control Parameters

Type Integer
Default value Hardware/platform dependent.
Affects routines XPRSreadprob (READPROB), XPRSloadglobal, XPRSloadlp, XPRSloadqglobal,

XPRSloadqp.
See also EXTRACOLS, EXTRAROWS.

EXTRAMIPENTS

Description The initial number of extra global entities to allow for.
Type Integer
Default value 0

Affects routines XPRSreadprob (READPROB), XPRSloadglobal, XPRSloadqglobal.

EXTRAPRESOLVE

Description This control no longer has any effect and will be removed from future releases. Use
PRESOLVEMAXGROW to limit the number of non-zero coefficients in the presolved problem.

Type Integer
Default value 0
Affects routines XPRSreadprob (READPROB), XPRSloadglobal, XPRSloadlp, XPRSloadqglobal,

XPRSloadqp.

EXTRAQCELEMENTS

Description This control is deprecated, and will be removed from future versions of the optimizer.
Type Integer
Default value 0
Affects routines XPRSreadprob (READPROB), XPRSloadqcqp.
See also EXTRAELEMS, EXTRAMIPENTS, EXTRAROWS, EXTRAQCROWS.

EXTRAQCROWS

Description This control is deprecated, and will be removed from future versions of the optimizer.
Type Integer

Fair Isaac Corporation Confidential and Proprietary Information 427

Control Parameters

Default value 0
Affects routines XPRSreadprob (READPROB), XPRSloadqcqp.
See also EXTRAELEMS, EXTRAMIPENTS, EXTRAROWS, EXTRAQCELEMENTS.

EXTRAROWS

Description The initial number of extra rows to allow for in the matrix, including cuts. If rows are to beadded to the matrix, then, for maximum efficiency, space should be reserved for the rowsbefore the matrix is input by setting the EXTRAROWS control. If this is not done, resizing willoccur automatically, but more space may be allocated than the user actually requires.
Type Integer
Default value 0
Affects routines XPRSreadprob (READPROB), XPRSloadglobal, XPRSloadlp, XPRSloadqglobal,

XPRSloadqp.
See also EXTRACOLS.

EXTRASETELEMS

Description The initial number of extra elements in sets to allow for in the matrix. If sets are to be addedto the matrix, then, for maximum efficiency, space should be reserved for the set elementsbefore the matrix is input by setting the EXTRASETELEMS control. If this is not done, resizingwill occur automatically, but more space may be allocated than the user actually requires.
Type Integer
Default value 0

Affects routines XPRSreadprob (READPROB), XPRSloadglobal, XPRSloadlp, XPRSloadqglobal,
XPRSloadqp.

See also EXTRAMIPENTS, EXTRASETS.

EXTRASETS

Description The initial number of extra sets to allow for in the matrix. If sets are to be added to the matrix,then, for maximum efficiency, space should be reserved for the sets before the matrix is inputby setting the EXTRASETS control. If this is not done, resizing will occur automatically, butmore space may be allocated than the user actually requires.
Type Integer
Default value 0

Affects routines XPRSreadprob (READPROB), XPRSloadglobal, XPRSloadlp, XPRSloadqglobal,
XPRSloadqp.

See also EXTRAMIPENTS, EXTRASETELEMS.

Fair Isaac Corporation Confidential and Proprietary Information 428

Control Parameters

FEASIBILITYPUMP

Description Branch and Bound: Decides if the Feasibility Pump heuristic should be run at the top node.
Type Integer
Values -1 Automatic.

0 Turned off.
1 Always try the Feasibility Pump.
2 Try the Feasibility Pump only if other heuristics have failed to find an integer solution.

Default value -1

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

FEASTOL

Description This tolerance determines when a solution is treated as feasible. If the amount by which aconstraint’s activity violates its right-hand side or ranged bound is less in absolute magnitudethan FEASTOL, then the constraint is treated as satisfied. Similarly, if the amount by which acolumn violates its bounds is less in absolute magnitude than FEASTOL, those bounds arealso treated as satisfied.
Type Double
Default value 1.0E-06

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE), XPRSgetinfeas.

FEASTOLPERTURB

Description This tolerance determines how much a feasible primal basic solution is allowed to beperturbed when performing basis changes. The tolerance FEASTOL is always considered asan upper limit for the perturbations, but in some cases smaller value can be more desirable.
Type Double
Default value 1.0E-06

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE), XPRSgetinfeas.

FEASTOLTARGET

Description This specifies the target feasibility tolerance for the solution refiner.
Type Double

Fair Isaac Corporation Confidential and Proprietary Information 429

Control Parameters

Default value 0 — use the value specified by FEASTOL.
Note Zero and negative values are ignored, and the value of FEASTOL is used.
Note Use very small values like 1e-100 to state the refinement should continue as long as animprovement is made. Use very large values like 1e+100 to disable only this aspect of therefiner.
Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).
See also REFINEOPS, LPREFINEITERLIMIT, OPTIMALITYTOLTARGET.

FORCEOUTPUT

Description Certain names in the problem object may be incompatible with different file formats (such asnames containing spaces for LP files). If the optimizer might be unable to read back aproblem because of non-standard names, it will first attempt to write it out using an extendednaming convention. If the names would not be possible to extend so that they would bereproducible and recognizable, it will give an error message and won’t create the file. If theoptimizer might be unable to read back a problem because of non-standard names, it will givean error message and won’t create the file. This option may be used to force output anyway.
Type Integer
Values 0 Check format compatibility, and in case of failure try to extend names so that theyare reproducible and recognizable.

1 Force output using problem names as is.
2 Always use ’x(’ original name ’)’ in LP files to create a representation that can be readby Xpress. Default for problem having spaces in names
3 Substitute spaces by the ’_’ character in LP files

Default value 0

Affects routines XPRSwriteprob (WRITEPROB).

FORCEPARALLELDUAL

Description Dual simplex: specifies whether the dual simplex solver should always use the parallelsimplex algorithm. By default, when using a single thread, the dual simplex solver will executea dedicated sequential simplex algorithm.
Type Integer
Values 0 Disabled.

1 Enabled. Force the dual simplex solver to use the parallel algorithm.
Default value 0

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).
See also THREADS, DUALTHREADS.

Fair Isaac Corporation Confidential and Proprietary Information 430

Control Parameters

GENCONSABSTRANSFORMATION

Description This control specifies the reformulation method for absolute value general constraints at thebeginning of the search.
Type Integer
Values -1 Automatic.

0 Use a formulation based on indicator constraints.
1 Use a formulation based on SOS1-contraints.

Default value -1

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

GENCONSDUALREDUCTIONS

Description This parameter specifies whether dual reductions should be applied to reduce the number ofcolumns and rows added when transforming general constraints to MIP structs.
Type Integer
Values 0 Disabled. No dual reductions, add columns and rows.

1 Enabled. Only add neccessary columns and rows, drop those implied by theobjective sense.
Default value 1

Affects routines XPRSmipoptimize (MIPOPTIMIZE).
See also MIPDUALREDUCTIONS.

GLOBALFILEBIAS

Description This control has been deprecated and no longer has any effect. In older versions of Xpress, itcould be used to influence how much Xpress would write tree search data to the global file inpreference to using in-memory data compression.
Type Double
Default value 0.5

See also GLOBALFILEUSAGE, TREEMEMORYLIMIT, TREEMEMORYSAVINGTARGET.

GLOBALFILELOGINTERVAL

Description This control sets the interval between progress messages output while writing tree data tothe global file, in seconds. The solve is slowed greatly while data is being written to the globalfile and this output allows the user to see how much progress is being made.

Fair Isaac Corporation Confidential and Proprietary Information 431

Control Parameters

Type Integer
Default value 60

See also TREEDIAGNOSTICS.

GOMCUTS

Description Branch and Bound: The number of rounds of Gomory or lift-and-project cuts at the top node.
Type Integer
Default value -1 — determined automatically.
Affects routines XPRSmipoptimize (MIPOPTIMIZE).
See also TREEGOMCUTS, LNPBEST, LNPITERLIMIT.

HEURBEFORELP

Description Branch and Bound: Determines whether primal heuristics should be run before the initial LPrelaxation has been solved.
Type Integer
Values -1 Automatic - let the optimizer decide if heuristics should be run.

0 Disabled.
1 Enabled.

Default value -1

Note It is possible that a heuristic will find an optimal integer solution that will result in the LPrelaxation solution being cut off. If the problem is solved with the "l" flag to
XPRSmipoptimize (i.e., stop after solving the LP relaxation), then LPSTATUSmight bereturned as XPRS_LP_CUTOFF or XPRS_LP_CUTOFF_IN_DUAL. If dedicated heuristicthreads are enabled through the HEURTHREADS control, then the initial heuristics will be run inparallel with the LP solve, instead of before.

Affects routines XPRSmipoptimize (MIPOPTIMIZE).
See also HEURSTRATEGY, HEURTHREADS.

HEURDEPTH

Description Branch and Bound: Sets the maximum depth in the tree search at which heuristics will beused to find MIP solutions. It may be worth stopping the heuristic search for solutions after acertain depth in the tree search. A value of 0 signifies that heuristics will not be used. Thiscontrol no longer has any effect and will be removed from future releases.
Type Integer
Default value -1

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

Fair Isaac Corporation Confidential and Proprietary Information 432

Control Parameters

HEURDIVEITERLIMIT

Description Branch and Bound: Simplex iteration limit for reoptimizing during the diving heuristic.
Type Double
Values >=1 Fixed iteration limit.

0 No iteration limit.
<0 Automatic selection of the iteration limit based on the problem size. The absolutevalue is used as a multiplier on the automatic selection.

Default value -1

Affects routines XPRSmipoptimize (MIPOPTIMIZE).
See also HEURSTRATEGY.

HEURDIVERANDOMIZE

Description The level of randomization to apply in the diving heuristic. The diving heuristic uses priorityweights on rows and columns to determine the order in which to e.g. round fractionalcolumns, or the direction in which to round them. This control determines by how large arandom factor these weights should be changed.
Type Double
Values 0.0-1.0 Amount of randomization (0.0=none, 1.0=full)
Default value 0.0

Affects routines XPRSmipoptimize (MIPOPTIMIZE).
See also HEURDIVESTRATEGY, HEURDIVESPEEDUP.

HEURDIVESOFTROUNDING

Description Branch and Bound: Enables a more cautious strategy for the diving heuristic, where it tries topush binaries and integer variables to their bounds using the objective, instead of directlyfixing them. This can be useful when the default diving heuristics fail to find any feasiblesolutions.
Type Integer
Values -1 Automatic selection.

0 Do not use soft rounding.
1 Cautious use of the soft rounding strategy.
2 More aggressive use of the soft rounding strategy.

Default value -1

Affects routines XPRSmipoptimize (MIPOPTIMIZE).
See also HEURDIVESTRATEGY.

Fair Isaac Corporation Confidential and Proprietary Information 433

Control Parameters

HEURDIVESPEEDUP

Description Branch and Bound: Changes the emphasis of the diving heuristic from solution quality todiving speed.
Type Integer
Values -2 Automatic selection biased towards quality

-1 Automatic selection biased towards speed.
0-4 manual emphasis bias from emphasis on quality (0) to emphasis on speed (4).

Default value -1

Affects routines XPRSmipoptimize (MIPOPTIMIZE).
See also HEURDIVESTRATEGY.

HEURDIVESTRATEGY

Description Branch and Bound: Chooses the strategy for the diving heuristic.
Type Integer
Values -1 Automatic selection of strategy.

0 Disables the diving heuristic.
1-18 Available pre-set strategies for rounding infeasible global entities and reoptimizingduring the heuristic dive.

Default value -1

Affects routines XPRSmipoptimize (MIPOPTIMIZE).
See also HEURSTRATEGY.

HEURFORCESPECIALOBJ

Description Branch and Bound: This specifies whether local search heuristics without objective or wit anauxiliary objective should always be used, despite the automatic selection of the Optimiezr.By default, they will only be run on small problems and when no solution has been found yet.
Type Integer
Values 0 Disabled.

1 Enabled. Run special objective heuristics on large problems and even if incumbentexists.
Default value 0

Affects routines XPRSmipoptimize (MIPOPTIMIZE).
See also HEURSTRATEGY, HEURSEARCHROOTSELECT, HEURSEARCHTREESELECT.

Fair Isaac Corporation Confidential and Proprietary Information 434

Control Parameters

HEURFREQ

Description Branch and Bound: This specifies the frequency at which heuristics are used in the treesearch. Heuristics will only be used at a node if the depth of the node is a multiple of
HEURFREQ.

Type Integer
Default value -1

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

HEURMAXSOL

Description Branch and Bound: This specifies the maximum number of heuristic solutions that will befound in the tree search. This control no longer has any effect and will be removed fromfuture releases.
Type Integer
Default value -1

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

HEURNODES

Description Branch and Bound: This specifies the maximum number of nodes at which heuristics areused in the tree search. This control no longer has any effect and will be removed from futurereleases.
Type Integer
Default value -1

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

HEURSEARCHEFFORT

Description Adjusts the overall level of the local search heuristics.
Type Double
Default value 1.0

Note HEURSEARCHEFFORT is used as a multiplier on the default amount of work the local searchheuristics should do. A higher value means the local search heuristics will be run more oftenand that they are allowed to search larger neighborhoods.

Fair Isaac Corporation Confidential and Proprietary Information 435

Control Parameters

Affects routines XPRSmipoptimize (MIPOPTIMIZE).
See also HEURSTRATEGY, HEURSEARCHROOTSELECT, HEURSEARCHTREESELECT.

HEURSEARCHFREQ

Description Branch and Bound: This specifies how often the local search heuristic should be run in thetree.
Type Integer
Values -1 Automatic.

0 Disabled in the tree.
n>0 Number of nodes between each run.

Default value -1

Affects routines XPRSmipoptimize (MIPOPTIMIZE).
See also HEURSEARCHROOTCUTFREQ.

HEURSEARCHROOTCUTFREQ

Description How frequently to run the local search heuristic during root cutting. This is given as howmany cut rounds to perform between runs of the heuristic. Set to zero to avoid applying theheuristic during root cutting.
Branch and Bound: This specifies how often the local search heuristic should be run in thetree.

Type Integer
Values -1 Automatic.

0 Disabled heuristic during cuting.
n>0 Number of cutting rounds between each run.

Default value -1

Affects routines XPRSmipoptimize (MIPOPTIMIZE).
See also HEURSEARCHFREQ.

HEURSEARCHROOTSELECT

Description A bit vector control for selecting which local search heuristics to apply on the root node of aglobal solve. Use HEURSEARCHTREESELECT to control local search heuristics during the treesearch.
Type Integer

Fair Isaac Corporation Confidential and Proprietary Information 436

Control Parameters

Values Bit Meaning
0 Local search with a large neighborhood. Potentially slow but is good for findingsolutions that differs significantly from the incumbent.
1 Local search with a small neighborhood centered around a node LP solution.
2 Local search with a small neighborhood centered around an integer solution. Thisheuristic will often provide smaller, incremental improvements to an incumbentsolution.
3 Local search with a neighborhood set up through the combination of multiple integersolutions.
4 Unused
5 Local search without an objective function. Called seldom and only when no feasiblesolution is available.
6 Local search with an auxiliary objective function. Called seldom and only when nofeasible solution is available.

Default value 117

Note Some of the local search heuristics will benefit from having an existing incumbent solution,but it is not required. An initial solution can also be provided by the user through either
XPRSloadmipsol or XPRSreadbinsol.

Affects routines XPRSmipoptimize (MIPOPTIMIZE).
See also HEURSTRATEGY, HEURSEARCHTREESELECT, HEURSEARCHEFFORT.

HEURSEARCHTREESELECT

Description A bit vector control for selecting which local search heuristics to apply during the tree searchof a global solve. Use HEURSEARCHROOTSELECT to control local search heuristics on theroot node.
Type Integer
Values Bit Meaning

0 Local search with a large neighborhood. Potentially slow but is good for findingsolutions that differs significantly from the incumbent.
1 Local search with a small neighborhood centered around a node LP solution.
2 Local search with a small neighborhood centered around an integer solution. Thisheuristic will often provide smaller, incremental improvements to an incumbentsolution.
3 Local search with a neighborhood set up through the combination of multiple integersolutions.
4 Unused
5 Local search without an objective function. Called seldom and only when no feasiblesolution is available.
6 Local search with an auxiliary objective function. Called seldom and only when nofeasible solution is available.

Default value 17

Note Some of the local search heuristics will benefit from having an existing incumbent solution,but it is not required. An initial solution can also be provided by the user through either
XPRSloadmipsol or XPRSaddmipsol.

Fair Isaac Corporation Confidential and Proprietary Information 437

Control Parameters

Affects routines XPRSmipoptimize (MIPOPTIMIZE).
See also HEURSTRATEGY, HEURSEARCHROOTSELECT, HEURSEARCHEFFORT.

HEURSTRATEGY

Description Branch and Bound: This specifies the heuristic strategy. On some problems it is worth tryingmore comprehensive heuristic strategies by setting HEURSTRATEGY to 2 or 3.
Type Integer
Values -1 Automatic selection of heuristic strategy.

0 No heuristics.
1 Basic heuristic strategy.
2 Enhanced heuristic strategy.
3 Extensive heuristic strategy.

Default value -1

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

HEURTHREADS

Description Branch and Bound: The number of threads to dedicate to running heuristics on the root node.
Type Integer
Values -1 Automatically determined from the THREADS control.

0 Disabled. Heuristics will be run sequentially with the root LP solve and cutting.
>=1 Number of root threads to dedicate to parallel heuristics.

Default value 0

Note When heuristic threads are enable, the heuristics will be run in parallel with the initial LP solve,if possible, and in parallel with the root cutting.
Affects routines XPRSmipoptimize (MIPOPTIMIZE).
See also THREADS.

HISTORYCOSTS

Description Branch and Bound: How to update the pseudo cost for a global entity when a strong branch ora regular branch is applied.
Type Integer

Fair Isaac Corporation Confidential and Proprietary Information 438

Control Parameters

Values -1 Automatically determined.
0 No update.
1 Initialize using only regular branches from the root to the current node.
2 Same as 1, but initialize with strong branching results as well.
3 Initialize using any regular branching or strong branching information from all nodessolves before the current node.

Default value -1

Affects routines XPRSmipoptimize (MIPOPTIMIZE).
See also SBBEST, SBESTIMATE, SBSELECT

IFCHECKCONVEXITY

Description Determines if the convexity of the problem is checked before optimization. Applies toquadratic, mixed integer quadratic and quadratically constrained problems. Checkingconvexity takes some time, thus for problems that are known to be convex it might bereasonable to switch the checking off.
Type Integer
Values 0 Turn off convexity checking.

1 Turn on convexity checking.
Default value 1

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).
See also EIGENVALUETOL

INDLINBIGM

Description Indicator constraints can be internally converted to regular rows (i.e. linearized) using a BigMcoefficient whenever the BigM coefficient is smaller or equal to this value.
Type Double
Default value 1.0E+05

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

INDPRELINBIGM

Description During presolve, indicator constraints can be internally replaced with regular rows (i.e.linearized) using a BigM coefficient whenever the BigM coefficient is smaller or equal to thisvalue.
Type Double

Fair Isaac Corporation Confidential and Proprietary Information 439

Control Parameters

Default value 100.0

Note Replacing an indicator constraint with a BigM row has a side effect on tolerances. In theindicator constraint form, the constraint part is satisfied with FEASTOL tolerance; while afterchanging it to BigM form, the constraint also includes the binary indicator variable (with acoefficient up to INDPRELINBIGM and an integrality tolerance of MIPTOL), therefore theconstraint part of the indicator contraint is satisfied with toleranceFEASTOL+MIPTOL*INDPRELINBIGM.
Affects routines XPRSmipoptimize (MIPOPTIMIZE).

INVERTFREQ

Description Simplex: The frequency with which the basis will be inverted. The basis is maintained in afactorized form and on most simplex iterations it is incrementally updated to reflect the stepjust taken. This is considerably faster than computing the full inverted matrix at eachiteration, although after a number of iterations the basis becomes less well-conditioned and itbecomes necessary to compute the full inverted matrix. The value of INVERTFREQ specifiesthe maximum number of iterations between full inversions.
Type Integer
Default value -1 — the frequency is determined automatically.
Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

INVERTMIN

Description Simplex: The minimum number of iterations between full inversions of the basis matrix. Seethe description of INVERTFREQ for details.
Type Integer
Default value 3

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

KEEPBASIS

Description Simplex: This determines which basis to use for the next iteration. The choice is betweenusing that determined by the crash procedure at the first iteration, or using the basis from thelast iteration.
Type Integer
Values 0 Problem optimization starts from the first iteration, i.e. the previous basis is ignored.

1 The previously loaded basis (last in memory) should be used.
2 Use the previous basis only if it is valid for the current problem (the number of basicvariables must match the number of rows).

Fair Isaac Corporation Confidential and Proprietary Information 440

Control Parameters

Default value 1

Note This gets reset to the default value after optimization has started.
Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

KEEPNROWS

Description Status for nonbinding rows.
Type Integer
Values -1 Delete N type rows from the matrix.

0 Delete elements from N type rows leaving empty N type rows in the matrix.
1 Keep N type rows.

Default value -1

Affects routines XPRSreadprob (READPROB), XPRSloadglobal, XPRSloadlp, XPRSloadqglobal,
XPRSloadqp.

L1CACHE

Description Newton barrier: L1 cache size in kB (kilo bytes) of the CPU. On Intel (or compatible) platformsa value of -1 may be used to determine the cache size automatically.
Type Integer
Default value Hardware/platform dependent.
Note Specifying the correct L1 cache size can give a significant performance advantage with theNewton barrier algorithm.

If the size is unknown, it is better to specify a smaller size.
If the size cannot be determined automatically on Intel (or compatible) platforms, a defaultsize of 8 kB is assumed.

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

LINELENGTH

Description This control is deprecated.
Type Integer

Fair Isaac Corporation Confidential and Proprietary Information 441

Control Parameters

LNPBEST

Description Number of infeasible global entities to create lift-and-project cuts for during each round ofGomory cuts at the top node (see GOMCUTS).
Type Integer
Default value 50

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

LNPITERLIMIT

Description Number of iterations to perform in improving each lift-and-project cut.
Type Integer
Default value -1 — determined automatically.
Note By setting the number to zero a Gomory cut will be created instead.
Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

LPFLAGS

Description A bit-vector control which defines the algorithm for solving an LP problem or the initial LPrelaxation of a MIP problem.
Type Integer
Values Bit Meaning

0 Use the dual simplex method.
1 Use the primal simplex method.
2 Use the barrier method.
3 Use the network simplex method.

Default value 0

Note Setting bit 0, 1, 2, 3 of this control will have the same effect of passing flags d, p, b, n to
XPRSmipoptimize or XPRSlpoptimize. When more than one bit are set, then the LPproblem will be solved with the concurrent solver. When this control is set and flags arepassed at the same time, the flags will overrule the value of the control.
This control can be tuned.

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

Fair Isaac Corporation Confidential and Proprietary Information 442

Control Parameters

LPITERLIMIT

Description Simplex: The maximum number of iterations that will be performed before the optimizationprocess terminates. For MIP problems, this is the maximum total number of iterations over allnodes explored by the Branch and Bound method.
Type Integer
Default value 2147483645

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

LPREFINEITERLIMIT

Description This specifies the simplex iteration limit the solution refiner can spend in attempting toincrease the accuracy of an LP solution.
Type Integer
Default value -1 — determined automatically.
Note The solution refiner iteratively attempts to increase the accuracy of the solution until eitherboth FEASTOLTARGET and OPTIMALITYTOLTARGET is satisfied, or accuracy cannot furtherbe increased, or the effort limit determined by LPREFINEITERLIMIT is exhausted.
Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).
See also REFINEOPS, FEASTOLTARGET, OPTIMALITYTOLTARGET.

LOCALCHOICE

Description Controls when to perform a local backtrack between the two child nodes during a dive in thebranch and bound tree.
Type Integer
Values 1 Never backtrack from the first child, unless it is dropped (infeasible or cut off).

2 Always solve both child nodes before deciding which child to continue with.
3 Automatically determined.

Default value 1

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

LPFOLDING

Description Simplex and barrier: whether to fold an LP problem before solving it.

Fair Isaac Corporation Confidential and Proprietary Information 443

Control Parameters

Type Integer
Values -1 Automatic.

0 Disable LP folding.
1 Enable LP folding. Attempt to fold all LP problems and MIP initial relaxations.

Default value -1

Affects routines XPRSlpoptimize (LPOPTIMIZE).

LPLOG

Description Simplex: The frequency at which the simplex log is printed.
Type Integer
Values n<0 Detailed output every -n iterations.

0 Log displayed at the end of the optimization only.
n>0 Summary output every n iterations.

Default value 100

Note This control only has an effect if LPLOGSTYLE is set to 0.
Affects routines XPRSlpoptimize (LPOPTIMIZE).
See also A.8.

LPLOGDELAY

Description Time interval between two LP log lines.
Type Double
Default value 1.0

Note This control only has an effect if LPLOGSTYLE is set to 1.
Affects routines XPRSlpoptimize (LPOPTIMIZE).

LPLOGSTYLE

Description Simplex: The style of the simplex log.
Type Integer
Values 0 Simplex log is printed based on simplex iteration count, at a fixed frequency asspecified by the LPLOG control.

1 Simplex Log is printed based on an estimation of elapsed time, determined by aninternal deterministic timer.
Default value 1

Fair Isaac Corporation Confidential and Proprietary Information 444

Control Parameters

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE), XPRSminim(MINIM), XPRSmaxim (MAXIM), XPRSglobal (GLOBAL).

LPTHREADS

Description This control is deprecated, and is provided for compatibility purposes. Please use
CONCURRENTTHREADS instead.

Type Integer
Default value -1

Note The value of this control is mirrored by the CONCURRENTTHREADS control.
See also CONCURRENTTHREADS

MARKOWITZTOL

Description The Markowitz tolerance used for the factorization of the basis matrix.
Type Double
Default value 0.01

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

MATRIXTOL

Description The zero tolerance on matrix elements. If the value of a matrix element is less than or equalto MATRIXTOL in absolute value, it is treated as zero.
Type Double
Default value 1.0E-09

Affects routines XPRSreadprob (READPROB), XPRSloadglobal, XPRSloadlp, XPRSloadqglobal,
XPRSloadqp, XPRSalter (ALTER), XPRSaddcols, XPRSaddcuts, XPRSaddrows,
XPRSchgcoef, XPRSchgmcoef, XPRSstorecuts.

MAXCHECKSONMAXCUTTIME

Description This control is intended for use where optimization runs that are terminated using the
MAXCUTTIME control are required to be reproduced exactly. This control is necessarybecause of the inherent difficulty in terminating algorithmic software in a consistent wayusing temporal criteria. The control value relates to the number of times the optimizer checksthe MAXCUTTIME criterion up to and including the check when the termination of cutting wasactivated. To use the control the user first must obtain the value of the

Fair Isaac Corporation Confidential and Proprietary Information 445

Control Parameters

CHECKSONMAXCUTTIME attribute after the run returns. This attribute value is the number oftimes the optimizer checked the MAXCUTTIME criterion during the last call to the optimizationroutine XPRSmipoptimize. Note that this attribute value will be negative if the optimizerterminated cutting on the MAXCUTTIME criterion. To ensure accurate reproduction of a runthe user should first ensure that MAXCUTTIME is set to its default value or to a large value sothe run does not terminate again on MAXCUTTIME and then simply set the control
MAXCHECKSONMAXCUTTIME to the absolute value of the CHECKSONMAXCUTTIME value.

Type Integer
Values 0 Not active.

n>0 The number of times the optimizer should check the MAXCUTTIME criterion beforetriggering a termination.
Default value 0

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

MAXCHECKSONMAXTIME

Description This control is intended for use where optimization runs that are terminated using the
MAXTIME control are required to be reproduced exactly. This control is necessary because ofthe inherent difficulty in terminating algorithmic software in a consistent way using temporalcriteria. The control value relates to the number of times the optimizer checks the MAXTIMEcriterion up to and including the check when the termination was activated. To use the controlthe user first must obtain the value of the CHECKSONMAXTIME attribute after the run returns.This attribute value is the number of times the optimizer checked the MAXTIME criterionduring the last call to the optimization routine XPRSmipoptimize. Note that this attributevalue will be negative if the optimizer terminated on the MAXTIME criterion. To ensure that areproduction of a run terminates in the same way the user should first ensure that MAXTIMEis set to its default value or to a large value so the run does not terminate again on MAXTIMEand then simply set the control MAXCHECKSONMAXTIME to the absolute value of the
CHECKSONMAXTIME value.

Type Integer
Values 0 Not active.

n>0 The number of times the optimizer should check the MAXTIME criterion beforetriggering a termination.
Default value 0

Affects routines XPRSmipoptimize (MIPOPTIMIZE)

MAXMCOEFFBUFFERELEMS

Description The maximum number of matrix coefficients to buffer before flushing into the internalrepresentation of the problem. Buffering coefficients can offer a significant performance gainwhen you are building a matrix using XPRSchgcoef or XPRSchgmcoef, but can lead to asignificant memory overhead for large matrices, which this control allows you to influence.
Type Integer

Fair Isaac Corporation Confidential and Proprietary Information 446

Control Parameters

Default value 2147483647

Affects routines XPRSchgcoef, XPRSchgmcoef.

MAXCUTTIME

Description The maximum amount of time allowed for generation of cutting planes and reoptimization.The limit is checked during generation and no further cuts are added once this limit has beenexceeded.
Type Integer
Values 0 No time limit.

n>0 Stop cut generation after n seconds.
Default value 0

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

MAXGLOBALFILESIZE

Description The maximum size, in megabytes, to which the global file may grow, or 0 for no limit. Whenthe global file reaches this limit, a second global file will be created. Useful if you are using afilesystem that puts a maximum limit on the size of a file.
Type Integer
Default value 0

See also GLOBALFILESIZE.

MAXIIS

Description This function controls the number of Irreducible Infeasible Sets to be found using the
XPRSiisall (IIS -a).

Type Integer
Values -1 Search for all IIS.

0 Do not search for IIS.
n>0 Search for the first n IIS.

Default value -1

Note The function XPRSiisnext is not affected.
Affects routines XPRSiisall (IIS-a).

Fair Isaac Corporation Confidential and Proprietary Information 447

Control Parameters

MAXIMPLIEDBOUND

Description Presolve: When tighter bounds are calculated during MIP preprocessing, only bounds whoseabsolute value are smaller than MAXIMPLIEDBOUND will be applied to the problem.
Type Double
Default value 1.0E+08

Note For numerically challenging MIP problems, it can sometimes help make the solve more stableby reducing the value of MAXIMPLIEDBOUND to something smaller - e.g. 1.0E+06. It is notrecommended to increase this parameter beyond the default of 1.0E+08.
Affects routines XPRSmipoptimize (MIPOPTIMIZE).

MAXLOCALBACKTRACK

Description Branch-and-Bound: How far back up the current dive path the optimizer is allowed to look fora local backtrack candidate node.
Type Integer
Default value -1

Note If this control is set to k, then the candidate set of nodes for a local backtrack will consist ofall active nodes in the subtree rooted at height k above the current node. For example, asetting of 1 will result in only sibling nodes of the current node being considered.
Affects routines XPRSmipoptimize (MIPOPTIMIZE).
See also LOCALCHOICE.

MAXMEMORYHARD

Description This control sets the maximum amount of memory in megabytes the optimizer shouldallocate. If this limit is exceeded, the solve will terminate. This control is designed to makethe optimizer stop in a controlled manner, so that the problem object is valid once terminationoccurs. The solve state will be set to incomplete. This is different to an out of memorycondition in which case the optimizer returns an error. The optimizer may still allocatememory once the limit is exceeded to be able to finsish the operations and stop in a controlledmanner. When RESOURCESTRATEGY is enabled, the control also has the same effect as
MAXMEMORYSOFT and will cause the optimizer to try preserving memory when possible.

Type Integer
Default value 0 (no limit)

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

Fair Isaac Corporation Confidential and Proprietary Information 448

Control Parameters

MAXMEMORYSOFT

Description When RESOURCESTRATEGY is enabled, this control sets the maximum amount of memory inmegabytes the optimizer targets to allocate. This may change the solving path, but will notcause the solve to terminate early. To set a hard version of the same, please set
MAXMEMORYHARD.

Type Integer
Default value 0 (no limit)

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

MAXMIPTASKS

Description Branch-and-Bound: The maximum number of tasks to run in parallel during a MIP solve.
Type Integer
Values -1 Task limit determined automatically from MIPTHREADS.

>0 Fixed task limit.
Default value -1

Note The MIP solver will create smaller tasks from individual active nodes or based on local searchheuristics. These are tasks that will be executed in parallel by the number of threads set by
MIPTHREADS.

Note If MAXMIPTASKS is set to a fixed, positive value, the branch-and-bound tree nodes will alwaysbe solved in the same deterministic way, independent of the actual number of executingthreads implied by MIPTHREADS.
How a MIP is solved will still depend on the number of threads used for solving thecontinuous relaxation and therefore on the settings for the controls BARTHREADS,
DUALTHREADS and CONCURRENTTHREADS).
To obtain a MIP solve that is completely independent of the number of threads, it is sufficientto set MAXMIPTASKS, FORCEPARALLELDUAL and BARTHREADS. The concurrent LP solvershould be avoided in this case.

Note The number of MIP tasks that can be defined for a 32-bit system is limited to 32 forperformance reasons.
Affects routines XPRSmipoptimize (MIPOPTIMIZE).
See also MIPTHREADS, THREADS, DUALTHREADS, BARTHREADS, CONCURRENTTHREADS,

FORCEPARALLELDUAL.

MAXMIPSOL

Description Branch and Bound: This specifies a limit on the number of integer solutions to be found bythe Optimizer. It is possible that during optimization the Optimizer will find the same objective

Fair Isaac Corporation Confidential and Proprietary Information 449

Control Parameters

solution from different nodes. However, MAXMIPSOL refers to the total number of integersolutions found, and not necessarily the number of distinct solutions.
Type Integer
Default value 0

Note Setting MAXMIPSOL=1 can alter the solution path as this will put the emphasis on finding anyfeasible solution by triggering additional heuristics.
Affects routines XPRSmipoptimize (MIPOPTIMIZE).

MAXNODE

Description Branch and Bound: The maximum number of nodes that will be explored.
Type Integer
Default value 2147483647

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

MAXPAGELINES

Description Number of lines between page breaks in printable output.
Type Integer
Default value 23

Affects routines XPRSwriteprtsol (WRITEPRTSOL), XPRSwriteprtrange (WRITEPRTRANGE).

MAXSCALEFACTOR

Description This determines the maximum scaling factor that can be applied during scaling. Themaximum is provided as an exponent of a power of 2.
Type Integer
Values 0-64 The maximum is provided an exponent of a power of 2.
Default value 64

Affects routines XPRSloadglobal, XPRSloadlp, XPRSloadqglobal, XPRSloadqp, XPRSreadprob(READPROB), XPRSscale (SCALE).
See also SCALING.

Fair Isaac Corporation Confidential and Proprietary Information 450

Control Parameters

MAXTIME

Description The maximum time in seconds that the Optimizer will run before it terminates, including theproblem setup time and solution time. For MIP problems, this is the total time taken to solveall the nodes.
Type Integer
Values 0 No time limit.

n>0 If an integer solution has been found, stop MIP search after n seconds, otherwisecontinue until an integer solution is finally found.
n<0 Stop in LP or MIP search after n seconds.

Default value 0

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

MIPABSCUTOFF

Description Branch and Bound: If the user knows that they are interested only in values of the objectivefunction which are better than some value, this can be assigned to MIPABSCUTOFF. Thisallows the Optimizer to ignore solving any nodes which may yield worse objective values,saving solution time. When a MIP solution is found a new cut off value is calculated and thevalue can be obtained from the CURRMIPCUTOFF attribute. The value of CURRMIPCUTOFF iscalculated using the MIPRELCUTOFF and MIPADDCUTOFF controls.
Type Double
Default value 1.0E+40 (for minimization problems); -1.0E+40 (for maximization problems).
Note MIPABSCUTOFF can also be used to stop the dual algorithm.
Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).
See also MIPRELCUTOFF, MIPADDCUTOFF.

MIPABSGAPNOTIFY

Description Branch and bound: if the gapnotify callback has been set using XPRSaddcbgapnotify,then this callback will be triggered during the global search when the absolute gap reaches orpasses the value you set of the MIPRELGAPNOTIFY control.
Type Double
Default value -1.0

Affects routines XPRSaddcbgapnotify, XPRSmipoptimize (MIPOPTIMIZE).
See also MIPRELGAPNOTIFY, MIPABSGAPNOTIFYOBJ, MIPABSGAPNOTIFYBOUND

Fair Isaac Corporation Confidential and Proprietary Information 451

Control Parameters

MIPABSGAPNOTIFYBOUND

Description Branch and bound: if the gapnotify callback has been set using XPRSaddcbgapnotify,then this callback will be triggered during the global search when the best bound reaches orpasses the value you set of the MIPRELGAPNOTIFYBOUND control.
Type Double
Default value 1.0E+40 (for minimization problems); -1.0E+40 (for maximization problems)
Affects routines XPRSaddcbgapnotify, XPRSmipoptimize (MIPOPTIMIZE).
See also MIPRELGAPNOTIFY, MIPABSGAPNOTIFYOBJ, MIPABSGAPNOTIFY

MIPABSGAPNOTIFYOBJ

Description Branch and bound: if the gapnotify callback has been set using XPRSaddcbgapnotify,then this callback will be triggered during the global search when the best solution valuereaches or passes the value you set of the MIPRELGAPNOTIFYOBJ control.
Type Double
Default value -1.0E+40 (for minimization problems); 1.0E+40 (for maximization problems)
Affects routines XPRSaddcbgapnotify, XPRSmipoptimize (MIPOPTIMIZE).
See also MIPRELGAPNOTIFY, MIPABSGAPNOTIFY, MIPABSGAPNOTIFYBOUND

MIPABSSTOP

Description Branch and Bound: The absolute tolerance determining whether the global search willcontinue or not. It will terminate if|MIPOBJVAL - BESTBOUND| ≤ MIPABSSTOPwhere MIPOBJVAL is the value of the best solution’s objective function, and BESTBOUND isthe current best solution bound. For example, to stop the global search when a MIP solutionhas been found and the Optimizer can guarantee it is within 100 of the optimal solution, set
MIPABSSTOP to 100.

Type Double
Default value 0.0

Affects routines XPRSmipoptimize (MIPOPTIMIZE).
See also MIPRELSTOP, MIPADDCUTOFF.

Fair Isaac Corporation Confidential and Proprietary Information 452

Control Parameters

MIPADDCUTOFF

Description Branch and Bound: The amount to add to the objective function of the best integer solutionfound to give the new CURRMIPCUTOFF. Once an integer solution has been found whoseobjective function is equal to or better than CURRMIPCUTOFF, improvements on this valuemay not be interesting unless they are better by at least a certain amount. If MIPADDCUTOFFis nonzero, it will be added to CURRMIPCUTOFF each time an integer solution is found whichis better than this new value. This cuts off sections of the tree whose solutions would notrepresent substantial improvements in the objective function, saving processor time. Thecontrol MIPABSSTOP provides a similar function but works in a different way.
Type Double
Default value -1.0E-05

Affects routines XPRSmipoptimize (MIPOPTIMIZE).
See also MIPRELCUTOFF, MIPABSSTOP, MIPABSCUTOFF.

MIPCOMPONENTS

Description Determines whether disconnected components in a MIP should be solved as separate MIPs.There can be significant performence benefits from solving disconnected componentsindividual instead of being part of the main branch-and-bound search.
Type Integer
Values -1 Automatic - let the solver decide.

0 Disable solving disconnected components separately.
1 Solve disconnected components separately.

Default value -1

Note If there are no constraints linking two variables, either directly or indirectly through othervariables, they are said to belong to two separate disconnected components. When aproblem contains disconnected components of signficant size, it can be advantageous tosolve each component as a separate MIP. When significant disconnected components aredetected in the problem, the solver will switch to a different solve mode where eachcomponent is solved separately. This switch will happen after the root node processing hascompleted and when the solve is about to enter the branch-and-bound search.
Note Solving disconnected components separately is not compatible with many callbacks that canbe used for modifying the branch-and-bound search. Setting any of the following callbackswill automatically disable the separate solving of disconnected components:

XPRSaddcboptnode, XPRSaddcbprenode, XPRSaddcbcutmgr, XPRSaddcbestimate,
XPRSaddcbsepnode, XPRSaddcbchgbranch, XPRSaddcbchgbranchobject

Note Solving disconnected components separately is not compatible with concurrent MIP solves.If concurrent MIP solves has been turned off, disconnected components will be solved aspart of the standard branch-and-bound search in each concurrent solve.
Note Disabling MIP dual reductions through MIPDUALREDUCTIONS will also disable the separatesolve of disconnected components.

Fair Isaac Corporation Confidential and Proprietary Information 453

Control Parameters

Affects routines XPRSmipoptimize (MIPOPTIMIZE).
See also PRECOMPONENTS, MIPCONCURRENTSOLVES, XPRSaddcboptnode, XPRSaddcbprenode,

XPRSaddcbcutmgr, XPRSaddcbestimate, XPRSaddcbsepnode, XPRSaddcbchgbranch,
XPRSaddcbchgbranchobject

MIPCONCURRENTNODES

Description Sets the node limit for when a winning solve is selected when concurrent MIP solves areenabled. When multiple MIP solves are started, they each run up to the
MIPCONCURRENTNODES node limit and only one winning solve is selected for contuinuing thesearch with.

Type Integer
Values -1 Automatic - let the solver decide on a node limit.

>0 Number of nodes each concurrent solve should complete before a winner isselected.
Default value -1

Affects routines XPRSmipoptimize (MIPOPTIMIZE).
See also MIPCONCURRENTSOLVES

MIPCONCURRENTSOLVES

Description Selects the number of concurrent solves to start for a MIP. Each solve will use a uniquerandom seed for its random number generator, but will otherwise apply the same usercontrols. The first concurrent solve to complete will have solved the MIP and all theconcurrent solves will be terminated at this point. Using concurrent solves can beadvantageous when a MIP displays a high level of performance variability.
Type Integer
Values -1 Enabled. The number of concurrent solves depends on MIPTHREADS.

0, 1 Disabled
n>1 Enabled. The number of concurrent solves to start is given by n.

Default value 0

Note A node limit is imposed on each concurrent solve, through MIPCONCURRENTNODES. When aconcurrent solve reaches this node limit, it will be suspended until all concurrent solves havereached the limit. At this point a winner will be declared, based on which solve made the mostprogress towards optimality and only the winning solve will continue, using all threadingresources. If a concurrent solve completes its MIP search before reaching the node limit, allsolves will be stopped.
Note Concurrent solves are not compatible with many callbacks that can be used for modifying thebranch-and-bound search. Setting any of the following callbacks will automatically disableconcurrent solves: XPRSaddcboptnode, XPRSaddcbprenode, XPRSaddcbcutmgr,

XPRSaddcbestimate, XPRSaddcbsepnode, XPRSaddcbchgbranch,
XPRSaddcbchgbranchobject

Fair Isaac Corporation Confidential and Proprietary Information 454

Control Parameters

Affects routines XPRSmipoptimize (MIPOPTIMIZE).
See also MIPCONCURRENTNODES, XPRSaddcboptnode, XPRSaddcbprenode, XPRSaddcbcutmgr,

XPRSaddcbestimate, XPRSaddcbsepnode, XPRSaddcbchgbranch,
XPRSaddcbchgbranchobject

MIPDUALREDUCTIONS

Description Branch and Bound: Limits operations that can reduce the MIP solution space.
Type Integer
Values 2 Allow dual reductions on continuous variables only.

1 Allow all dual reductions.
0 Prevent all dual reductions.

Default value 1

Note The MIPDUALREDUCTIONS control, when set to a value different from 1 will adjust the valuesof other controls in order to prevent MIP solver operations that can result in the removal ofdominated solutions. For example, dual reductions during preprocessing attempts to removedominated solutions based on objective arguments, assuming that all constraints are knownto the Optimizer. If a problem is detected to have symmetries, the solver might also removesome symmetrical solutions from the search space. In both cases, the set of feasible MIPsolutions might be reduced. With default settings, it is only guaranteed that at least oneoptimal solution remains.
Note When attempting to collect the n-best solutions, it is recommended to set

MIPDUALREDUCTIONS=2. This will ensure that the only solutions missed by the enumerationare those that only differ from an existing solution in the values of the continuous variables.
Note Advanced users that maintain external constraints, which are applied dynamically to theproblem using callbacks during a branch-and-bound solve, it is recommended to set

MIPDUALREDUCTIONS=0. This ensures that any solution to the original problem that satisfiesall of the user’s external constraints maps to a feasible solution in the presolved space.
Affects routines XPRSmipoptimize (MIPOPTIMIZE).
See also MIPPRESOLVE, PRECOMPONENTS, PRESOLVEOPS, SYMMETRY.

MIPFRACREDUCE

Description Branch and Bound: Specifies how often the optimizer should run a heuristic to reduce thenumber of fractional integer variables in the node LP solutions.
Type Integer
Values -1 Automatic.

0 Disabled.
1 Run before and after cutting on the root node.
2 Run also during root cutting.
3 Run also during the tree search.

Fair Isaac Corporation Confidential and Proprietary Information 455

Control Parameters

Default value -1

Note This heuristic is only applicable to problems that are dual degenerate. These are problemsthat contain multiple solutions with identical objective function value. The more dualdegenerate a problem is, the more likely it will be for this heuristic to have an improving effect.
Affects routines XPRSmipoptimize (MIPOPTIMIZE).

MIPKAPPAFREQ

Description Branch and Bound: Specifies how frequently the basis condition number (also known askappa) should be calculated during the branch-and-bound search.
Type Integer
Values 0 Do not calculate condition numbers.

1 Calculate conditions numbers on every node, including after each round of rootcutting.
n>1 Calculate a condition number once per node of every n’th level of thebranch-and-bound tree.

Default value 0

Note The condition number is calculated as the norm of the basis matrix multiplied by the norm ofits inverse. This uses the Froebenius norm.
Note A summary will be printed at the end of the solve, summarizing the collected conditionnumbers collected:

Statistic Meaning
Nodes kappa stable No. of stable sampled nodes (kappa < 107)
Nodes kappa suspicius No. of suspicious sampled nodes (107 ≤ kappa < 1010)
Nodes kappa unstable No. of unstable sampled nodes (1010 ≤ kappa < 1013)
Nodes kappa ill-posed No. of ill-posed sampled nodes (1013 ≤ kappa)
Largest kappa seen The largest condition number calculated through all sampled nodes.
Kappa attention level A measure of how ill-posed the problem is (between 0 and 1).

Affects routines ATTENTIONLEVEL, MAXKAPPA, XPRSmipoptimize (MIPOPTIMIZE).
See also .

MIPLOG

Description Global print control.
Type Integer

Fair Isaac Corporation Confidential and Proprietary Information 456

Control Parameters

Values -n Print out summary log at each nth node.
0 No printout in global.
1 Only print out summary statement at the end.
2 Print out detailed log at all solutions found.
3 Print out detailed log at each node.

Default value -100

Affects routines XPRSmipoptimize (MIPOPTIMIZE).
See also A.10.

MIPPRESOLVE

Description Branch and Bound: Type of integer processing to be performed. If set to 0, no processing willbe performed.
Type Integer
Values Bit Meaning

0 Reduced cost fixing will be performed at each node. This can simplify the nodebefore it is solved, by deducing that certain variables’ values can be fixed based onadditional bounds imposed on other variables at this node.
1 Primal reductions will be performed at each node. Uses constraints of the node totighten the range of variables, often resulting in fixing their values. This greatlysimplifies the problem and may even determine optimality or infeasibility of the nodebefore the simplex method commences.
2 [Unused] This bit is no longer used to control probing. Refer to the integer control

PREPROBING for setting probing level during presolve.
3 If node preprocessing is allowed to change bounds on continuous columns.
4 Dual reductions will be performed at each node.
5 Allow global (non-bound) tightening of the problem during the tree search.
6 The objective function will be used to find reductions at each node.
7 Allow the branch-and-bound tree search to be restarted if it appears to beadvantageous.
8 Allow that symmetry is used to presolve the node problem.

Default value -257
Affects routines XPRSmipoptimize (MIPOPTIMIZE).
See also 5.3, PRESOLVE, PRESOLVEOPS, PREPROBING.

MIPRAMPUP

Description Controls the strategy used by the parallel MIP solver during the ramp-up phase of abranch-and-bound tree search.
Type Integer

Fair Isaac Corporation Confidential and Proprietary Information 457

Control Parameters

Values -1 Automatically determined.
0 No special treatment during the ramp-up phase. Always run with the maximalnumber of tasks.
1 Limit the number of tasks until the initial dives have completed.

Default value -1
Note The branch-and-bound tree search starts from the single root node, and only throughbranching on this root node and the resulting child nodes, are enough active nodes created toproduce sufficient tasks to keep all MIP workers busy. This is referred to as the ramp-upphase of a parallel MIP.

In a typical MIP solve, the solutions found during the initial dives will typically provide asignificant improvement over the root heuristic solutions. It can therefore be advantageous tolet these initial dives run as fast as possible, by limiting resource contention. This can beaccomplished by restricting the number of parallel tasks and thereby reducing the memorybus contention. The MIPRAMPUP control can be used to turn this initial task restriction of aparallel MIP solve on or off.
Affects routines XPRSmipoptimize (MIPOPTIMIZE).
See also MIPTHREADS, MAXMIPTASKS.

MIPRESTART

Description Branch and Bound: controls strategy for in-tree restarts.
Type Integer
Values -1 Determined automatically.

0 Disable in-tree restarts.
1 Allow in-tree restarts.

Default value -1

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

MIPRESTARTGAPTHRESHOLD

Description Branch and Bound: Initial gap threshold to delay in-tree restart. The restart is delayed initiallyif the gap, given as a fraction between 0 and 1, is below this threshold. The optimizer adjuststhe threshold every time a restart is delayed. Note that there are other criteria that can delayor prevent a restart.
Type Double
Default value 0.02

Affects routines XPRSmipoptimize (MIPOPTIMIZE).
See also MIPRESTART

Fair Isaac Corporation Confidential and Proprietary Information 458

Control Parameters

MIQCPALG

Description This control determines which algorithm is to be used to solve mixed integer quadraticconstrained and mixed integer second order cone problems.
Type Integer
Values -1 Determined automatically.

0 Use the barrier algorithm in the branch and bound algorithm.
1 Use outer approximations in the branch and bound algorithm.

Default value -1

Affects routines XPRSmipoptimize (MIPOPTIMIZE), XPRSminim (MINIM), XPRSmaxim (MAXIM),
XPRSglobal (GLOBAL).

MIPREFINEITERLIMIT

Description This defines an effort limit expressed as simplex iterations for the MIP solution refiner. Thelimit is per reoptimizations in the MIP refiner.
Type Integer
Default value -1 — determined automatically.
Affects routines XPRSrefinemipsol (REFINEMIPSOL).

MIPRELCUTOFF

Description Branch and Bound: Percentage of the LP solution value to be added to the value of theobjective function when an integer solution is found, to give the new value of
CURRMIPCUTOFF. The effect is to cut off the search in parts of the tree whose best possibleobjective function would not be substantially better than the current solution. The control
MIPRELSTOP provides a similar functionality but works in a different way.

Type Double
Default value 1.0E-04

Affects routines XPRSmipoptimize (MIPOPTIMIZE).
See also MIPABSCUTOFF, MIPADDCUTOFF, MIPRELSTOP.

MIPRELGAPNOTIFY

Description Branch and bound: if the gapnotify callback has been set using XPRSaddcbgapnotify,then this callback will be triggered during the global search when the relative gap reaches orpasses the value you set of the MIPRELGAPNOTIFY control.

Fair Isaac Corporation Confidential and Proprietary Information 459

Control Parameters

Type Double
Default value -1.0

Affects routines XPRSaddcbgapnotify, XPRSmipoptimize (MIPOPTIMIZE).
See also MIPABSGAPNOTIFY, MIPABSGAPNOTIFYOBJ, MIPABSGAPNOTIFYBOUND

MIPRELSTOP

Description Branch and Bound: This determines when the global search will terminate. Global search willstop if:|MIPOBJVAL - BESTBOUND| ≤ MIPRELSTOP x max(|BESTBOUND|,|MIPOBJVAL|)where MIPOBJVAL is the value of the best solution’s objective function and BESTBOUND is thecurrent best solution bound. For example, to stop the global search when a MIP solution hasbeen found and the Optimizer can guarantee it is within 5% of the optimal solution, set
MIPRELSTOP to 0.05.

Type Double
Default value 0.0001

Note This control is a stopping criteria only and different values of the control will not affect thesolution path before termination. Unlike other stopping criteria, like time and node count,termination on MIPRELSTOP will cause the final solution to be declared optimal and theproblem to be returned to its original state.
Note Tolerances, such as MIPRELCUTOFF and MIPABSCUTOFF, determine how much the objectivevalue of a new MIP solution has to differ from the incumbent for it to be accepted. Thesecontrols therefore also influence the final gap at the end of a MIP solve.
Affects routines XPRSmipoptimize (MIPOPTIMIZE).
See also MIPABSSTOP, MIPRELCUTOFF.

MIPTERMINATIONMETHOD

Description Branch and Bound: How a MIP solve should be stopped on early termination when there arestill active tasks in the system. This can happen when, for example, a time or node limit isreached.
Type Integer
Values 0 Terminate tasks at the earliest opportunity. This can result in some unfinished nodesolves being discarded, although never integer solutions.

1 Allow tasks to complete their current work but prevent new tasks from being started.
Default value 0

Note With MIPTERMINATIONMETHOD=0, termination will be quick but the returned state of the MIPsolve will not include any work done by interrupted tasks. In particular, it is possible thatsome user callbacks (not intsol or preintsol) will have been fired for nodes that are discardedat termination. A user program that relies on the firing of callbacks being completelydeterministic should therefore set MIPTERMINATIONMETHOD=1, which will produce a slowertermination, but guaranteed deterministic firing of all user callbacks.

Fair Isaac Corporation Confidential and Proprietary Information 460

Control Parameters

Note Irrespective of the choice of MIPTERMINATIONMETHOD, a MIP solve will always be returnedin a deterministic state when DETERMINISTIC=1.
Affects routines XPRSmipoptimize (MIPOPTIMIZE).
See also DETERMINISTIC, MAXMIPTASKS, MIPTHREADS, THREADS.

MIPTHREADS

Description If set to a positive integer it determines the number of threads implemented to run the parallelMIP code. If MIPTHREADS is set to the default value (-1), the THREADS control will determinethe number of threads used.
Type Integer
Default value -1 (determined by the THREADS control)
Affects routines XPRSmipoptimize (MIPOPTIMIZE).
See also DETERMINISTIC, MAXMIPTASKS, HEURTHREADS, THREADS.

MIPTOL

Description Branch and Bound: This is the tolerance within which a decision variable’s value is consideredto be integral.
Type Double
Default value 5.0E-06

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

MIPTOLTARGET

Description Target MIPTOL value used by the automatic MIP solution refiner as defined by REFINEOPS.Negative and zero values are ignored.
Type Double
Default value 0.0

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

MPS18COMPATIBLE

Description Provides compatibility of MPS file output for older MPS readers.
Type Integer

Fair Isaac Corporation Confidential and Proprietary Information 461

Control Parameters

Values Bit 0 Do not write objective sense (OBJSENSE section).
Bit 1 Fixed binaries are written as fixed only (unless used as a base variable for anindicator constraint).

Default value 0

Affects routines XPRSwriteprob (WRITEPROB)

MPSBOUNDNAME

Description The bound name sought in the MPS file. As with all string controls, this is of length 64characters plus a null terminator, \0.
Type String
Default value 64 blanks
Affects routines XPRSreadprob (READPROB).

MPSECHO

Description Determines whether comments in MPS matrix files are to be printed out during matrix input.
Type Integer
Values 0 MPS comments are not to be echoed.

1 MPS comments are to be echoed.
Default value 0

Affects routines XPRSreadprob (READPROB).

MPSFORMAT

Description Specifies the format of MPS files.
Type Integer
Values -1 To determine the file type automatically.

0 For fixed format.
1 If MPS files are assumed to be in free format by input.

Default value 1

Note Setting MPSFORMAT to 0 or -1 disables XSLPreadprob in case Xpress NonLinear is used.
Affects routines XPRSalter (ALTER), XPRSreadbasis (READBASIS), XPRSreadprob (READPROB).

Fair Isaac Corporation Confidential and Proprietary Information 462

Control Parameters

MPSOBJNAME

Description The objective function name sought in the MPS file. As with all string controls, this is oflength 64 characters plus a null terminator, \0.
Type String
Default value 64 blanks
Affects routines XPRSreadprob (READPROB).

MPSRANGENAME

Description The range name sought in the MPS file. As with all string controls, this is of length 64characters plus a null terminator, \0.
Type String
Default value 64 blanks
Affects routines XPRSreadprob (READPROB).

MPSRHSNAME

Description The right hand side name sought in the MPS file. As with all string controls, this is of length64 characters plus a null terminator, \0.
Type String
Default value 64 blanks
Affects routines XPRSreadprob (READPROB).

MUTEXCALLBACKS

Description Branch and Bound: This determines whether the callback routines are mutexed from withinthe optimizer.
Type Integer
Values 0 Callbacks are not mutexed.

1 Callbacks are mutexed.
Default value 1
Note If the users’ callbacks take a significant amount of time it may be preferable not to mutex thecallbacks. In this case the user must ensure that their callbacks are threadsafe.
Affects routines XPRSaddcboptnode, XPRSaddcbinfnode, XPRSaddcbintsol, XPRSaddcbnodecutoff,

XPRSaddcbprenode.

Fair Isaac Corporation Confidential and Proprietary Information 463

Control Parameters

NETCUTS

Description Determines the addition of multi-commodity network cuts to a problem. The parameter isdefined as a bit string, and values 1, 2, 4 can be summed up if the user wants more classes ofcuts to be added.
Type Integer
Values -1 Automatically determined.

0 Do not add these cuts.
1 Add cut-set inequalities.
2 Add node cut-set inequalities, i.e., cut-set inequalities that are based on a networkcut defined on a single network node.
4 Add lifted flow-cover inequalities.

Default value 0

Note If the user wants to add both cut-set inequalities and lifted flow-cover inequalities but notnode cut-set inequalities, the value of the control should be set to 1+4=5.
Affects routines XPRSmipoptimize (MIPOPTIMIZE).

NODEPROBINGEFFORT

Description Adjusts the overall level of node probing.
Type Double
Default value 1.0

Note NODEPROBINGEFFORT is used as a multiplier on the default amount of work node probingshould do. Setting the control to zero disables node probing.
Affects routines XPRSmipoptimize (MIPOPTIMIZE).

NODESELECTION

Description Branch and Bound: This determines which nodes will be considered for solution once thecurrent node has been solved.
Type Integer
Values 1 Local first: Choose between descendant and sibling nodes if available; choose fromall outstanding nodes otherwise.

2 Best first: Choose from all outstanding nodes.
3 Local depth first: Choose between descendant and sibling nodes if available; choosefrom the deepest nodes otherwise.
4 Best first, then local first: Best first is used for the first BREADTHFIRST nodes, afterwhich local first is used.
5 Pure depth first: Choose from the deepest outstanding nodes.

Fair Isaac Corporation Confidential and Proprietary Information 464

Control Parameters

Default value Dependent on the matrix characteristics.
Affects routines XPRSmipoptimize (MIPOPTIMIZE).

NUMERICALEMPHASIS

Description How much emphasis to place on numerical stability instead of solve speed.
Type Integer
Values -1 Automatic. The emphasis might be influenced by the setting of other controls.

0 Emphasize speed.
1 Mild emphasis on numerical stability.
2 Medium emphasis on numerical stability.
3 Strong emphasis on numerical stability.

Default value -1
Affects routines XPRSmipoptimize (MIPOPTIMIZE), XPRSlpoptimize (LPOPTIMIZE).

OBJSCALEFACTOR

Description Custom global objective scaling factor, expressed as a power of 2. When set, it overwrites theautomatic global objective scaling factor. A value of 0 means no objective scaling. Thiscontrol is applied for the full solve, and is independent of any extra scaling that may occurspecifically for the barrier or simplex solvers. As it is a power of 2, to scale by 16, set the valueof the control to 4.
Type Double
Default value 0

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

OPTIMALITYTOL

Description Simplex: This is the zero tolerance for reduced costs. On each iteration, the simplex methodsearches for a variable to enter the basis which has a negative reduced cost. The candidatesare only those variables which have reduced costs less than the negative value of
OPTIMALITYTOL.

Type Double
Default value 1.0E-06

Affects routines XPRSgetinfeas, XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

Fair Isaac Corporation Confidential and Proprietary Information 465

Control Parameters

OPTIMALITYTOLTARGET

Description This specifies the target optimality tolerance for the solution refiner.
Type Real
Default value 0 — use the value specified by OPTIMALITYTOL.
Note Zero and negative values are ignored, and the value of OPTIMALITYTOL is used.
Note Use very small values like 1e-100 to state the refinement should continue as long as animprovement is made. Use very large values like 1e+100 to disable only this aspect of therefiner.
Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).
See also REFINEOPS, LPREFINEITERLIMIT, FEASTOLTARGET.

OUTPUTCONTROLS

Description This control toggles the printing of all control settings at the beginning of the search. Thisincludes the printing of controls that have been explicitly assigned to their default value. Allunset controls are omitted as they keep their default value.
Type Integer
Values 0 Turn off printing of user-specified control settings.

1 Print controls.
Default value 1

Note Setting OUTPUTCONTROLS to 0 has no effect on the function XPRSdumpcontrols

OUTPUTLOG

Description This controls the level of output produced by the Optimizer during optimization. In theConsole Optimizer, OUTPUTLOG controls which messages are sent to the screen (stdout).When using the Optimizer library, no output is sent to the screen. If the user wishes output tobe displayed, they must define a callback function and print messages to the screenthemselves. In this case, OUTPUTLOG controls which messages are sent to the user outputcallback.
Type Integer
Values 0 Turn all output off.

1 Print all messages.
3 Print error and warning messages.
4 Print error messages only.

Default value 1

Affects routines XPRSaddcbmessage, XPRSsetlogfile.

Fair Isaac Corporation Confidential and Proprietary Information 466

Control Parameters

OUTPUTMASK

Description Mask to restrict the row and column names written to file. As with all string controls, this is oflength 64 characters plus a null terminator, \0.
Type String
Default value 64 ’?’s
Affects routines XPRSwriterange (WRITERANGE), XPRSwritesol (WRITESOL).

OUTPUTTOL

Description Zero tolerance on print values.
Type Double
Default value 1.0E-05

Affects routines XPRSwriteprtrange (WRITEPRTRANGE), XPRSwriteprtsol (WRITEPRTSOL),
XPRSwriterange (WRITERANGE), XPRSwritesol (WRITESOL).

PENALTY

Description Minimum absolute penalty variable coefficient. BIGM and PENALTY are set by the inputroutine (XPRSreadprob (READPROB)) but may be reset by the user prior to
XPRSlpoptimize (LPOPTIMIZE).

Type Double
Default value Dependent on the matrix characteristics.
Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

PERTURB

Description This control is deprecated and will be removed from future versions of the Optimizer. The useof PRIMALPERTURB and DUALPERTURB is advised instead. The control was used to give afactor by which the problem will be perturbed prior to optimization by either simplexalgorithm.
Type Double
Default value 0.0

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).
See also AUTOPERTURB, PERTURB, PRIMALPERTURB.

Fair Isaac Corporation Confidential and Proprietary Information 467

Control Parameters

PIVOTTOL

Description Simplex: The zero tolerance for matrix elements. On each iteration, the simplex method seeksa nonzero matrix element to pivot on. Any element with absolute value less than PIVOTTOL istreated as zero for this purpose.
Type Double
Default value 1.0E-09

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE), XPRSpivot.

PPFACTOR

Description The partial pricing candidate list sizing parameter.
Type Double
Default value 1.0

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

PREANALYTICCENTER

Description Determines if analytic centers should be computed and used for variable fixing and thegeneration of alternative reduced costs (-1: Auto 0: Off, 1: Fixing, 2: Redcost, 3: Both)
Type Integer
Values -1 Automatic.

0 Disable analytic center presolving.
1 Use analytic center for variable fixing only.
2 Use analytic center for reduced cost computation only.
3 Use analytic centers for both, variable fixing and reduced cost computation.

Default value -1

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

PREBASISRED

Description Determines if a lattice basis reduction algorithm should be attempted as part of presolve
Type Integer

Fair Isaac Corporation Confidential and Proprietary Information 468

Control Parameters

Values -1 Automatic.
0 Disable basis reduction.
1 Enable basis reduction.

Default value 0

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

PREBNDREDCONE

Description Determines if second order cone constraints should be used for inferring bound reductionson variables when solving a MIP.
Type Integer
Values -1 Automatic.

0 Disable bound reductions from second order cone constraints.
1 Enable bound reductions from second order cone constraints.

Default value -1

Affects routines XPRSmipoptimize (MIPOPTIMIZE).
See also PREBNDREDQUAD, MIQCPALG.

PREBNDREDQUAD

Description Determines if convex quadratic contraints should be used for inferring bound reductions onvariables when solving a MIP.
Type Integer
Values -1 Automatic.

0 Disable bound reductions from quadratic constraints.
1 Enable bound reductions from quadratic constraints.

Default value -1

Affects routines XPRSmipoptimize (MIPOPTIMIZE).
See also PREBNDREDCONE, MIQCPALG.

PRECOEFELIM

Description Presolve: Specifies whether the optimizer should attempt to recombine constraints in order toreduce the number of non zero coefficients when presolving a mixed integer problem.
Type Integer

Fair Isaac Corporation Confidential and Proprietary Information 469

Control Parameters

Values 0 Disabled.
1 Remove as many coefficients as possible.
2 Cautious eliminations. Will not perform a reduction if it might destroy problemstructure useful to e.g. heuristics or cutting.

Default value 2

Affects routines XPRSmipoptimize (MIPOPTIMIZE).
See also PRESOLVE, PRESOLVEOPS.

PRECOMPONENTS

Description Presolve: determines whether small independent components should be detected and solvedas individual subproblems during root node processing.
Type Integer
Values -1 Automatically determined.

0 Disable detection of independent components.
1 Enable detection of independent components.

Default value -1

Affects routines XPRSmipoptimize (MIPOPTIMIZE).
See also PRESOLVE, PRESOLVEOPS.

PRECOMPONENTSEFFORT

Description Presolve: adjusts the overall effort for the independent component presolver. This controlaffects working limits for the subproblem solving as well as thresholds when it is called.Increase to put more emphasis on component presolving.
Type Double
Default value 1.0
Affects routines XPRSmipoptimize (MIPOPTIMIZE).
See also PRECOMPONENTS.

PRECONEDECOMP

Description Presolve: decompose regular and rotated cones with more than two elements and applyOuter Approximation on the resulting components.
Type Integer

Fair Isaac Corporation Confidential and Proprietary Information 470

Control Parameters

Values -1 Automatically determined.
0 Disable cone decomposition.
1 Enable cone decomposition by replacing large cones with small ones in thepresolved problem.
2 Similar to 1, plus decomposition is enabled even if the cone variable is fixed.
3 Cones are decomposed within the Outer Approximation domain only, i.e., theproblem maintains the original cones.

Default value -1

Affects routines XPRSmipoptimize (MIPOPTIMIZE).
See also PRESOLVE, PRESOLVEOPS.

PRECONVERTSEPARABLE

Description Presolve: reformulate problem with non-diagonal quadratic objective and/or constraints asdiagonal quadratic or second-order conic constraints.
Type Integer
Values -1 Automatically determined.

0 Disable reformulation.
1 Enable reformulation to diagonal quadratic constraints.
2 Similar to 1, plus reduction to second-order cones.
3 Similar to 2, plus the objective function is converted to a constraint and treated as aquadratic constraint.

Default value -1

Affects routines XPRSmipoptimize (MIPOPTIMIZE).
See also PRESOLVE.
Note This control is only used in MIQPs and MIQCQPs, and has no effect when used on continuousquadratic problems.

PREDOMCOL

Description Presolve: Determines the level of dominated column removal reductions to perform whenpresolving a mixed integer problem. Only binary columns will be checked.
Type Integer
Values -1 Automatically determined.

0 Disabled.
1 Cautious strategy.
2 All candidate binaries will be checked for domination.

Default value -1

Affects routines XPRSmipoptimize (MIPOPTIMIZE).
See also PRESOLVE, PRESOLVEOPS.

Fair Isaac Corporation Confidential and Proprietary Information 471

Control Parameters

PREDOMROW

Description Presolve: Determines the level of dominated row removal reductions to perform whenpresolving a problem.
Type Integer
Values -1 Automatically determined.

0 Disabled.
1 Cautious strategy.
2 Medium strategy.
3 Aggressive strategy. All candidate row combinations will be considered.

Default value -1

Affects routines XPRSmipoptimize (MIPOPTIMIZE), XPRSlpoptimize (LPOPTIMIZE).
See also PRESOLVE, PRESOLVEOPS.

PREDUPROW

Description Presolve: Determines the type of duplicate rows to look for and eliminate when presolving aproblem.
Type Integer
Values -1 Automatically determined.

0 Do not eliminate duplicate rows.
1 Eliminate only rows that are identical in all variables.
2 Same as option 1 plus eliminate duplicate rows with simple penalty variableexpressions. (MIP only).
3 Same as option 2 plus eliminate duplicate rows with more complex penalty variableexpressions. (MIP only).

Default value -1

Note Duplicate rows can also be disabled by clearing the corresponding bit of the PRESOLVEOPSinteger control.
Affects routines XPRSmipoptimize (MIPOPTIMIZE), XPRSlpoptimize (LPOPTIMIZE).
See also PRESOLVE, PRESOLVEOPS.

PREELIMQUAD

Description Presolve: Allows for elimination of quadratic variables via doubleton rows.
Type Integer

Fair Isaac Corporation Confidential and Proprietary Information 472

Control Parameters

Values -1 Automatically determined.
0 Do not eliminate duplicate rows.
1 Eliminate at least one quadratic variable for each doubleton row.

Default value -1

Affects routines XPRSmipoptimize (MIPOPTIMIZE), XPRSlpoptimize (LPOPTIMIZE).
See also PRESOLVE, PRESOLVEOPS.

PREIMPLICATIONS

Description Presolve: Determines whether to use implication structures to remove redundant rows. Ifimplication sequences are detected, they might also be used in probing.
Type Integer
Values -1 Automatically determined.

0 Do not use implications for sparsification.
1 Use implications to remove reduandant rows.

Default value -1

Affects routines XPRSmipoptimize (MIPOPTIMIZE), XPRSlpoptimize (LPOPTIMIZE).
See also PRESOLVE, PRESOLVEOPS, PREPROBING.

PRELINDEP

Description Presolve: Determines whether to check for and remove linearly dependent equalityconstraints when presolving a problem.
Type Integer
Values -1 Automatically determined.

0 Do not check for linearly dependent equality constraints.
1 Check for and remove linearly dependent equality constraints.

Default value -1

Affects routines XPRSmipoptimize (MIPOPTIMIZE), XPRSlpoptimize (LPOPTIMIZE).
See also PRESOLVE, PRESOLVEOPS.

PREOBJCUTDETECT

Description Presolve: Determines whether to check for constraints that are parallel or near parallel to alinear objective function, and which can safely be removed. This reduction applies to MIPsonly.

Fair Isaac Corporation Confidential and Proprietary Information 473

Control Parameters

Type Integer
Values 0 Disable check and reductions.

1 Enable check and reductions.
Default value 1

Affects routines XPRSmipoptimize (MIPOPTIMIZE).
See also PRESOLVE, PRESOLVEOPS.

PREPERMUTE

Description This bit vector control specifies whether to randomly permute rows, columns and globalinformation when starting the presolve. With the default value 0, no permutation will takeplace.
Type Integer
Values Bit Meaning

0 Permute rows.
1 Permute columns.
2 Permute global information. This bit only affects MIP problems.

Default value 0

Note Random permutations enable trying out different solution paths when solving a problem. Therandom seed for the permutations can be set using PREPERMUTESEED. When both PRESORTand PREPERMUTE are enabled, it will sort and then permute the problem.
Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).
See also PREPERMUTESEED, PRESORT, PRESOLVE, MIPPRESOLVE.

PREPERMUTESEED

Description This control sets the seed for the pseudo-random number generator for permuting theproblem when starting the presolve. This control only has effects when PREPERMUTE isenabled.
Type Integer
Default value 1

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).
See also PREPERMUTE, PRESOLVE, MIPPRESOLVE.

Fair Isaac Corporation Confidential and Proprietary Information 474

Control Parameters

PREPROBING

Description Presolve: Amount of probing to perform on binary variables during presolve. This is done byfixing a binary to each of its values in turn and analyzing the implications.
Type Integer
Values -1 Let the optimizer decide on the amount of probing.

0 Disabled.
+1 Light probing — only few implications will be examined.
+2 Full probing — all implications for all binaries will be examined.
+3 Full probing and repeat as long as the problem is significantly reduced.

Default value -1

Affects routines XPRSmipoptimize (MIPOPTIMIZE).
See also PRESOLVE.

PREPROTECTDUAL

Description Presolve: specifies whether the presolver should protect a given dual solution by maintainingthe same level of dual feasibility. Enabling this control often results in a worse presolvedmodel. This control only expected to be optionally enabled before calling
XPRScrossoverlpsol.

Type Integer
Values 0 Disabled.

1 Enabled. Protect the dual solution during presolve.
Default value 0

Affects routines XPRScrossoverlpsol

PRESOLVE

Description This control determines whether presolving should be performed prior to starting the mainalgorithm. Presolve attempts to simplify the problem by detecting and removing redundantconstraints, tightening variable bounds, etc. In some cases, infeasibility may even bedetermined at this stage, or the optimal solution found.
Type Integer

Fair Isaac Corporation Confidential and Proprietary Information 475

Control Parameters

Values -1 Presolve applied, but a problem will not be declared infeasible if primal infeasibilitiesare detected. The problem will be solved by the LP optimization algorithm, returningan infeasible solution, which can sometimes be helpful.
0 Presolve not applied.
1 Presolve applied.
2 Presolve applied, but redundant bounds are not removed. This can sometimesincrease the efficiency of the barrier algorithm.
3 Presolve is applied, and bounds detected to be redundant are always removed.

Default value 1

Note Memory for presolve is dynamically resized. If the Optimizer runs out of memory for presolve,an error message (245) is produced. Presolve settings 2 and 3 can sometimes make thebarrier solves more efficient.
Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).
See also 5.3, PRESOLVEOPS.

PRESOLVEMAXGROW

Description Limit on how much the number of non-zero coefficients is allowed to grow during presolve,specified as a ratio of the number of non-zero coefficients in the original problem.
Type Double
Default value 0.1
Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

PRESOLVEOPS

Description This bit vevctor control specifies the operations which are performed during the presolve.
Type Integer

Fair Isaac Corporation Confidential and Proprietary Information 476

Control Parameters

Values Bit Meaning
0 Singleton column removal.
1 Singleton row removal.
2 Forcing row removal.
3 Dual reductions.
4 Redundant row removal.
5 Duplicate column removal.
6 Duplicate row removal.
7 Strong dual reductions.
8 Variable eliminations.
9 No IP reductions.
10 No semi-continuous variable detection.
11 No advanced IP reductions.
12 No eliminations on integers.
14 Linearly dependant row removal.
15 No integer variable and SOS detection.

Default value 511 (bits 0 — 8 incl. are set)
Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE),

XPRSpresolverow.
See also 5.3, PRESOLVE, MIPPRESOLVE.

PRESOLVEPASSES

Description Number of reduction rounds to be performed in presolve
Type Integer
Default value 1

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).
See also 5.3, PRESOLVE.

PRESORT

Description This bit vector control specifies whether to sort rows, columns and global information by theirnames when starting the presolve. With the default value 0, no sorting will take place.
Type Integer
Values Bit Meaning

0 Sort rows.
1 Sort columns.
2 Sort global information. This bit only affects MIP problems.

Default value 0

Fair Isaac Corporation Confidential and Proprietary Information 477

Control Parameters

Note Sorting a problem by names can help obtain the same solution path when the rows, columnsor global information of the problem is rearranged. It is recommended to enable all three bitswhen sorting a problem. When both PRESORT and PREPERMUTE are enabled, it will sort andthen permute the problem.
Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).
See also PREPERMUTE, PRESOLVE, MIPPRESOLVE.

PRICINGALG

Description Simplex: This determines the primal simplex pricing method. It is used to select whichvariable enters the basis on each iteration. In general Devex pricing requires more time oneach iteration, but may reduce the total number of iterations, whereas partial pricing savestime on each iteration, but may result in more iterations.
Type Integer
Values -1 Partial pricing.

0 Determined automatically.
1 Devex pricing.
2 Steepest edge.
3 Steepest edge with unit initial weights.

Default value 0

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).
See also DUALGRADIENT.

PRIMALOPS

Description Primal simplex: allows fine tuning the variable selection in the primal simplex solver.
Type Integer
Values Bit Meaning

0 Use aggressive dj scaling.
1 Conventional dj scaling.
2 Use reluctant switching back to partial pricing.
3 Use dynamic switching between cheap and expensive pricing strategies.
4 Keep solving even after potential cycling is detected.

Default value -1

Note If both bits 0 and 1 are both set or unset then the dj scaling strategy is determinedautomatically.
Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).
See also PRICINGALG.

Fair Isaac Corporation Confidential and Proprietary Information 478

Control Parameters

PRIMALPERTURB

Description The factor by which the problem will be perturbed prior to optimization by primal simplex. Avalue of 0.0 results in no perturbation prior to optimization. PRIMALPERTURB, if set to anon-negative value, overrules the value of PERTURB. The control PERTURB is deprecated, theuse of PRIMALPERTURB and DUALPERTURB is advised instead.
Note the interconnection to the AUTOPERTURB control. If AUTOPERTURB is set to 1, thedecision whether to perturb or not is left to the Optimizer. When the problem is automaticallyperturbed in primal simplex, however, the value of PRIMALPERTURB will be used forperturbation.

Type Double
Default value -1 — determined automatically.
Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).
See also AUTOPERTURB, DUALPERTURB, PERTURB.

PRIMALUNSHIFT

Description Determines whether primal is allowed to call dual to unshift.
Type Integer
Values 0 Allow the dual algorithm to be used to unshift.

1 Don’t allow the dual algorithm to be used to unshift.
Default value 0

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).
See also PRIMALOPS, PRICINGALG, DUALSTRATEGY.

PSEUDOCOST

Description Branch and Bound: The default pseudo cost used in estimation of the degradation associatedwith an unexplored node in the tree search. A pseudo cost is associated with each integerdecision variable and is an estimate of the amount by which the objective function will beworse if that variable is forced to an integral value.
Type Double
Default value 0.01

Affects routines XPRSmipoptimize (MIPOPTIMIZE), XPRSreaddirs (READDIRS).

Fair Isaac Corporation Confidential and Proprietary Information 479

Control Parameters

PWLDUALREDUCTIONS

Description This parameter specifies whether dual reductions should be applied to reduce the number ofcolumns, rows and SOS-constraints added when transforming piecewise linear objectivesand constraints to MIP structs.
Type Integer
Values 0 Disabled. No dual reductions, add all columns, rows and SOS-constraints.

1 Enabled. Only add neccessary columns, rows and sets, drop those implied by theobjective sense.
Default value 1

Affects routines XPRSmipoptimize (MIPOPTIMIZE).
See also MIPDUALREDUCTIONS.

PWLNONCONVEXTRANSFORMATION

Description This control specifies the reformulation method for piecewise linear constraints at thebeginning of the search.
Note that the chosen formulation will only be used if MIP entities are necessary but not ifpresolve detected that a convex reformulation is possible. Furthermore, the binaryformulation will only be applied to piecewise linear constraints with bounded input variable,otherwise the SOS2-formulation will be used.

Type Integer
Values -1 Automatic.

0 Use a formulation based on SOS2-constraints.
1 Use a formulation based on binary variables.

Default value -1

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

QCCUTS

Description Branch and Bound: Limit on the number of rounds of outer approximation cuts generated forthe root node, when solving a mixed integer quadratic constrained or mixed integer secondorder conic problem with outer approximation.
Type Integer
Default value -1 — determined automatically.
Note This control only has an effect for problems with quadratic or second order cone constraints,and only if outer approximation has not been disabled by setting MIQCPALG to 0.

Fair Isaac Corporation Confidential and Proprietary Information 480

Control Parameters

Affects routines XPRSmipoptimize (MIPOPTIMIZE).
See also TREEQCCUTS.

QCROOTALG

Description This control determines which algorithm is to be used to solve the root of a mixed integerquadratic constrained or mixed integer second order cone problem, when outerapproximation is used.
Type Integer
Values -1 Determined automatically.

0 Use the barrier algorithm.
1 Use the dual simplex on a relaxation of the problem constructed using outerapproximation.

Default value -1

Note This control only has an effect if MIQCPALG is set to 1.
Affects routines XPRSmipoptimize (MIPOPTIMIZE), XPRSminim (MINIM), XPRSmaxim (MAXIM),

XPRSglobal (GLOBAL).

QSIMPLEXOPS

Description Controls the behavior of the quadratic simplex solvers.
Type Integer
Values Bit Meaning

0 Force traditional primal first phase.
1 Force BigM primal first phase.
2 Force traditional dual first phase.
3 Force BigM dual first phase.
4 Always use artificial bounds in dual.
5 Use original problem basis only when warmstarting the KKT.
6 Skip the primal bound flips for ranged primals (might cause more trouble than goodif the bounds are very large).
7 Also do the single pivot crash.
8 Do not apply aggressive perturbation in dual.

Default value 0

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

Fair Isaac Corporation Confidential and Proprietary Information 481

Control Parameters

QUADRATICUNSHIFT

Description Determines whether an extra solution purification step is called after a solution found by thequadratic simplex (either primal or dual).
Type Integer
Values -1 Determined automatically.

0 No purification step.
1 Always do the purification step.

Default value -1

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

RANDOMSEED

Description Sets the initial seed to use for the pseudo-random number generator in the Optimizer. Thesequence of random numbers is always reset using the seed when starting a newoptimization run.
Type Integer
Default value 1

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

REFACTOR

Description Indicates whether the optimization should restart using the current representation of thefactorization in memory.
Type Integer
Values -1 Automatic.

0 Do not refactor on reoptimizing.
1 Refactor on reoptimizing.

Default value -1

Note In the tree search, the optimal bases at the nodes are not refactorized by default, but theoptimal basis for an LP problem will be refactorized. If you are repeatedly solving LPs withfew changes then it is more efficient to set REFACTOR to 0.
Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

Fair Isaac Corporation Confidential and Proprietary Information 482

Control Parameters

REFINEOPS

Description This specifies when the solution refiner should be executed to reduce solution infeasibilities.The refiner will attempt to satisfy the target tolerances for all original linear constraints beforepresolve or scaling has been applied.
Type Integer
Values Bit Meaning

0 Run the solution refiner on an optimal solution of a non-global problem.
1 Run the solution refiner when a new solution is found during a global search. Therefiner will be applied to the presolved solution before any post-solve operations areapplied.
3 Run the solution refiner on each node of the MIP search.
4 Run the solution refiner on an optimal solution before postsolve on a non-globalproblem.
5 Apply the iterative refiner to refine the solution.
6 Use higher precision in the iterative refinement.
7 If set, the iterative refiner will use the primal simplex algorithm.
8 If set, the iterative refiner will use the dual simplex algorithm.
9 Refine MIP solutions such that rounding them keeps the problem feasible whenreoptimized.
10 Attempt to refine MIP solutions such that rounding them keeps the problem feasiblewhen reoptimized, but accept integers solutions even if refinement fails.

Default value 19 (bits 0, 1 and 4 are set)
Note If neither the 7th nor 8th bit is set, the refiner will use the primal simplex if the primalviolations are larger than the dual violations, otherwise it will use the dual simplex.

If both the 7th and 8th bit are set then the refiner will split the problem into a primal feasibleand dual feasible part, and solve the first with primal simplex and the second with dualsimplex.
Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).
See also LPREFINEITERLIMIT, FEASTOLTARGET, OPTIMALITYTOLTARGET, MIPTOLTARGET.

RELAXTREEMEMORYLIMIT

Description When the memory used by the branch and bound search tree exceeds the target specified bythe TREEMEMORYLIMIT control, the optimizer will try to reduce this by writing nodes to theglobal file. In rare cases, usually where the solve has many millions of very small nodes, thetree structural data (which cannot be written to the global file) will grow large enough toapproach or exceed the tree’s memory target. When this happens, optimizer performance candegrade greatly as the solver makes heavy use of the global file in preference to memory. Toprevent this, the solver will automatically relax the tree memory limit when it detects thiscase; the RELAXTREEMEMORYLIMIT control specifies the proportion of the previous memorylimit by which to relax it. Set RELAXTREEMEMORYLIMIT to 0.0 to force the Xpress Optimizerto never relax the tree memory limit in this way.

Fair Isaac Corporation Confidential and Proprietary Information 483

Control Parameters

Type Double
Note While setting higher values of RELAXTREEMEMORYLIMIT can improve performancesignificantly for a small number of models in low memory situations, the user is advised touse the TREEMEMORYLIMIT control to tune the memory usage of the branch and bound tree,according to the solve characteristics of their problem, rather than increasing

RELAXTREEMEMORYLIMIT.
Default value 0.1

Affects routines XPRSmipoptimize (MIPOPTIMIZE).
See also TREEMEMORYLIMIT.

RELPIVOTTOL

Description Simplex: At each iteration a pivot element is chosen within a given column of the matrix. Therelative pivot tolerance, RELPIVOTTOL, is the size of the element chosen relative to thelargest possible pivot element in the same column.
Type Double
Default value 1.0E-06

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE), XPRSpivot.

REPAIRINDEFINITEQ

Description Controls if the optimizer should make indefinite quadratic matrices positive definite when it ispossible.
Type Integer
Values 0 Repair if possible.

1 Do not repair.
Default value 1

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

REPAIRINFEASMAXTIME

Description Overall time limit for the repairinfeas tool
Type Integer
Values 0 No time limit.

n>0 If an integer solution has been found, stop MIP search after n seconds, otherwisecontinue until an integer solution is finally found.
n<0 Stop in LP or MIP search after n seconds.

Fair Isaac Corporation Confidential and Proprietary Information 484

Control Parameters

Default value 0

Note This control affects the total runtime of repairinfeas, as opposed to MAXTIME which affectsthe individual solves reapirinfeas carries out.
Affects routines XPRSrepairinfeas (REPAIRINFEAS).

RESOURCESTRATEGY

Description Controls whether the optimizer is allowed to make nondeterministic decisions if memory isrunning low in an effort to preserve memory and finish the solve. Available memory (orcontainer limits) are automatically detected but can also be changed by MAXMEMORYSOFTand MAXMEMORYHARD
Type Integer
Values 1 Allow the optimizer to change the solve path if necessary to preserve memory whengetting close to one of the memory limits.
Default value 0

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

ROOTPRESOLVE

Description Determines if presolving should be performed on the problem after the global search hasfinished with root cutting and heuristics.
Type Integer
Values -1 Let the optimizer decide if the problem should be presolved again.

0 Disabled.
+1 Always presolve the root problem.

Default value -1

Affects routines XPRSmipoptimize (MIPOPTIMIZE).
See also PRESOLVE.

SBBEST

Description Number of infeasible global entities to initialize pseudo costs for on each node.
Type Integer
Values -1 determined automatically.

0 disable strong branching.
n>0 perform strong branching on up to n entities at each node.

Default value -1

Fair Isaac Corporation Confidential and Proprietary Information 485

Control Parameters

Note By default, strong branching will be performed only for infeasible global entities whosepseudo costs have not otherwise been initialized (see HISTORYCOSTS).
If SBBEST is set to zero, the control HISTORYCOSTS will also be treated as zero and no pastbranching or strong branching information will be used in the global entity selection.

Affects routines XPRSmipoptimize (MIPOPTIMIZE).
See also SBITERLIMIT, SBSELECT, SBEFFORT, HISTORYCOSTS.

SBEFFORT

Description Adjusts the overall amount of effort when using strong branching to select an infeasibleglobal entity to branch on.
Type Double
Default value 1.0

Note SBEFFORT is used as a multiplier on other strong branching related controls, and affects thevalues used for SBBEST, SBSELECT and SBITERLIMIT when those are set to automatic.
Affects routines XPRSmipoptimize (MIPOPTIMIZE).
See also SBBEST, SBITERLIMIT, SBSELECT.

SBESTIMATE

Description Branch and Bound: How to calculate pseudo costs from the local node when selecting aninfeasible global entity to branch on. These pseudo costs are used in combination with localstrong branching and history costs to select the branch candidate.
Type Integer
Values -1 Automatically determined.

1-6 Different variants of local pseudo costs.
Default value -1

Affects routines XPRSmipoptimize (MIPOPTIMIZE).
See also SBBEST, SBITERLIMIT, SBSELECT, HISTORYCOSTS.

SBITERLIMIT

Description Number of dual iterations to perform the strong branching for each entity.
Type Integer
Default value -1 — determined automatically.

Fair Isaac Corporation Confidential and Proprietary Information 486

Control Parameters

Note This control can be useful to increase or decrease the amount of effort (and thus time) spentperforming strong branching at each node. Setting SBITERLIMIT=0 will disable dual strongbranch iterations. Instead, the entity at the head of the candidate list will be selected forbranching.
Affects routines XPRSmipoptimize (MIPOPTIMIZE).
See also SBBEST, SBSELECT.

SBSELECT

Description The size of the candidate list of global entities for strong branching.
Type Integer
Values -2 Automatic (low effort).

-1 Automatic (high effort).
n>=0 Include n entities in the candidate list (but always at least SBBEST candidates).

Default value -2

Note Before strong branching is applied on a node of the branch and bound tree, a list ofcandidates is selected among the infeasible global entities. These entities are then evaluatedbased on the local LP solution and prioritized. Strong branching will then be applied to the
SBBEST candidates. The evaluation is potentially expensive and for some problems it mightimprove performance if the size of the candidate list is reduced.

Affects routines XPRSmipoptimize (MIPOPTIMIZE).
See also SBBEST, SBEFFORT, SBESTIMATE.

SCALING

Description This bit vector control determines how the Optimizer will rescale a model internally beforeoptimization. If set to 0, no scaling will take place.
Type Integer

Fair Isaac Corporation Confidential and Proprietary Information 487

Control Parameters

Values Bit Meaning
0 Row scaling.
1 Column scaling.
2 Row scaling again.
3 Maximum.
4 Curtis-Reid.
5 0: scale by geometric mean.1: scale by maximum element.
6 Treat big-M rows as normal rows.
7 Scale objective function for the simplex method.
8 Exclude the quadratic part of constraint when calculating scaling factors.
9 Scale before presolve.
10 Do not scale rows up.
11 Do not scale columns down.
12 Do not apply automatic global objective scaling.
13 RHS scaling.
14 Disable aggressive quadratic scaling.
15 Enable explicit linear slack scaling.

Default value 163

Note Setting SCALING to 0 will preserve the current scaling of the problem. Note that the Optimizermight automatically select a different scaling strategy, when the control AUTOSCALING is notdisabled. However, if SCALING is set to any value by the user, AUTOSCALING will be ignored.
Affects routines XPRSlpoptimize, XPRSlpoptimize, XPRSmipoptimize, XPRSscale (SCALE).
See also 6.3.1, MAXSCALEFACTOR, OBJSCALEFACTOR, AUTOSCALING.

SIFTING

Description Determines whether to enable sifting algorithm with the dual simplex method.
Type Integer
Values -1 Automatically determined.

0 Disable sifting with the dual simplex method.
1 Enable sifting with the dual simplex method.

Default value -1

Affects routines XPRSmipoptimize (MIPOPTIMIZE), XPRSlpoptimize (LPOPTIMIZE).

SIFTSWITCH

Description Determines which algorithm to use for solving the subproblems during sifting.
Type Integer

Fair Isaac Corporation Confidential and Proprietary Information 488

Control Parameters

Values -1 Dual simplex.
0 Barrier.
>0 Use the barrier algorithm while the number of dual infeasibilities is larger than thisvalue, otherwise use dual simplex.

Default value -1

Affects routines XPRSmipoptimize (MIPOPTIMIZE), XPRSlpoptimize (LPOPTIMIZE).

SLEEPONTHREADWAIT

Description Determines if the threads should be put into a wait state when waiting for work.
Type Integer
Values Bit Meaning

-1 Automatically determined depending on the CPU the Optimizer is running on.
0 Keep the threads busy when waiting for work.
1 Put the threads into a wait state when waiting for work.

Default value -1

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

SOSREFTOL

Description The minimum relative gap between the ordering values of elements in a special ordered set.The gap divided by the absolute value of the larger of the two adjacent values must be atleast SOSREFTOL.
Type Double
Default value 1.0E-06

Note This tolerance must not be set lower than 1.0E-06.
Affects routines XPRSloadglobal, XPRSloadqglobal, XPRSreadprob (READPROB).

SYMMETRY

Description Adjusts the overall amount of effort for symmetry detection.
Type Integer
Values 0 No symmetry detection.

1 Conservative effort.
2 Intensive symmetry search.

Default value 1

Fair Isaac Corporation Confidential and Proprietary Information 489

Control Parameters

Affects routines XPRSmipoptimize (MIPOPTIMIZE).
See also SYMSELECT.

SYMSELECT

Description Adjusts the overall amount of effort for symmetry detection.
Type Integer
Values 0 Search the whole matrix (otherwise the 0, 1 and -1 coefficients only).

1 Search all entities (otherwise binaries only).
Default value -1

Affects routines XPRSmipoptimize (MIPOPTIMIZE).
See also SYMMETRY.

THREADS

Description The default number of threads used during optimization.
Type Integer
Values -1 Determined automatically based on hardware configuration.

>0 Number of threads to use.
Default value -1

Note The value may be changed for specific parts of the optimization by the
CONCURRENTTHREADS, MIPTHREADS and BARTHREADS controls.

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).
See also DETERMINISTIC, MIPTHREADS, BARTHREADS, CONCURRENTTHREADS.

TRACE

Description Display the infeasibility diagnosis during presolve. If non-zero, an explanation of the logicaldeductions made by presolve to deduce infeasibility or unboundedness will be displayed onscreen or sent to the message callback function.
Type Integer
Default value 0

Note Presolve is sometimes able to detect infeasibility and unboundedness in problems. The set ofdeductions made by presolve can allow the user to diagnose the cause of infeasibility orunboundedness in their problem. However, not all infeasibility or unboundedness can bedetected and diagnosed in this way.
Affects routines XPRSlpoptimize (LPOPTIMIZE).

Fair Isaac Corporation Confidential and Proprietary Information 490

Control Parameters

TREECOMPRESSION

Description When writing nodes to the gloal file, the optimizer can try to use data-compressiontechniques to reduce the size of the global file on disk. The TREECOMPRESSION controldetermines the strength of the data-compression algorithm used; higher values give superiordata-compression at the affect of decreasing performance, while lower values compressquicker but not as effectively. Where TREECOMPRESSION is set to 0, no data compressionwill be used on the global file.
Type Integer
Default value 2

Affects routines XPRSmipoptimize (MIPOPTIMIZE).
See also TREEMEMORYLIMIT.

TREECOVERCUTS

Description Branch and Bound: The number of rounds of lifted cover inequalities generated at nodesother than the top node in the tree. Compare with the description for COVERCUTS. A value of-1 indicates the number of rounds is determined automatically.
Type Integer
Default value -1

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

TREECUTSELECT

Description A bit vector providing detailed control of the cuts created during the tree search of a globalsolve. Use CUTSELECT to control cuts on the root node.
Type Integer
Values Bit Meaning

5 Clique cuts.
6 Mixed Integer Rounding (MIR) cuts.
7 Lifted cover cuts.
8 Turn on row aggregation for MIR cuts.
11 Flow path cuts.
12 Implication cuts.
13 Turn on automatic Lift and Project cutting strategy.
14 Disable cutting from cut rows.
15 Lifted GUB cover cuts.
16 Zero-half cuts.
17 Indicator constraint cuts.

Fair Isaac Corporation Confidential and Proprietary Information 491

Control Parameters

Default value -257

Affects routines XPRSmipoptimize (MIPOPTIMIZE).
See also COVERCUTS, GOMCUTS, CUTSELECT.

TREEDIAGNOSTICS

Description A bit vector providing control over how various tree-management-related messages getprinted in the global logfile during the branch-and-bound search.
Type Integer
Values Bit Meaning

0 Output regular summaries of current tree memory usage.
1 Output messages whenever tree data is being written to global file.
1 Output progress messages while tree data is being written to the global flie, at aninterval controlled by the GLOBALFILELOGINTERVAL control.

Default value 7

Affects routines XPRSmipoptimize (MIPOPTIMIZE).
See also MIPLOG, PEAKTOTALTREEMEMORYUSAGE, GLOBALFILELOGINTERVAL.

TREEGOMCUTS

Description Branch and Bound: The number of rounds of Gomory cuts generated at nodes other than thefirst node in the tree. Compare with the description for GOMCUTS. A value of -1 indicates thenumber of rounds is determined automatically.
Type Integer
Default value -1

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

TREEMEMORYLIMIT

Description A soft limit, in megabytes, for the amount of memory to use in storing the branch and boundsearch tree. This doesn’t include memory used for presolve, heuristics, solving the LPrelaxation, etc. When set to 0 (the default), the optimizer will calculate a limit automaticallybased on the amount of free physical memory detected in the machine. When the memoryused by the branch and bound tree exceeds this limit, the optimizer will try to reduce thememory usage by writing lower-rated sections of the tree to a file called the "global file".Though the solve can continue if it cannot bring the tree memory usage below the specifiedlimit, performance will be inhibited and a message will be printed to the log.
Type Integer

Fair Isaac Corporation Confidential and Proprietary Information 492

Control Parameters

Default value 0 (calculate limit automatically)
Affects routines XPRSmipoptimize (MIPOPTIMIZE).
See also TREEMEMORYSAVINGTARGET, TREECOMPRESSION, TREEDIAGNOSTICS.

TREEMEMORYSAVINGTARGET

Description When the memory used by the branch-and-bound search tree exceeds the limit specified bythe TREEMEMORYLIMIT control, the optimizer will try to save memory by writing lower-ratedsections of the tree to the global file. The target amount of memory to save will be enough tobring memory usage back below the limit, plus enough extra to give the tree room to grow.The TREEMEMORYSAVINGTARGET control specifies the extra proportion of the tree’s size totry to save; for example, if the tree memory limit is 1000Mb and TREEMEMORYSAVINGTARGETis 0.1, when the tree size exceeds 1000Mb the optimizer will try to reduce the tree size to900Mb. Reducing the value of TREEMEMORYSAVINGTARGET will cause less extra nodes ofthe tree to be written to the global file, but will result in the memory saving routine beingtriggered more often (as the tree will have less room in which to grow), which can reduceperformance. Increasing the value of TREEMEMORYSAVINGTARGET will cause additional,more highly-rated nodes, of the tree to be written to the global file, which can causeperformance issues if these nodes are required later in the solve.
Type Double
Default value 0.4
Affects routines XPRSmipoptimize (MIPOPTIMIZE).
See also TREEMEMORYLIMIT

TREEPRESOLVE

Description Determines the amount of full presolving to apply to nodes of the branch-and-bound treesearch.
Type Integer
Values -1 Let the optimizer decide how often to presolve nodes.

0 Disabled.
1 Cautious strategy — presolve only when significant reductions are possible.
2 Medium strategy.
3 Aggressive strategy — presolve frequently.

Default value -1

Note The presolving of nodes will restrict the handling of user cuts. If a node in the tree has beenpresolved, it will not be possible to call XPRSloadcuts to load user cuts from the global poolinto the node or any of its descendants. Any user cuts already loaded into a node problem willautomatically be presolved with the node, but will afterwards appear as new user cuts. Usercuts can still be added to a presolved node or its descendants, but any such cut must bepresolved to match the node it is being loaded into. A cut can be presolved by calling
XPRSpresolverow, and this should be done immediately before calling XPRSaddrows toload the cut, to ensure that the cut is being presolved to match the current node.

Fair Isaac Corporation Confidential and Proprietary Information 493

Control Parameters

Affects routines XPRSmipoptimize (MIPOPTIMIZE).
See also PRESOLVE.

TREEPRESOLVE_KEEPBASIS

Description Determines what to do with the existing basis when re-presolving a node of thebranch-and-bound tree.
Type Integer
Values 0 The current basis is ignored and the LP relaxation of the presolved problem will besolved from scratch.

1 Attempt to presolve the current node basis and use it to warm-start the LP solveafter the presolve. This can restrict some presolve reductions but should reduce thetime for solving the LP relaxation.
2 Drop the basis during presolve, but attempt to create a valid warm-start basis basedon the parent node solution.

Default value -1

Affects routines XPRSmipoptimize (MIPOPTIMIZE).
See also TREEPRESOLVE.

TREEQCCUTS

Description Branch and Bound: Limit on the number of rounds of outer approximation cuts generated fornodes other than the root node, when solving a mixed integer quadratic constrained or mixedinteger second order conic problem with outer approximation.
Type Integer
Default value -1 — determined automatically.
Note This control only has an effect for problems with quadratic or second order cone constraints,and only if outer approximation has not been disabled by setting MIQCPALG to 0.
Affects routines XPRSmipoptimize (MIPOPTIMIZE).
See also QCCUTS.

TUNERHISTORY

Description Tuner: Whether to reuse and append to previous tuner results of the same problem.
Type Integer
Values 0 Discard any previous tuner results.

1 Append new results to the previous tuner results, but do not reuse them.
2 Reuse the previous results and append new results to it.

Fair Isaac Corporation Confidential and Proprietary Information 494

Control Parameters

Default value 2

Note Please refer to Section 5.12.5 for more information about reusing tuner results.
This control only has an effect on the tuner. This control cannot be tuned.

Affects routines XPRStune (TUNE).

TUNERMAXTIME

Description Tuner: The maximum time in seconds that the tuner will run before it terminates.
Type Integer
Values 0 No time limit.

n>0 Stop the tuner after n seconds.
Default value 0

Note This control only has an effect on the tuner. This control cannot be tuned.
Affects routines XPRStune (TUNE).

TUNERMETHOD

Description Tuner: Selects a factory tuner method. A tuner method consists of a list of controls withdifferent settings that the tuner will evaluate and try to combine.
Type Integer
Values -1 Automatically determined. The tuner will select the default method based on theproblem type.

0 Select the default LP tuner method.
1 Select the default MIP tuner method.
2 Select a more comprehensive MIP tuner method.
3 Select a root-focus MIP tuner method.
4 Select a tree-focus MIP tuner method.
5 Select a simple MIP tuner method.
6 Select the default SLP tuner method.
7 Select the default MISLP tuner method.
8 Select a MIP tuner method focussed on primal heuristics.

Default value -1

Note If the tuner has already loaded a user-defined tuner method, then it will not load any factorytuner method.
Please refer to Section 5.12.2 for more information about the tuner method, and Appendix A.9for the format of the tuner method file.
This control only has an effect on the tuner. This control cannot be tuned.

Affects routines XPRStune (TUNE).

Fair Isaac Corporation Confidential and Proprietary Information 495

Control Parameters

TUNERMETHODFILE

Description Tuner: Defines a file from which the tuner can read user-defined tuner method.
Type String
Default value (empty)
Note If the tuner has already loaded a tuner method via XPRStunerreadmethod, then it will notcheck this control. Otherwise, when this control is defined and a tuner method can besuccesfully loaded from this file, then the tuner will not load any factory tuner method.

Please refer to Section 5.12.2 for more information about the tuner method, and Appendix A.9for the format of the tuner method file.
This control only has an effect on the tuner. This control cannot be tuned.

Affects routines XPRStune (TUNE).

TUNERMODE

Description Tuner: Whether to always enable the tuner or disable it.
Type Integer
Values -1 No effect.

0 Always disable the tuner. XPRStune (TUNE) will have no effect.
1 Always enable the tuner. XPRSmipoptimize (MIPOPTIMIZE), XPRSlpoptimize(LPOPTIMIZE), etc. will call the tuner before solving the problem.

Default value -1

Note This control cannot be tuned.
Affects routines XPRStune (TUNE), XPRSmipoptimize (MIPOPTIMIZE), XPRSlpoptimize (LPOPTIMIZE).

TUNEROUTPUT

Description Tuner: Whether to output tuner results and logs to the file system.
Type Integer
Values 0 Don’t output to the file system.

1 Output results and logs to the file system.
Default value 1

Note Please refer to Section 5.12.3 for more information about the tuner output.
This control only has an effect on the tuner. This control cannot be tuned.

Affects routines XPRStune (TUNE).

Fair Isaac Corporation Confidential and Proprietary Information 496

Control Parameters

TUNEROUTPUTPATH

Description Tuner: Defines a root path to which the tuner writes the result file and logs.
Type String
Default value tuneroutput
Note This control only defines the root path for the tuner output. For each problem, the tuner resultwill be output to a subfolder underneath this path. For example, by default, the tuner result fora problem called prob will be located at tuneroutput/prob/

Please refer to Section 5.12.3 for more information about the tuner output.
This control only has an effect on the tuner. This control cannot be tuned.

Affects routines XPRStune (TUNE).

TUNERPERMUTE

Description Tuner: Defines the number of permutations to solve for each control setting.
Type Integer
Values 0 Solve the original problem only for each setting.

n>0 Solve the original problem and n permuted problems for each setting.
Default value 0

Note Please refer to Section 5.12.7 for more information about tuner problem permutations.
This control only has an effect on the tuner. This control cannot be tuned.

Affects routines XPRStune (TUNE).

TUNERROOTALG

Description This control is deprecated, and is provided for compatibility purposes. Please use LPFLAGSinstead. It is a bit-vector control which defines the algorithm for solving an LP problem or theinitial LP relaxation of a MIP problem within the tuner specifically.
Type Integer
Values Bit Meaning

0 Use the dual simplex method.
1 Use the primal simplex method.
2 Use the barrier method.
3 Use the network simplex method.

Default value 0

Fair Isaac Corporation Confidential and Proprietary Information 497

Control Parameters

Note Setting bit 0, 1, 2, 3 of this control will have the same effect of passing flags d, p, b, n to
XPRSmipoptimize or XPRSlpoptimize. When more than one bit are set, then the LPproblem will be solved with the concurrent solver.
This control only has an effect on the tuner.
This control can be tuned.

Affects routines XPRStune (TUNE).

TUNERSESSIONNAME

Description Tuner: Defines a session name for the tuner.
Type String
Default value (empty)
Note When defined, the session name will override the problem name within the tuner. Forexample, if this control is set to session, then the tuner result for a problem will be locatedat tuneroutput/session/

This control can be useful when the problem name is randomly generated.
Please refer to Section 5.12.3 for more information about the tuner output.
This control only has an effect on the tuner. This control cannot be tuned.

Affects routines XPRStune (TUNE).

TUNERTARGET

Description Tuner: Defines the tuner target – what should be evaluated when comparing two runs withdifferent control settings.
Type Integer
Values -1 Automatically determined. The tuner will choose the default target based on problemtype.

0 Solution time then gap. (MIP/MISLP default)
1 Solution time then best bound.
2 Solution time then best integer solution.
3 The primal dual integral.
4 Time only. (LP/SLP default)
5 SLP objective only. (SLP/MISLP choice)
6 SLP validation number only. (SLP/MISLP choice)
7 Gap only.
8 Best bound only.
9 Best integer solution only.

Default value -1

Note Please refer to Section 5.12.4 for more information about tuner targets.
This control only has an effect on the tuner. This control cannot be tuned.

Fair Isaac Corporation Confidential and Proprietary Information 498

Control Parameters

Affects routines XPRStune (TUNE).

TUNERTHREADS

Description Tuner: the number of threads used by the tuner.
Type Integer
Values -1 Choose automaticlly.

1 The tuner will run in sequential.
n>1 The tuner will run in parallel with n threads.

Default value 1

Note Setting this control will not affect number of threads used by each individual run. It isrecommended to have the product of TUNERTHREADS and THREADS less or equal to thenumber of system threads.
When setting TUNERTHREADS=-1, the tuner will automatically use as many threads as thenumber of logical processors detected.
Please refer to Section 5.12.6 for more information about tuner with multiple threads.
This control only has an effect on the tuner. This control cannot be tuned.

Affects routines XPRStune (TUNE).

TUNERVERBOSE

Description Tuner: whether the tuner should prints detailed information for each run.
Type Integer
Values 1 Print extra information.

0 Print less information.
Default value 1

Note Please refer to Section 5.12.6 for more information about tuner with multiple threads.
This control only has an effect on the tuner. This control cannot be tuned.

Affects routines XPRStune (TUNE).

USERSOLHEURISTIC

Description Determines how much effort to put into running a local search heuristic to find a feasibleinteger solution from a partial or infeasible user solution.
Type Integer

Fair Isaac Corporation Confidential and Proprietary Information 499

Control Parameters

Values -1 Automatically determined.
0 Search heuristic disabled.
1 Light effort.
2 Moderate effort.
3 High effort.

Default value -1

Note When a partial or infeasible user solution is added with XPRSaddmipsol, a local searchheuristic will be applied to the problem in an attempt to find a feasible, integer solution thateither completes the partial solution or is close to the infeasible solution. Whether to run sucha heuristic, or how much effort to put into the heuristic can be controlled by this
USERSOLHEURISTIC parameter.

Affects routines XPRSmipoptimize (MIPOPTIMIZE).
See also HEURSEARCHROOTSELECT, HEURSEARCHTREESELECT.

VARSELECTION

Description Branch and Bound: This determines the formula used to calculate the estimate of eachinteger variable, and thus which integer variable is selected to be branched on at a givennode. The variable selected to be branched on is the one with the maximum estimate.
Type Integer
Values -1 Determined automatically.

1 The minimum of the ’up’ and ’down’ pseudo costs.
2 The ’up’ pseudo cost plus the ’down’ pseudo cost.
3 The maximum of the ’up’ and ’down’ pseudo costs, plus twice the minimum of the’up’ and ’down’ pseudo costs.
4 The maximum of the ’up’ and ’down’ pseudo costs.
5 The ’down’ pseudo cost.
6 The ’up’ pseudo cost.
7 A weighted combination of the ’up’ and ’down’ pseudo costs, where the weightsdepend on how fractional the variable is.
8 The product of the ’up’ and ’down’ pseudo costs.

Default value -1

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

VERSION

Description The Optimizer version number, e.g. 1301meaning release 13.01.
Type Integer
Default value Software version dependent

Fair Isaac Corporation Confidential and Proprietary Information 500

CHAPTER 10

Problem Attributes

During the optimization process, various properties of the problem being solved are stored and madeavailable to users of the FICO Xpress Libraries in the form of problem attributes. These can beaccessed in much the same manner as for the controls. Examples of problem attributes include thesizes of arrays, for which library users may need to allocate space before the arrays themselves areretrieved. A full list of the attributes available and their types may be found in this chapter.

10.1 Retrieving Problem Attributes

Library users are provided with the following three functions for obtaining the values of attributes:
XPRSgetintattrib XPRSgetdblattrib XPRSgetstrattrib

Much as for the controls previously, it should be noted that the attributes as listed in this chapter mustbe prefixed with XPRS_ to be used with the FICO Xpress Libraries and failure to do so will result in anerror. An example of their usage is the following which returns and prints the optimal value of theobjective function after the linear problem has been solved:
XPRSgetdblattrib(prob, XPRS_LPOBJVAL, &lpobjval);

printf("The objective value is %2.1f\n", lpobjval);

ACTIVENODES

Description Number of outstanding nodes.
Type Integer
Set by routines XPRSmipoptimize (MIPOPTIMIZE), XPRSinitglobal.

ALGORITHM

Description The algorithm the optimizer currently is running / was running just before completition.
Type Integer

Fair Isaac Corporation Confidential and Proprietary Information 501

Problem Attributes

Values 1 No LP optimization yet.
2 Dual simplex.
3 Primal simplex.
4 Newton barrier.
5 Network simplex.

Note If the barrier with crossover is used, the value of ALGORITHM during the crossover and thefinal clean up will reflect the algorithm used, but will be reset to barrier once the optimizationis complete.

ATTENTIONLEVEL

Description A measure between 0 and 1 for how numerically unstable the problem is. The attention levelis based on a weighted combination of the number of basis condition numbers exceedingcertain thresholds. It considers all nodes sampled by MIPKAPPAFREQ, with a setting of 1being the most frequent sampling rate. The higher the attention level, the worse conditionedis the problem.
Type Double
Set by routines XPRSmipoptimize.
See also MAXKAPPA, MIPKAPPAFREQ, PREDICTEDATTLEVEL.

AVAILABLEMEMORY

Description The amount of heap memory detected by Xpress as free.
Type Integer
Note On 64bit systems this is a 64bit integer, use XPRSgetintattrib64 to retrieve its value.
See also PEAKMEMORY, CURRENTMEMORY, TOTALMEMORY

BARAASIZE

Description Number of nonzeros in AAT .
Type Integer
Set by routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

BARCGAP

Description Convergence criterion for the Newton barrier algorithm.

Fair Isaac Corporation Confidential and Proprietary Information 502

Problem Attributes

Type Double
Set by routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

BARCONDA

Description Absolute condition measure calculated in the last iteration of the barrier algorithm.
Type Double
Set by routines The barrier algorithm.

BARCONDD

Description Condition measure calculated in the last iteration of the barrier algorithm.
Type Double
Set by routines The barrier algorithm.

BARCROSSOVER

Description Indicates whether or not the basis crossover phase has been entered.
Type Integer
Values 0 the crossover phase has not been entered.

1 the crossover phase has been entered.
Set by routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

BARDENSECOL

Description Number of dense columns found in the matrix.
Type Integer
Set by routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

BARDUALINF

Description Sum of the dual infeasibilities for the Newton barrier algorithm.
Type Double
Set by routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

Fair Isaac Corporation Confidential and Proprietary Information 503

Problem Attributes

BARDUALOBJ

Description Dual objective value calculated by the Newton barrier algorithm.
Type Double
Set by routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

BARITER

Description Number of Newton barrier iterations.
Type Integer
Set by routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

BARLSIZE

Description Number of nonzeros in L resulting from the Cholesky factorization.
Type Integer
Set by routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

BARPRIMALINF

Description Sum of the primal infeasibilities for the Newton barrier algorithm.
Type Double
Set by routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

BARPRIMALOBJ

Description Primal objective value calculated by the Newton barrier algorithm.
Type Double
Set by routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

Fair Isaac Corporation Confidential and Proprietary Information 504

Problem Attributes

BARSING

Description Number of linearly dependent binding constraints at the optimal barrier solution. Theseresults in singularities in the Cholesky decomposition during the barrier that may causenumerical troubles. Larger dependence means more chance for numerical difficulties.
Type Double
Set by routines The barrier algorithm.

BARSINGR

Description Regularized number of linearly dependent binding constraints at the optimal barrier solution.These results in singularities in the Cholesky decomposition during the barrier that maycause numerical troubles. Larger dependence means more chance for numerical difficulties.
Type Double
Set by routines The barrier algorithm.

BESTBOUND

Description Value of the best bound determined so far by the global search.
Type Double
Set by routines XPRSmipoptimize (MIPOPTIMIZE).

BOUNDNAME

Description Active bound name.
Type String
Set by routines XPRSreadprob.

BRANCHVALUE

Description The value of the branching variable at a node of the Branch and Bound tree.
Type Double
Set by routines XPRSmipoptimize (MIPOPTIMIZE).

Fair Isaac Corporation Confidential and Proprietary Information 505

Problem Attributes

BRANCHVAR

Description The branching variable at a node of the Branch and Bound tree.
Type Integer
Set by routines XPRSmipoptimize (MIPOPTIMIZE).

CALLBACKCOUNT_CUTMGR

Description This attribute counts the number of times the cut manager callback set by
XPRSaddcbcutmgr has been called for the current node, including the current callback call.The value of this attribute should only be used from within the cut manager callback.

Type Integer
Set by routines XPRSmipoptimize (MIPOPTIMIZE).

CALLBACKCOUNT_OPTNODE

Description This attribute counts the number of times the optimal node callback set by
XPRSaddcboptnode has been called for the current node, including the current callback call.The value of this attribute should only be used from within the optimal node callback.

Type Integer
Set by routines XPRSmipoptimize (MIPOPTIMIZE).

CHECKSONMAXCUTTIME

Description This attribute is used to set the value of the MAXCHECKSONMAXCUTTIME control. Its value isthe number of times the optimizer checked the MAXCUTTIME criterion during the last call tothe optimization routine XPRSmipoptimize. If a run terminates cutting operations on the
MAXCUTTIME criterion then the attribute is the negative of the number of times the optimizerchecked the MAXCUTTIME criterion up to and including the check when the termination wasactivated. Note that the attribute is set to zero at the beginning of each call to an optimizationroutine.

Type Integer
Set by routines XPRSmipoptimize (MIPOPTIMIZE).

Fair Isaac Corporation Confidential and Proprietary Information 506

Problem Attributes

CHECKSONMAXTIME

Description This attribute is used to set the value of the MAXCHECKSONMAXTIME control. Its value is thenumber of times the optimizer checked the MAXTIME criterion during the last call to theoptimization routine XPRSmipoptimize. If a run terminates on the MAXTIME criterion thenthe attribute is the negative of the number of times the optimizer checked the MAXTIMEcriterion up to and including the check when the termination was activated. Note that theattribute is set to zero at the beginning of each call to an optimization routine.
Type Integer
Set by routines XPRSmipoptimize (MIPOPTIMIZE).

COLS

Description Number of columns (i.e. variables) in the matrix.
Type Integer
Note If the matrix is in a presolved state, this attribute returns the number of columns in the

presolved matrix. If you require the value for the original matrix then use the ORIGINALCOLSattribute instead. The PRESOLVESTATE attribute can be used to test if the matrix is presolvedor not. See also 5.3.
Set by routines XPRSloadglobal, XPRSloadlp, XPRSloadqglobal, XPRSloadqp, XPRSlpoptimize(LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE) XPRSreadprob.

COMPUTEEXECUTIONS

Description The number of solves executed on a compute server.
Type Integer
Set by routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE), XPRStune,

XPRSrepairinfeas, XPRSiisfirst, XPRSiisnext, XPRSiisall.

CONEELEMS

Description Number of second order cone coefficients in the problem.
Type Integer
Note If the matrix is in a presolved state, this attribute returns the number of the second order(including rotated second order) cone coefficients in the presolved matrix. Second orderconic quadratic constraints are automaticly detected at optimization time, and this attributeis not set before optimizing the problem.
Set by routines Optimizing the problem.

Fair Isaac Corporation Confidential and Proprietary Information 507

Problem Attributes

CONES

Description Number of second order and rotated second order cones in the problem.
Type Integer
Note If the matrix is in a presolved state, this attribute returns the number of second order(including rotated second order) cones in the presolved matrix. Conic quadratic constraintsare automaticly detected at optimization time, and this attribute is not set before optimizingthe problem.
Set by routines Optimizing the problem.

CORESDETECTED

Description Number of logical cores detected by the optimizer, which is the total number of threads thehardware can execute across all CPUs.
Type Integer
Values >=1 Detected number of logical cores.
Note The optimizer will automatically use as many solver threads as the number of logical coresdetected.

If the detection fails, the optimizer will default to using a single thread only.
Set by routines XPRSinit.
See also THREADS, CORESPERCPUDETECTED, CPUSDETECTED, PHYSICALCORESDETECTED,

PHYSICALCORESPERCPUDETECTED.

CORESPERCPUDETECTED

Description Number of logical cores per CPU unit detected by the optimizer, which is the number ofthreads each CPU can execute.
Type Integer
Values >=1 Detected number of logical cores per CPU unit.
Set by routines XPRSinit.
See also THREADS, CORESDETECTED, CPUSDETECTED, PHYSICALCORESDETECTED,

PHYSICALCORESPERCPUDETECTED.

Fair Isaac Corporation Confidential and Proprietary Information 508

Problem Attributes

CPUSDETECTED

Description Number of CPU units detected by the optimizer.
Type Integer
Values >=1 Detected number of CPU units.
Set by routines XPRSinit.
See also THREADS, CORESDETECTED, CORESPERCPUDETECTED, PHYSICALCORESDETECTED,

PHYSICALCORESPERCPUDETECTED.

CURRENTMEMORY

Description The amount of dynamically allocated heap memory by the problem being solved.
Type Integer
Note On 64bit systems this is a 64bit integer, use XPRSgetintattrib64 to retrieve its value.
See also PEAKMEMORY, CURRENTMEMORY, TOTALMEMORY

CURRENTNODE

Description The unique identifier of the current node in the tree search.
Type Integer
Note The root node is always identified as node 1.
Set by routines XPRSmipoptimize (MIPOPTIMIZE).
See also PARENTNODE.

CURRMIPCUTOFF

Description The current MIP cut off.
Type Double
Set by routines XPRSmipoptimize (MIPOPTIMIZE).
See also MIPABSCUTOFF.

Fair Isaac Corporation Confidential and Proprietary Information 509

Problem Attributes

CUTS

Description Number of cuts being added to the matrix.
Type Integer
Set by routines XPRSaddcuts, XPRSdelcpcuts, XPRSdelcuts, XPRSloadcuts, XPRSloadmodelcuts.

DUALINFEAS

Description Number of dual infeasibilities.
Type Integer
Note If the matrix is in a presolved state, this attribute returns the number of dual infeasibilities inthe presolved matrix. If you require the value for the original matrix, make sure you obtain thevalue when the matrix is not presolved. The PRESOLVESTATE attribute can be used to test ifthe matrix is presolved or not. See also 5.3.
Set by routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).
See also PRIMALINFEAS.

ELEMS

Description Number of matrix nonzeros (elements).
Type Integer
Note If the matrix is in a presolved state, this attribute returns the number of matrix nonzeros in the

presolved matrix. If you require the value for the original matrix, make sure you obtain thevalue when the matrix is not presolved. The PRESOLVESTATE attribute can be used to test ifthe matrix is presolved or not. See also 5.3.
Set by routines XPRSloadglobal, XPRSloadlp, XPRSloadqglobal, XPRSloadqp, XPRSlpoptimize(LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE), XPRSreadprob.

ERRORCODE

Description The most recent Optimizer error number that occurred. This is useful to determine the preciseerror or warning that has occurred, after an Optimizer function has signalled an error byreturning a non-zero value. The return value itself is not the error number. Refer to the section11.2 for a list of possible error numbers, the errors and warnings that they indicate, and adviceon what they mean and how to resolve them. A short error message may be obtained using
XPRSgetlasterror, and all messages may be intercepted using the user output callbackfunction; see XPRSaddcbmessage.

Fair Isaac Corporation Confidential and Proprietary Information 510

Problem Attributes

Type Integer
Set by routines Any.

GENCONCOLS

Description Number of input variables in general constraints in the problem.
Type Integer
Note The total number of input variables in MIN/MAX/AND/OR/ABS constraints in the problem.
Set by routines XPRSaddgencons

GENCONS

Description Number of general constraints in the problem.
Type Integer
Note The total number of MIN/MAX/AND/OR/ABS constraints in the problem.
Set by routines XPRSaddgencons

GENCONVALS

Description Number of constant values in general constraints in the problem.
Type Integer
Note The total number of constant values in MIN/MAX constraints in the problem.
Set by routines XPRSaddgencons

GLOBALFILESIZE

Description The allocated size of the global file, in megabytes. Because data can be removed from theglobal file during the branch and bound search, the size of the global file is usually greaterthan the amount of data currently within it (represented by the GLOBALFILEUSAGE attribute).
Type Integer
See also GLOBALFILEUSAGE.

Fair Isaac Corporation Confidential and Proprietary Information 511

Problem Attributes

GLOBALFILEUSAGE

Description The number of megabytes of data from the branch-and-bound tree that have been saved tothe global file. Note that the actual allocated size of the global file (represented by the
GLOBALFILESIZE control) may be greater than this value.

Type Integer
Set by routines XPRSmipoptimize (MIPOPTIMIZE).
See also GLOBALFILESIZE, GLOBALFILEBIAS, TREEMEMORYLIMIT.

INDICATORS

Description Number of indicator constrains in the problem.
Type Integer
Note When the matrix is in a presolved state, the indicator constraints are stored in a special pooland not part of the matrix. Otherwise the indicator constraints are rows of the matrix and theirdetails can be retrieved with the XPRSgetindicators function. The PRESOLVESTATEattribute can be used to test if the matrix is presolved or not. See also 5.3.
Set by routines XPRSsetindicators, XPRSdelindicators, XPRSreadprob.

LPOBJVAL

Description Value of the objective function of the last LP solved.
Type Double
Set by routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).
See also MIPOBJVAL, OBJRHS.

LPSTATUS

Description LP solution status.
Type Integer

Fair Isaac Corporation Confidential and Proprietary Information 512

Problem Attributes

Values 0 Unstarted (XPRS_LP_UNSTARTED).
1 Optimal (XPRS_LP_OPTIMAL).
2 Infeasible (XPRS_LP_INFEAS).
3 Objective worse than cutoff (XPRS_LP_CUTOFF).
4 Unfinished (XPRS_LP_UNFINISHED).
5 Unbounded (XPRS_LP_UNBOUNDED).
6 Cutoff in dual (XPRS_LP_CUTOFF_IN_DUAL).
7 Problem could not be solved due to numerical issues. (XPRS_LP_UNSOLVED).
8 Problem contains quadratic data, which is not convex (XPRS_LP_NONCONVEX).

Note The possible return values are defined as constants in the Optimizer C header file and VB .basfile.
Set by routines XPRSlpoptimize (LPOPTIMIZE).
See also MIPSTATUS.

MATRIXNAME

Description The matrix name.
Type String
Note This is the name read from the MATRIX field in an MPS matrix, and is not related to theproblem name used in the Optimizer. Use XPRSgetprobname to get the problem name.
Set by routines XPRSreadprob, XPRSsetprobname.

MAXABSDUALINFEAS

Description Maximum calculated absolute dual infeasibility in the unscaled original problem.
Type Double
Set by routines XPRSlpoptimize, XPRSmipoptimize.

MAXABSPRIMALINFEAS

Description Maximum calculated absolute primal infeasibility in the unscaled original problem.
Type Double
Set by routines XPRSlpoptimize, XPRSmipoptimize, XPRSrefinemipsol.

Fair Isaac Corporation Confidential and Proprietary Information 513

Problem Attributes

MAXKAPPA

Description Largest basis condition number (also known as kappa) calculated through all nodes sampledby MIPKAPPAFREQ.
Type Double
Set by routines XPRSmipoptimize.
See also MIPKAPPAFREQ.

MAXMIPINFEAS

Description Maximum integer fractionality in the solution.
Type Double
Set by routines XPRSmipoptimize.

MAXPROBNAMELENGTH

Description Maximum size of the problem name and also the maximum allowed length of the file or pathstring for any function that accepts such an argument.
Type Integer
Set by routines XPRSgetprobname, XPRSsetprobname.

MAXRELDUALINFEAS

Description Maximum calculated relative dual infeasibility in the unscaled original problem.
Type Double
Set by routines XPRSlpoptimize, XPRSmipoptimize.

MAXRELPRIMALINFEAS

Description Maximum calculated relative primal infeasibility in the unscaled original problem.
Type Double
Set by routines XPRSlpoptimize, XPRSmipoptimize.

Fair Isaac Corporation Confidential and Proprietary Information 514

Problem Attributes

MIPBESTOBJVAL

Description Objective function value of the best integer solution found.
Type Double
Set by routines XPRSmipoptimize (MIPOPTIMIZE).
See also MIPOBJVAL.

MIPENTS

Description Number of global entities (i.e. binary, integer, semi-continuous, partial integer, andsemi-continuous integer variables) but excluding the number of special ordered sets.
Type Integer
Note If the matrix is in a presolved state, this attribute returns the number of global entities in the

presolved matrix. If you require the value for the original matrix, make sure you obtain thevalue when the matrix is not presolved. The PRESOLVESTATE attribute can be used to test ifthe matrix is presolved or not. See also 5.3.
Set by routines XPRSaddcols, XPRSchgcoltype, XPRSdelcols, XPRSloadglobal, XPRSloadqglobal,

XPRSreadprob.
See also SETS.

MIPINFEAS

Description Number of integer infeasibilities, including violations of special ordered sets, at the currentnode.
Type Integer
Set by routines XPRSmipoptimize (MIPOPTIMIZE).
See also PRIMALINFEAS.

MIPOBJVAL

Description Objective function value of the last integer solution found.
Type Double
Set by routines XPRSmipoptimize (MIPOPTIMIZE).
See also MIPBESTOBJVAL.

Fair Isaac Corporation Confidential and Proprietary Information 515

Problem Attributes

MIPSOLNODE

Description Node at which the last integer feasible solution was found.
Type Integer
Set by routines XPRSmipoptimize (MIPOPTIMIZE).

MIPSOLS

Description Number of integer solutions that have been found.
Type Integer
Set by routines XPRSmipoptimize (MIPOPTIMIZE).

MIPSTATUS

Description Global (MIP) solution status.
Type Integer
Values 0 Problem has not been loaded (XPRS_MIP_NOT_LOADED).

1 Global search incomplete - the initial continuous relaxation has not been solved andno integer solution has been found (XPRS_MIP_LP_NOT_OPTIMAL).
2 Global search incomplete - the initial continuous relaxation has been solved and nointeger solution has been found (XPRS_MIP_LP_OPTIMAL).
3 Global search incomplete - no integer solution found (XPRS_MIP_NO_SOL_FOUND).
4 Global search incomplete - an integer solution has been found(XPRS_MIP_SOLUTION).
5 Global search complete - no integer solution found (XPRS_MIP_INFEAS).
6 Global search complete - integer solution found (XPRS_MIP_OPTIMAL).
7 Global search incomplete - the initial continuous relaxation was found to beunbounded. A solution may have been found (XPRS_MIP_UNBOUNDED).

Note The possible return values are defined as constants in the Optimizer C header file and VB .basfile.
Set by routines XPRSmipoptimize (MIPOPTIMIZE).
See also LPSTATUS.

MIPTHREADID

Description The ID for the MIP thread.

Fair Isaac Corporation Confidential and Proprietary Information 516

Problem Attributes

Type Integer
Note The first MIP thread has ID 0 and is the same as the main thread. All other threads are newthreads and are destroyed when the global search is halted.
Set by routines XPRSmipoptimize (MIPOPTIMIZE).
See also MIPTHREADS.

NAMELENGTH

Description The length (in 8 character units) of row and column names in the matrix. To allocate acharacter array to store names, you must allow 8⁎NAMELENGTH+1 characters per name (the
+1 allows for the string terminator character).

Type Integer
Set by routines XPRSloadglobal, XPRSloadlp, XPRSloadqglobal, XPRSloadqp, XPRSreadprob.

NODEDEPTH

Description Depth of the current node.
Type Integer
Set by routines XPRSmipoptimize (MIPOPTIMIZE).

NODES

Description Number of nodes solved so far in the global search. A node is counted as solved when it iseither dropped or branched on.
Type Integer
Note The root node has depth 1.
Set by routines XPRSmipoptimize (MIPOPTIMIZE).

NUMIIS

Description Number of IISs found.
Type Integer
Set by routines IIS, XPRSiisfirst, XPRSiisnext, XPRSiisall.

Fair Isaac Corporation Confidential and Proprietary Information 517

Problem Attributes

OBJNAME

Description Active objective function row name.
Type String
Set by routines XPRSreadprob.

OBJRHS

Description Fixed part of the objective function.
Type Double
Note If the matrix is in a presolved state, this attribute returns the fixed part of the objective in the

presolved matrix. If you require the value for the original matrix, make sure you obtain thevalue when the matrix is not presolved. The PRESOLVESTATE attribute can be used to test ifthe matrix is presolved or not. See also 5.3. If an MPS file contains an objective functioncoefficient in the RHS then the negative of this will become OBJRHS.
Set by routines XPRSchgobj.
See also LPOBJVAL.

OBJSENSE

Description Sense of the optimization being performed.
Type Double
Values -1.0 For maximization problems.

1.0 For minimization problems.
Note The objective sense of a problem can be changed using XPRSchgobjsense.
Set by routines XPRSchgobjsense (CHGOBJSENSE).

ORIGINALCOLS

Description Number of columns (i.e. variables) in the original matrix before presolving.
Type Integer
Note If you require the value for the presolved matrix then use the COLS attribute.
Set by routines XPRSloadglobal, XPRSloadlp, XPRSloadqglobal, XPRSloadqp, XPRSreadprob.

Fair Isaac Corporation Confidential and Proprietary Information 518

Problem Attributes

ORIGINALGENCONS

Description Number of general constraints in the original problem before presolving.
Type Integer
Note If you require the value for the presolved problem then use the GENCONS attribute.
Set by routines XPRSaddgencons.

ORIGINALGENCONCOLS

Description Number of input variables in general constraints in the original problem before presolving.
Type Integer
Note If you require the value for the presolved problem then use the GENCONCOLS attribute.
Set by routines XPRSaddgencons.

ORIGINALGENCONVALS

Description Number of constant values in general constraints in the original problem before presolving.
Type Integer
Note If you require the value for the presolved problem then use the GENCONVALS attribute.
Set by routines XPRSaddgencons.

ORIGINALINDICATORS

Description Number of indicator constraints in the original matrix before presolving.
Type Integer
Note If you require the value for the presolved matrix then use the INDICATORS attribute.
Set by routines XPRSloadglobal, XPRSloadlp, XPRSloadqglobal, XPRSloadqp, XPRSreadprob.

ORIGINALMIPENTS

Description Number of global entities (i.e. binary, integer, semi-continuous, partial integer, andsemi-continuous integer variables) but excluding the number of special ordered sets in theoriginal matrix before presolving.

Fair Isaac Corporation Confidential and Proprietary Information 519

Problem Attributes

Type Integer
Note If you require the value for the presolved matrix then use the MIPENTS attribute. .
Set by routines XPRSloadglobal, XPRSloadlp, XPRSloadqglobal, XPRSloadqp, XPRSreadprob.

ORIGINALPWLS

Description Number of piecewise linear constraints in the original problem before presolving.
Type Integer
Note If you require the value for the presolved problem then use the PWLCONS attribute.
Set by routines XPRSaddpwlcons.

ORIGINALPWLPOINTS

Description Number of breakpoints of piecewise linear constraints in the original problem beforepresolving.
Type Integer
Note If you require the value for the presolved problem then use the PWLPOINTS attribute.
Set by routines XPRSaddpwlcons.

ORIGINALQCONSTRAINTS

Description Number of rows with quadratic coefficients in the original matrix before presolving.
Type Integer
Note If you require the value for the presolved matrix then use the QCONSTRAINTS attribute.
Set by routines XPRSloadglobal, XPRSloadlp, XPRSloadqglobal, XPRSloadqp, XPRSreadprob.

ORIGINALQCELEMS

Description Number of quadratic row coefficients in the original matrix before presolving.
Type Integer
Note If you require the value for the presolved matrix then use the QCELEMS attribute.
Set by routines XPRSloadglobal, XPRSloadlp, XPRSloadqglobal, XPRSloadqp, XPRSreadprob.

Fair Isaac Corporation Confidential and Proprietary Information 520

Problem Attributes

ORIGINALQELEMS

Description Number of quadratic elements in the original matrix before presolving.
Type Integer
Note If you require the value for the presolved matrix then use the QELEMS attribute.
Set by routines XPRSloadglobal, XPRSloadlp, XPRSloadqglobal, XPRSloadqp, XPRSreadprob.

ORIGINALSETMEMBERS

Description Number of variables within special ordered sets (set members) in the original matrix beforepresolving.
Type Integer
Note If you require the value for the presolved matrix then use the SETMEMBERS attribute.
Set by routines XPRSloadglobal, XPRSloadlp, XPRSloadqglobal, XPRSloadqp, XPRSreadprob.

ORIGINALSETS

Description Number of special ordered sets in the original matrix before presolving.
Type Integer
Note If you require the value for the presolved matrix then use the SETS attribute.
Set by routines XPRSloadglobal, XPRSloadlp, XPRSloadqglobal, XPRSloadqp, XPRSreadprob.

ORIGINALROWS

Description Number of rows (i.e. constraints) in the original matrix before presolving.
Type Integer
Note If you require the value for the presolved matrix then use the ROWS attribute.
Set by routines XPRSaddrows, XPRSdelrows, XPRSloadglobal, XPRSloadlp, XPRSloadqglobal,

XPRSloadlp, XPRSreadprob.

Fair Isaac Corporation Confidential and Proprietary Information 521

Problem Attributes

PARENTNODE

Description The parent node of the current node in the tree search.
Type Integer
Set by routines XPRSmipoptimize (MIPOPTIMIZE).

PEAKMEMORY

Description An estimate of the peak amount of dynamically allocated heap memory by the problem.
Type Integer
Note On 64bit systems this is a 64bit integer, use XPRSgetintattrib64 to retrieve its value.
See also CURRENTMEMORY,SYSTEMMEMORY

PEAKTOTALTREEMEMORYUSAGE

Description The peak size, in megabytes, that the branch-and-bound search tree reached during the solve.Note that this value will include the uncompressed size of any compressed data and the sizeof any data saved to the global file.
Type Integer
Set by routines XPRSmipoptimize.
See also TREEMEMORYUSAGE.

PENALTYVALUE

Description The weighted sum of violations in the solution to the relaxed problem identified by theinfeasibility repair function.
Type Double
Set by routines XPRSrepairinfeas (REPAIRINFEAS), XPRSrepairweightedinfeas.

PHYSICALCORESDETECTED

Description The total number of physical cores across all CPUs detected by the optimizer.
Type Integer

Fair Isaac Corporation Confidential and Proprietary Information 522

Problem Attributes

Values >=1 Detected number of physical cores.
Set by routines XPRSinit.
See also CORESDETECTED, CORESPERCPUDETECTED, CPUSDETECTED,

PHYSICALCORESPERCPUDETECTED.

PHYSICALCORESPERCPUDETECTED

Description The number of physical cores per CPU detected by the optimizer.
Type Integer
Values >=1 Detected number of physical cores per CPU.
Set by routines XPRSinit.
See also CORESDETECTED, CORESPERCPUDETECTED, CPUSDETECTED,

PHYSICALCORESPERCPUDETECTED.

PREDICTEDATTLEVEL

Description A measure between 0 and 1 to predict how numerically unstable the current MIP solve can beexpected to be. After the root LP solve, a machine learning model is used to predict the actual
ATTENTIONLEVEL which will only be computed if MIPKAPPAFREQ is set to a nonzero value.If the predicted attention level exceeds a value of 0.1, a message will be printed to the log.

Type Double
Set by routines XPRSmipoptimize.
See also ATTENTIONLEVEL, MAXKAPPA.

PRESOLVEINDEX

Description Presolve: The row or column index on which presolve detected a problem to be infeasible orunbounded.
Type Integer
Note Row indices are in the range 0 to ROWS-1, and column indices are in the range

ROWS+SPAREROWS to ROWS+SPAREROWS+COLS-1.
Set by routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

Fair Isaac Corporation Confidential and Proprietary Information 523

Problem Attributes

PRESOLVESTATE

Description Problem status as a bit map.
Type Integer
Values Bit Meaning

0 Problem has been loaded.
1 Problem has been LP presolved.
2 Problem has been MIP presolved.
7 Solution in memory is valid.

Note Other bits are reserved.
Set by routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

PRIMALDUALINTEGRAL

Description Value of the primal-dual integral.
Type Double
Note This attribute represents the integral of the primal-dual gap over time. It measures theconvergence of the best (dual) bound BESTBOUND and the primal bound MIPBESTOBJVALover the whole solving time. Lower values are better. For details on the primal(-dual) integralsee Berthold: Measuring the impact of primal heuristics, OR Letters 41(6), pp. 611-614, 2013.
Set by routines XPRSmipoptimize (MIPOPTIMIZE).
See also BESTBOUND, MIPBESTOBJVAL.

PRIMALINFEAS

Description Number of primal infeasibilities.
Type Integer
Note If the matrix is in a presolved state, this attribute returns the number of primal infeasibilities inthe presolved matrix. If you require the value for the original matrix, make sure you obtain thevalue when the matrix is not presolved. The PRESOLVESTATE attribute can be used to test ifthe matrix is presolved or not. See also 5.3.
Set by routines XPRSlpoptimize (LPOPTIMIZE).
See also SUMPRIMALINF, DUALINFEAS, MIPINFEAS.

Fair Isaac Corporation Confidential and Proprietary Information 524

Problem Attributes

PWLCONS

Description Number of piecewise linear constraints in the problem.
Type Integer
Set by routines XPRSaddpwlcons

PWLPOINTS

Description Number of breakpoints of piecewise linear constraints in the problem.
Type Integer
Note The total number of breakpoints over all piecewise linear constraints.
Set by routines XPRSaddpwlcons

QCELEMS

Description Number of quadratic row coefficients in the matrix.
Type Integer
Note If the matrix is in a presolved state, this attribute returns the number of quadratic rowcoefficients in the presolved matrix.
Set by routines XPRSaddqmatrix, XPRSchgqrowcoeff, XPRSgetqrowqmatrixtriplets,

XPRSloadqcqp.

QCONSTRAINTS

Description Number of rows with quadratic coefficients in the matrix.
Type Integer
Note If the matrix is in a presolved state, this attribute returns the number of rows with quadraticcoefficients in the presolved matrix.
Set by routines XPRSaddqmatrix, XPRSchgqrowcoeff, XPRSgetqrowqmatrixtriplets,

XPRSloadqcqp.

Fair Isaac Corporation Confidential and Proprietary Information 525

Problem Attributes

QELEMS

Description Number of quadratic elements in the matrix.
Type Integer
Note If the matrix is in a presolved state, this attribute returns the number of quadratic elements inthe presolved matrix. If you require the value for the original matrix, make sure you obtain thevalue when the matrix is not presolved. The PRESOLVESTATE attribute can be used to test ifthe matrix is presolved or not. See also 5.3.
Set by routines XPRSchgmqobj, XPRSchgqobj, XPRSloadqglobal, XPRSloadqp.

RANGENAME

Description Active range name.
Type String
Set by routines XPRSreadprob.

RHSNAME

Description Active right hand side name.
Type String
Set by routines XPRSreadprob.

ROWS

Description Number of rows (i.e. constraints) in the matrix.
Type Integer
Note If the matrix is in a presolved state, this attribute returns the number of rows in the presolvedmatrix. If you require the value for the original matrix then use the ORIGINALROWS attributeinstead. The PRESOLVESTATE attribute can be used to test if the matrix is presolved or not.See also 5.3.
Set by routines XPRSaddrows, XPRSdelrows, XPRSloadglobal, XPRSloadlp, XPRSloadqglobal,

XPRSloadlp, XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE),
XPRSreadprob.

Fair Isaac Corporation Confidential and Proprietary Information 526

Problem Attributes

SIMPLEXITER

Description Number of simplex iterations performed.
Type Integer
Set by routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

SETMEMBERS

Description Number of variables within special ordered sets (set members) in the matrix.
Type Integer
Note If the matrix is in a presolved state, this attribute returns the number of variables withinspecial ordered sets in the presolved matrix. If you require the value for the original matrix,make sure you obtain the value when the matrix is not presolved. The PRESOLVESTATEattribute can be used to test if the matrix is presolved or not. See also 5.3.
Set by routines XPRSloadglobal, XPRSloadqglobal, XPRSreadprob.
See also SETS.

SETS

Description Number of special ordered sets in the matrix.
Type Integer
Note If the matrix is in a presolved state, this attribute returns the number of special ordered sets inthe presolved matrix. If you require the value for the original matrix, make sure you obtain thevalue when the matrix is not presolved. The PRESOLVESTATE attribute can be used to test ifthe matrix is presolved or not. See also 5.3.
Set by routines XPRSloadglobal, XPRSloadqglobal, XPRSreadprob.
See also SETMEMBERS, MIPENTS.

SPARECOLS

Description Number of spare columns in the matrix.
Type Integer
Set by routines XPRSloadglobal, XPRSloadlp, XPRSloadqglobal, XPRSloadqp, XPRSreadprob.

Fair Isaac Corporation Confidential and Proprietary Information 527

Problem Attributes

SPAREELEMS

Description Number of spare matrix elements in the matrix.
Type Integer
Set by routines XPRSloadglobal, XPRSloadlp, XPRSloadqglobal, XPRSloadqp, XPRSreadprob.

SPAREMIPENTS

Description Number of spare global entities in the matrix.
Type Integer
Set by routines XPRSloadglobal, XPRSloadlp, XPRSloadqglobal, XPRSloadqp, XPRSreadprob.

SPAREROWS

Description Number of spare rows in the matrix.
Type Integer
Set by routines XPRSloadglobal, XPRSloadlp, XPRSloadqglobal, XPRSloadqp, XPRSreadprob.

SPARESETELEMS

Description Number of spare set elements in the matrix.
Type Integer
Set by routines XPRSloadglobal, XPRSloadlp, XPRSloadqglobal, XPRSloadqp, XPRSreadprob.

SPARESETS

Description Number of spare sets in the matrix.
Type Integer
Set by routines XPRSloadglobal, XPRSloadlp, XPRSloadqglobal, XPRSloadqp, XPRSreadprob.

Fair Isaac Corporation Confidential and Proprietary Information 528

Problem Attributes

STOPSTATUS

Description Status of the optimization process.
Type Integer
Note Possible values are:

Value Description
XPRS_STOP_NONE no interruption - the solve completed normally
XPRS_STOP_TIMELIMIT time limit hit
XPRS_STOP_CTRLC control C hit
XPRS_STOP_NODELIMIT node limit hit
XPRS_STOP_ITERLIMIT iteration limit hit
XPRS_STOP_MIPGAP MIP gap is sufficiently small
XPRS_STOP_SOLLIMIT solution limit hit
XPRS_STOP_USER user interrupt.

Set by routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

SUMPRIMALINF

Description Scaled sum of primal infeasibilities.
Type Double
Note If the matrix is in a presolved state, this attribute returns the scaled sum of primalinfeasibilities in the presolved matrix. If you require the value for the original matrix, makesure you obtain the value when the matrix is not presolved. The PRESOLVESTATE attributecan be used to test if the matrix is presolved or not. See also 5.3.
Set by routines XPRSlpoptimize (LPOPTIMIZE).
See also PRIMALINFEAS.

SYSTEMMEMORY

Description The amount of non problem specific memory used by the solver.
Type Integer
Note On 64bit systems this is a 64bit integer, use XPRSgetintattrib64 to retrieve its value.
See also CURRENTMEMORY, PEAKMEMORY

Fair Isaac Corporation Confidential and Proprietary Information 529

Problem Attributes

TIME

Description Time spent solving the problem as measured by the optimizer.
Type Integer
Set by routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

TOTALMEMORY

Description The amount of dynamically allocated heap memory by the optimizer, including all problemscurrently exsisting.
Type Integer
Note On 64bit systems this is a 64bit integer, use XPRSgetintattrib64 to retrieve its value.
See also PEAKMEMORY, CURRENTMEMORY

TREECOMPLETION

Description Estimation of the relative completion of the search tree as fraction between 0 and 1. Itsaccuracy mainly depends on the level of degeneracy of a problem and the balancedness ofthe search tree.
Type Double
Set by routines XPRSmipoptimize (MIPOPTIMIZE).

TREEMEMORYUSAGE

Description The amount of physical memory, in megabytes, currently being used to store thebranch-and-bound search tree.
Type Integer
Set by routines XPRSmipoptimize (MIPOPTIMIZE).
See also TREEMEMORYLIMIT, GLOBALFILEUSAGE.

TREERESTARTS

Description Number of in-tree restarts performed.

Fair Isaac Corporation Confidential and Proprietary Information 530

Problem Attributes

Type Integer
Set by routines XPRSmipoptimize (MIPOPTIMIZE).

UUID

Description Universally Unique Identifier for the problem instance.
Type String

XPRESSVERSION

Description The Xpress verion number.
Type String
Note The version number of Xpress.

Fair Isaac Corporation Confidential and Proprietary Information 531

CHAPTER 11

Return Codes and Error Messages

11.1 Optimizer Return Codes

The table below shows the possible return codes from the subroutine library functions. See also the**MIP Solution Pool Reference Manual** for MIP Solution Pool Errors.
Return Code Description
0 Subroutine completed successfully.
1a Bad input encountered.
2a Bad or corrupt file - unrecoverable.
4a Memory error.
8a Corrupt use.
16a Program error.
32 Subroutine not completed successfully, possibly due to invalid argument.
128 Too many users.
a - Unrecoverable error.

When the Optimizer terminates after the STOP command, it may set an exit code that can be tested bythe operating system or by the calling program. The exit code is set as follows:
Return Code Description
0 Program terminated normally (with STOP).
63 LP optimization unfinished.
64 LP feasible and optimal.
65 LP infeasible.
66 LP unbounded.
67 IP optimal solution found.
68 IP search incomplete but an IP solution has been found.
69 IP search incomplete, no IP solution found.
70 IP infeasible.
99 LP optimization not started.
255 Xpress Optimizer has not been initialized.

Fair Isaac Corporation Confidential and Proprietary Information 532

Return Codes and Error Messages

11.2 Optimizer Error and Warning Messages

Following a premature exit, the Optimizer can be interrogated as necessary to obtain more informationabout the specific error or warning which occurred. Library users may return a description of errors orwarnings as they are encountered using the function XPRSgetlasterror. This function returnsinformation related to the error code, held in the problem attribute ERRORCODE. For Console users thevalue of this attribute is output to the screen as errors or warnings are encountered. For Library users itmust be retrieved using:
XPRSgetintattrib(prob,XPRS_ERRORCODE,&errorcode);

The following list contains values of ERRORCODE and a possible resolution of the error or warning.
3 Extension not allowed - ignored.

The specified extension is not allowed. The Optimizer ignores the extension and truncates thefilename.
4 Column <col> has no upper bound.

Column <col> cannot be at its upper bound in the supplied basis since it does not have one. Anew basis will be created internally where column <col> will be at its lower bound while the restof the columns and rows maintain their basic/non-basic status.
5 Error on .<ext> file.

An error has occurred on the . <ext> file. Please make sure that there is adequate disk space forthe file and that it has not become corrupted.
6 No match for column <col> in matrix.

Column <col> has not been defined in the COLUMNS section of the matrix and cannot be used insubsequent sections. Please check that the spelling of <col> is correct and that it is not writtenoutside the field reserved for column names.
7 Empty matrix. Please increase EXTRAROWS.

There are too few rows or columns. Please increase EXTRAROWS before input, or make surethere is at least one row in your matrix and try to read it again.
9 Error on read of basis file.

The basis file .BSS is corrupt. Please make sure that there is adequate disk space for the fileand that it has not been corrupted.
11 Not allowed - solution not optimal.

The operation you are trying to perform is not allowed unless the solution is optimal. Please call
XPRSmaxim (MAXIM) or XPRSminim (MINIM) to optimize the problem and make sure theprocess is completed. If the control LPITERLIMIT has been set, make sure that the optimalsolution can be found within the maximum number of iterations allowed.

18 Bound conflict for column <col>.
Specified upper bound for column <col> is smaller that the specified lower bound. Pleasechange one or both bounds to solve the conflict and try again.

19 Eta overflow straight after invert - unrecoverable.
There is not enough memory for eta arrays. Either increase the virtual paging space or thephysical memory.

Fair Isaac Corporation Confidential and Proprietary Information 533

Return Codes and Error Messages

20 Insufficient memory for array <array>.
There is not enough memory for an internal data structure. Either increase the virtual pagingspace or the physical memory.

21 Unidentified section The command is not recognized by the Optimizer.
Please check the spelling and try again. Please refer to the Reference Manual for a list of validcommands.

29 Input aborted.
Input has encountered too many problems in reading your matrix and it has been aborted. Thismessage will be preceded by other error messages whose error numbers will give informationabout the nature of each of the problems. Please correct all errors and try again.

36 Linear Optimizer only
You are only authorized to use the Linear Optimizer. Please contact your local sales office todiscuss upgrading to the IP Optimizer if you wish to use this command.

38 Invalid option.
One of the options you have specified is incorrect. Please check the input option and retype thecommand. A list of valid options for each command can be found in 8.

41 Global error - contact the Xpress support team.
Internal error. Please contact your local support office.

45 Failure to open global file - aborting. (Perhaps disk is full).
The Optimizer cannot open the .GLB file. This usually occurs when your disk is full. If this is notthe case it means that the .GLB file has been corrupted.

50 Inconsistent basis.
Internal basis held in memory has been corrupted. Please contact your local support office.

52 Too many nonzero elements.
The number of matrix elements exceeds the maximum allowed. If you have the Hyper versionthen increase your virtual page space or physical memory. If you have purchased any otherversion of the software please contact your local sales office to discuss upgrading if you wish toread matrices with this number of elements.

56 Reference row entries too close for set <set> member <col>.
The coefficient of column <col> in the constraint being used as reference row for set <set> is tooclose to the coefficient of some other column in the reference row. Please make sure thecoefficients in the reference row differ enough from one another. One way of doing this is tocreate a non computational constraint (N type) that contains all the variables members of the set<set> and then assign coefficients whose distance from each other is of at least 1 unit.

58 Duplicate element for column <col> row <row>.
The coefficient for column <col> appears more than once in row <row>. The elements are addedtogether but please make sure column <col> only has one coefficient in <row> to avoid thiswarning message.

61 Unexpected EOF on workfile.
An internal workfile has been corrupted. Please make sure that there is adequate disk space andtry again. If the problem persists please contact your local support office.

64 Error closing file <file>.
The Optimizer could not close file <file>. Please make sure that the file exists and that it is notbeing used by another application.

Fair Isaac Corporation Confidential and Proprietary Information 534

Return Codes and Error Messages

65 Fatal error on read from workfile <file> - program aborted.
An internal workfile has been corrupted. Please make sure that your disk has enough space andtry again. If the problem persists please contact your local support office.

66 Unable to open file <file>.
The Optimizer has failed to open the file <file>. Please make sure that the file exists and there isadequate disk space.

67 Error on read of file <file>.
The Optimizer has failed to read the file <file>. Please make sure that the file exists and that ithas not been corrupted.

71 Not a basic vector: <vector>.
Dual value of row or column <vector> cannot be analyzed because the vector is not basic.

72 Not a non-basic vector: <vector>.
Activity of row or column <vector> cannot be analyzed because the vector is basic.

73 Problem has too many rows. The maximum is <num>.
The Optimizer cannot input your problem since the number of rows exceeds <num>, themaximum allowed. If you have purchased any other than the Hyper version of the softwareplease contact your local sales office to discuss upgrading it to solve larger problems.

76 Illegal priority: entity <ent> value <num>.
Entity <ent> has been assigned an invalid priority value of <num> in the directives files and thispriority will be ignored. Please make sure that the priority value lies between 0 and 1000 and thatit is written inside the corresponding field in the .DIR file.

77 Illegal set card <line>.
The set definition in line <line> of the .MAT or .MPS file creates a conflict. Please make sure thatthe set has a correct type and has not been already defined. Please refer to the ReferenceManual for a list of valid set types.

80 File creation error.
The Optimizer cannot create a file. Please make sure that these is adequate disk space and thatthe volume is not corrupt.

81 Fatal error on write to workfile <file> - program aborted.
The Optimizer cannot write to the file <file>. Please make sure that there is adequate disk spaceand that the volume is not corrupt.

83 Fatal error on write to file - program aborted.
The Optimizer cannot write to an internal file. Please make sure that there is adequate diskspace and that the volume is not corrupt.

84 Input line too long. Maximum line length is <num>
A line in the .MAT or .MPS file has been found to be too long. Please reduce the length to be lessor equal than <num> and input again.

85 File not found: <file>.
The Optimizer cannot find the file <file>. Please check the spelling and that the file exists. If thisfile has to be created by the Optimizer, make sure that the process which creates the file hasbeen performed.

Fair Isaac Corporation Confidential and Proprietary Information 535

Return Codes and Error Messages

89 No optimization has been attempted.
The operation you are trying to perform is not allowed unless the solution is optimal. Please call
XPRSmaxim (MAXIM) or XPRSminim (MINIM) to optimize the problem and make sure theprocess is completed. If you have set the control
LPITERLIMITmake sure that the optimal solution can be found within the maximum number ofiterations allowed.

91 No problem has been input.
An operation has been attempted that requires a problem to have been input. Please make surethat XPRSreadprob (READPROB) is called and that the problem has been loaded successfullybefore trying again.

97 Split vector <vector>.
The declaration of column <vector> in the COLUMN section of the .MAT or .MPS file must bedone in contiguous line. It is not possible to interrupt the declaration of a column with linescorresponding to a different vector.

98 At line <num> no match for row <row>.
A non existing row <row> is being used at line number <num> of the .MAT or .MPS file. Pleasecheck spelling and make sure that <row> is defined in the ROWS section.

102 Eta file space exceeded - optimization aborted.
The Optimizer requires more memory. Please increase your virtual paging space or physicalmemory and try to optimize again.

107 Too many global entities at column <col>.
The Optimizer cannot input your problem since the number of global entities exceeds themaximum allowed. If you have the Hyper version then increase your virtual page space orphysical memory. If you have purchased any other version of the software please contact yourlocal sales office to discuss upgrading it to solve larger problems.

111 Duplicate row <row> - ignored.
Row <row> is used more than once in the same section. Only the first use is kept andsubsequent ones are ignored.

112 Postoptimal analysis not permitted on presolved problems.
Re-optimize with PRESOLVE = 0. An operation has been attempted on the presolved problem.Please optimize again calling XPRSmaxim (MAXIM), XPRSminim (MINIM) with the l flag orturning presolve off by setting PRESOLVE to 0.

113 Unable to restore version <ver> save files.
The svf file was created by a different version of the Optimizer and cannot be restored with thisversion.

114 Fatal error - pool hash table full at vector <vector>.
Internal error. Please contact your local support office.

120 Problem has too many rows and columns. The maximum is <num>
The Optimizer cannot input your problem since the number of rows plus columns exceeds themaximum allowed. If you have purchased any other than the Hyper version of the softwareplease contact your local sales office to discuss upgrading it to solver larger problems.

122 Corrupt solution file.
Solution file .SOL could not be accessed. Please make sure that there is adequate disk spaceand that the file is not being used by another process.

Fair Isaac Corporation Confidential and Proprietary Information 536

Return Codes and Error Messages

124 Invalid parameter value passed to <function>. Parameter value <param_name> is not allowed
A parameter lookup by name has failed. The provided parameter name does not match anyparameters in Xpress.

127 Not found: <vector>.
An attempt has been made to use a row or column <vector> that cannot be found in the problem.Please check spelling and try again.

128 Cannot load directives for problem with no global entities.
The problem does not have global entities and so directives cannot be loaded.

129 Access denied to problem state : ’<name>’ (<routine>).
The user is not licensed to have set or get access to problem control (or attribute) <name>. Theroutine used for access was <routine>.

130 Bound type illegal <type>.
Illegal bound type <type> has been used in the basis file .BSS. A new basis will be createdinternally where the column with the illegal bound type will be at its lower bound and the rest ofthe columns and rows will maintain their basic/non-basic status. Please check that you areusing XPRSreadbasis (READBASIS) with the t flag to read compact format basis.

131 No column: <col>.
Column <col> used in basis file .BSS does not exist in the problem. A new basis will be createdinternally from where column <col> will have been removed and the rest of columns and rowswill maintain their basic/non-basic status.

132 No row: <row>.
Row <row> used in basis file .BSS does not exist in the problem. A new basis will be createdinternally from where row <row> will have been removed and the rest of columns and rows willmaintain their basic/non-basic status.

136 Cannot access control <control_name> via attribute routine <function>
When accessing controls and attributes, the API function called must be matched appropriatelyto the type (double, int, string) and access type (control / attribute) of the parameter.

137 Bad internal state found in ‘Struct’ lookup : <parameter_table> (<parameter_name>)
A parameter provided could not be found in the parameters table. This is an internal error, pleasecontact FICO support.

140 Basis lost - recovering.
The number of rows in the problem is not equal to the number of basic rows + columns in theproblem, which means that the existing basis is no longer valid. This will be detected whenre-optimizing a problem that has been altered in some way since it was last optimized (seebelow). A correct basis is generated automatically and no action needs to be taken. The basiscan be lost in two ways: (1) if a row is deleted for which the slack is non-basic: the number ofrows will decrease by one, but the number of basic rows + columns will be unchanged. (2) if abasic column is deleted: the number of basic rows + columns will decrease by one, but thenumber of rows will be unchanged. You can avoid losing the basis by only deleting rows forwhich the slack is basic, and columns which are non-basic. (The XPRSgetbasis function canbe used to determine the basis status.) To delete a non-basic row without losing the basis, bringit into the basis first, and to delete a basic column without losing the basis, take it out of thebasis first - the functions XPRSgetpivots and XPRSpivotmay be useful here. However,remember that the message is only a warning and the Optimizer will generate a new basisautomatically if necessary.

Fair Isaac Corporation Confidential and Proprietary Information 537

Return Codes and Error Messages

142 Type illegal <type>.
An illegal priority type <type> has been found in the directives file .DIR and will be ignored.Please refer to Appendix A for a description of valid priority types.

143 No entity <ent>.
Entity <ent> used in directives file .DIR cannot be found in the problem and its correspondingpriority will be ignored. Please check spelling and that the column <ent> is actually declared asan entity in the BOUNDS section or is a set member.

151 Illegal MARKER.
The line marking the start of a set of integer columns or a set of columns belonging to a SpecialOrdered Set in the .MPS file is incorrect.

152 Unexpected EOF.
The Optimizer has found an unexpected EOF marker character. Please check that the input file iscorrect and input again.

153 Illegal card at line <line>.
Line <line> of the .MPS file could not be interpreted. Please refer to the Reference Manual forinformation about the valid MPS format.

155 Cannot access control ’<id>’ via attribute routine <routine>.
Controls cannot be accessed from attribute access routines.

156 Cannot access attribute ’<id>’ via control routine <routine>.
Attributes cannot be accessed from control access routines.

157 Cannot access attribute <attribute_name> via control routine <routine>.
Attributes cannot be accessed from control access routines.

158 Unrecognized callback name <callback> (<function>)
The callback name provided to the API function is not recognized.

159 Failed to set default controls.
Attempt failed to set controls to their defaults.

160 Cannot access <typename> type ’<id>’ via routine <routine>.
Accessing an attribute or control requires using a routine with matching type.

161 Cannot access <typename> type ’<name>’ via routine <routine>.
Accessing an attribute or control requires using a routine with matching type.

162 Recording and playback error : <info>.
An error occurred in the recording and playback tool.

163 Failed to copy controls.
Attempt failed to copy controls defined for one problem to another.

164 Problem is not presolved.
Action requires problem to be presolved and the problem is not presolved.

167 Failed to allocate memory of size <bytes> bytes.
The Optimizer failed to allocate required memory of size <bytes>.

168 Required resource not currently available : ’<name>’.
The resource <name> is required by an action but is unavailable.

Fair Isaac Corporation Confidential and Proprietary Information 538

Return Codes and Error Messages

169 Failed to create resource : ’<name>’.
The resource <name> failed to create.

170 Corrupt global file.
Global file .GLB cannot be accessed. Please make sure that there is adequate disk space andthat the file is not being used by another process.

171 Invalid row type for row <row>.
XPRSalter (ALTER) cannot change the row type of <row> because the new type is invalid.Please correct and try again.

173 Name not recognized : <name>.
The control name cannot be recognized.

178 Not enough spare rows to remove all violations.
The Optimizer could not add more cuts to the matrix because there is not enough space. Pleaseincrease EXTRAROWS before input to improve performance.

179 Load MIP solution failed : ’<status description>’.
Attempt failed to load MIP solution into the Optimizer. See <status description» for details of thefailure.

180 No change to this control allowed.
The Optimizer does not allow changes to this control. If you have the student version, pleasecontact your local sales office to discuss upgrading if you wish to change the value of controls.Otherwise check that the Optimizer was initialized properly and did not revert to student modebecause of a security problem.

181 Cannot alter bound on BV, SC, UI, PI, or set member.
XPRSalter (ALTER) cannot be used to change the upper or lower bound of a variable if itsvariable type is binary, semi-continuous, integer, partial integer, semi-continuous integer, or if it isa set member.

186 Inconsistent number of variables in problem.
A compact format basis is being read into a problem with a different number of variables thanthe one for which the basis was created.

187 Unable to restore alternative system <system> save files.
The svf file was created on a different operating system and cannot be restored on the currentsystem.

191 Solution in file ’<file>’ (rows:<nrow>, cols:<ncol>) not compatible with problem.
The size of the loaded problem is not compatible with problem size from the solution file.

192 Bad flags <flag string>.
A flag string passed into a command line call is invalid.

193 Possible unexpected results from XPRSreadbinsol (READBINSOL) : <message>.
A call to the XPRSreadbinsol (READBINSOL) may produce unexpected results. See<message> for details.

194 Failure writing to range file.
Failure writing to range file.

195 Cannot read LP solution into presolved problem.
An LP solution cannot be read into a problem in a presolved state.

Fair Isaac Corporation Confidential and Proprietary Information 539

Return Codes and Error Messages

197 Failed to register callback for event : ’<event>’.
Registering callback for an event failed.

199 Network simplex not authorized
The Optimizer cannot use the network algorithm. Please contact your local sales office toupgrade your authorization if you wish to use it.

202 Control parser: <error>.
A generic control parser error, for example a memory allocation failure.

243 The Optimizer requires a newer version of the XPRL library.
You are using the XPRS library from one Xpress distribution and the XPRS library from a previousXpress distribution. You should remove all other Xpress distributions from your system librarypath environment variable.

245 Not enough memory to presolve matrix.
The Optimizer required more memory to presolve the matrix. Please increase your virtual pagingspace or physical memory. If this is not possible try setting PRESOLVE to 0 before optimizing, sothat the presolve procedure is not performed.

247 Directive on non-global entity not allowed: <col>.
Column <col> used in directives file .DIR is not a global entity and its corresponding priority willbe ignored. A variable is a ’global entity’ it is type is not continuous or if it is a set member.Please refer to Appendix A for details about valid entities and set types.

249 Insufficient improvement found.
Insufficient improvement was found between barrier iterations which has caused the barrieralgorithm to terminate.

250 Too many numerical errors.
Too many numerical errors have been encountered by the barrier algorithm and this has causedthe barrier algorithm to terminate.

251 Out of memory.
There is not enough memory for the barrier algorithm to continue.

256 Simplex Optimizer only
The Optimizer can only use the simplex algorithm. Please contact your local sales office toupgrade your authorization if you wish to use this command.

257 Simplex Optimizer only
The Optimizer can only use the simplex algorithm. Please contact your local sales office toupgrade your authorization if you wish to use this command.

259 Warning: The Q matrix may not be semi-definite.
The Q matrix must be positive (negative) semi-definite for a minimization (maximization)problem in order for the problem to be convex. The barrier algorithm has encountered numericalproblems which indicate that the problem is not convex.

261 <ent> already declared as a global entity - old declaration ignored.
Entity <ent> has already been declared as global entity. The new declaration prevails and the olddeclaration prevails and the old declaration will be disregarded.

Fair Isaac Corporation Confidential and Proprietary Information 540

Return Codes and Error Messages

262 Unable to remove shift infeasibilities of &.
Perturbations to the right hand side of the constraints which have been applied to enableproblem to be solved cannot be removed. It may be due to round off errors in the input data or tothe problem being badly scaled.

263 The problem has been presolved.
The problem in memory is the presolved one. An operation has been attempted on the presolvedproblem. Please optimize again calling XPRSmaxim (MAXIM),
XPRSminim (MINIM) with the l flag or tuning presolve off by setting PRESOLVE to 0. If theoperation does not need to be performed on an optimized problem just load the problem again.

264 Not enough spare matrix elements to remove all violations.
The Optimizer could not add more cuts to the matrix because there is not enough space. Pleaseincrease EXTRAELEMS before input to improve performance.

266 Cannot read basis for presolved problem. Re-input matrix.
The basis cannot be read because the problem in memory is the presolved one. Please reloadthe problem with XPRSreadprob (READPROB) and try to read the basis again.

268 Cannot perform operation on presolved matrix. Please postsolve or re-input matrix.
The problem in memory is the presolved one. Please postsolve or reload the problem and try theoperation again.

279 The Optimizer has not been initialized.
The Optimizer could not be initialized successfully. Please initialize it before attempting anyoperation and try again.

287 Cannot read in directives after the problem has been presolved.
Directives cannot be read if the problem in memory is the presolved one. Please reload theproblem and read the directives file .DIR before optimizing. Alternatively, re-optimize using the
-l flag or set PRESOLVE to 0 and try again.

293 This license file does not specify the permitted problem size. Contact your vendor to obtain a
valid license.
The license file is invalid as it doesn’t specify the permitted problem size. Please contact yourlocal sales office.

302 Option must be C/c or O/o.
The only valid options for the type of goals are C, c, O and o. Any other answer will be ignored.

305 Row <row> (number <num>) is an N row.
Only restrictive rows, i.e. G, L, R or E type, can be used in this type of goal programming. Pleasechoose goal programming for objective functions when using N rows as goals.

306 Option must be MAX/max or MIN/min.
The only valid options for the optimization sense are MAX, max, MIN and min. Any other answerwill be ignored.

307 Option must be P/p or D/d.
The only valid options for the type of relaxation on a goal are P, p, D and d. Any other answer willbe ignored.

308 Row <row> (number <num>) is an unbounded goal.
Goal programming has found goal <row> to be unbounded and it will stop at this point. All goalswith a lower priority than <row> will be ignored.

Fair Isaac Corporation Confidential and Proprietary Information 541

Return Codes and Error Messages

309 Row <row> (number <num>) is not an N row.
Only N type rows can be selected as goals for this goal programming type. Please use goalprogramming for constraints when using rows whose type is not N.

310 Option must be A/a or P/p.
The only valid options for the type of goal programming are A, a, P and p. Any other answer willbe ignored.

314 Invalid number.
The input is not a number. Please check spelling and try again.

316 Not enough space to add deviational variables.
Increase EXTRACOLS before input. The Optimizer cannot find spare columns to sparedeviational variables. Please try increasing EXTRACOLS before input to at least twice the numberof constraint goals and try again.

318 Maximum number of allowed goals is 100.
Goal programming does not support more than 100 goals and will be interrupted.

319 No Optimizer license found. Please contact your vendor to obtain a license.
Your license does not authorize the direct use of the Optimizer. You probably have a license thatauthorizes other Xpress products, for example Mosel or BCL.

320 An internal error has occured. Please report to " SUPPORT_CONTACT_NAME " the circumstances
under which this happened.
An internal error has occured. Please report to " SUPPORT_CONTACT_NAME " thecircumstances under which this happened.

324 Not enough extra matrix elements to complete elimination phase.
Increase EXTRAPRESOLVE before input to improve performance. The elimination phaseperformed by the presolve procedure created extra matrix elements. If the number of suchelements is larger than allowed by the EXTRAPRESOLVE parameter, the elimination phase willstop. Please increase EXTRAPRESOLVE before loading the problem to improve performance.

326 Linear Optimizer only
You are not authorized to use the Quadratic Programming Optimizer. Please contact your localsales office to discuss upgrading to the QP Optimizer if you wish to use this command.

352 Command not authorized in this version.
There has been an attempt to use a command for which your Optimizer is not authorized. Pleasecontact your local sales office to upgrade your authorization if you wish to use this command.

361 QMATRIX or QUADOBJ section must be after COLUMN section.
Error in matrix file. Please make sure that the QMATRIX or QUADOBJ sections are after the
COLUMNS section and try again.

362 Duplicate elements not allowed in QUADOBJ section.
The coefficient of a column appears more than once in the QUADOBJ section. Please make sureall columns have only one coefficient in this section.

363 Quadratic matrix must be symmetric in QMATRIX section.
Only symmetric matrices can be input in the QMATRIX section of the .MAT or .MPS file. Pleasecorrect and try again.

368 QSECTION second element in line ignored: <line>.
The second element in line <line> will be ignored.

Fair Isaac Corporation Confidential and Proprietary Information 542

Return Codes and Error Messages

381 Bug in lifting of cover inequalities.
Internal error. Please contact you local support office.

386 This version is not authorized to run Goal Programming.
The Optimizer you are using is not authorized to run Goal Programming. Please contact youlocal sales office to upgrade your authorization if you wish to use this command.

392 This version is not authorized to be called from BCL.
This version of the Optimizer cannot be called from the subroutine library BCL. Please contactyour local sales office to upgrade your authorization if you wish to run the Optimizer from BCL.

394 Fatal communications error.
There has been a communication error between the master and the slave processes. Pleasecheck the network and try again.

395 This version is not authorized to be called from the Optimizer library.
This version of the Optimizer cannot be called from the Optimizer library. Please contact yourlocal sales office to upgrade your authorization if you wish to run the Optimizer using thelibraries.

401 Invalid row type passed to <function>.
Elements <num> of your array has invalid row type <type>. There has been an error in one of thearguments of function <function>. The row type corresponding to element <num> of the array isinvalid. Please refer to the section corresponding to function <function> in 8 for furtherinformation about the row types that can be used.

402 Invalid row number passed to <function>.
Row number <num> is invalid. There has been an error in one of the arguments of function<function>. The row number corresponding to element <num> of the array is invalid. Pleasemake sure that the row numbers are not smaller than 0 and not larger than the total number ofrows in the problem.

403 Invalid global entity passed to <function>.
Element <num> of your array has invalid entity type <type>. There has been an error in one of thearguments of function <function>. The column type <type> corresponding to element <num> ofthe array is invalid for a global entity.

404 Invalid set type passed to <function>.
Element <num> of your array has invalid set type <type>. There has been an error in one of thearguments of function <function>. The set type <type> corresponding to element <num> of thearray is invalid for a set entity.

405 Invalid column number passed to <function>.
Column number <num> is invalid. There has been an error in one of the arguments of function<function>. The column number corresponding to element <num> of the array is invalid. Pleasemake sure that the column numbers are not smaller than 0 and not larger than the total numberof columns in the problem, COLS, minus 1. If the function being called is XPRSgetobj or
XPRSchgobj a column number of -1 is valid and refers to the constant in the objective function.

406 Invalid row range passed to <function>.
Limit <lim> is out of range. There has been an error in one of the arguments of function<function>. The row numbers lie between 0 and the total number of rows of the problem. Limit<lim> is outside this range and therefore is not valid.

Fair Isaac Corporation Confidential and Proprietary Information 543

Return Codes and Error Messages

407 Invalid column range passed to <function>.
Limit <lim> is out of range. There has been an error in one of the arguments of function<function>. The column numbers lie between 0 and the total number of columns of the problem.Limit <lim> is outside this range and therefore is not valid.

409 Invalid directive passed to <function>.
Element <num> of your array has invalid directive <type>. There has been an error in one of thearguments of function <function>. The directive type <type> corresponding to element <num> ofthe array is invalid. Please refer to the Reference Manual for a list of valid directive types.

410 Invalid row basis type passed to <function>.
Element <num> of your array has invalid row basis type <type>. There has been an error in one ofthe arguments of function <function>. The row basis type corresponding to element <num> ofthe array is invalid.

411 Invalid column basis type passed to <function>.
Element <num> of your array has invalid column basis type <type>. There has been an error inone of the arguments of function <function>. The column basis type corresponding to element<num> of the array is invalid.

412 Invalid parameter number passed to <function>.
Parameter number <num> is out of range. LP or MIP parameters and controls can be used infunctions by passing the parameter or control name as the first argument or by passing anassociated number. In this case number <num> is an invalid argument for function <function>because it does not correspond to an existing parameter or control. If you are passing a numberas the first argument, please substitute it with the name of the parameter or control whose valueyou wish to set or get. If you are already passing the parameter or control name, please check 8to make sure that is valid for function <function>.

413 Not enough spare rows in <function>.
Increase EXTRAROWS before input. There are not enough spare rows to complete function<function> successfully. Please increase EXTRAROWS before XPRSreadprob (READPROB) andtry again.

414 Not enough spare columns in <function>.
Increase EXTRACOLS before input. There are not enough spare columns to complete function<function> successfully. Please increase EXTRACOLS before
XPRSreadprob (READPROB) and try again.

415 Not enough spare matrix elements in <function>.
Increase EXTRAELEMS before input. There are not enough spare matrix elements to completefunction <function> successfully. Please increase EXTRAELEMS before XPRSreadprob(READPROB) and try again.

416 Invalid bound type passed to <function>.
Element <elem> of your array has invalid bound type <type>. There has been an error in one ofthe arguments of function <function>. The bound type <type> of element number <num> of thearray is invalid.

417 Invalid complement flag passed to <function>. Element <elem> of your array has invalid
complement flag <flag>.
Element <elem> of your array has an invalid complement flag <flag>. There has been an error inone of the arguments of function <function>. The complement flag corresponding to indicatorconstraint <num> of the array is invalid.

Fair Isaac Corporation Confidential and Proprietary Information 544

Return Codes and Error Messages

418 Invalid cut number passed to <function>.
Element <num1> of your array has invalid cut number <num2>. Element number <num1> of yourarray contains a cut which is not stored in the cut pool. Please check that <num2> is a valid cutnumber.

419 Not enough space to store cuts in <function>.
There is not enough space to complete function <function> successfully.

420 Too many saved matrices in savmat
Version 12 compatibility interface only. There is a hard limit of at most 64 matrices that can besaved with savmat or cpymat

421 Matrix no. <mat> has not been saved. Cannot restore in resmat
Version 12 compatibility interface only. No matrix with number <mat> has been saved with
savmat or cpymat.

422 Solution is not available.
There is no solution available. This could be because the problem in memory has been changedor optimization has not been performed. Please optimize and try again.

423 Duplicate rows/columns passed to <function>.
Element <elem> of your array has duplicate row/col number <num>. There has been an error inone of the arguments of function <function>. The element number <elem> of the argument arrayis a row or column whose sequence number <num> is repeated.

424 Not enough space to store cuts in <function>.
There is not enough space to complete function <function> successfully.

425 Column already basic.
The column cannot be pivoted into the basis since it is already basic. Please make sure thevariable is non-basic before pivoting it into the basis.

426 Column not eligible to leave basis.
The column cannot be chosen to leave the basis since it is already non-basic. Please make surethe variable is basic before forcing it to leave the basis.

427 Invalid column type passed to <function>.
Element <num> of your array has invalid column type <type>. There has been an error in one ofthe arguments of function <function>. The column type <type> corresponding to element <num>of the array is invalid.

429 No basis is available.
No basis is available.

430 Column types cannot be changed during the global search.
The Optimizer does not allow changes to the column type while the global search is in progress.Please call this function before starting the global search or after the global search has beencompleted. You can call XPRSmaxim (MAXIM) or XPRSminim (MINIM) with the l flag if you donot want to start the global search automatically after finding the LP solution of a problem withglobal entities.

434 Invalid name passed to XPRSgetindex.
A name has been passed to XPRSgetindex which is not the name of a row or column in thematrix.

Fair Isaac Corporation Confidential and Proprietary Information 545

Return Codes and Error Messages

436 Cannot trace infeasibilities when integer presolve is turned on.
Try XPRSmaxim (XPRSmaxim) / XPRSminim (MINIM) with the l flag. Integer presolve can setupper or lower bounds imposed by the column type as well as those created by the interaction ofthe problem constraints. The infeasibility tracing facility can only explain infeasibilities due toproblem constraints.

459 Not enough memory for branch and bound tree
Not enough resources for branch and bound tree (<type>)
Failure locking branch and bound tree (probably out of memory)
Failure in handling of branch and bound tree (<type>)
Functions to signal that an unexpected error happened during the management of thebranch-and-bound tree for storing information from a global solve. The string <type> will providemore information about the particular failure. These errors are typical of running out of memory.

473 Row classification not available.

474 Column passed to <routine> has inconsistent bounds. See column <index> of <count>.
The bounds are inconsistent for column <index> of the <count> columns passed into routine<routine>.

475 Inconsistent bounds [<lb>,<ub>] for column <column name> in call to <routine>.
The lower bound <lb> is greater than the upper bound <ub> in the bound pair given for column<column name> passed into routine <routine>.

476 Unable to round bounds [<lb>,<ub>] for integral column <column name> in call to <routine>.
Either the lower bound <lb> is greater than the upper bound <ub> in the bound pair given for theinteger column <column name> passed into routine <routine> or the interval defined by <lb> and<ub> does not contain an integer value.

501 Error at <line> Empty file.
Read aborted. The Optimizer cannot read the problem because the file is empty.

502 Warning: ’min’ or ’max’ not found at <line.col>. No objective assumed.
An objective function specifier has not been found at column <col>, line <line> of the LP file. Ifyou wish to specify an objective function please make sure that ’max’, ’maximize’, ’maximum’,’min’, ’minimize’ or ’minimum’ appear.

503 Objective not correctly formed at <line.col>. Aborting.
The Optimizer has aborted the reading of the problem because the objective specified at line<line> of the LP file is incorrect.

504 No keyword or empty problem at <line.col>.
There is an error in column <col> at line <line> of the LP file. Neither ’Subject to’, ’subject to:’,’subject to’, ’such that’ ’s.t.’, or ’st’ can be found. Please correct and try again.

505 A keyword was expected at <line.col>.
A keyword was expected in column <col> at line <line> pf the LP file. Please correct and tryagain.

506 The constraint at <line.col> has no term.
A variable name is expected at line <line> column <col>: either an invalid character (like ’+’ or adigit) was encountered or the identifier provided is unknown (new variable names are declared inconstraint section only).

507 RHS at <line.col> is not a constant number.
Line <line> of the LP file will be ignored since the right hand side is not a constant.

Fair Isaac Corporation Confidential and Proprietary Information 546

Return Codes and Error Messages

508 The constraint at <line> has no term.
The LP file contains a constraint with no terms.

509 The type of the constraint at <line.col> has not been specified.
The constraint defined in column <col> at line <line> of the LP file is not a constant and will beignored.

510 Upper bound at <line.col> is not a numeric constant.
The upper bound declared in column <col> at line <line> of the LP file is not a constant and willbe ignored.

511 Bound at <line.col> is not a numeric constant.
The bound declared in column <col> at line <line> of the LP file is not a constant and will beignored.

512 Unknown word starting with an ’f’ at <line.col>. Treated as ’free’.
A word starting with an ’f’ and not known to the Optimizer has been found in column <col> at line<line> of the LP file. The word will be read into the Optimizer as ’free’.

513 Wrong bound statement at <line.col>.
The bound statement in column <col> at line <line> is invalid and will be ignored.

514 Lower bound at <line.col> is not a numeric constant. Treated as -inf.
The lower bound declared in column <col> at line <line> of the LP file is not a constant. It will betranslated into the Optimizer as the lowest possible bound.

515 Sign ’<’ expected at <line.col>.
A character other than the expected sign ’<’ has been found in column <col> at line <line> of theLP file. This line will be ignored.

516 Problem has not been loaded.
The problem could not be loaded into the Optimizer. Please check the other error messagesappearing with this message for more information.

517 Row names have not been loaded.
The name of the rows could not be loaded into the Optimizer. Please check the other errormessages appearing with this message for more information.

518 Column names have not been loaded.
The name of the columns could not be loaded into the Optimizer. Please check the other errormessages appearing with this message for more information.

519 Not enough memory at <line.col>.
The information in column <col> at line <line> of the LP file cannot be read because all theallocated memory has already been used. Please increase your virtual page space or physicalmemory and try again.

520 Unexpected EOF at <line.col>.
An unexpected EOF marker character has been found at line <line> of the LP file and the loadingof the problem into the Optimizer has been aborted. Please correct and try again.

521 Number expected for exponent at <line.col>.
The entry in column <col> at line <line> of the LP file is not a properly expressed real number andwill be ignored.

Fair Isaac Corporation Confidential and Proprietary Information 547

Return Codes and Error Messages

522 Line <line> too long (length>255).
Line <line> of the LP file is too long and the loading of the problem into the Optimizer has beenaborted. Please check that the length of the lines is less than 255 and try again.

523 The Optimizer cannot reach line <line.col>.
The reading of the LP file has failed due to an internal problem. Please contact your localsupport office.

524 Constraints could not be read into the Optimizer. Error found at <line.col>.
The reading of the LP constraints has failed due to an internal problem. Please contact yourlocal support office.

525 Bounds could not be set into the Optimizer. Error found at <line.col>.
The setting of the LP bounds has failed due to an internal problem. Please contact your localsupport office.

526 LP problem could not be loaded into the Optimizer. Error found at <line.col>.
The reading of the LP file has failed due to an internal problem. Please contact your localsupport office.

527 Copying of rows unsuccessful.
The copying of the LP rows has failed due to an internal problem. Please contact your localsupport office.

528 Copying of columns unsuccessful.
The copying of the LP columns has failed due to an internal problem. Please contact your localsupport office.

529 Redefinition of constraint at <line.col>.
A constraint is redefined in column <col> at line <line> of the LP file. This repeated definition isignored.

530 Name too long. Truncating it.
The LP file contains an identifier longer than 64 characters: it will be truncated to respect themaximum size.

531 Sign ’>’ expected here <line>.
A greater than sign was expected in the LP file.

532 Quadratic term expected here <pos>
The LP file reader expected to read a quadratic term at position <pos>: a variable name and ’̂2’ orthe product of two variables. Please check the quadratic part of the objective in the LP file.

533 Wrong exponent value. Treated as 2 <pos>
The LP file reader encountered an exponent different than 2 at position <pos>. Such exponentsare automatically replaced by 2.

535 A constraint name was expected here.
The LP file reader expected to read a row name in the ranges section.

536 Wrong range statement at <pos>.
The LP file reader expected to read a range type in the ranges section.

538 Error when loading the SOS names
The LP format file reader failed to create the SOS names. The previous error should explain whythis failed.

Fair Isaac Corporation Confidential and Proprietary Information 548

Return Codes and Error Messages

539 Invalid indicator constraint condition at <line.col>
The condition part in column <col> of the indicator constraint at line <line> is invalid.

545 A variable name was found but ignored at <pos> due to not appearing before.
The LP file reader read a variable in bounds or integer type sections that does not appear in thematrix.

552 ’S1|2:’ expected here. Skipping <pos>
Unknown set type read while reading the LP file at position <pos>. Please use set type ’S1’ or’S2’.

553 This set has no member. Ignoring it <pos>
An empty set encountered while reading the LP file at position <pos>. The set has been ignored.

554 Weight expected here. Skipping <pos>
A missing weight encountered while reading sets in the LP file at position <pos>. Please checkdefinitions of the sets in the file.

555 Cannot presolve cut with PRESOLVEOPS bits 0, 5 or 8 set or bit 11 cleared.
Can not presolve cut with PRESOLVEOPS bits 0, 5 or 8 set or bit 11 cleared.No cuts can be presolved if the following presolve options are turned on:bit 0: singleton column removal,bit 5: duplicate column removal,bit 8: variable eliminationsor if the optionbit 11: No advanced IP reductions is turned off. Please check the presolve settings.

557 Integer solution is not available
Failed to retrieve an integer solution because no integer solution has been identified yet.

558 Column <col> duplicated in basis file - new entry ignored.
Column <col> is defined in the basis file more than once. Any repeated definitions are ignored.

559 The old feature <feature> is no longer supported
The feature <feature> is no longer supported and has been removed. Please contact Xpresssupport for help about replacement functionality.

602 Values must be specified for all columns when column indices are not provided.
In a call to XPRSaddmipsol the column index array is optional. When this argument is omitted(given as NULL), the length of the solution value array must match ORIGINALCOLS.

604 String passed as parameter is too long
The file name passed to XPRSsetlogfile can be at most 200 characters long.

606 Failed to parse list of diving heuristic strategies at position <pos>
Invalid diving heuristic strategy number provided in position <pos> of the string controls
HEURDIVEUSE or HEURDIVETEST. Please check control HEURDIVESTRATEGY for valid strategynumbers.

706 Not enough memory to add sets.
Insufficient memory while allocating memory for the new sets. Please free up some memory,and try again.

707 Function can not be called during the global search
The function being called cannot be used during the global search. Please call the functionbefore starting the global search.

Fair Isaac Corporation Confidential and Proprietary Information 549

Return Codes and Error Messages

708 Invalid input passed to <function>
Must specify mstart or mnel when creating matrix with columns
No column information is available when calling function <function>. If no columns were meantto be passed to the function, then please set the column number to zero. Note, that mstart and
mnel should be set up for empty columns as well.

710 MIPTOL <val1> must not be less than FEASTOL <val2>
The integer tolerance MIPTOL (val1) should not be set tighter than the feasibility tolerance
FEASTOL (val2). Please increase MIPTOL or decrease FEASTOL.

711 MIPTOL <val1> must not be less than FEASTOL <val2>. Adjusting MIPTOL
The integer tolerance MIPTOL (val1) must not be tighter than the feasibility tolerance FEASTOL(val2). The value of MIPTOL has been increased to (val2) for the global search.

712 Function not permitted when problem is presolved: <func>
The problem is currently in a presolved state and the function <func> can only be called whenthe problem is in its original state. XPRSpostsolve can be called to return the problem to itsoriginal state.

713 <row/column> index out of bounds calling <function>. <index1> is ’<’ or ’>’ <bound>
An index is out of its bounds when calling function <function>. Please check the indices.

715 Invalid objective sense passed to <function>. Must be XPRS_OBJ_MINIMIZE or
XPRS_OBJ_MAXIMIZE.
Invalid objective sense was passed to function <function>. Please use either
XPRS_OBJ_MINIMIZE or XPRS_OBJ_MAXIMIZE.

716 Invalid names type passed to XPRSgetnamelist.
Type code <num> is unrecognized.
An invalid name type was passed to XPRSgetnamelist.

717 Generic error.
Used to promote license manager errors.

721 No IIS has been identified yet
No irreducible infeasible set (IIS) has been found yet. Before running the function, please use
IIS -f, IIS -n or IIS -a to identify an IIS.

722 IIS number <num> is not yet identified
Irreducible infeasible set (IIS) with number <num> is not available. The number <num> standsfor the ordinal number of the IIS. The value of <num> should not be larger than NUMIIS.

723 Unable to create an IIS sub-problem
The irreducible infeasible set (IIS) procedure is unable to create the IIS approximation. Pleasecheck that there is enough free memory.

724 Error while optimizing the IIS sub-problem
An error occurred while minimizing an irreducible infeasible set (IIS) sub-problem. Please checkthe return code set by the Optimizer.

725 Problems with variables for which shift infeasibilities cannot be removed are considered
infeasible in the IIS
The irreducible infeasible set (IIS) sub-problem being solved by the IIS procedure is on theboundary of being feasible or infeasible. For problems that are only very slightly infeasible, theOptimizer applies a technique called infeasibility shifting to produce a solution. Such solutions

Fair Isaac Corporation Confidential and Proprietary Information 550

Return Codes and Error Messages

are considered feasible, although if solved as a separate problem, a warning message is given.For consistency reasons however, in the case of the IIS procedure such problems are treated asbeing infeasible.
726 This function is not valid for the IIS approximation. Please specify an IIS with count number > 0

Irreducible infeasible set (IIS) number 0 (the ordinal number of the IIS) refers to the IISapproximation, but the functionality called is not available for the IIS approximation. Please usean IIS number between 1 and NUMIIS.
727 Bound conflict on column <col>; IIS will not continue

There is a bound conflict on column <col>. Please check the bounds on the column, and removeany conflicts before running the irreducible infeasible set (IIS) procedure again (bound conflictsare trivial IISs by themselves).
728 Unknown file type specification <type>

Unknown file type was passed to the irreducible infeasible set (IIS) sub-problem writer. Pleaserefer to XPRSiiswrite for the valid file types.
729 Writing the IIS failed

Failed to write the irreducible infeasible set (IIS) sub-problem or the comma separated file (.csv)containing the IIS information to disk. Please check access permissions.
730 Failed to retrieve data for IIS <num>

The irreducible infeasible set (IIS) procedure failed to retrieve the internal description for IISnumber <num>. This may be an internal error, please contact your local support office.
731 IIS stability error: reduced or modified problem appears feasible

Some problems are on the boundary of being feasible or infeasible. For such problems, it mayhappen that the irreducible infeasible set (IIS) working problem becomes feasible unexpectedly.If the problem persists, please contact your local support office.
732 Unknown parameter or wrong parameter combination

The wrong parameter or parameter combination was used when calling the irreducible infeasibleset (IIS) console command. Please refer to the IIS command documentation for possiblecombinations.
733 Filename parameter missing

No filename is provided for the IIS -w or IIS -e console command. Please provide a file namethat should contain the irreducible infeasible set (IIS) information.
734 Problem data relevant to IISs is changed

This failure is due to the problem being changed between iterative calls to IIS functions. Pleasestart the IIS analysis from the beginning.
735 IIS function aborted

The irreducible infeasible set (IIS) procedure was aborted by either hitting CTRL-C or by reachinga time limit.
736 Initial infeasible subproblem is not available. Run IIS -f to set it up

The initial infeasible subproblem requested is not available. Please use the IIS -f function togenerate it.
738 The approximation may be inaccurate. Please use IIS or IIS -n instead.

The irreducible infeasible set (IIS) procedure was run with the option of generating theapproximation of an IIS only. However, ambiguous duals or reduces costs are present in theinitial infeasible subproblem. This message is always preceded by warning 737. Please continuewith generating IISs to resolve the ambiguities.

Fair Isaac Corporation Confidential and Proprietary Information 551

Return Codes and Error Messages

739 Bound conflict on column <col>; Repairinfeas will not continue
There is a bound conflict on column <col>. Please check the bounds on the column, and removeany conflicts before running the XPRSrepairinfeas procedure again (bound conflicts aretrivial causes of infeasibility).

740 Unable to create relaxed problem
The Optimizer is unable to create the relaxed problem. The relaxed problem may requiresignificantly more memory than the base problem if many of the preferences are set to apositive value. Please check that there is enough free memory.

741 Relaxed problem is infeasible. Please increase freedom by introducing new nonzero preferences
The relaxed problem remains infeasible. Zero preference values indicate constraints (or bounds)that will not be relaxed. Try introducing new nonzero preferences to allow the problem tobecome feasible.

742 Repairinfeas stability error: relaxed problem is infeasible. You may want to increase the value of
delta
The relaxed problem is reported to be infeasible by the Optimizer in the second phase of therepairinfeas procedure. Try increasing the value of the parameter delta to improve stability.

743 Optimization aborted, repairinfeas unfinished
The optimization was aborted by CTRL-C or by hitting a time limit. The relaxed solution is notavailable.

744 Optimization aborted, MIP solution may be sub-optimal
The MIP optimization was aborted by either CTRL-C or by hitting a time limit. The relaxedsolution may not be optimal.

745 Optimization of the relaxed problem is sub-optimal
The relaxed solution may not be optimal due to early termination.

746 All preferences are zero, repairinfeas will not continue
Use options -a -b -r -lbp -ubp -lrp or -grp to add nonzero preferences
Zero preference values indicate constraints (or bounds) that will not be relaxed. In case when allpreferences are zero, the problem cannot be relaxed at all. Try introducing nonzero preferencesand run XPRSrepairinfeas again.

748 Negative preference given for a <sense> bound on <row/column> <name>
A negative preference value is set for constraint or bound <name>. Preference values should benon-negative. The preferences describe the modeler’s willingness to relax a given constraint orbound, with zero preferences interpreted as the corresponding constraints or bounds not beingallowed to be relaxed. Please provide a zero preference if the constraint or bound is not meant tobe relaxed. Also note, that very small preferences lead to very large penalty values, and thus mayincrease the numerical difficulty of the problem.

749 Relaxed problem is infeasible due to cutoff
A user defined cutoff value makes the relaxed problem infeasible. Please check the cutoffvalue CURRMIPCUTOFF.

750 Empty matrix file : <name>
The MPS file <name> is empty. Please check the name of the file and the file itself.

751 Invalid column marker type found : <text>
The marker type <text> is not supported by the MPS reader. Please refer to the Appendix A.2 forsupported marker types.

Fair Isaac Corporation Confidential and Proprietary Information 552

Return Codes and Error Messages

752 Invalid floating point value : <text>
The reader is unable to interpret the string <text> as a numerical value.

753 <num> lines ignored
The MPS reader has ignored <num> number of lines. This may happen for example if anunidentified section was found (in which case warning 785 is also invoked).

754 Insufficient memory
Insufficient memory was available while reading in an MPS file.

755 Column name is missing
A column name field was expected while reading an mps file. Please add a column name to therow. If the MPSFORMAT control is set to 0 (fixed format) then please check that the name fieldcontains a column name, and is positioned correctly.

756 Row name is missing in section OBJNAME
No row name is provided in the OBJNAME section. If no user defined objective name is provided,the reader uses the first neutral row (if any) as the objective row. However, to avoid ambiguity, ifno user defined objective row was meant to be supplied, then please exclude the OBJNAMEsection from the MPS file.

757 Missing objective sense in section OBJSENSE
No objective sense is provided in section OBJSENSE. If no user defined objective sense isprovided, the reader sets the objective sense to minimization by default. However, to avoidambiguity, if no user defined objective sense was meant to be supplied, then please exclude the
OBJSENSE section from the MPS file.

758 No SETS and SOS sections are allowed in the same file
The Optimizer expects special order sets to be defined in the SETS section. However, forcompatibility considerations, the Optimizer can also interpret the SOS section. The two formatsdiffer only in syntax, and feature the same expressive power. Both a SETS and a SOS section arenot expected to be present in the same matrix file.

759 File not in fixed format : <file>
The Optimizer control MPSFORMAT was set to 0 to indicate that the mps file <file> being read is infixed format, but it violates the MPS field specifications.

760 Objective row <row> defined in section OBJNAME or in MPSOBJNAME was not found
The user supplied objective row <row> is not found in the MPS file. If the MPS file contains an
OBJNAME section please check the row name provided, otherwise please check the value of thecontrol MPSOBJNAME.

761 Problem name is not provided
The NAME section is present in the MPS file, but contains no problem name (not even blanks),and the MPSFORMAT control is set to 0 (fixed format) preventing the reader to look for theproblem name in the next line. Please make sure that a problem name is present, or if it’spositioned in the next line (in which case the first column in the line should be a whitespace)then please set MPSFORMAT to 1 (free format) or -1 (autodetect format).

762 Missing problem name in section NAME
Unexpected end of file while looking for the problem name in section NAME. The file is likely to becorrupted. Please check the file.

Fair Isaac Corporation Confidential and Proprietary Information 553

Return Codes and Error Messages

763 Ignoring range value for free row : <row>
A range value is defined for free row <row>. Range values have no effect on free rows. Pleasemake sure that the type of the row in the ROWS section and the row name in the RANGE sectionare both correct.

764 <sec> section is not yet supported in an MPS file, skipping section
The section <sec> is not allowed in an MPS file. Sections like "SOLUTION" and "BASIS" mustappear in separate ".slx" and ".bas" files.

765 Ignoring repeated specification for column : <col>
Column <col> is defined more than once in the MPS file. Any repeated definitions are ignored.Please make sure to use unique column names. If the column names are unique, then pleasemake sure that the COLUMNS section is organized in a contiguous order.

766 Ignoring repeated coefficients for row <row> found in RANGE <range>
The range value for row <row> in range vector <range> in the RANGE section is defined more thanonce. Any repeated definitions are ignored. Please make sure that the row names in the RANGEsection are correct.

767 Ignoring repeated coefficients for row <row> found in RHS <rhs>
The value for row <row> in right hand side vector <rhs> is defined more than once in the RHSsection. Any repeated definitions are ignored. Please make sure that the row names in the RHSsection are correct.

768 Ignoring repeated specification for row : lt;rowgt;
Row <row> is defined more than once in the MPS file. Any repeated definitions are ignored.Please make sure to use unique row names.

770 Missing prerequisite section <sec1> for section <sec2>
Section <sec2> must be defined before section <sec1> in the MPS file being read. Please checkthe order of the sections.

771 Unable to open file : <file>
Please make sure that file <file> exists and is not locked.

772 Unexpected column type : <type> : <column>
The COLUMNS section contains the unknown column type <type>. If the MPSFORMAT control isset to 0 (fixed format) then please make sure that the type of the column is correct andpositioned properly.

773 Unexpected number of fields in section : <sec>
Unexpected number of fields was read by the reader in section <sec>. Please check the formatof the line. If the MPSFORMAT control is set to 0 (fixed format) then please make sure that thefields are positioned correctly. This error is often caused by names containing spaces in freeformat, or by name containing spaces in fixed format but positioned incorrectly.

774 Unexpected row type : <type>
The ROWS section contains the unknown row type <type>. If the MPSFORMAT control is set to 0(fixed format) then please make sure that the type of the row is correct and positioned properly.

775 Unexpected set type : <type>
The SETS or SOS section contains the unknown set type <type>. If the MPSFORMAT control is setto 0 (fixed format) then please make sure that the type of the row is correct and positionedproperly.

Fair Isaac Corporation Confidential and Proprietary Information 554

Return Codes and Error Messages

776 Ignoring unknown column name <col> found in BOUNDS
Column <col> found in the BOUNDS section is not defined in the COLUMNS section. Please checkthe name of the column.

777 Ignoring quadratic coefficient for unknown column : <col>
Column <col> found in the QUADOBJ section is not defined in the COLUMNS section. Pleasecheck the name of the column.

778 Ignoring unknown column name <col> found in set <set>
Column <col> found in the definition of set <set> in the SETS or SOS section is not defined in the
COLUMNS section. Please check the name of the column.

779 Wrong objective sense: <sense>
The reader is unable to interpret the string <sense> in the OBJSENSE section as a valid objectivesense. The objective sense should be either MAXIMIZE or MINIMIZE. The reader acceptssub-strings of these if they uniquely define the objective sense and are at least 3 characterslong. Note that if no OBJSENSE section is present, the sense of the objective is set tominimization by default. Please provide a valid objective sense.

780 Ignoring unknown row name <row> found in column <column>
Row <row> found in the column <column> in the COLUMNS section is not defined in the ROWSsection. Please check the name of the row.

781 Ignoring unknown row name <row> found in RANGE
Row <row> found in the RANGE section is not defined in the ROWS section. Please check thename of the row.

782 Ignoring unknown row name <row> found in RHS
Row <row> found in the RHS section is not defined in the ROWS section. Please check the nameof the row.

783 Expecting numerical value
A numerical value field was expected while reading an MPS file. Please add the missingnumerical entry. If the MPSFORMAT control is set to 0 (fixed format) then please check that thevalue field contains a numerical value and is positioned correctly.

784 Null char in text file
A null char (’\0’) encountered in the MPS file. An MPS file is designed to be a text file and a nullchar indicates possible errors. Null chars are treated as spaces ’ ’ by the reader, but please checkthe origin of the null char.

785 Unrecognized section <sec> skipped
The section <sec> is not recognized as an MPS section. Please check the section identifierstring in the MPS file. In such cases, the reader stops reading to avoid unexpected results afterreading.

787 Empty set: <set>
No set members are defined for set <set> in the MPS file. Please check if the set is empty byintention.

788 Repeated definition of section <sec> ignored
Section <sec> is defined more than once in the mps file. Any repeated definitions are ignored.Many sections may include various versions of the described part if the problem (like different
RHS values, BOUNDS or RANGES), but please include those in the same section.

Fair Isaac Corporation Confidential and Proprietary Information 555

Return Codes and Error Messages

790 Wrong section in the basis file: <section>
Unrecognized section <section> found in the basis file. Please check the format of the file.

791 ENDATA is missing. File is possibly corrupted
The ENDATA section is missing from the end of the file. This possible indicates that part of thefile is missing. Please check the file.

792 Ignoring BS field
BS fields are not supported by the Optimizer, and are ignored. Basis files containing BS fieldsmay be created by external software. Please convert BS fields to either XU or XL fields.

793 Superbasic variable outside bounds. Value moved to closest bound
A superbasic variable in the basis file are outside its bounds. The value of the variable has beenmodified to satisfy its bounds. Please check that the value in the basis file is correct. In case thevariable should be set to the value given by the basis file, please modify the bounds on thevariable.

794 Value of fixed binary column <col> changed to <val>
The lower and upper bound for binary variable <col> was to <val>. Binaries may only be fixed atlevel 0 or 1.

795 Xpress/Mosel extensions: number of opening and closing brackets mismatch
The LP file appears to be created by Mosel, using the Xpress MPS extensions to include variablenames with whitespaces, however the file seems to be broken due to a mismatch in opening andclosing brackets.

796 Char <c> is not supported in a name by file format. It may not be possible to read such files back
correctly. Please set FORCEOUTPUT to 1 to write the file anyway, or use scrambled names.
Certain names in the problem object may be incompatible with different file formats (like namescontaining spaces for LP files). If the Optimizer might be unable to read back a problem becauseof non-standard names, it will give an error message and won’t create the file. However, you mayforce output using control FORCEOUTPUT or change the names by using scrambled names (-soption for XPRSwriteprob).

797 Wrong section in the solution file: <sec>
Section <sec> is not supported in .slxMPS solution files.

798 Empty <type> file : <file>
File <file> of type <type> is empty.

799 Ignoring quadratic coefficients for unknown row name <row>
No row with name <row> was defined in the ROWS sections. All rows having a QCMATRIX sectionmust be defined as a row with type ’L’ or ’G’ in the ROWS section.

835 Given solution column count does not match given problem
The given solution contains a different column count compared to the loaded problem.

843 Delayed row (lazy constraint) <row> is not allowed to be of type ’N’. Row ignored
Delayed rows cannot be neutral. Please define all neutral rows as ordinary ones in the ROWSsection.

847 Model cut (user cut) <row> is not allowed to be of type ’N’. Row ignored
Model cuts cannot be neutral. Please define all neutral rows as ordinary ones in the ROWSsection.

Fair Isaac Corporation Confidential and Proprietary Information 556

Return Codes and Error Messages

862 Quadratic constraint rows must be of type ’L’ or ’G’. Wrong row type for row <row>
All quadratic rows must be of type ’L’ or ’G’ in the ROWS section of the MPS file (and thecorresponding quadratic matrix be positive semi-definite).

863 The current version of the Optimizer does not yet support MIQCQP problems
The current version of the Optimizer does not yet support mixed integer quadraticallyconstrained problems.

864 Quadratic constraint rows must be of type ’L’ or ’G’. Wrong row type for row <row>
A library function was trying to define (or change to) a row with type ’L’ having quadraticcoefficients. All quadratic rows are required to be of type ’L’ (and the corresponding quadraticmatrix be positive semi-definite).

865 Row <row> is already quadratic
Cannot add quadratic constraint matrices together. To change an already existing matrix, eitheruse the XPRSchgqrowcoeff library function, or delete the old matrix first.

866 The divider of the quadratic objective at <pos> must be 2 or omitted
The LP file format expects, tough may be omitted, an "/2" after the each quadratic objectiveterm defined between square brackets. No other divider is accepted. The role of the "/2" is tonotify the user of the implied division in the quadratic objective (that does not apply to quadraticconstraints).

867 Not enough memory for tree search
There is not enough memory for one of the nodes in the tree search.

884 Fatal user error detected in callback
An error occurred during a user callback.

898 Cannot define range for quadratic rows. Range for row <row> ignored
Quadratic constraints are required to be convex, and thus it is not allowed to set a range onquadratic rows. Each quadratic row should have a type of ’L’ or ’G’.

899 The quadratic objective is not convex. Set IFCHECKCONVEXITY=0 to disable check
The quadratic objective is not convex. Please check that the proper sense of optimization(minimization or maximization) is used.

900 The quadratic part of row <row> defines a non-convex region. Set IFCHECKCONVEXITY=0 to
disable check.
The quadratic in <row> is not convex. Please check that the proper sense of constraint is defined(less or equal or greater or equal constraint).

901 901 Duplicated QCMATRIX section for row <row> ignored.
The MPS file may contain one Q matrix for each row. In case of duplicates, only the first isloaded into the matrix

902 Calling function <func> is not supported from the current context.
This XPRS function cannot be called from this callback.

903 Row <row> with right hand side value larger than infinity ignored.
The matrix file being read contains a right hand side that is larger than the predefined infinityconstant XPRS_PLUSINFINITY. Row is made neutral.

904 Function is not allowed outside optnode callback.
The used function of the branching manager is not allowed to call outside optnode.

Fair Isaac Corporation Confidential and Proprietary Information 557

Return Codes and Error Messages

905 Bad index passed to function.
The index passed to function is not in range of the attribute.

906 Global entity cannot be branched further.
The selected global entity is fixed and cannot be branched further.

907 Column is continuous and cannot be branched.
The given column is of continuous type. The used function does not support branching oncontinuous columns.

909 Limit exceeded.
The limit of a certain object is exceeded.

910 Empty branch or branching object.
The given branch or branching object is empty.

911 Invalid information provided for branching object.
The given branching object contains invalid information.

912 Branching object(s) cannot be changed/used at this time.
The branching object is not fix yet. Hence, it cannot be changed/used.

913 Required data missing in function call for branching object.
Data is missing in function call for branching object.

914 Unexpected error triggered for branching object.
Unexpected error happened on a branching object.

915 Branching object (ID=<id>) rejected because it is empty or contains empty branches.
Improper branching object.

918 Module error.
Model can not be modified.

919 Column must be of type semi-continuous, semi-integer or partial integer to change its global
bound.
The global bound can be modified only for semi-continuous, semi-integer or partial integercolumn.

920 Semi-continuous lower bound for column <column> must be non-negative.
Only non-negative lower bounds can be specified for semi-continuos columns.

921 Partial integer limit for column <column> is outside the allowed range of 0 to 228 – 1.
The give limit for the column is out of the allowed range.

932 Unknown column name <column> found in piecewise linear term.
One of the columns given in the PWLOBJ or PWLCON section of the MPS file was not defined inthe COLUMNS section.

933 Breakpoints for piecewise linear constraint <index> not sorted and contradicting points
(<x>,<y1>) and (<x>,<y2>) given.
The breakpoints for this piecewise linear function were not given as a sorted list, and due tocontradicting points this cannot be fixed by sorting (since it is unclear what the left- andright-limit of the discontinuity would be).

Fair Isaac Corporation Confidential and Proprietary Information 558

Return Codes and Error Messages

934 Breakpoints for piecewise linear constraint <index> not sorted, will be sorted internally.
The breakpoints for the piecewise linear function were not given as a sorted list, these will bereordered internally.

935 Piecewise linear breakpoints not given consecutively for variable <column>, will reorder them.
The breakpoints for this column were not given consecutively but with breakpoints for anothervariable in between, will be fixed internally.

936 Ignoring duplicate piecewise linear breakpoint (<x>,<y>) for piecewise linear constraint <index>.
The same breakpoint was given twice for this piecewise linear constrant, the second one will bedropped.

937 Piecewise linear section for column <column> contained at most one breakpoint.
The piecewise linear function over this column only contained a single breakpoint or nobreakpoints at all, which is not enough to define the function.

938 Discontinuity at the <beginning/end> of piecewise linear constraint <index> without a matching
bound.
The first or last two breakpoints of the piecewise linear function shared the same value for theinput variable. While this is allowed to model discontinuous functions, it is only allowed for thefirst or last points if they match the corresponding bound and do not leave the functionundefined before or after them.

939 Non-convex piecewise linear function with unbounded domain for column <column>, may lead to
unbounded LP relaxation for reformulation even if MIP is bounded.
The piecewise linear function over the unbounded variable was non-convex and the sum ofslopes for the lower and upper limit is negative, potentially leading to an unbounded LPrelaxation for the reformulation even though the MIP might be bounded. Consider giving explicitbounds for this variable if possible.

940 General constraint type <type> for constraint <name> not supported, should be one of MAX, MIN,
AND, OR, ABS, PWL
The general constraint <name> was assigned the type <type>, which is not supported. The typeshould be "MAX", "MIN", "AND", "OR", "ABS", or "PWL".

941 Entry <entry> of general constraint <name> neither a column nor a constant
One of the lines in general constraints section for constraint <name> consisted of <entry>, whichis neither a column name nor a valid constant (and in case of free-format MPS-format also not aGENCONS-type).

942 <type> constraint <index> includes non-binary variable <name>. Only binaries allowed in AND/OR
general constraints.
The <index>-th general constraint, which is either an "AND" or an "OR" constraint, includesvariable <name> which is not binary.

943 The absolute value constraint <index> includes <number> variables. ABS-constraints should
consist of exactly 2 variables.
The <index>-th general constraint, which is an "ABS" constraint, includes more than twovariables.

944 The general constraint <index> consists of <number> elements. General constraints need to have
at least two elements.
The <index>-th general constraint consists of less than two elements. All general constraintsmust include at least two elements ("abs" exactly two).

Fair Isaac Corporation Confidential and Proprietary Information 559

Return Codes and Error Messages

945 Error when loading the piecewise linear constraint names.
The LP format file reader failed to create the piecewise linear constraint names. The previouserror should explain why this failed.

946 Error when loading the general constraint names.
The LP format file reader failed to create the general constraint names. The previous errorshould explain why this failed.

947 PWLCON section refers to piecewise linear constraint <name>, which was not defined in the
PWLNAM section.
In the MPS format, all piecewise linear constraints must first be defined in the PWLNAM sectionbefore adding extreme points in the PWLCON section.

948 Missing bracket or comma in piecewise linear function or general constraint
Piecewise linear functions should be given as (<val1>, <val2>), general constraints as <keyword>(<col1>, <col2>, ..., <colk>). In this case one of the commas or brackets was missing.

949 Invalid piecewise linear constraint number passed to <function>.Piecewise linear constraint
number <val1> is invalid <val2>
There has been an error in one of the arguments of function <function>. The <val1>th givenpiecewise linear constraint number <val2> is invalid. Please make sure that the piecewise linearconstraint numbers are not smaller than 0 and not larger than the total number of piecewiselinear constraints in the current problem, given by attribute PWLCONS.

950 Invalid general constraint number passed to <function>. <val1>-th General constraint number
<val2> is invalid
There has been an error in one of the arguments of function <function>. The <val1>-th givengeneral constraint number <val2> is invalid. Please make sure that the general constraintnumbers are not smaller than 0 and not larger than the total number of general constraints in thecurrent problem, given by attribute GENCONS.

951 Input column or resultant of <name> deleted, piecewise linear constraint is also dropped
An <XPRSdelcols> call left the piecewise linear constraint <name> without input column orwithout resultant. Thus the piecewise linear constraint is dropped.

952 Column deletion left <name> with no resultant or no inputs, general constraint is also dropped
An <XPRSdelcols> call left the general constraint <name> without resultant or without any inputs(either columns or constant values in case of <MIN>/<MAX>). Thus the general constraint isdropped.

953 Column <index> appears as both resultant and input variable in piecewise linear/general
constraint <index>.
The resultant of the piecewise linear or general constraint is equal to one of the input columns.These need to be distinct.

954 __pwlobj() appearing outside of objective.
The keyword __pwlobj(<col>) may be used inside the linear objective function to declare that theobjective contribution of this variable will later be defined in the pwlobj section, but it shouldnever appear in any other section.

955 Adjusting extremal breakpoints of piecewise linear constraint <index> to match bounds of input.
The first/last breakpoint of piecewise linear constraint <index> (and potentially further onesafterwards) did not match the bound of the input variable and needed to be adjusted, even withpresolve disabled. Note that this change will persist after the solve.

Fair Isaac Corporation Confidential and Proprietary Information 560

Return Codes and Error Messages

956 Given breakpoint (<val1>, <val2>) for piecewise linear constraint <index> with infinite values and
non-constant slope.
The piecewise linear constraint contained a breakpoint with infinite values. All breakpointsshould have finite value, for piecewise linear constraints with unbounded rays a finite point alongthat ray should be given as the first/last breakpoint and the solver will extend that ray in a waythat ensures numerical stability of the formulation.

957 Non-numerical value in problem definition as <name> of <name>.
A non-numerical value (inf/nan) was given as a matrix or objective coefficient, right-hand side orcolumn bound. The only allowed exceptions are lower bounds or right-hand sides of ’G’constraints with value -inf and upper bounds or right-hand sides of ’L’ constraints at +inf.

1001 Solution value redefined for column: <col>: <val1> -> <val2>
Multiple definition of variable <col> is not allowed. Please use separate SOLUTION sections todefine multiple solutions.

1002 Missing solution values in section <sec>. Only <val1> of <val2> defined
Not all values were defined in the SOLUTIONS section. Variables with undefined values are set to0.

1003 Please postsolve the problem first with XPRSpostsolve (postsolve).
Not all values were defined in the SOLUTIONS section. Variables with undefined values are set to0.

1004 Negative semi-continuous lower bound (<val>) for column <col> replaced with zero
Wrong input parameter for the lower bound of a semi-continuous variable was modified to 0.

1005 Unrecognized column name : <col>
No column with name <col> is present in the problem object while loading solution.

1006 Failed to capture solution information.
Solution information is not available.

1020 Function <function> cannot be called here.
The specified function can not be called.

1022 Error (<error>) while trying to run branching script.
Branching script error.

1028 Unable to keep branch and bound tree memory usage below <val>Gb - currently using <val>Gb;
The Optimizer was unable to keep the tree memory usage below the limit defined by the
TREEMEMORYLIMIT control - the solve will continue but performance will be impaired.

1030 Duplicate names are not allowed - row/column/set/constraint <row1> would have same name as
row/column/set/constraint <row2>.
Each row, column, special ordered set, piecewise linear constraint and general constraint shouldhave unique name.

1034 Unknown column name <col> found in indicators
Columns <col> found in the INDICATORS section is not defined in the COLUMNS section. Pleasecheck the name of the column.

1035 Unknown row name <row> found in indicators
Row <row> found in the INDICATORS section is not defined in the ROWS section. Please checkthe name of the row.

Fair Isaac Corporation Confidential and Proprietary Information 561

Return Codes and Error Messages

1036 Unexpected indicator type : <type>
Indicator type <type> found in the INDICATORS section is invalid. The type should be ’IF’.

1037 Unexpected indicator active value : <value> for row <row>
The value <value> found in the INDICATORS section is invalid. Values in this section should beeither 0 and 1.

1038 Unsupported row type for indicator constraint <row>
Rows configured as indicator constraints should have a type of ’L’ or ’G’.

1039 Non-binary variable <col> used as an indicator binary
The variable used in the condition part of an indicator constraint should be of type binary.

1054 Please use the FICO-SLP solver for general nonlinear problems. Contact "
LICENSING_CONTACT_NAME " for a license.
To solve general nonlinear problems the FICO-SLP solver can be used.

1055 Can not resume global search - not currently solving a MIP.
The global search can not be resumed, the current problem is not mixed integer optimization.

1059 Unrecognized string identifier <id> passed to function <func>
The string <id> given as input to the function <func> does not match any expected identifiers.Double-check spelling of <id> and consult documentation of function <func>, if available.

1071 Unable to dualize problems with quadratic coefficients
The current version of the Optimizer only supports dualization of linear problems. Removequadratic terms.

1074 Could not write tree to global file.
Branch-and-bound tree memory saving is disabled; re-enable this feature to allow the tree to becompressed and saved to the global file.

1075 Message too long: message <mes> must be shorter than <maxlen> characters
Could not write an error/info/warning message, due to a problem, row, column or set namebeing too long. Shorten all names s.t. they consist of at most <maxlen> characters.

1082 Tree heap create failed.
Failed to create private heap for branch-and-bound tree; probably due to insufficient memory. Ifpossible, try to free up memory on your system, reduce the problem size or set appropriateworking limits.

1090 No license capacity.
The FICO Xpress license file does not specify an Optimizer capacity; license has been incorrectlygenerated, please contact support@fico.com .

1091 User cuts not allowed
User cuts are not accessible in the tree when in-tree presolving is turned on. Deactivate in-treepresolving by setting TREEPRESOLVE to 0.

1092 Invalid scale factor
An invalid scale factor was given for a row or a column. Scale factors are provided as theexponents of powers of two, and must be between 0 and MAXSCALEFACTOR

1093 Column scaling not allowed.
Scaling of binary, integer and partial integer columns is not allowed.

Fair Isaac Corporation Confidential and Proprietary Information 562

Return Codes and Error Messages

1094 Invalid SOCP constraint detected.
The Optimizer has detected an invalid SOCP constraint: a quadratic row has incorrectly beenidentified as a second order cone. Please contact support.

1097 The dependent variable of row (e.g. variable z in z2 ≥ x2 + y2) must be defined non-negative,
otherwise the constraint is non-convex.
The problem is not formulated in a standard second order conic formulation.

1098 Both dependent variables of row (e.g. variables u and v in u ∗ v ≥ x2 + y2) must be defined
non-negative.
The problem is not formulated in a standard second order conic formulation.

1100 Cut limit reached
Failed to create cut, since the limit of storable cuts was reached. Please restart your solve with aless aggressive cutting strategy.

1101 Cannot call optimization routine recursively
You cannot call XPRSglobal, XPRSminim or XPRSmaxim within a call of XPRSglobal,
XPRSminim or XPRSmaxim on the same problem pointer. Either terminate the runningoptimization process or use a separate problem pointer. See also error code 1101.

1102 Presolve detected infeasibility on non-convex quadratic row
All quadratic matrices in the quadratic constraints must be positive semi-definite or asecond-order cone.

1103 Insufficient name buffer
The supplied name buffer is too small. Allocate more memory for the buffer or use shorternames.

1104 No row/column/set names
Tried to access a group of names that do not exist. Provide names to columns/rows/sets beforedoing so.

1105 Cannot create remote server session
Creating the remote compute server session failed. This may have multiple reasons, the errormessage will specify the cause.

1106 Corrupt Xpress compute server interface
There appears to be a mismatch between the libraries of Xpress. Please reinstall Xpress.

1107 Connection to remote server lost
Connection to the compute Insight server was lost.

1108 Unable to create remote server job data package (disk full?)
Solves using the compute server rely on creating temporary files.

1109 Remote server returned an error.
. . .

1110 The compute server returned an error.
This error forwards an error reported by the compute server.

1111 Remote server returned a warning
This warning forwards a warningreported by the compute server.

Fair Isaac Corporation Confidential and Proprietary Information 563

Return Codes and Error Messages

1112 Remote server temporary directory provided creates a path too long.
Names used during a compute server solve is directed from the probname and a uniqueidentifier. Please shorten the probname.

1113 Limiting parallel MIP tasks
When control RESOURCESTRATEGY is enabled, this warning notifies that the number ofmaximum MIP tasks have been limited to preserve memory.

9999 Generic error message
Please contact support@fico.com.

Fair Isaac Corporation Confidential and Proprietary Information 564

Appendix

APPENDIX A

Log and File Formats

A.1 File Types

The Optimizer generates or inputs a number of files of various types as part of the solution process. Bydefault these all take file names governed by the problem name (problem_name), but distinguished bytheir three letter extension. The file types associated with the Optimizer are as follows:
Extension Description File

Type
.alt Matrix alteration file, input by XPRSalter (ALTER). ASCII
.asc CSV format solution file, output by XPRSwritesol (WRITESOL). ASCII
.bss Basis file, output by XPRSwritebasis (WRITEBASIS), input by

XPRSreadbasis (READBASIS). ASCII
.csv Output file, output by XPRSiiswrite. ASCII
.dir Directives file (MIP only), input by XPRSreaddirs (READDIRS). ASCII
.glb Global file (MIP only), used by XPRSglobal (GLOBAL). Binary
.gol Goal programming input file, input byXPRSgoal (GOAL). ASCII
.grp Goal programming output file, output byXPRSgoal (GOAL). ASCII
.hdr Solution header file, output by XPRSwritesol (WRITESOL) and

XPRSwriterange (WRITERANGE). ASCII
.lp LP format matrix file, input by XPRSreadprob (READPROB). ASCII
.mps MPS / XMPS format matrix file, input by XPRSreadprob (READPROB). ASCII
.prt Fixed format solution file, output by XPRSwriteprtsol (WRITEPRTSOL). ASCII
.rng Range file, output by XPRSrange (RANGE). Binary
.rrt Fixed format range file, output by XPRSwriteprtrange (WRITEPRTRANGE). ASCII
.rsc CSV format range file, output by XPRSwriterange (WRITERANGE). ASCII
.sol Solution file created by XPRSwritebinsol (WRITEBINSOL). Binary
.slx Solution file created by XPRSwriteslxsol (WRITESLXSOL). ASCII
.xtm Tuner method created by XPRStunerwritemethod. ASCII
.xtr Tuner result created by XPRStune. XML
.json Remote Solving Configuration file JSON

In the following sections we describe the formats for a number of these.
Note that CSV stands for comma-separated-values text file format.

Fair Isaac Corporation Confidential and Proprietary Information 566

Log and File Formats

A.2 XMPS Matrix Files

The FICO Xpress Optimizer accepts matrix files in LP or MPS format, and an extension of this, XMPSformat. In that the latter represents a slight modification of the industry-standard, we provide details ofit here.
XMPS format defines the following fields:
Field 1 2 3 4 5 6
Columns 2-3 5-12 15-22 25-36 40-47 50-61

The following sections are defined:

NAME the matrix name;
ROWS introduces the rows;
COLUMNS introduces the columns;
QUADOBJ / QMATRIX introduces a quadratic objective function;
QCMATRIX introduces the quadratic constraints;
DELAYEDROWS introduces the delayed rows;
MODELCUTS introduces the model cuts;
INDICATORS introduces the indicator contraints;
SETS introduces SOS definitions;
RHS introduces the right hand side(s);
RANGES introduces the row ranges;
BOUNDS introduces the bounds;
GENCONS introduces general constraints;
ENDATA signals the end of the matrix.
compatibility additional sections for extensions of the MPS format that can be read but not written.

All section definitions start in column 1.
A.2.1 NAME section

Format: Cols 1-4 Field 3
NAME model_name

A.2.2 ROWS section

Format: Cols 1-4
ROWS

followed by row definitions in the format:
Field 1 Field 2
type row_name

Fair Isaac Corporation Confidential and Proprietary Information 567

Log and File Formats

The row types (Field 1) are:
N unconstrained (for objective functions);
L less than or equal to;
G greater than or equal to;
E equality.

A.2.3 COLUMNS section

Format: Cols 1-7
COLUMNS

followed by columns in the matrix in column order, i.e. all entries for one column must finish beforethose for another column start, where:
Field 1 Field 2 Field 3 Field 4 Field 5 Field 6
blank col row1 value1 row2 value2

specifies an entry of value1 in column col and row row1 (and value2 in col and row row2). The Field5/Field 6 pair is optional.
A.2.4 QUADOBJ / QMATRIX section (Quadratic Programming only)

A quadratic objective function can be specified in an MPS file by including a QUADOBJ or QMATRIXsection. For fixed format XMPS files, the section format is as follows:
Format: Cols 1-7

QUADOBJ

or
Format: Cols 1-7

QMATRIX

followed by a description of the quadratic terms. For each quadratic term, we have:
Field 1 Field 2 Field 3 Field 4
blank col1 col2 value

where col1 is the first variable in the quadratic term, col2 is the second variable and value is theassociated coefficient from the Qmatrix. In the QMATRIX section all nonzero Q elements must bespecified. In the QUADOBJ section only the nonzero elements in the upper (or lower) triangular part of Qshould be specified. In the QMATRIX section the user must ensure that the Qmatrix is symmetric,whereas in the QUADOBJ section the symmetry of Q is assumed and the missing part is generatedautomatically.
Note that the Q matrix has an implicit factors of 0.5 when included in the objective function.This means, for instance that an objective function of the form

5x2 + 7xy + 9y2
is represented in a QUADOBJ section as:

Fair Isaac Corporation Confidential and Proprietary Information 568

Log and File Formats

QUADOBJ
x x 10
x y 7
y y 18

(The additional term ’y x 7’ is assumed which is why the coefficient is not doubled); and in a QMATRIXsection as:
QMATRIX
x x 10
x y 7
y x 7
y y 18

The QUADOBJ and QMATRIX sections must appear somewhere after the COLUMNS section and mustonly contain columns previously defined in the columns section. Columns with no elements in theproblem matrix must be defined in the COLUMNS section by specifying a (possibly zero) costcoefficient.
A.2.5 QCMATRIX section (Quadratic Constraint Programming only)

Quadratic constraints may be added using QCMATRIX sections.
Format: Cols 1-8 Field 3

QCMATRIX row_name

Each constraint having quadratic terms should have it’s own QCMATRIX section. The QCMATRIXsection exactly follows the description of the QMATRIX section, i.e. for each quadratic term, we have:
Field 1 Field 2 Field 3 Field 4
blank col1 col2 value

where col1 is the first variable in the quadratic term, col2 is the second variable and value is theassociated coefficient from the Q matrix. All nonzero Q elements must be specified. The user mustensure that the Q matrix is symmetric. For instance a constraint of the form
qc1 : x + 5x2 + 7xy + 9y2 <= 2

is represented as:
NAME example
ROWS
L qc1
COLUMNS

x qc1 1
y qc1 0

QCMATRIX qc1
x x 5
x y 3.5
y x 3.5
y y 9

RHS
RHS1 qc1 2
END

The QCMATRIX sections must appear somewhere after the COLUMNS section and must only containcolumns previously defined in the columns section. Columns with no elements in the problem matrix

Fair Isaac Corporation Confidential and Proprietary Information 569

Log and File Formats

must be defined in the COLUMNS section by specifying a (possibly zero) cost coefficient. QCMATRICESmust be defined only for rows of type L or G and must have no range value defined in the RANGEsection.
Note that the FICO Xpress Optimizer can only solve convex (MI)QPs. Thus the quadratic matrix shouldbe positive semi-definite for <= rows and negative semi-definite for >= rows so that the defined regionis convex. Otherwise the problem will need to be solved by the nonlinear solver.
NOTE: technically, there is one exception for the restriction on the row type being L or G. If the row is thefirst nonbinding row (type N) then the section is treated as a QMATRIX section instead. Please beaware, that this also means that the objective specific implied divider of 2 will be assumed (Q matrixhas an implicit factors of 0.5 when included in the objective function, see the QMATRIX section). It’sprobably much better to use the QMATRIX or QUADOBJ sections to define quadratic objectives.
NOTE:

A.2.6 DELAYEDROWS section

This specifies a set of rows in the matrix that will be treated as delayed rows during a global search.These are rows that must be satisfied for any integer solution, but will not be loaded into the active setof constraints until required.
This section should be placed between the ROWS and COLUMNS sections. A delayed row may be of type
L, G or E. Each row should appear either in the ROWS or the DELAYEDROWS section, not in both.Otherwise, the format used is the same as of the ROWS section.
Format: Cols 1-11

DELAYEDROWS

followed by row definitions in the format:
Field 1 Field 2
type row_name

NOTE: For compatibility reasons, section names DELAYEDROWS and LAZYCONS are treated assynonyms.
A.2.7 MODELCUTS section

This specifies a set of rows in the matrix that will be treated as model cuts during a global search.During presolve the model cuts are removed from the matrix. Following optimization, the violatedmodel cuts are added back into the matrix and the matrix is re-optimized. This continues until noviolated cuts remain. This section should be placed between the ROWS and COLUMNS sections. Modelcuts may be of type L, G or E. The model cuts must be "true" model cuts, in the sense that they areredundant at the optimal MIP solution. The Optimizer does not guarantee to add all violated modelcuts, so they must not be required to define the optimal MIP solution.
Each row should appear either in the ROWS, DELAYEDROWS or in the MODELCUTS section, not in any twoor three of them. Otherwise, the format used is the same as of the ROWS section.
Format: Cols 1-9

MODELCUTS

followed by row definitions in the format:

Fair Isaac Corporation Confidential and Proprietary Information 570

Log and File Formats

Field 1 Field 2
type row_name

NOTE: A problem is not allowed to consists solely from model cuts. For compatibility reasons, sectionnames MODELCUTS and USERCUTS are treated as synonyms.
A.2.8 INDICATORS section

This specifies that a set of rows in the matrix will be treated as indicator constraints during a globalsearch. These are constraints that must be satisfied only when their associated controlling binaryvariables have specified values (either 0 or 1).
This section should be placed after any QUADOBJ, QMATRIX or QCMATRIX sections. The section formatis as follows:
Format: Cols 1-10

INDICATORS

Subsequent records give the associations between rows and the controlling binary columns, with thefollowing form:
Field 1 Field 2 Field 3 Field 4
type row_name col_name value

which specifies that the row row_namemust be satisfied only when column col_name has value
value. Here type must always be IF and value can be either 0 or 1. Also referenced rows must be oftype L or G only, and referenced columns must be binary.

A.2.9 SETS section (Integer Programming only)

Format: Cols 1-4
SETS

This record introduces the section which specifies any Special Ordered Sets. If present it must appearafter the COLUMNS section and before the RHS section. It is followed by a record which specifies thetype and name of each set, as defined below.
Field 1 Field 2
type set

Where type is S1 for a Special Ordered Set of type 1 or S2 for a Special Ordered Set of type 2 and set isthe name of the set.
Subsequent records give the set members for the set and are of the form:
Field 1 Field 2 Field 3 Field 4 Field 5 Field 6
blank set col1 value1 col2 value2

which specifies a set member col1 with reference value value1 (and col2 with reference value value2).The Field 5/Field 6 pair is optional.

Fair Isaac Corporation Confidential and Proprietary Information 571

Log and File Formats

A.2.10 RHS section

Format: Col 1-3
RHS

followed by the right hand side as defined below:
Field 1 Field 2 Field 3 Field 4 Field 5 Field 6
blank rhs row1 value1 row2 value2

specifies that the right hand side column is called rhs and has a value of value1 in row row1 (and a valueof value2 in row row2). The Field 5/Field 6 pair is optional.
A.2.11 RANGES section

Format: Cols 1-6
RANGES

followed by the right hand side ranges defined as follows:
Field 1 Field 2 Field 3 Field 4 Field 5 Field 6
blank rng row1 value1 row2 value2

specifies that the right hand side range column is called rng and has a value of value1 in row row1 (anda value of value2 in row row2). The Field 5/Field 6 pair is optional.
For any row, if b is the value given in the RHS section and r the value given in the RANGES section, thenthe activity limits below are applied:
Row Type Sign of r Upper Limit Lower Limit

G + b+r b
L + b b-r
E + b+r b
E - b b+r

A.2.12 BOUNDS section

Format: Cols 1-6
BOUNDS

followed by the bounds acting on the variables:
Field 1 Field 2 Field 3 Field 4
type blank col value

The Linear Programming bound types are:

Fair Isaac Corporation Confidential and Proprietary Information 572

Log and File Formats

UP for an upper bound;
LO for a lower bound;
FX for a fixed value of the variable;
FR for a free variable;
MI for a non-positive (’minus’) variable;
PL for a non-negative (’plus’) variable (the default).

There are six additional bound types specific to Integer Programming:
UI for an upper bounded general integer variable;
LI for a lower bounded general integer variable;
BV for a binary variable;
SC for a semi-continuous variable;
SI for a semi-continuous integer variable;
PI for a partial integer variable.

The value specified is an upper bound on the largest value the variable can take for types UP, FR, UI, SCand SI; a lower bound for types LO and LI; a fixed value for type FX; and ignored for types BV, MI and
PL. For type PI it is the switching value: below which the variable must be integer, and above which thevariable is continuous. If a non-integer value is given with a UI or LI type, only the integer part of thevalue is used.

� Integer variables may only take integer values between 0 and the upper bound. Integer variableswith an upper bound of unity are treated as binary variables.
� Binary variables may only take the values 0 and 1. Sometimes called 0/1 variables.
� Partial integer variables must be integral when they lie below the stated value, above that valuethey are treated as continuous variables.
� Semi-continuous variables may take the value zero or any value between a lower bound andsome finite upper bound. By default, this lower bound is 1.0. Other positive values can bespecified as an explicit lower bound. For example

BOUNDS
LO x 0.8
SC x 12.3

means that x can take the value zero or any value between 0.8 and 12.3.
� Semi-continuous integer variables may take the value zero or any integer value between a lowerbound and some finite upper bound.

A.2.13 GENCONS section

Format: Cols 1-7
GENCONS

This record introduces the section which specifies any general constraints, namely min, max, and, or,abs, pwl constraints. If present it must appear after the COLUMNS section. It is followed by a recordwhich specifies the type and name of each general constraint, as defined below.

Fair Isaac Corporation Confidential and Proprietary Information 573

Log and File Formats

Field 1 Field 2
type name

Where type is MAX for a maximum-constraint, MIN for a minimum-constraint, AND for an and-constraint,
OR for an or-constraint, ABS for an absolute-value-constraint or PWL for a piecewise linear constraintand name is the name of the general constraint.
Subsequent records for min/max/and/or/abs give the elements for the constraint and are of the form:
Field 1 Field 2
blank col/val

For all general constraints, the first given element (which needs to be the name of a column) will be theso-called "resultant". For the max- and min-constraints, the resultant is followed by an arbitrary numberof further column names or values, and the resultant should be the maximum/minimum of theremaining columns and values. For the and- and or-constraints the resultant is followed by an arbitrarynumber of further column names, where all the columns (including the resultant) need to be binary, andthe resultant will be one if and only if all (and) or at least one (or) of the remaining variables are one. Forthe abs-constraint, the resultant should be followed by exactly one futher column name, and theresultant will take the absolute value of the other column.
As an example, the constraint z = max x, y, 5.0 could be written as

GENCONS
MAX m1

z
x
y
5.0

For piecewise linear constraints the format is slightly different, consisting of exactly one line of theform:
Field 1 Field 2
col1 col2

and at least three lines of the form:
Field 1 Field 2
val1 val2

The first line defines the two variables that should be restricted by a piecewise linear relationship andthe points given in the remaining lines will define the piecewise linear function, which is extendedbeyond the first and last point according to the slope of the previous ones. For instance the piecewiselinear constraint
y = 0, if x < 0
y = x, if 0 <= x <= 5
y = 2x - 5, if 5 < x <= 10
y = 15, if x > 10

could be represented as:

Fair Isaac Corporation Confidential and Proprietary Information 574

Log and File Formats

GENCONS
PWL p1

x y
-1 0

0 0
5 5
10 15
11 15

A.2.14 ENDATA section

Format: Cols 1-6
ENDATA

is the last record of the file.
A.2.15 Compatibility

The optimizer is also able to read in some further sections defined by extensions of the LP format. Thisincludes the SOS section, which is a different way of writing down special ordered sets, and thefollowing sections that offer different ways of formulating piecewise linear constraints and objectives:
A.2.16 PWLOBJ section

Piecewise linear objective functions may be added using PWLOBJ sections.
Format: Cols 1-6

PWLOBJ

The piecewise linear objective function is defined via its extreme points, i.e., the function itself is givenby all convex combinations of neighboring extreme points as well as the infinite rays defined by the firsttwo and last two points. Each row of the PWLOBJ section defines one extreme point for one column.
Field 1 Field 2 Field 3 Field 4
blank col value1 value2

where col is the variable whose objective contribution is defined through the piecewise linear functionand value2 is the objective contribution if the variable takes value1. For instance the piecewiselinear objective function
0, if x < 0
x, if 0 <= x <= 5
2x - 5, if 5 < x <= 10
15, if x > 10

could be represented as:
PWLOBJ

x -1 0
x 0 0
x 5 5
x 10 15
x 11 15

Fair Isaac Corporation Confidential and Proprietary Information 575

Log and File Formats

If there are piecewise linear objective functions for multiple variables, these should be givenconsecutively (i.e., first all extreme points for x, then all for y). Furthermore, for each variable, theextreme points should be sorted according to non-decreasing value1. The piecewise linear functionsdo not necessarily need to be continuous, in this case two extreme points with identical value1 anddifferent value2 can be given and the first one will be used as the lefthand-limit and the second one asthe righthand-limit. Note that for value1 itself, both value2 can appear in the solution due totolerances.
A.2.17 PWLNAM section

PWLNAM is the first of the two sections defining piecewise linear constraints.
Format: Cols 1-6

PWLNAM

Similar to the piecewise linear objective, the piecewise linear constraints will mainly be defined throughits extreme points, which happens in the PWLCON section. In addition to that, however, the two variablesinvolved in the restriction y = f(x), with piecewise linear function f, need to be specified, and additionallya pre- and postslope are given, defining the slope of the piecewise linear function before the first andafter the last extreme point. Each piecewise linear function needs to be named, to later refer to it in the
PWLCON section when specifying the extreme points.
Field 1 Field 2 Field 3 Field 4 Field 5 Field 6
blank name col1 col2 value1 value2

where col1 is the resulting variable (y above), col2 is the input variable (x above), value1 is thepreslope defining the piecewise linear function up to the first extreme point and value1 is thepostslope defining it after the last extreme point.
A.2.18 PWLCON section

PWLCON is the second of the two sections defining piecewise linear constraints.
Format: Cols 1-6

PWLCON

Each piecewise linear constraint introduced in the PWLNAM section needs to be further specifiedthrough its extreme points, defining the behaviour between the pre- and postlope. Each line consists ofthe name of a piecewise linear constraint introduced in the PWLNAM followed by a list of extremepoints. Similar to the PWLOBJ section, the functions can be discontinuous, in which case the extremepoints have to be given in the correct order.
Field 1 Field 2 Field 3 Field 4
blank name value1 value2

where name is the name of a piecewise linear function introduced in the PWLNAM section and value1and value2 define an extreme point, where value1 is the value of the input variable and value1 isthe corresponding output value. For instance the piecewise linear constraint
y = 0, if x < 0
y = x, if 0 <= x <= 5
y = 2x - 5, if 5 < x <= 10
y = 15, if x > 10

Fair Isaac Corporation Confidential and Proprietary Information 576

Log and File Formats

could be represented as:
PWLNAM
pwc1 y x1 0 0
PWLCON
pwc1 0 0
pwc1 5 5
pwc1 10 15

A.3 LP File Format

Matrices can be represented in text files using either the MPS file format (.mps or .mat files) or the LPfile format (.lp files). The LP file format represents matrices more intuitively than the MPS format inthat it expresses the constraints in a row-oriented, algebraic way. For this reason, matrices are oftenwritten to LP files to be examined and edited manually in a text editor. Note that because the variablesare ’declared’ as they appear in the constraints during file parsing the variables may not be stored in theFICO Xpress Optimizer memory in the way you would expect from your enumeration of the variablenames. For example, the following file:
Minimize
obj: - 2 x3

Subject To
c1: x2 - x1 <= 10
c2: x1 + x2 + x3 <= 20

Bounds
x1 <= 30

End

after being read and rewritten to file would be:
\Problem name:
Minimize
- 2 x3

Subject To
c1: x2 - x1 <= 10
c2: x3 + x2 + x1 <= 20

Bounds
x1 <= 30

End

Note that the last constraint in the output .lp file has the variables in reverse order to those in the input
.lp file. The ordering of variables in the last constraint of the rewritten file is the order that thevariables were encountered during file reading. Also note that although the optimal solution is uniquefor this particular problem in other problems with many equal optimal solutions the path taken by thesolver may depend on the variable ordering and therefore by changing the ordering of your constraintsin the .lp file may lead to different solution values for the variables.

A.3.1 Rules for the LP file format

The following rules can be used when you are writing your own .lp files to be read by the FICO XpressOptimizer.

Fair Isaac Corporation Confidential and Proprietary Information 577

Log and File Formats

A.3.2 Comments and blank lines

Text following a backslash (\) and up to the subsequent carriage return is treated as a comment. Blanklines are ignored. Blank lines and comments may be inserted anywhere in an .lp file. For example, acommon comment to put in LP files is the name of the problem:
\Problem name: prob01

A.3.3 File lines, white space and identifiers

White space and carriage returns delimit variable names and keywords from other identifiers.Keywords are case insensitive. Variable names are case sensitive. Although it is not strictly necessary,for clarity of your LP files it is perhaps best to put your section keywords on their own lines starting atthe first character position on the line. There is no maximum on the length names of on the length ofinput lines. Lines may be broken for continuation wherever you may use white space.
A.3.4 Sections

The LP file is broken up into sections separated by section keywords. The following are a list of sectionkeywords you can use in your LP files. A section started by a keyword is terminated with anothersection keyword indicating the start of the subsequent section.
Section keywords Synonyms Section contents

maximize or minimize maximum max minimum
min

One linear expression describing the ob-jective function.
subject to subject to:

such that st s.t. st.
subjectto suchthat
subject such

A list of constraint expressions.

bounds bound A list of bounds expressions for variables.
integers integer ints int A list of variable names of integer vari-ables. Unless otherwise specified in thebounds section, the default relaxation in-terval of the variables is [0, 1].
generals general gens gen A list of variable names of integer vari-ables. Unless otherwise specified in thebounds section, the default relaxationinterval of the variables is [0, XPRS_-

PLUSINFINITY].
binaries binary bins bin A list of variable names of binary vari-ables.
semi-continuous semi continuous

semis semi s.c.
A list of variable names of semi-continuous variables.

semi integers s.i. A list of semi-integer bound expressionsfor variables.
partial integer p.i. A list of variable names of partial integervariables.
general constraints general constraint

gencons g.c.
A list of min/max/and/or/abs and piece-wise linear constraints.

Variables that do not appear in any of the variable type registration sections (i.e., integers,
generals, binaries, semi-continuous, semi integer, partial integer) are defined to be

Fair Isaac Corporation Confidential and Proprietary Information 578

Log and File Formats

continuous variables by default. That is, there is no section defining variables to be continuousvariables.
With the exception of the objective function section (maximize or minimize) and the constraintssection (subject to), which must appear as the first and second sections respectively, the sectionsmay appear in any order in the file. The only mandatory section is the objective function section. Notethat you can define the objective function to be a constant in which case the problem is a so-calledconstraint satisfaction problem. The following two examples of LP file contents express emptyproblems with constant objective functions and no variables or constraints.
Empty problem 1:

Minimize

End

Empty problem 2:
Minimize

0

End

The end of a matrix description in an LP file can be indicated with the keyword end entered on a line byitself. This can be useful for allowing the remainder of the file for storage of comments, unused matrixdefinition information or other data that may be of interest to be kept together with the LP file.
A.3.5 Variable names

Variable names can use any of the alphanumeric characters (a-z, A-Z, 0-9) and any of the followingsymbols:
!"#$%&/,.;?@_`'{}()|~'

A variable name can not begin with a number or a period. Care should be taken using the characters Eor e since these may be interpreted as exponential notation for numbers.
A.3.6 Linear expressions

Linear expressions are used to define the objective function and constraints. Terms in a linearexpression must be separated by either a + or a - indicating addition or subtraction of the followingterm in the expression. A term in a linear expression is either a variable name or a numerical coefficientfollowed by a variable name. It is not necessary to separate the coefficient and its variable with whitespace or a carriage return although it is advisable to do so since this can lead to confusion. Forexample, the string " 2e3x" in an LP file is interpreted using exponential notation as 2000 multiplied byvariable x rather than 2 multiplied by variable e3x. Coefficients must precede their associated variablenames. If a coefficient is omitted it is assumed to be 1.
A.3.7 Objective function

The objective function section can be written in a similar way to the following examples using either ofthe keywords maximize or minimize. Note that the keywords maximize and minimize are not usedfor anything other than to indicate the following linear expression to be the objective function. Note thefollowing two examples of an LP file objective definition:
Maximize

Fair Isaac Corporation Confidential and Proprietary Information 579

Log and File Formats

- 1 x1 + 2 x2 + 3x + 4y

or
Minimize
- 1 x1 + 2 x2 + 3x + 4y

No line continuation character is required to break the objective function across multiple lines and itcan be broken wherever you may use white space.
The objective function can be named in the same way as for constraints (see later) although this nameis ignored internally by the FICO Xpress Optimizer. Internally the objective function is always named
__OBJ___.

A.3.8 Constraints

The section of the LP file defining the constraints is preceded by the keyword subject to. Eachconstraint definition must begin on a new line. A constraint may be named with an identifier followedby a colon before the constraint expression. Constraint names must follow the same rules as variablenames. If no constraint name is specified for a constraint then a default name is assigned of the form
C0000001, C0000002, C0000003, etc. Constraint names are trimmed of white space before beingstored.
The constraints are defined as a linear expression in the variables followed by an indicator of theconstraint’s sense and a numerical right-hand side coefficient. The constraint sense is indicatedintuitively using one of the tokens: >=, <=, or =. For example, here is a named constraint:

depot01: - x1 + 1.6 x2 - 1.7 x3 <= 40

Note that tokens > and < can be used, respectively, in place of the tokens >= and <=.
No line continuation character is required when breaking a constraint across multiple lines, and linesmay be broken for continuation wherever you may use white space.

A.3.9 Delayed rows

Delayed rows are defined in the same way as general constraints, but after the "delayed rows" keyword.Note that delayed rows shall not include quadratic terms. The definition of constraints, delayed rowsand model cuts should be sequentially after each other.
For example:

Minimize
obj: x1 + x2
subject to
x1 <= 10
x1 + x2 >= 1
delayed rows
x1 >= 2
end

For compatibility reasons, the term "lazy constraints" is used as a synonym to "delayed rows".
A.3.10 Model cuts

Model cuts are defined in the same way as general constraints, but after the "model cuts" keyword.Note that model cuts shall not include quadratic terms. The definition of constraints, delayed rows andmodel cuts should be sequentially after each other.

Fair Isaac Corporation Confidential and Proprietary Information 580

Log and File Formats

For example:
Minimize
obj: x1 + x2
subject to
x1 <= 10
x1 + x2 >= 1
model cuts
x1 >= 2
end

For compatibility reasons, the term "user cuts" is used as a synonym to "model cuts".
A.3.11 Indicator contraints

Indicator constraints are defined in the constraints section together with general constraints (that is,under the keyword "subject to"). The syntax is as follows:
constraint_name: col_name = value -> linear_inequality

which means that the constraint linear_inequality should be enforced only when the variable
col_name has value value.
As for general constraints, the constraint_name: part is optional; col_name is the name of thecontrolling binary variable (it must be declared as binary in the binaries section); and valuemay beeither 0 or 1. Finally the linear_inequality is defined in the same way as for general constraints.
For example:

Minimize
obj: x1 + x2
subject to
x1 + 2 x2 >= 2
x1 = 0 -> x2 >= 2
binary
x1
end

A.3.12 Bounds

The list of bounds in the bounds section are preceded by the keyword bounds. Each bound definitionmust begin on a new line. Single or double bounds can be defined for variables. Double bounds can bedefined on the same line as 10 <= x <= 15 or on separate lines in the following ways:
10 <= x
15 >= x

or
x >= 10
x <= 15

If no bounds are defined for a variable the FICO Xpress Optimizer uses default lower and upper bounds.An important point to note is that the default bounds are different for different types of variables. Forcontinuous variables and variables declared in the generals section, the interval defined by thedefault bounds is [0, XPRS_PLUSINFINITY], while for variables declared in the integers section (seelater) the relaxation interval defined by the default bounds is [0, 1]. Note that the constant
XPRS_PLUSINFINITY is defined in the FICO Xpress Optimizer header files in your FICO XpressOptimizer libraries package.

Fair Isaac Corporation Confidential and Proprietary Information 581

Log and File Formats

If a single bound is defined for a variable the FICO Xpress Optimizer uses the appropriate default boundas the second bound. Note that negative upper bounds on variables must be declared together with anexplicit definition of the lower bound for the variable. Also note that variables can not be declared in thebounds section. That is, a variable appearing in a bounds section that does not appear in the objectivesection or in the constraint section is ignored.
Bounds that fix a variable can be entered as simple equalities. For example, x6 = 7.8 is equivalent to 7.8<= x6 <= 7.8. The bounds +∞ (positive infinity) and –∞ (negative infinity) must be entered as strings(case insensitive):

+infinity, -infinity, +inf, -inf.

Note that the keywords infinity and infmay not be used as a right-hand side coefficient of aconstraint.
A variable with a negative infinity lower bound and positive infinity upper bound may be entered as
free (case insensitive). For example, x9 free in an LP file bounds section is equivalent to:

- infinity <= x9 <= + infinity

or
- infinity <= x9

In the last example here, which uses a single bound is used for x9 (which is positive infinity forcontinuous example variable x9).
A.3.13 Generals, Integers and binaries

The generals, integers and binaries sections of an LP file is used to indicate the variables thatmust have integer values in a feasible solution. The difference between the variables registered in eachof these sections is in the definition of the default bounds that the variables will have. For variablesregistered in the generals section the default bounds are 0 and XPRS_PLUSINFINITY. For variablesregistered in the integers section the default bounds are 0 and 1. The bounds for variables registeredin the binaries section are 0 and 1.
The lines in the generals, integers and binaries sections are a list of white space or carriagereturn delimited variable names. Note that variables can not be declared in these sections. That is, avariable appearing in one of these sections that does not appear in the objective section or in aconstraint in the constraint section is ignored.
It is important to note that you will only be able to use these sections if your FICO Xpress Optimizer islicensed for Mixed Integer Programming.

A.3.14 Semi-continuous and semi-integer

The semi-continuous and semi integers sections of an LP file relate to two similar classes ofvariables and so their details are documented here simultaneously.
The semi-continuous (or semi integers) section of an LP file are used to specify variables assemi-continuous (or semi-integer) variables, that is, as variables that may take either (a) value 0 or (b)real (or integer) values from specified thresholds and up to the variables’ upper bounds.
The lines in a semi-continuous (or semi integers) section are a list of white space or carriagereturn delimited entries that are variable name-number pair. For the semi-continuous secion it isalso possible to provide a variable name only. The following example shows the format of entries in the
semi-continuous section.

Fair Isaac Corporation Confidential and Proprietary Information 582

Log and File Formats

Semi-continuous
x7 >= 2.3
x8
x9 > 4.5

The following example shows the format of entries in the semi integer section.
Semi integers
x7 >= 3
x9 > 5

Note that it is possible to use either the >= token or the > token. The resulting threshold will be identicalfor both cases. It is not possible to use the <= token.
The threshold of the interval within which a variable may have real (or integer) values is defined in twoways depending on whether the entry for the variable is (i) a variable name or (ii) a variablename-number pair. If the entry is just a variable name, then the variable’s threshold is the variable’slower bound, defined in the bounds section (see earlier). If the entry for a variable is a variablename-number pair, then the variable’s threshold is the number value in the pair.
It is important to note that if (a) the threshold of a variable is defined by a variable name-number pairand (b) a lower bound on the variable is defined in the bounds section, then:
Case 1) If the lower bound is less then zero, then the lower bound is zero.
Case 2) If the lower bound is greater than zero but less than the threshold, then the value of zero isessentially cut off the domain of the semi-continuous (or semi-integer) variable and the variablebecomes a simple bounded continuous (or integer) variable.
Case 3) If the lower bound is greater than the threshold, then the variable becomes a simple lowerbounded continuous (or integer) variable.
If no upper bound is defined in the bounds section for a semi-continuous (or semi-integer) variable,then the default upper bound that is used is the same as for continuous variables, for semi-continuousvariables, and generals section variables, for semi-integer variables.
It is important to note that you will only be able to use this section if your FICO Xpress Optimizer islicensed for Mixed Integer Programming.

A.3.15 Partial integers

The partial integers section of an LP file is used to specify variables as partial integer variables,that is, as variables that can only take integer values from their lower bounds up to specified thresholdsand then take continuous values from the specified thresholds up to the variables’ upper bounds.
The lines in a partial integers section are a list of white space or carriage return delimitedvariable name-integer pairs. The integer value in the pair is the threshold below which the variable musthave integer values and above which the variable can have real values. Note that lower bounds andupper bounds can be defined in the bounds section (see earlier). If only one bound is defined in the
bounds section for a variable or no bounds are defined then the default bounds that are used are thesame as for continuous variables.
The following example shows the format of the variable name-integer pairs in the partial
integers section.

Partial integers
x11 >= 8
x12 >= 9

Note that you can not use the <= token in place of the >= token.

Fair Isaac Corporation Confidential and Proprietary Information 583

Log and File Formats

It is important to note that you will only be able to use this section if your FICO Xpress Optimizer islicensed for Mixed Integer Programming.
A.3.16 Special ordered sets

Special ordered sets are defined as part of the constraints section of the LP file. The definition ofeach special ordered set looks the same as a constraint except that the sense is always = and the righthand side is either S1 or S2 (case sensitive) depending on whether the set is to be of type 1 or 2,respectively. Special ordered sets of type 1 require that, of the non-negative variables in the set, one atmost may be non-zero. Special ordered sets of type 2 require that at most two variables in the set maybe non-zero, and if there are two non-zeros, they must be adjacent. Adjacency is defined by the weights,which must be unique within a set given to the variables. The weights are defined as the coefficients onthe variables in the set constraint. The sorted weights define the order of the special ordered set. It isperhaps best practice to keep the special order sets definitions together in the LP file to indicate (foryour benefit) the start of the special ordered sets definition with the comment line \Special
Ordered Sets as is done when a problem is written to an LP file by the FICO Xpress Optimizer. Thefollowing example shows the definition of a type 1 and type 2 special ordered set.

Sos101: 1.2 x1 + 1.3 x2 + 1.4 x4 = S1
Sos201: 1.2 x5 + 1.3 x6 + 1.4 x7 = S2

It is important to note that you will only be able to use special ordered sets if your FICO XpressOptimizer is licensed for Mixed Integer Programming.
A.3.17 Quadratic programming problems

Quadratic programming problems (QPs) with quadratic objective functions are defined using a specialformat within the objective function description. The algebraic coefficients of the function x’Qxappearing in the objective for QP problems are specified inside square brackets []. All quadraticcoefficients must appear inside square brackets. Multiple square bracket sections may be used andquadratic terms in the same variable(s) may appear more than once in quadratic expressions.
Division by two of the QP objective is either implicit, or expressed by a /2 after the square brackets,thus [...] and [...]/2 are equivalent.
Within a square bracket pair, a quadratic term in two different variables is indicated by the two variablenames separated by an asterisk (*). A squared quadratic term is indicated with the variable namefollowed by a carat (̂) and then a 2.
For example, the LP file objective function section:

Minimize
obj: x1 + x2 + [x12 + 4 x1 ⁎ x2 + 3 x22] /2

Note that if in a solution the variables x1 and x2 both have value 1 then value of the objective functionis 1 + 1 + (1⁎1 + 4⁎1⁎1 + 3⁎1⁎1) / 2 = 2 + (8) / 2 = 6.
It is important to note that you will only be able to use quadratic objective function components if yourFICO Xpress Optimizer is licensed for Quadratic Programming.

A.3.18 Quadratic Constraints

Quadratic terms in constraints are introduced using the same format and rules as for the quadraticobjective, but without the implied or explicit /2 after the square brackets.
For example:

Fair Isaac Corporation Confidential and Proprietary Information 584

Log and File Formats

Minimize
obj: x1 + x2
s.t.
x1 + [x1^2 + 4 x1 ⁎ x2 + 3 x2^2] <= 10
x1 >= 1
end

Please be aware of the differences of the default behaviour of the square brackets in the objectivecompared to the constraints. For example problem:
min y + [x^2]
st.
x >= 1
y >= 1
end

Has an optimal objective function value of 1.5, while problem:
min t
s.t.
-t + y + [x^2] <= 0
x >= 1
y >= 1
end

has an optimum of 2. The user is suggested to use the explicit /2 in the objective function like:
min y + [x^2] / 2
st.
x >= 1
y >= 1
end

to make sure that the model represents what the modeller meant.
Note that the FICO Xpress Optimizer can only solve convex (MI)QPs. Thus quadratic rows must be oftype <= or >=, and the quadratic matrix should be positive semi-definite for <= rows and negativesemi-definite for >= rows so that the defined region is convex. Otherwise the problem will need to besolved by the nonlinear solver.

A.3.19 General Constraints

The general constraints section started by the record General Constraints specifies min, max,and, or, abs and piecewise linear constraints. Each line defines one such constraint, beginning with aname, followed by a colon, a resultant variable, a sign, a keyword and further variables (or breakpointsfor the piecewise linear constraints) in brackets with spaces and commas. The keywords are MAX for amaximum-constraint, MIN for a minimum-constraint, AND for an and-constraint, OR for an or-constraint,
ABS for an absolute-value-constraint and PWL for a piecewise linear constraint. For the max- andmin-constraints, the resultant is followed by an arbitrary number of further column names or values,and the resultant should be the maximum/minimum of the remaining columns and values. For the and-and or-constraints the resultant is followed by an arbitrary number of further column names, where allthe columns (including the resultant) need to be binary, and the resultant will be one if and only if all(and) or at least one (or) of the remaining variables are one. For the abs-constraint, the resultant shouldbe followed by exactly one further column name, and the resultant will take the absolute value of theother column. For the piecewise linear constraints, there needs to be exactly one input variable,followed by a colon and a list of breakpoints. Note that general constraints may only introduce newvariables if they are placed immediately after the subject to (or delayed rows, model cuts or pwl)sections. An example for a max-constraint would be

Fair Isaac Corporation Confidential and Proprietary Information 585

Log and File Formats

myCons: m = MAX (x , y , 0.0)

An example for a piecewise linear constraint would be
myPwl: y = PWL (x): (-1,-1) (0,0) (10,20) (10,0) (11,0)

defining that y = f(x), where f is a piecewise linear function with value x if x is negative, y = 2x if 0
<= x <= 10 and y = 0 if x is larger than 10.

A.3.20 Extended naming convention

If the names in the problem do not comply with the LP file format, the optimizer will automaticallycheck if uniqueness and reproducibility of the names could be preserved by prepending "x(" andappending ")" to all names, i.e. the parenthesis inside the original names are always presented in pairs.In these cases, the optimizer will create an LP file with the extended naming convention format. Usecontrol FORCEOUTPUT to force the optimizer to write the names in the problem out as they are.
A.3.21 Compatibility to other extensions

The FICO Xpress Optimizer is also able to read (but not write) further sections defined by extensions ofthe LP format. These include the SOS section, as a different way of defining special orderred sets, andthe PWLObj and PWL sections for piecewise linear objective and constraints.
The piecewise linear objective section is started by the PWLObj line. It is followed by lines consisting ofone variable name and a list of extreme points defining the piecewise linear objective function for thisvariable. For example the line

x: (-1,-1) (0,0) (10,20) (10,0) (11,0)

defines that if x is negative, the objective contribution is x. If x is between 0 and 10, then the objectivecontribution is 2x and if x is larger than 10, then the objective contribution is 0. For each variable, theextreme points should be sorted according to non-decreasing variable value. The piecewise linearfunctions do not necessarily need to be continuous, in this case two extreme points with identicalvariable values and different function values can be given and the first one will be used as thelefthand-limit and the second one as the righthand-limit. Note that for the point where the discontinuityappears, both function values can appear in the solution due to tolerances.
The piecewise linear constraint section is started by the PWL keyword. Each piecewise linear constraintdefines a restriction y = f(x), where f is a piecewise linear function. The lines in the input format consistof a name, the input variable, a preslope, the extreme points and a postslope. The preslope defines thefunction before the first extreme point and the postslope defines it after the last one. Discontinuitiesare possible as for the objective function. Note that pwl sections may only introduce new variables ifthey are placed immediately after the subject to (or delayed rows, model cuts or general constraints)sections. Above example would look as follows, assuming that instead of the objective it now definesthe value of a variable y :

pwlc1: y = x 1 (0,0) (10,20) (10,0) 0

A.4 ASCII Solution Files

Solution information is available from the Optimizer in a number of different file formats depending onthe intended use. The XPRSwritesol (WRITESOL) command produces two files, problem_name.hdrand problem_name.asc, whose output has comma separated fields and is primarily intended for inputinto another program. By contrast, the command

Fair Isaac Corporation Confidential and Proprietary Information 586

Log and File Formats

XPRSwriteprtsol (WRITEPRTSOL) produces fixed format output intended to be sent directly to aprinter, the file problem_name.prt. All three of these files are described below.
A.4.1 Solution Header .hdr Files

This file only contains one line of characters comprising header information which may be used forcontrolling the reading of the .asc file (which contains data on each row and column in the problem).The single line is divided into fourteen fields, separated by commas, as follows:
Field Type Width Description
1 string 10 matrix name;
2 integer 4 number of rows in problem;
3 integer 6 number of structural columns in problem;
4 integer 4 sequence number of the objective row;
5 string 3 problem status (see notes below);
6 integer 4 direction of optimization (0=none, 1=min, 2=max);
7 integer 6 number of iterations taken;
8 integer 4 final number of infeasibilities;
9 real 12 final object function value;
10 real 12 final sum of infeasibilities;
11 string 10 objective row name;
12 string 10 right hand side row name;
13 integer 1 flag: integer solution found (1), otherwise 0;
14 integer 4 matrix version number.
� Character fields contain character strings enclosed in double quotes.
� Integer fields contain right justified decimal digits.
� Fields of type real contain a decimal character representation of a real number, right justified, withsix digits to the right of the decimal point.
� The status of the problem (field 5) is a single character as follows:

C optimization interrupted (like ctrl-c);
O optimal;
N infeasible;
S stability problems;
U unbounded;
Z unfinished.

A.4.2 CSV Format Solution .asc Files

The bulk of the solution information is contained in this file. One line of characters is used for each rowand column in the problem, starting with the rows, ordered according to input sequence number. Eachline contains ten fields, separated by commas, as follows:

Fair Isaac Corporation Confidential and Proprietary Information 587

Log and File Formats

Field Type Width Description
1 integer 6 input sequence number of variable;
2 string 10 variable (row or column vector) name;
3 string 3 variable type (C=column; N, L, G, E for rows);
4 string 4 variable status (LL, BS, UL, EQ or ⁎⁎);
5 real 12 value of activity;
6 real 12 slack activity (rows) or input cost (columns;)
7 real 12 lower bound (-1000000000 if none);
8 real 12 upper bound (1000000000 if none);
9 real 12 dual activity (rows) or reduced cost (columns);
10 real 12 right hand side value (rows) or blank (columns).
� The field Type is as for the .hdr file.
� The variable type (field 3) is defined by:C structural column;N N type row;L L type row;G G type row;E E type row;
� The variable status (field 4) is defined by:
LL non-basic at lower bound;
⁎⁎ basic and infeasible;BS basic and feasible;UL non-basic at upper bound;EQ equality row;SB variable is super-basic;?? unknown.

A.4.3 Fixed Format Solution (.prt) Files

This file is the output of the XPRSwriteprtsol (WRITEPRTSOL) command and has the same formatas is displayed to the console by PRINTSOL. The format of the display is described below by way of anexample, for which the simple example of the FICO Xpress Getting Started manual will be used.
The first section contains summary statistics about the solution process and the optimal solution thathas been found. It gives the matrix (problem) name (simple) and the names of the objective functionand right hand sides that have been used. Then follows the number of rows and columns, the fact thatit was a maximization problem, that it took two iterations (simplex pivots) to solve and that the bestsolution has a value of 171.428571.

Problem Statistics
Matrix simple
Objective ⁎OBJ⁎
RHS ⁎RHS⁎
Problem has 3 rows and 2 structural columns

Solution Statistics
Maximization performed
Optimal solution found after 3 iterations
Objective function value is 171.428571

Next, the Rows Section presents the solution for the rows, or constraints, of the problem.

Fair Isaac Corporation Confidential and Proprietary Information 588

Log and File Formats

Rows Section
Number Row At Value Slack Value Dual Value RHS
N 1 ⁎OBJ⁎ BS 171.428571 -171.428571 .000000 .000000
L 2 second UL 200.000000 .000000 .571429 200.000000
L 3 first UL 400.000000 .000000 .142857 400.000000

The first column shows the constraint type: Lmeans a ’less than or equal to’ constrain; E indicates an’equality’ constraint; G refers to a ’greater than or equal to’ constraint; Nmeans a ’nonbinding’ constraint– this is the objective function.
The sequence numbers are in the next column, followed by the name of the constraint. The At columndisplays the status of the constraint. A UL indicator shows that the row is at its upper limit. In this casea ≤ row is hard up against the right hand side that is constraining it. BSmeans that the constraint is notactive and could be removed from the problem without changing the optimal value. If there were ≥constraints then we might see LL indicators, meaning that the constraint was at its lower limit. Otherpossible values include:
** basic and infeasible;
EQ equality row;
?? unknown.

The RHS column is the right hand side of the original constraint and the Slack Value is the amountby which the constraint is away from its right hand side. If we are tight up against a constraint (thestatus is UL or LL) then the slack will be 0.
The Dual Value is a measure of how tightly a constraint is acting. If a row is hard up against a ≤constraint then it might be expected that a greater profit would result if the constraint were relaxed alittle. The dual value gives a precise numerical measure to this intuitive feeling. In general terms, if theright hand side of a ≤ row is increased by 1 then the profit will increase by the dual value of the row.More specifically, if the right hand side increases by a sufficiently small δ then the profit will increase by
δ x dual value, since the dual value is a marginal concept. Dual values are sometimes known as shadow
prices.
Finally, the Columns Section gives the solution for the columns, or variables.

Columns Section
Number Column At Value Input Cost Reduced Cost
C 4 a BS 114.285714 1.000000 .000000
C 5 b BS 28.571429 2.000000 .000000

The first column contains a Cmeaning column (compare with the rows section above). The number isa sequence number. The name of the decision variable is given under the Column heading. Under At isthe status of the column: BSmeans it is away from its lower or upper bound, LLmeans that it is at itslower bound and ULmeans that the column is limited by its upper bound. Other possible values include:
** basic and infeasible;
EQ equality row;
SB variable is super-basic;
?? unknown.

The Value column gives the optimal value of the variable. For instance, the best value for the variable
a is 114.285714 and for variable b it is 28.571429. The Input Cost column tells you thecoefficient of the variable in the objective function.
The final column in the solution print gives the Reduced Cost of the variable, which is always zero forvariables that are away from their bounds – in this case, away from zero. For variables which are zero, it

Fair Isaac Corporation Confidential and Proprietary Information 589

Log and File Formats

may be assumed that the per unit contribution is not high enough to make production viable. Thereduced cost shows how much the per unit profitability of a variable would have to increase before itwould become worthwhile to produce this product. Alternatively, and this is where the name reduced
cost comes from, the cost of production would have to fall by this amount before any production couldinclude this without reducing the best profit.

A.4.4 ASCII Solution (.slx) Files

These files provide an easy to read format for storing solutions. An .slx file has a header NAMEcontaining the name of the matrix the solution belongs to. Each line contains three fields as follows:
Field Type Width Description
1 char 1 variable type;
2 string variable name of variable;
3 real variable value of activity.

The variable type (field 1) is defined by:
C structural column;
S LP solution only: slack variables;
D LP solution only: dual variables;
R LP solution only: reduced costs.
The file is closed by ENDATA.
It is possible to store multiple solutions in the same .slx file by repeating the NAME field following bythe additional solution information.
Example

NAME solution 1
C x1 0
C x2 1
NAME solution 2
C x1 1
C x2 0
ENDATA

A.5 ASCII Range Files

Users can display range (sensitivity analysis) information produced by XPRSrange (RANGE) eitherdirectly, or by printing it to a file for use. Two functions exist for this purpose, namely
XPRSwriteprtrange (WRITEPRTRANGE) and XPRSwriterange (WRITERANGE). The first of these,
XPRSwriterange (WRITERANGE) produces two files, problem_name.hdr and
problem_name.rsc, both of which have fixed fields and are intended for use as input to anotherprogram. By way of contrast, command XPRSwriteprtrange (WRITEPRTRANGE) outputsinformation in a format intended for sending directly to a printer (problem_name.rrt). The informationprovided by both functions is essentially the same and the difference lies purely in the intendedpurpose for the output. The formats of these files are described below.

A.5.1 Solution Header (.hdr) Files

This file contains only one line of characters comprising header information which may be used forcontrolling the reading of the .rsc file. Its format is identical to that produced by XPRSwritesol(WRITESOL) and is described in Solution Header (.hdr) Files above.

Fair Isaac Corporation Confidential and Proprietary Information 590

Log and File Formats

A.5.2 CSV Format Range (.rsc) Files

The bulk of the range information is contained in this file. One line of characters is used for each rowand column in the problem, starting with the rows, ordered according to input sequence number. Eachline contains 16 fields, separated by commas, as follows:
Field Type Width Description
1 integer 6 input sequence number of variable;
2 string * variable (row or column vector) name;
3 string 3 variable type (C=column; N, L, G, E for rows);
4 string 4 variable status (LL, BS, UL, EQ or ⁎⁎);
5 real 12 value of activity;
6 real 12 slack activity (rows) or input cost (columns);
7 real 12 lower activity;
8 real 12 unit cost down;
9 real 12 lower profit;
10 string * limiting process;
11 string 4 status of limiting process at limit (LL, UL);
12 real 12 upper activity;
13 real 12 unit cost up;
14 real 12 upper profit;
15 string * limiting process;
16 string 4 status of limiting process at limit (LL, UL).

* these fields are variable length depending on the maximum name length
� The field Type is as for the .hdr file.
� The variable type (field 3) is defined by:
C structural column;
N N type row;
L L type row;
G G type row;
E E type row;

� The variable status (field 4) is defined by:
LL non-basic at lower bound;
⁎⁎ basic and infeasible;
BS basic and feasible;
UL non-basic at upper bound;
EQ equality row;
?? unknown.

� The status of limiting process at limit (fields 11 and 16) is defined by:LL non-basic at lower bound;UL non-basic at upper bound;
� A full description of all fields can be found below.

A.5.3 Fixed Format Range (.rrt) Files

This file is the output of the XPRSwriteprtrange (WRITEPRTRANGE) command and has the same

Fair Isaac Corporation Confidential and Proprietary Information 591

Log and File Formats

format as is displayed to the console by PRINTRANGE. This format is described below by way of anexample.
Output is displayed in three sections, variously showing summary data, row data and column data. Thefirst of these is the same information as displayed by the XPRSwriteprtsol (WRITEPRTSOL)command (see above), resembling the following:

Problem Statistics
Matrix PLAN
Objective C0______
RHS R0______
Problem has 7 rows and 5 structural columns

Solution Statistics
Minimization performed
Optimal solution found after 6 iterations
Objective function value is 15.000000

The next section presents data for the rows, or constraints, of the problem. For each constraint, dataare displayed in two lines. In this example the data for just one row is shown:
Rows Section
Vector Activity Lower actvty Unit cost DN Upper cost Limiting AT
Number Slack Upper actvty Unit cost UP Process
G C1 10.000000 9.000000 -1.000000 x4 LL
LL 2 .000000 12.000000 1.000000 C6 UL

In the first of the two lines, the row type (N, G, L or E) appears before the row name. The value of theactivity follows. Then comes Lower actvty, the level to which the activity may be decreased at acost per unit of decrease given by the Unit cost DN column. At this level the unit cost changes. The
Limiting Process is the name of the row or column that would change its status if the activity ofthis row were decreased beyond its lower activity. The AT column displays the status of the limitingprocess when the limit is reached. It is either LL, meaning that it leaves or enters the basis at its lowerlimit, or UL, meaning that it leaves or enters the basis at its upper limit. In calculating Lower actvty,the lower bound on the row as specified in the RHS section of the matrix is ignored.
The second line starts with the current status of the row and the sequence number. The value of theslack on the row is then shown. The next four pieces of data are exactly analogous to the data abovethem. Again, in calculating Upper actvty, the upper bound on that activity is ignored.
The columns, or variables, are similarly displayed in two lines. Here we show just two columns:

Columns Section
Vector Activity Lower actvty Unit costDN Upper cost Limiting AT
Number Input cost Upper actvty Unit costUP Lower cost Process
C x4 1.000000 -2.000000 5.000000 6.000000 C5 LL
BS 8 1.000000 3.000000 1.000000 .000000 C1 LL

C x5 2.000000 -1.000000 2.000000 6.000000 X3 LL
UL 9 4.000000 3.000000 -2.000000 -very large X2 LL

The vector type is always C, denoting a column. The Activity is the optimal value. The Lower/Upper
actvty is the activity level that would result from a cost coefficientincrease/decrease from the Input cost to the Upper/Lower cost (assuming a minimizationproblem). The lower/upper bound on the column is ignored in this calculation. The Unit cost DN/UPis the change in the objective function per unit of change in the activity down/up to the Lower/Upperactivity. The interpretation of the Limiting Processes and AT statuses is as for rows. The secondline contains the column’s status and sequence number.
Note that for non-basic columns, the Unit costs are always the (absolute) values of the reducedcosts.

Fair Isaac Corporation Confidential and Proprietary Information 592

Log and File Formats

A.6 The Directives (.dir) File

This consists of an unordered sequence of records which specify branching priorities, forced branchingdirections and pseudo costs, read into the Optimizer using the XPRSreaddirs (READDIRS) command.By default its name is of the form problem_name.dir.
Directive file records have the format:
Col 2-3 Col 5-12 Col 25-36
type entity value

type is one of:
PR implying a priority entry (the value gives the priority, which must be an integer between 0 and1000. Values greater than 1000 are rejected, and real values are rounded down to the nextinteger. A low value means that the entity is more likely to be selected for branching.)
UP the entity is to be forced up (value is not used)
DN the entity is to be forced down (value is not used)
PU an up pseudo cost entry (the value gives the cost)
PD a down pseudo cost entry (the value gives the cost)
MC a model cut entry (value is not used)
DR a delayed row entry (value is not used)
BR force the optimizer to branch on the entity even if it is satisfied. If a node solution is global fea-sible, the optimizer will first branch on any branchable entity flagged with BR before returningthe solution.
entity is the name of a global entity (vector or special ordered set), or a mask. A mask may compriseordinary characters which match the given character: a ? which matches any single character, or a ⁎,which matches any string or characters. A ⁎ can only appear at the end of a mask.
value is the value to accompany the type.
For example:

PR x1* 2
gives global entities (integer variables etc.) whose names start with x1 a priority of 2. Note that the useof a mask: a ⁎matches all possible strings after the initial x1.

A.7 IIS description file in CSV format

This file contains information on a single IIS of an infeasible LP.

Fair Isaac Corporation Confidential and Proprietary Information 593

Log and File Formats

Field Description
Name Name of a row or column in conflict.
Type Type of conflicting variable (row or column vector).
Sense Sense of conflicting variable: (LE or GE) to indicate or rows. (LO or UP) to indicate loweror upper bounds for columns.
Bound Value associated with the variable, i.e. RHS for rows and bound values for columns.
Dual value The dual multipliers corresponding to the contradiction deducible from the IIS. Summingup all the rows and columns in the IIS multiplied by these values yields a contradictingconstraint. This value is negative for <= rows and upper bounds, and positive for >= rowsand lower bounds.
In iso Indicates if the row or column is in isolation.
Note that each IIS may contain a row or column with only on one of its possible senses. This alsomeans that equality rows and columns with both lower and upper bounds, only one side of therestriction may be present. Range constraints in an IIS are converted to greater than or equalconstraints.
An IIS often contains other columns than those listed in the IIS. Such columns are free, and have noassociated conflicting bounds.
The information contained in these files is the same as returned by the XPRSgetiisdata function, ordisplayed by (IIS -p).

A.8 The Matrix Alteration (.alt) File

The Alter File is an ASCII file containing matrix revision statements, read in by use of the XPRSalter(ALTER) command, and should be named problem_name.alt by default. Each statement occupies aseparate line of the file and the final line is always empty. The statements consist of identifiersspecifying the object to be altered and actions to be applied to the specified object. Typically theidentifier may specify just a row, for example R2, specifying the second row if that name has beenassigned to row 2. If a coefficient is to be altered, the associated variable must also be specified. Forexample:
RRRRRRRR
CCRider
2.087

changes the coefficient of CCRider in row RRRRRRRR to 2.087. The action may be one of thefollowing possibilities.
A.8.1 Changing Upper or Lower Bounds

An upper or lower bound of a column may be altered by specifying the special ’rows’ ⁎⁎LO and ⁎⁎UPfor lower and upper bounds respectively.To change the objective coefficient of a column use the string
⁎⁎OBJ. For example, to change the lower bound (to 1.234), upper bound (to 5.678) and the objective(to 1234.0) of column x___0305 would look like:-

⁎⁎LO
x___0305
1.234
⁎⁎UP
x___0305
5.678
⁎⁎OBJ

Fair Isaac Corporation Confidential and Proprietary Information 594

Log and File Formats

x___0305
1234.0

A.8.2 Changing Right Hand Side Coefficients

Right hand side coefficients of a row may be altered by changing values in the ’column’ with the nameof the right hand side.
A.8.3 Changing Constraint Types

The direction of a constraint may be altered. The row name is given first, followed by an action of
⁎⁎NTx, where x is one of:
N for the new row type to be constrained;
L for the new row type to be ’less than or equal to’;
G for the new row type to be ’greater than or equal to’;
E for the new row type to be an equality.
R for the new row type to be a range row.

Note that N type rows will not be present in the matrix in memory if the control KEEPNROWS has beenset to zero before XPRSreadprob (READPROB).
When turning a row to ranged row, a third entry, the range, is expected to be defined following ⁎⁎NTR.The rules for changing a row to a ranged row follow that of XPRSchgrhsrange.

A.9 The Tuner Method (.xtm) File

The tuner method file is in a straightforward plain text format. For example, when the two controls
MAXTIME and THREADS are set by the user on the current problem and then XPRStunerwritemethodis called, the generated xtm file will look similar to the following:

FIXED-CONTROLS
MAXTIME = 100
THREADS = 1

TUNABLE-CONTROLS
SBEFFORT = 0.25, 4
HEURSEARCHEFFORT = 0.5, 2
CUTFACTOR = 0.5, 1, 5
SCALING = 0
PRESOLVE = 0
VARSELECTION = 2, 7
CUTFREQ = 2
SYMMETRY = 0, 1, 2
COVERCUTS = 0, 2
GOMCUTS = 0, 2, 10
TREECOVERCUTS = 0
TREEGOMCUTS = 0
HEURSTRATEGY = 0
SBESTIMATE = 1, 2, 3, 4, 5, 6
HEURSEARCHROOTCUTFREQ= 2, 5
HEURSEARCHROOTSELECT = 0, 3, 5
HEURSEARCHTREESELECT = 0, 3, 5
ROOTPRESOLVE = 1
PREPROBING = 3
BRANCHDISJ = 0

The tuner method file consists of a section of fixed controls and a section of tunable controls.

Fair Isaac Corporation Confidential and Proprietary Information 595

Log and File Formats

A.9.1 The fixed controls

The fixed controls section starts with FIXED-CONTROLS, followed by control setting lines inassignment form. Each control in this section can only be assigned to one value. If the same controlappears several times in this section, its first appearance will be used.
When writting out the tuner method file, all the controls set for the current problem will be included inthe fixed control section. When reading in the tuner method file using XPRStunerreadmethod, thesecontrols won’t be applied to the current problem immediately, they will only be applied to the workerproblem used in the tuner.
This section can be empty.

A.9.2 The tunable controls

The tunable controls section starts with TUNABLE-CONTROLS, followed by control setting lines inassignment form. Each control in this section can be assigned to one value, or multiple valuesseperated by commas. A control may appear multiple times in this section.
When reading in a tuner method file and writing it out again, the tunable controls may appear in adifferent order. If there is a control appearing multiple times in the original tuner method file, whenwritten out, it will be combined into a single line with multiple values.
For bit vector controls, such as PRESOLVEOPS, SCALING, or HEURSEARCHROOTSELECT, it is possibleto either specify concrete assignments to the control or to specify individual bits that should be usedfor tuning. In the latter case, one has to use a colon instead of an equals sign. For example, "SCALING =24, 675" will tune using the two given concrete values 24 and 675, while "SCALING : 3, 4, 9" willindividually toggle bits 3, 4, and 9 of the default value for SCALING and potentially also trycombinations of those later during tuning.
This section can be empty. When both the fixed and the tunable secitons are empty, the tuner will thenuse a pre-defined factory tuner method.

A.10 The Simplex Log

During the simplex optimization, a summary log is displayed every n iterations, where n is the value of
LPLOG. This summary log has the form:
Its The number of iterations or steps taken so far.
Obj Value The objective function value.
S The current solution method (p primal; d dual).
Ninf The number of infeasibilities.
Nneg The number of variables which may improve the current solution if assigned a value awayfrom their current bounds.
Sum inf The scaled sum of infeasibilities. For the dual algorithm this is the scaled sum of dualinfeasibilities when the number of negative dj’s is non-zero.
Time The number of seconds spent iterating.
A more detailed log can be displayed every n iterations by setting LPLOG to -n. The detailed log has theform:

Fair Isaac Corporation Confidential and Proprietary Information 596

Log and File Formats

Its The number of iterations or steps taken so far.
S The current solution method (p primal; d dual).
Ninf The number of infeasibilities.
Obj Value If the solution is infeasible, the scaled sumof infeasibilities, otherwise: the objective value.
In The sequence number of the variable entering the basis (negative if from upper bound).
Out The sequence number of the variable leaving the basis (negative if to upper bound).
Nneg The number of variables which may prove the current solution if assigned a value awayfrom their current bounds.
Dj The scaled rate at which the most promising variable would improve the solution if as-signed a value away from its current bound (reduced cost).
Neta A measure of the size of the inverse.
Nelem Another measure of the size of the inverse.
Time The number of seconds spent iterating.
If LPLOG is set to 0, no log is displayed until the optimization finishes.

A.11 The Barrier Log

The first line of the barrier log displays statistics about the Cholesky decomposition needed by thebarrier algorithm. This line contains the following values:
Densecols The number of dense columns identified in the factorization.
NZ(L) The number of nonzero elements in the Cholesky factorization.
Flops The number of floating point operations needed to perform one factorization.
During the barrier optimization, a summary log is displayed in every iteration. This summary log has theform:
Its The number of iterations taken so far.
P.inf Maximal violation of primal constraints.
D.inf Maximal violation of dual constraints.
U.inf Maximal violation of upper bounds.
Primal obj Value of the primal objective function.
Dual obj Value of the dual objective function.
Compl Value of the average complementarity.
After the barrier algorithm a crossover procedure may be applied. This process prints at most 3 loglines about the different phases of the crossover procedure. The structure of these lines follows TheSimplex Log described in the section above.
If BAROUTPUT is set to 0, no log is displayed until the barrier algorithm finishes.

A.12 The Global Log

During the branch and bound tree search (see XPRSglobal (GLOBAL)), a summary log of nine columnsof information is frequently printed. By default, the printing frequency increases over time. If MIPLOG is

Fair Isaac Corporation Confidential and Proprietary Information 597

Log and File Formats

explicitly set to a negative value -n, a log line will be printed every n nodes. The nine columns consistof:
Node A sequential node number.
BestSoln The value of the best integer solution found so far.
BestBound A bound on the value of the optimal integer solution.
Sols The number of integer solutions that have been found.
Active The number of active (unsolved) nodes in the branch and bound tree search.
Depth The depth of the current node in the branch and bound tree.
Gap The percentage gap between the best solution and the best bound.
GInf The number of global infeasibilities at the current node.
Time The time taken.

This log is also printed when an integer feasible solution is found. An asterisk (⁎) printed in front of thenode number indicates that a solution has been found by an integral LP relaxation. Single charactersindicate that a heuristic solution has been found. Lower case characters stand for different strategiesof the Optimizer’s diving heuristic: the letter a corresponds to strategy 1, the letter b to strategy 2, andso forth. Compare control HEURDIVESTRATEGY. By default, several strategies are applied. Upper caseletters stand for special search heuristics. More precisely, R, L, M, C, U, and Z stand for the differentmodes of local search that can be selected by controls HEURSEARCHROOTSELECT and
HEURSEARCHTREESELECT. For technical reasons, a Umight also appear after a restart. The letter Frepresents the feasibility pump, T stands for a trivial heuristic. S, G, and B are reserved for specialpurpose heuristics for problems with set packing/partitioning constraints, GUBs, and branching onconstraints, respectively. An E indicates that a solution has been found during the calculation ofbranching estimates.
During root node cutting, the column Node is replaced by two columns Its and Type, columns Activeand Depth are replaced by Add and Del, respectively. These have the following meaning:
Its A counter for the number of cutting plane separation loops.
Type The type of cuts that have been generated this round: G – Gomory cuts, M – model cuts, O– outer approximation cuts (only for nonlinear problems), N – network-based cuts, K – anyother type of cuts
Add Number of cuts added to the LP relaxation in this iteration
Del Number of cuts deleted from the LP relaxation in this iteration
If MIPLOG is set to 3, a detailed log of eight columns of search information is printed for each node:
Branch A sequential node number.
Parent The node number of the parent of the current node. A D or a Umarks whether the currentnode is the down child or the up child, respectively, of its parent.
Solution The optimal value of the LP relaxation at the current node.
Entity The global entity on which the Optimizer will branch after this node.
Value The current value of the entity chosen for branching.
Active The number of active nodes in the tree search.
GInf The number of global infeasibilities.
Time The time taken.
Not all the information described above is present for all nodes. If the LP relaxation is cut off, onlyBranch and Parent (and possibly Solution) are displayed. If the LP relaxation is infeasible, only Branch

Fair Isaac Corporation Confidential and Proprietary Information 598

Log and File Formats

and Parent appear. The rest of the line will consist of a text message relaxation exceeds cutoffor relaxation infeasible. If an integer solution is discovered, this is highlighted before the logline is printed.
If MIPLOG is set to 2, the detailed log is printed at integer feasible solutions only. When MIPLOG is setto 1, the tree node logs are surpressed, but cutting loop logs will still be displayed. If MIPLOG is set to 0,neither cut nor node log wil be pritned. In any case, LP logs and intermediate status messages mightstill be printed.

A.13 The Tuner Log

While the tuner evaluates various control settings, it prints a summary log for each finished run. Whentuning a MIP problem, the summary log consists of eight columns of information:
RunID A sequential tuner run number.
Stat Status of a finished run: S - Solved, T - Timeout, U - Unsolved and C - Cancelled.
Solution The best integer solution.
Bound The best bound.
Integral The primal dual integral.
Gap The relative MIP gap.
RunTime The time spent for solving with this control setting.
TotTime The total time spent for the tuner.
When tuning an LP problem, the summary log consists of five columns of information:
RunID A sequential tuner run number.
Stat Status of a finished run: S - Solved, T - Timeout, U - Unsolved and C - Cancelled.
Solution The LP objective.
RunTime The time spent for solving with this control setting.
TotTime The total time spent for the tuner.
When the tuner finds an improving control setting, it will highlight the run with an asterisk (*) at thebeginning of the log line. The tuner will also specify the control parameters and the log file name for theimproving run.
If a control setting has been evaluated in previous tuner runs, its result can be reused. In this case, thetuner will print an extra H in the Stat column.

A.14 The Remote Solving Configuration file

This configuration file allows the user to control some of the ways the Xpress solver interacts with theremote Insight Compute Interface. It contains advanced configuration settings; it is expected that mostusers will not need to use these configuration options.
To use the configuration file, set the environment variable XPRESS_COMPUTE_CONFIG to the full pathof the file including the file name itself; you must also set the XPRESS_COMPUTE and
XPRESS_COMPUTE_URL environment variables to activate remote solving in the usual way. Changes tothe configuration are only read when the Optimizer is first initialized with XPRSinit.
The configuration file must be a valid JSON document, containing a single object with key-value pairs.All keys are optional and Xpress will use sensible defaults for anything you do not specify. For example:

Fair Isaac Corporation Confidential and Proprietary Information 599

Log and File Formats

{
"logLevel": 101,
"caCertsPath": "C:/xpressmp/ssl/ca-bundle.crt"

}

The remainder of this section details the individual keys that can be set.
A.14.1 caCertsPath

This field can be set to the absolute path of the certificate bundle file to use for authenticating SSLcertificates when communicating with a remote server using HTTPS. If unspecified, Xpress will look fora file ca-bundle.crt in the path specified by the MOSEL_SSL environment variable (if set), or the
.mmssl folder of the user’s home directory (if not). If this file does not exist, it can be created in thedefault location by executing the command mmssl setup

For example:
{
"caCertsPath": "C:/xpressmp/ssl/ca-bundle.crt"

}

A.14.2 cleanupJobs

This field controls whether Xpress should delete a compute job from the remote server when itsuccessfully completes or is interrupted. The default is false. Set to true to automatically deletesuccessfully completed jobs from the Insight Compute Interface.
For example:

{
"cleanupJobs": true

}

A.14.3 executionService

This field contains the name of the Insight execution service that will be used for jobs. If unset, theInsight server’s default execution service is used. Where the execution service name is set in theconfiguration file and the COMPUTEEXECSERVICE control, the value from the control will be used.
For example:

{
"executionService": "SECONDARY"

}

A.14.4 logLevel

This field controls additional lines written to the problem’s log that describe communication betweenthe local Xpress application and the remote Insight Compute Interface. (Note it doesn’t affect lineswritten by the remote Insight Compute Interface itself.) Supported levels are:
� 0 - write no extra log lines
� 1 - write error and warning messages only
� 2 - write error, warning and notification messages (the default)
� 101 - as 2, but also write lines for every HTTP request made and event message received fromthe server

Fair Isaac Corporation Confidential and Proprietary Information 600

Log and File Formats

� 102 - as 101, but include extra debugging output. Should be set on the advice of FICO productsupport only.
For example:

{
"logLevel": 0

}

A.14.5 maxRetries

This field controls how many times a failed request to the remote server will be retried before we showan error to the user. There will be an exponentially increasing delay before each retry (200ms, 400ms,800ms, etc) - the default setting of 8means we try each request for about 51 seconds before the user isinformed of an error. Set to a lower value if you want to see errors quicker, or 0 to disable retries entirely.
For example:

{
"maxRetries": 2

}

A.14.6 trustSrv

This field controls whether Xpress should trust the remote server without checking its certificate, whenan HTTPS URL is used. If set to false, the authenticity of the remote server is checked using the list oftrusted certification authorities and the operation will be aborted if the verification fails. Set to true ifyou want to use a server that has a known invalid or self-signed certificate, and acknowledge thesecurity risks this brings. Default is false.
For example:

{
"trustSrv": true

}

Fair Isaac Corporation Confidential and Proprietary Information 601

APPENDIX B

Contacting FICO

FICO provides clients with support and services for all our products. Refer to the following sections formore information.

Product support

FICO offers technical support and services ranging from self-help tools to direct assistance with a FICOtechnical support engineer. Support is available to all clients who have purchased a FICO product andhave an active support or maintenance contract. You can find support contact information and a link tothe Customer Self Service Portal (online support) on the Product Support home page(www.fico.com/en/product-support).
The FICO Customer Self Service Portal is a secure web portal that is available 24 hours a day, 7 days aweek from the Product Support home page. The portal allows you to open, review, update, and closecases, as well as find solutions to common problems in the FICO Knowledge Base.
Please include ’Xpress’ in the subject line of your support queries.

Product education

FICO Product Education is the principal provider of product training for our clients and partners.Product Education offers instructor-led classroom courses, web-based training, seminars, and trainingtools for both new user enablement and ongoing performance support. For additional information, visitthe Product Education homepage at www.fico.com/en/product-training or emailproducteducation@fico.com.

Product documentation

FICO continually looks for new ways to improve and enhance the value of the products and services weprovide. If you have comments or suggestions regarding how we can improve this documentation, letus know by sending your suggestions to techpubs@fico.com.
Please include your contact information (name, company, email address, and optionally, your phonenumber) so we may reach you if we have questions.

Fair Isaac Corporation Confidential and Proprietary Information 602

http://www.fico.com/en/product-support
mailto:Support@fico.com?subject=Xpress
http://www.fico.com/en/product-training
mailto:producteducation@fico.com
mailto:techpubs@fico.com?subject=Xpress

Contacting FICO

Sales and maintenance

If you need information on other Xpress Optimization products, or you need to discuss maintenancecontracts or other sales-related items, contact FICO by:
� Phone: +1 (408) 535-1500 or +44 207 940 8718
� Web: www.fico.com/optimization and use the available contact forms

Related services

Strategy Consulting: Included in your contract with FICO may be a specified amount of consulting timeto assist you in using FICO Optimization Modeler to meet your business needs. Additional consultingtime can be arranged by contract.
Conferences and Seminars: FICO offers conferences and seminars on our products and services. Forannouncements concerning these events, go to www.fico.com or contact your FICO accountrepresentative.

FICO Community

The FICO Community is a great resource to find the experts and information you need to collaborate,support your business, and solve common business challenges. You can get informal technicalsupport, build relationships with local and remote professionals, and improve your business practices.For additional information, visit the FICO Community (community.fico.com/welcome).

About FICO

FICO (NYSE:FICO) powers decisions that help people and businesses around the world prosper.Founded in 1956 and based in Silicon Valley, the company is a pioneer in the use of predictive analyticsand data science to improve operational decisions. FICO holds more than 165 US and foreign patentson technologies that increase profitability, customer satisfaction, and growth for businesses infinancial services, telecommunications, health care, retail, and many other industries. Using FICOsolutions, businesses in more than 100 countries do everything from protecting 2.6 billion paymentcards from fraud, to helping people get credit, to ensuring that millions of airplanes and rental cars arein the right place at the right time. Learn more at www.fico.com.

Fair Isaac Corporation Confidential and Proprietary Information 603

http://www.fico.com/optimization
http://www.fico.com
http://community.fico.com/welcome
http://www.fico.com

Index

Numbers
3, 533
4, 533
5, 533
6, 533
7, 533
9, 533
11, 533
18, 533
19, 533
20, 534
21, 534
29, 534
36, 534
38, 534
41, 534
45, 534
50, 534
52, 534
56, 534
58, 534
61, 534
64, 534
65, 535
66, 535
67, 535
71, 535
72, 535
73, 535
76, 535
77, 535
80, 535
81, 535
83, 535
84, 535
85, 535
89, 536
91, 536
97, 536
98, 536
102, 536
107, 536
111, 536
112, 536
113, 536
114, 536
120, 536
122, 536
124, 537
127, 537
128, 537
129, 537

130, 537
131, 537
132, 537
136, 537
137, 537
140, 537
142, 538
143, 538
151, 538
152, 538
153, 538
155, 538
156, 538
157, 538
158, 538
159, 538
160, 538
161, 538
162, 538
163, 538
164, 538
167, 538
168, 538
169, 539
170, 539
171, 539
173, 539
178, 539
179, 539
180, 539
181, 539
186, 539
187, 539
191, 539
192, 539
193, 539
194, 539
195, 539
197, 540
199, 540
202, 540
243, 540
245, 540
247, 540
249, 540
250, 540
251, 540
256, 540
257, 540
259, 540
261, 540
262, 541

Fair Isaac Corporation Confidential and Proprietary Information 604

Index

263, 541
264, 541
266, 541
268, 541
279, 541
287, 541
293, 541
302, 541
305, 541
306, 541
307, 541
308, 541
309, 542
310, 542
314, 542
316, 542
318, 542
319, 542
320, 542
324, 542
326, 542
352, 542
361, 542
362, 542
363, 542
368, 542
381, 543
386, 543
392, 543
394, 543
395, 543
401, 543
402, 543
403, 543
404, 543
405, 543
406, 543
407, 544
409, 544
410, 544
411, 544
412, 544
413, 544
414, 544
415, 544
416, 544
417, 544
418, 545
419, 545
420, 545
421, 545
422, 545
423, 545
424, 545
425, 545
426, 545
427, 545
429, 545
430, 545
434, 545

436, 546
459, 546
473, 546
474, 546
475, 546
476, 546
501, 546
502, 546
503, 546
504, 546
505, 546
506, 546
507, 546
508, 547
509, 547
510, 547
511, 547
512, 547
513, 547
514, 547
515, 547
516, 547
517, 547
518, 547
519, 547
520, 547
521, 547
522, 548
523, 548
524, 548
525, 548
526, 548
527, 548
528, 548
529, 548
530, 548
531, 548
532, 548
533, 548
535, 548
536, 548
538, 548
539, 549
545, 549
552, 549
553, 549
554, 549
555, 549
557, 549
558, 549
559, 549
602, 549
604, 549
606, 549
706, 549
707, 549
708, 550
710, 550
711, 550
712, 550

Fair Isaac Corporation Confidential and Proprietary Information 605

Index

713, 550
715, 550
716, 550
717, 550
721, 550
722, 550
723, 550
724, 550
725, 550
726, 551
727, 551
728, 551
729, 551
730, 551
731, 551
732, 551
733, 551
734, 551
735, 551
736, 551
738, 551
739, 552
740, 552
741, 552
742, 552
743, 552
744, 552
745, 552
746, 552
748, 552
749, 552
750, 552
751, 552
752, 553
753, 553
754, 553
755, 553
756, 553
757, 553
758, 553
759, 553
760, 553
761, 553
762, 553
763, 554
764, 554
765, 554
766, 554
767, 554
768, 554
770, 554
771, 554
772, 554
773, 554
774, 554
775, 554
776, 555
777, 555
778, 555
779, 555

780, 555
781, 555
782, 555
783, 555
784, 555
785, 555
787, 555
788, 555
790, 556
791, 556
792, 556
793, 556
794, 556
795, 556
796, 556
797, 556
798, 556
799, 556
835, 556
843, 556
847, 556
862, 557
863, 557
864, 557
865, 557
866, 557
867, 557
884, 557
898, 557
899, 557
900, 557
901, 557
902, 557
903, 557
904, 557
905, 558
906, 558
907, 558
909, 558
910, 558
911, 558
912, 558
913, 558
914, 558
915, 558
918, 558
919, 558
920, 558
921, 558
932, 558
933, 558
934, 559
935, 559
936, 559
937, 559
938, 559
939, 559
940, 559
941, 559
942, 559

Fair Isaac Corporation Confidential and Proprietary Information 606

Index

943, 559
944, 559
945, 560
946, 560
947, 560
948, 560
949, 560
950, 560
951, 560
952, 560
953, 560
954, 560
955, 560
956, 561
957, 561
1001, 561
1002, 561
1003, 561
1004, 561
1005, 561
1006, 561
1020, 561
1022, 561
1028, 561
1030, 561
1034, 561
1035, 561
1036, 562
1037, 562
1038, 562
1039, 562
1054, 562
1055, 562
1059, 562
1071, 562
1074, 562
1075, 562
1082, 562
1090, 562
1091, 562
1092, 562
1093, 562
1094, 563
1097, 563
1098, 563
1100, 563
1101, 563
1102, 563
1103, 563
1104, 563
1105, 563
1106, 563
1107, 563
1108, 563
1109, 563
1110, 563
1111, 563
1112, 564
1113, 564
9999, 564

A
ACTIVENODES, 501Advanced Mode, 55
ALGAFTERCROSSOVER, 399
ALGAFTERNETWORK, 400
ALGORITHM, 501algorithms, 1default, 18
ALTER, 138, 539, 594Archimedean model, see goal programmingarray numbering, 420
ATTENTIONLEVEL, 502
AUTOPERTURB, 400
AUTOSCALING, 400
AVAILABLEMEMORY, 502
B
BACKTRACK, 401
BACKTRACKTIE, 401
BARAASIZE, 502
BARALG, 402
BARCGAP, 502
BARCONDA, 503
BARCONDD, 503
BARCORES, 410
BARCRASH, 402
BARCROSSOVER, 503
BARDENSECOL, 503
BARDUALINF, 503
BARDUALOBJ, 504
BARDUALSTOP, 403
BARFAILITERLIMIT, 404
BARFREESCALE, 403
BARGAPSTOP, 403, 409
BARGAPTARGET, 404
BARINDEFLIMIT, 404
BARITER, 504
BARITERLIMIT, 9, 405
BARKERNEL, 405
BARLSIZE, 504
BAROBJSCALE, 405
BARORDER, 406
BARORDERTHREADS, 406
BAROUTPUT, 20, 34, 406
BARPRESOLVEOPS, 407
BARPRIMALINF, 504
BARPRIMALOBJ, 504
BARPRIMALSTOP, 407
BARREGULARIZE, 407
BARRHSSCALE, 408
BARSING, 505
BARSINGR, 505
BARSOLUTION, 408
BARSTART, 408
BARSTARTWEIGHT, 409
BARSTEPSTOP, 409
BARTHREADS, 409basis, 388, 440inversion, 440loading, 276, 289

Fair Isaac Corporation Confidential and Proprietary Information 607

Index

reading from file, 319
BASISCONDITION, 139
BASISSTABILITY, 140batch mode, 376BCL, 1
BESTBOUND, 505
BIGM, 410, 467
BIGMMETHOD, 410bitmaps, 215, 371
BOUNDNAME, 505bounds, 121, 147, 218, 594Branch and Bound, 20
BRANCHCHOICE, 411
BRANCHDISJ, 411branching, 20, 104directions, 202, 322, 593variable, 98
BRANCHSTRUCTURAL, 412
BRANCHVALUE, 505
BRANCHVAR, 506
BREADTHFIRST, 412
C
CACHESIZE, 412
CALLBACKCOUNT_CUTMGR, 506
CALLBACKCOUNT_OPTNODE, 506
CALLBACKFROMMASTERTHREAD, 413callbacks, 33barrier log, 94branching variable, 98copying between problems, 160estimate function, 104global log, 107, 340node cutoff, 116node selection, 100optimal node, 117preprocess node, 120separate, 121simplex log, 111, 343
CHECKCONVEXITY, 146
CHECKSONMAXCUTTIME, 506
CHECKSONMAXTIME, 507
CHGOBJSENSE, 154Cholesky factorization, 406, 413, 422, 504
CHOLESKYALG, 413
CHOLESKYTOL, 414
CLAMPING, 415
COLS, 507columnsdensity, 422, 503nonzeros, 190returning bounds, 218, 256returning indices, 210returning names, 229types, 191comments, 462
COMPUTEEXECSERVICE, 415
COMPUTEEXECUTIONS, 507
CONCURRENTTHREADS, 416
CONEELEMS, 507

CONES, 508
CONFLICTCUTS, 415Console Mode, 1, 55Console Optimizercommand line options, 2Console Xpress, 1termination, 376controls, 57changing values, 399copying between problems, 161retrieve values, 255retrieving values, 201, 215setting values, 367, 371, 375convex region, 15
CORESDETECTED, 508
CORESPERCPU, 416
CORESPERCPUDETECTED, 508
COVERCUTS, 416, 491
CPUPLATFORM, 417
CPUSDETECTED, 509
CPUTIME, 417
CRASH, 417
CROSSOVER, 19, 418crossover, 418, 503
CROSSOVERACCURACYTOL, 418
CROSSOVERITERLIMIT, 419
CROSSOVEROPS, 419
CROSSOVERTHREADS, 419
CSTYLE, 420CSV, 566
CURRENTMEMORY, 509
CURRENTNODE, 509
CURRMIPCUTOFF, 509cut manager, 35routines, 36, 102cut pool, 35, 102, 121, 126, 166, 194cuts, 278, 378lifted cover inequalities, 416list of indices, 193outer approximation cuts, 480, 494cut strategy, 421
CUTDEPTH, 420
CUTFACTOR, 420
CUTFREQ, 421cutoff, 21, 116, 451, 459
CUTS, 510cuts, 35, 121, 126, 539, 541deleting, 167generation, 420Gomory cuts, 432, 492list of active cuts, 196model cuts, 288
CUTSELECT, 421
CUTSTRATEGY, 421cutting planes, see cuts
Ddefault algorithm, 422
DEFAULTALG, 18, 308, 422degradation, 104, 479

Fair Isaac Corporation Confidential and Proprietary Information 608

Index

DENSECOLLIMIT, 422
DETERMINISTIC, 423directives, 202, 290, 540, 541loading, 280read from file, 321dongles, 2dual values, 10
DUALGRADIENT, 423
DUALINFEAS, 510
DUALIZE, 423
DUALIZEOPS, 424
DUALPERTURB, 424
DUALSTRATEGY, 424
DUALTHREADS, 425
DUMPCONTROLS, 175
Eearly termination, 9
EIGENVALUETOL, 425
ELEMS, 510
ELIMFILLIN, 425
ELIMTOL, 426
ERRORCODE, 510, 533errors, 113, 372, 510checking, 273
ETATOL, 426
EXIT, 176
EXTRACOLS, 426, 542, 544
EXTRAELEMS, 426, 541, 544
EXTRAMIPENTS, 427
EXTRAPRESOLVE, 427, 542
EXTRAQCELEMENTS, 427
EXTRAQCROWS, 427
EXTRAROWS, 428, 539, 544
EXTRASETELEMS, 428
EXTRASETS, 428
Ffathoming, 20
FEASIBILITYPUMP, 429feasible region, 19
FEASTOL, 429
FEASTOLPERTURB, 429
FEASTOLTARGET, 429files . bss, 537.alt, 138, 566.asc, 566.bss, 27, 566.dir, 22, 566.glb, 534, 566.gol, 566.grp, 566.hdr, 566.iis, 566.ini, 3.lp, 1, 323, 566.lp.gz, 27.mat, 323.mat.gz, 27

.mps, 566.mps.gz, 27.prt, 393, 566.rng, 189, 248, 318, 566.rrt, 318, 392, 566.rsc, 566.slx, 566.sol, 536, 566.svf, 360, 362.xpr, 2.xtm, 566.xtr, 566CSV, 566
FIXGLOBALS, 179, 318
FORCEOUTPUT, 430
FORCEPARALLELDUAL, 430
G
GENCONCOLS, 511
GENCONS, 511
GENCONSABSTRANSFORMATION, 431
GENCONSDUALREDUCTIONS, 431
GENCONVALS, 511general constraints, 14
GLOBAL, 259global entities, 515, 528branching, 364, 365extra entities, 427fixing, 179loading, 281global log, 107global search, 20, 517, 545callbacks, 34directives, 321MIP solution status, 516termination, 452, 460
GLOBALFILEBIAS, 431
GLOBALFILELOGINTERVAL, 431
GLOBALFILESIZE, 511
GLOBALFILEUSAGE, 512
GOAL, 51, 261goal programming, 51, 261, 541using constraints, 51using objective functions, 52
GOMCUTS, 432, 492
H
HELP, 263Hessian matrix, 155, 241
HEURBEFORELP, 432
HEURDEPTH, 432
HEURDIVEITERLIMIT, 433
HEURDIVERANDOMIZE, 433
HEURDIVESOFTROUNDING, 433
HEURDIVESPEEDUP, 434
HEURDIVESTRATEGY, 434, 598
HEURFORCESPECIALOBJ, 434
HEURFREQ, 435
HEURMAXSOL, 435
HEURNODES, 435

Fair Isaac Corporation Confidential and Proprietary Information 609

Index

HEURSEARCHEFFORT, 435
HEURSEARCHFREQ, 436
HEURSEARCHROOTCUTFREQ, 436
HEURSEARCHROOTSELECT, 436, 598
HEURSEARCHTREESELECT, 437, 598
HEURSTRATEGY, 438
HEURTHREADS, 438
HISTORYCOSTS, 438
I
IFCHECKCONVEXITY, 439
IIS, 264indicator constraints, 14
INDICATORS, 512
INDLINBIGM, 439
INDPRELINBIGM, 439infeasibility, 18, 44, 257, 475, 546diagnosis, 490integer, 47, 515node, 108infeasibility repair, 46infinity, 125initialization, 273, 541integer preprocessing, 457integer presolve, 546integer programming, 13, 20, 29integer solutions, 449, 515, 516begin search, 259branching variable, 98callback, 109cutoff, 116node selection, 100reinitialize search, 274retrieving information, 206interfaces, 1interior point, see Newton barrier
INVERTFREQ, 440
INVERTMIN, 440irreducible infeasible sets, 45, 447, 517IVE, 1
KKarush-Kuhn-Tucker conditions, 11
KEEPBASIS, 440
KEEPNROWS, 441, 595
L
L1CACHE, 441license, 6lifted cover inequalities, 491line length, 548
LINELENGTH, 441
LNPBEST, 442
LNPITERLIMIT, 442
LOCALCHOICE, 443log file, 372LP relaxation, 598
LPFLAGS, 442
LPFOLDING, 443
LPITERLIMIT, 9, 443, 533

LPLOG, 19, 34, 111, 444
LPLOGDELAY, 444
LPLOGSTYLE, 444
LPOBJVAL, 10, 512
LPOPTIMIZE, 9, 306
LPREFINEITERLIMIT, 443
LPSTATUS, 512
LPTHREADS, 445
MMarkowitz tolerance, 426, 445
MARKOWITZTOL, 445matrixadding names, 8changing coefficients, 138, 148, 151, 157column bounds, 147columns, 28, 124, 165, 507, 518constraint senses, 138cuts, 510deleting cuts, 167elements, 468extra elements, 426input, 284modifying, 28nonzeros, 190quadratic elements, 526range, 158reading, 27rows, 28scaling, 251, 363size, 29spare columns, 527spare elements, 528, 544spare global entities, 528
MATRIXNAME, 513
MATRIXTOL, 445
MAXABSDUALINFEAS, 513
MAXABSPRIMALINFEAS, 513
MAXCHECKSONMAXCUTTIME, 445
MAXCHECKSONMAXTIME, 446
MAXCUTTIME, 447
MAXGLOBALFILESIZE, 447
MAXIIS, 447
MAXIM, 307
MAXIMPLIEDBOUND, 448
MAXKAPPA, 514
MAXLOCALBACKTRACK, 448
MAXMCOEFFBUFFERELEMS, 446
MAXMEMORYHARD, 448
MAXMEMORYSOFT, 449
MAXMIPINFEAS, 514
MAXMIPSOL, 449
MAXMIPTASKS, 449
MAXNODE, 450
MAXPAGELINES, 450
MAXPROBNAMELENGTH, 514
MAXRELDUALINFEAS, 514
MAXRELPRIMALINFEAS, 514
MAXSCALEFACTOR, 450
MAXTIME, 9, 451

Fair Isaac Corporation Confidential and Proprietary Information 610

Index

memory, 174, 181, 476, 534, 540
MINIM, 307
MIPABSCUTOFF, 451
MIPABSGAPNOTIFY, 451
MIPABSGAPNOTIFYBOUND, 452
MIPABSGAPNOTIFYOBJ, 452
MIPABSSTOP, 452
MIPADDCUTOFF, 24, 453
MIPBESTOBJVAL, 515
MIPCOMPONENTS, 453
MIPCONCURRENTNODES, 454
MIPCONCURRENTSOLVES, 454
MIPDUALREDUCTIONS, 455
MIPENTS, 515
MIPFRACREDUCE, 455
MIPINFEAS, 515
MIPKAPPAFREQ, 456
MIPLOG, 35, 456, 597
MIPOBJVAL, 10, 515
MIPOPTIMIZE, 9, 309
MIPPRESOLVE, 24, 457
MIPRAMPUP, 457
MIPREFINEITERLIMIT, 459
MIPRELCUTOFF, 459
MIPRELGAPNOTIFY, 459
MIPRELSTOP, 460
MIPRESTART, 458
MIPRESTARTGAPTHRESHOLD, 458
MIPSOLNODE, 516
MIPSOLS, 516
MIPSTATUS, 516
MIPTERMINATIONMETHOD, 460
MIPTHREADID, 516
MIPTHREADS, 461
MIPTOL, 461
MIPTOLTARGET, 461
MIQCPALG, 459model cuts, 322Mosel, 1MPS file format, see files
MPS18COMPATIBLE, 461
MPSBOUNDNAME, 462
MPSECHO, 462
MPSFORMAT, 462
MPSOBJNAME, 463
MPSRANGENAME, 463
MPSRHSNAME, 463
MUTEXCALLBACKS, 463
N
NAMELENGTH, 517
NETCUTS, 464Newton barrier, 19convergence criterion, 502crossover, 19log callback, 94number of iterations, 9, 19, 404, 405output, 34
NODEDEPTH, 517
NODEPROBINGEFFORT, 464

NODES, 517nodes, 21active cuts, 196, 278cut routines, 102deleting cuts, 167infeasibility, 108maximum number, 450number solved, 517optimal, 117outstanding, 501parent node, 167, 522prior to optimization, 120selection, 100, 464separation, 121
NODESELECTION, 412, 464
NUMERICALEMPHASIS, 465
NUMIIS, 517
Oobjective function, 19, 28, 463, 518changing coefficients, 153dual value, 504optimum value, 512, 515primal value, 504quadratic, 28, 152, 155, 299, 302retrieving coefficients, 230
OBJNAME, 518
OBJRHS, 518
OBJSCALEFACTOR, 465
OBJSENSE, 518optimal basis, 35
OPTIMALITYTOL, 465
OPTIMALITYTOLTARGET, 466optimization sense, 518Optimizer output, 7, 20, 76, 112
ORIGINALCOLS, 518
ORIGINALGENCONCOLS, 519
ORIGINALGENCONS, 519
ORIGINALGENCONVALS, 519
ORIGINALINDICATORS, 519
ORIGINALMIPENTS, 519
ORIGINALPWLPOINTS, 520
ORIGINALPWLS, 520
ORIGINALQCELEMS, 520
ORIGINALQCONSTRAINTS, 520
ORIGINALQELEMS, 521
ORIGINALROWS, 521
ORIGINALSETMEMBERS, 521
ORIGINALSETS, 521
OUTPUTCONTROLS, 466
OUTPUTLOG, 372, 466
OUTPUTMASK, 395, 398, 467
OUTPUTTOL, 467
P
PARENTNODE, 522
PEAKMEMORY, 522
PEAKTOTALTREEMEMORYUSAGE, 522
PENALTY, 467
PENALTYVALUE, 522

Fair Isaac Corporation Confidential and Proprietary Information 611

Index

performance, 29, 539, 541
PERTURB, 467
PHYSICALCORESDETECTED, 522
PHYSICALCORESPERCPUDETECTED, 523piecewise linear constraints, 14pivot, 484, 545list of variables, 233order of basic variables, 232
PIVOTTOL, 468positive semi-definite matrix, 16postoptimal analysis, 318
POSTSOLVE, 312postsolve, 29
PPFACTOR, 468pre-emptive model, see goal programming
PREANALYTICCENTER, 468
PREBASISRED, 468
PREBNDREDCONE, 469
PREBNDREDQUAD, 469
PRECOEFELIM, 469
PRECOMPONENTS, 470
PRECOMPONENTSEFFORT, 470
PRECONEDECOMP, 470
PRECONVERTSEPARABLE, 471
PREDICTEDATTLEVEL, 523
PREDOMCOL, 471
PREDOMROW, 472
PREDUPROW, 472
PREELIMQUAD, 472
PREIMPLICATIONS, 473
PRELINDEP, 473
PREOBJCUTDETECT, 473
PREPERMUTE, 474
PREPERMUTESEED, 474
PREPROBING, 475
PREPROTECTDUAL, 475
PRESOLVE, 29, 475, 536, 540presolve, 29, 305, 426, 475, 490, 540, 542diagnosing infeasibility, 44integer, 24presolved problem, 252basis, 234, 289directives, 202, 290
PRESOLVEINDEX, 523
PRESOLVEMAXGROW, 476
PRESOLVEOPS, 476
PRESOLVEPASSES, 477
PRESOLVESTATE, 524
PRESORT, 477pricing, 478Devex, 478partial, 468, 478
PRICINGALG, 478primal infeasibilities, 504, 529
PRIMALDUALINTEGRAL, 524
PRIMALINFEAS, 524
PRIMALOPS, 478
PRIMALPERTURB, 479
PRIMALUNSHIFT, 479
PRINTRANGE, 315, 392

PRINTSOL, 316, 393priorities, 202, 322, 535, 593problemfile access, 323, 391input, 8, 284name, 27, 238, 374pointers, 7problem attributes, 10prefix, 501retrieving values, 200, 214, 254problem pointers, 163copying, 162deletion, 174pseudo cost, 202, 322, 479, 593
PSEUDOCOST, 479
PWLCONS, 525
PWLDUALREDUCTIONS, 480
PWLNONCONVEXTRANSFORMATION, 480
PWLPOINTS, 525
Q
QCCUTS, 480
QCELEMS, 525
QCONSTRAINTS, 525
QCROOTALG, 481
QELEMS, 526
QSIMPLEXOPS, 481quadratic programming, 542coefficients, 152, 155, 241, 526loading global problem, 299loading problem, 302
QUADRATICUNSHIFT, 482
QUIT, 317, 376
R
RANDOMSEED, 482
RANGE, 315, 318, 392
RANGENAME, 526ranging, 158, 159, 189, 526information, 318name, 463retrieve values, 248
READBASIS, 319
READBINSOL, 320
READDIRS, 321, 593
READPROB, 323
READSLXSOL, 325reduced costs, 10, 179, 465
REFACTOR, 482
REFINEMIPSOL, 326
REFINEOPS, 483relaxation, see LP relaxation
RELAXTREEMEMORYLIMIT, 483
RELPIVOTTOL, 484
REPAIRINDEFINITEQ, 484
REPAIRINFEAS, 357
REPAIRINFEASMAXTIME, 484
RESOURCESTRATEGY, 485
RESTORE, 360return codes, 57, 176, 317, 376

Fair Isaac Corporation Confidential and Proprietary Information 612

Index

RHSNAME, 526right hand side, 157, 246name, 463ranges, 318retrieve range values, 247
ROOTPRESOLVE, 485
ROWS, 526rowsaddition, 134deletion, 172extra rows, 428, 528indices, 210model cuts, 288names, 130, 229nonzeros, 249number, 521, 526types, 159, 250running time, 451
S
SAVE, 360, 362
SBBEST, 485
SBEFFORT, 486
SBESTIMATE, 486
SBITERLIMIT, 486
SBSELECT, 487
SCALE, 49, 363
SCALING, 49, 363, 487scaling, 48, 363, 541security system, 6sensitivity analysis, 179set returning names, 229
SETARCHCONSISTENCY, 81
SETDEFAULTCONTROL, 368
SETDEFAULTS, 369
SETLOGFILE, 372
SETMEMBERS, 527
SETPROBNAME, 374
SETS, 527sets, 515, 527addition, 136deletion, 173names, 137shadow prices, 318
SIFTING, 488
SIFTSWITCH, 488simplexcrossover, 19log callback, 111, 343number of iterations, 9, 527output, 19, 34perturbation, 400, 424, 467, 479type of crash, 417simplex log, 444simplex pivot, see pivot
SIMPLEXITER, 527
SLEEPONTHREADWAIT, 489solution, 8, 10, 15, 223beginning search, 307

output, 316, 393, 397
SOSREFTOL, 489
SPARECOLS, 527
SPAREELEMS, 528
SPAREMIPENTS, 528
SPAREROWS, 528
SPARESETELEMS, 528
SPARESETS, 528special order setsbranching, 22special ordered sets, 14, 281, 299
STOP, 176, 317, 376
STOPSTATUS, 529student mode, 539
SUMPRIMALINF, 529supported APIs, 1
SYMMETRY, 489
SYMSELECT, 490
SYSTEMMEMORY, 529
T
THREADS, 490tighteningbound, 29coefficient, 29
TIME, 530tolerance, 429, 445, 452, 461, 465, 467, 468, 484
TOTALMEMORY, 530
TRACE, 45, 490tracing, 546tree, see global search
TREECOMPLETION, 530
TREECOMPRESSION, 491
TREECOVERCUTS, 491
TREECUTSELECT, 491
TREEDIAGNOSTICS, 492
TREEGOMCUTS, 492
TREEMEMORYLIMIT, 492
TREEMEMORYSAVINGTARGET, 493
TREEMEMORYUSAGE, 530
TREEPRESOLVE, 493
TREEPRESOLVE_KEEPBASIS, 494
TREEQCCUTS, 494
TREERESTARTS, 530
TUNE, 382
TUNERHISTORY, 494
TUNERMAXTIME, 495
TUNERMETHOD, 495
TUNERMETHODFILE, 496
TUNERMODE, 496
TUNEROUTPUT, 496
TUNEROUTPUTPATH, 497
TUNERPERMUTE, 497
TUNERROOTALG, 497
TUNERSESSIONNAME, 498
TUNERTARGET, 498
TUNERTHREADS, 499
TUNERVERBOSE, 499
Uunboundedness, 21, 48, 257

Fair Isaac Corporation Confidential and Proprietary Information 613

Index

USERSOLHEURISTIC, 499
UUID, 531
Vvariablesbinary, 13, 17, 281, 299, 573continuous, 281, 299, 573continuous integer, 281, 299infeasible, 252integer, 13, 281, 299, 573partial integer, 14, 281, 299, 573primal, 212selection, 22semi-continuous, 14semi-continuous integer, 14slack, 10, 167
VARSELECTION, 500
VERSION, 500version number, 500
Wwarning messages, 34
WRITEBASIS, 388
WRITEBINSOL, 389
WRITEDIRS, 390
WRITEPROB, 391
WRITEPRTRANGE, 392
WRITEPRTSOL, 10, 393
WRITERANGE, 394
WRITESLXSOL, 396
WRITESOL, 397, 586
X
XPRESSVERSION, 531
XPRS_bo_addbounds, 59
XPRS_bo_addbranches, 60
XPRS_bo_addcuts, 61
XPRS_bo_addrows, 62
XPRS_bo_create, 64
XPRS_bo_destroy, 66
XPRS_bo_getbounds, 67
XPRS_bo_getbranches, 68
XPRS_bo_getid, 69
XPRS_bo_getlasterror, 70
XPRS_bo_getrows, 71
XPRS_bo_setpreferredbranch, 72
XPRS_bo_setpriority, 73
XPRS_bo_store, 74
XPRS_bo_validate, 75
XPRS_ge_addcbmsghandler, 76
XPRS_ge_getcbmsghandler, 77
XPRS_ge_getlasterror, 78
XPRS_ge_removecbmsghandler, 79
XPRS_ge_setarchconsistency, 81
XPRS_ge_setcbmsghandler, 80
XPRS_nml_addnames, 82
XPRS_nml_copynames, 83
XPRS_nml_create, 84
XPRS_nml_destroy, 85
XPRS_nml_findname, 86

XPRS_nml_getlasterror, 87
XPRS_nml_getmaxnamelen, 88
XPRS_nml_getnamecount, 89
XPRS_nml_getnames, 90
XPRS_nml_removenames, 91
XPRS_MINUSINFINITY, 125, 193
XPRS_PLUSINFINITY, 125
XPRSaddcbbariteration, 92
XPRSaddcbbarlog, 20, 34, 94
XPRSaddcbchecktime, 97
XPRSaddcbchgbranch, 34, 98
XPRSaddcbchgbranchobject, 99
XPRSaddcbchgnode, 34, 100
XPRSaddcbcomputerestart, 95
XPRSaddcbcutlog, 101
XPRSaddcbcutmgr, 102
XPRSaddcbdestroymt, 103
XPRSaddcbestimate, 104
XPRSaddcbgapnotify, 105
XPRSaddcbgloballog, 35, 107
XPRSaddcbinfnode, 34, 108
XPRSaddcbintsol, 34, 109
XPRSaddcblplog, 19, 34, 111
XPRSaddcbmessage, 7, 34, 112, 372
XPRSaddcbmessageVB, 113
XPRSaddcbmipthread, 114
XPRSaddcbnewnode, 34, 115
XPRSaddcbnodecutoff, 35, 116
XPRSaddcboptnode, 34, 117
XPRSaddcbpreintsol, 34, 118
XPRSaddcbprenode, 34, 120
XPRSaddcbpresolve, 96
XPRSaddcbsepnode, 121
XPRSaddcbusersolnotify, 123
XPRSaddcols, 28, 124
XPRSaddcols64, 124
XPRSaddcuts, 35, 126
XPRSaddcuts64, 126
XPRSaddgencons, 127
XPRSaddgencons64, 127
XPRSaddmipsol, 129
XPRSaddnames, 8, 124, 130
XPRSaddpwlcons, 131
XPRSaddpwlcons64, 131
XPRSaddqmatrix, 133
XPRSaddqmatrix64, 133
XPRSaddrows, 28, 134
XPRSaddrows64, 134
XPRSaddsetnames, 137
XPRSaddsets, 136
XPRSaddsets64, 136
XPRSalter, 138, 539, 594
XPRSbasiscondition, 139
XPRSbasisstability, 140
XPRSbtran, 141
XPRScalcobjective, 142
XPRScalcreducedcosts, 143
XPRScalcslacks, 144
XPRScalcsolinfo, 145
XPRSchgbounds, 147

Fair Isaac Corporation Confidential and Proprietary Information 614

Index

XPRSchgcoef, 28, 148
XPRSchgcoltype, 28, 149
XPRSchgglblimit, 150
XPRSchgmcoef, 28, 148, 151
XPRSchgmcoef64, 151
XPRSchgmqobj, 28, 152
XPRSchgmqobj64, 152
XPRSchgobj, 28, 153, 543
XPRSchgobjsense, 154
XPRSchgqobj, 28, 155
XPRSchgqrowcoeff, 28, 156
XPRSchgrhs, 28, 157
XPRSchgrhsrange, 28, 158
XPRSchgrowtype, 28, 159
XPRScopycallbacks, 160, 162
XPRScopycontrols, 161, 162
XPRScopyprob, 162
XPRScreateprob, 7, 163
XPRScrossoverlpsol, 164
XPRSdelcols, 28, 165
XPRSdelcpcuts, 36, 166
XPRSdelcuts, 35, 166, 167
XPRSdelgencons, 168
XPRSdelindicators, 169
XPRSdelpwlcons, 170
XPRSdelqmatrix, 171
XPRSdelrows, 28, 172
XPRSdelsets, 173
XPRSdestroyprob, 7, 163, 174
XPRSdumpcontrols, 175
XPRSestimaterowdualranges, 177
XPRSfeaturequery, 178
XPRSfixglobals, 179, 318
XPRSfree, 6, 181
XPRSftran, 182
XPRSgetattribinfo, 183
XPRSgetbanner, 184
XPRSgetbasis, 185
XPRSgetbasisval, 186
XPRSgetcheckedmode, 187
XPRSgetcoef, 188
XPRSgetcolrange, 189
XPRSgetcols, 28, 190
XPRSgetcols64, 190
XPRSgetcoltype, 28, 191
XPRSgetcontrolinfo, 192
XPRSgetcpcutlist, 36, 193
XPRSgetcpcuts, 36, 194
XPRSgetcpcuts64, 194
XPRSgetcutlist, 36, 196
XPRSgetcutmap, 197
XPRSgetcutslack, 198
XPRSgetdaysleft, 199
XPRSgetdblattrib, 10, 200, 501
XPRSgetdblcontrol, 201
XPRSgetdirs, 202
XPRSgetdualray, 203
XPRSgetgencons, 204
XPRSgetgencons64, 204
XPRSgetglobal, 206

XPRSgetglobal64, 206
XPRSgetiisdata, 208
XPRSgetindex, 210, 545
XPRSgetindicators, 211
XPRSgetinfeas, 212
XPRSgetintattrib, 10, 214, 501
XPRSgetintattrib64, 214
XPRSgetintcontrol, 9, 215, 399
XPRSgetintcontrol64, 215
XPRSgetlastbarsol, 216
XPRSgetlasterror, 217
XPRSgetlb, 28, 218
XPRSgetlicerrmsg, 219
XPRSgetlpsol, 10, 220
XPRSgetlpsolval, 221
XPRSgetmessagestatus, 222
XPRSgetmipsol, 223
XPRSgetmipsolval, 224
XPRSgetmqobj, 225
XPRSgetmqobj64, 225
XPRSgetnamelist, 226
XPRSgetnamelistobject, 228
XPRSgetnames, 28, 229
XPRSgetobj, 28, 230, 543
XPRSgetobjecttypename, 231
XPRSgetpivotorder, 232
XPRSgetpivots, 233
XPRSgetpresolvebasis, 33, 234
XPRSgetpresolvemap, 235
XPRSgetpresolvesol, 33, 236
XPRSgetprimalray, 237
XPRSgetprobname, 238
XPRSgetpwlcons, 239
XPRSgetpwlcons64, 239
XPRSgetqobj, 28, 241
XPRSgetqrowcoeff, 242
XPRSgetqrowqmatrix, 28, 243
XPRSgetqrowqmatrixtriplets, 28, 244
XPRSgetqrows, 245
XPRSgetrhs, 28, 246
XPRSgetrhsrange, 28, 247
XPRSgetrowrange, 248
XPRSgetrows, 28, 249
XPRSgetrows64, 249
XPRSgetrowtype, 28, 250
XPRSgetscale, 251
XPRSgetscaledinfeas, 33, 252
XPRSgetstrattrib, 10, 254, 501
XPRSgetstrcontrol, 255
XPRSgetstringattrib, 254
XPRSgetstringcontrol, 255
XPRSgetub, 28, 256
XPRSgetunbvec, 257
XPRSgetversion, 258
XPRSglobal, 259
XPRSgoal, 51, 261
XPRSiisall, 266
XPRSiisclear, 267
XPRSiisfirst, 268
XPRSiisisolations, 269

Fair Isaac Corporation Confidential and Proprietary Information 615

Index

XPRSiisnext, 270
XPRSiisstatus, 271
XPRSiiswrite, 272
XPRSinit, 6, 163, 181, 184, 273
XPRSinitglobal, 260, 274
XPRSinterrupt, 275
XPRSloadbasis, 276
XPRSloadbranchdirs, 277
XPRSloadcuts, 35, 278
XPRSloaddelayedrows, 279
XPRSloaddirs, 280
XPRSloadglobal, 8, 281
XPRSloadglobal64, 281
XPRSloadlp, 8, 284
XPRSloadlp64, 284
XPRSloadlpsol, 286
XPRSloadmipsol, 287
XPRSloadmodelcuts, 288
XPRSloadpresolvebasis, 33, 289
XPRSloadpresolvedirs, 33, 290
XPRSloadqcqp, 8, 291
XPRSloadqcqp64, 291
XPRSloadqcqpglobal, 295
XPRSloadqcqpglobal64, 295
XPRSloadqglobal, 8, 299
XPRSloadqglobal64, 299
XPRSloadqp, 8, 302
XPRSloadqp64, 302
XPRSloadsecurevecs, 305
XPRSlpoptimize, 9, 306
XPRSmaxim, 307
XPRSminim, 307
XPRSmipoptimize, 9, 309
XPRSobjsa, 310
XPRSpivot, 311
XPRSpostsolve, 260, 312
XPRSpresolverow, 313
XPRSrange, 189, 248, 315, 318, 392
XPRSreadbasis, 319
XPRSreadbinsol, 320
XPRSreaddirs, 321, 593
XPRSreadprob, 8, 323
XPRSreadslxsol, 325
XPRSrefinemipsol, 326
XPRSremovecbbariteration, 327
XPRSremovecbbarlog, 330
XPRSremovecbchecktime, 333
XPRSremovecbchgbranch, 331
XPRSremovecbchgbranchobject, 332
XPRSremovecbchgnode, 334
XPRSremovecbcomputerestart, 328
XPRSremovecbcutlog, 335
XPRSremovecbcutmgr, 336
XPRSremovecbdestroymt, 337
XPRSremovecbestimate, 338
XPRSremovecbgapnotify, 339
XPRSremovecbgloballog, 340
XPRSremovecbinfnode, 341
XPRSremovecbintsol, 342
XPRSremovecblplog, 343

XPRSremovecbmessage, 344
XPRSremovecbmipthread, 345
XPRSremovecbnewnode, 346
XPRSremovecbnodecutoff, 347
XPRSremovecboptnode, 348
XPRSremovecbpreintsol, 349
XPRSremovecbprenode, 350
XPRSremovecbpresolve, 329
XPRSremovecbsepnode, 351
XPRSremovecbusersolnotify, 352
XPRSrepairinfeas, 353
XPRSrepairweightedinfeas, 355
XPRSrepairweightedinfeasbounds, 357
XPRSrestore, 360
XPRSrhssa, 361
XPRSsave, 360, 362
XPRSsaveas, 362
XPRSscale, 49, 363
XPRSsetbranchbounds, 364
XPRSsetbranchcuts, 365
XPRSsetcheckedmode, 366
XPRSsetdblcontrol, 367
XPRSsetdefaultcontrol, 368
XPRSsetdefaults, 369
XPRSsetindicators, 370
XPRSsetintcontrol, 9, 371, 399
XPRSsetintcontrol64, 371
XPRSsetlogfile, 19, 20, 372
XPRSsetmessagestatus, 373
XPRSsetprobname, 374
XPRSsetstrcontrol, 375
XPRSstorebounds, 377
XPRSstorecuts, 36, 378
XPRSstorecuts64, 378
XPRSstrongbranch, 380
XPRSstrongbranchcb, 381
XPRStune, 384
XPRStunerreadmethod, 385
XPRStunerwritemethod, 386
XPRSunloadprob, 387
XPRSwritebasis, 388
XPRSwritebinsol, 389
XPRSwritedirs, 390
XPRSwriteprob, 391
XPRSwriteprtrange, 392
XPRSwriteprtsol, 10, 393
XPRSwriterange, 394
XPRSwriteslxsol, 10, 396
XPRSwritesol, 10, 397, 586

Fair Isaac Corporation Confidential and Proprietary Information 616

	Introduction
	The FICO Xpress Optimizer
	Starting the First Time
	Licensing
	Starting Console Optimizer
	Scripting Console Optimizer
	Interrupting Console Optimizer

	Manual Layout

	Basic Usage
	Initialization
	The Problem Pointer
	Logging
	Problem Loading
	Problem Solving
	Interrupting the Solve
	Results Processing
	Function Quick Reference
	Administration
	Problem Loading
	Problem Solving
	Results Processing

	Summary

	Problem Types
	Linear Programs (LPs)
	Mixed Integer Programs (MIPs)
	Quadratic Programs (QPs)
	Quadratically Constrained Quadratic Programs (QCQPs)
	Algebraic and matrix form
	Convexity
	Characterizing Convexity in Quadratic Constraints

	Second Order Cone problems (SOCPs)

	Solution Methods
	Simplex Method
	Output

	Newton Barrier Method
	Crossover
	Output

	Branch and Bound
	Theory
	Variable Selection and Cutting
	Variable Selection for Branching
	Cutting Planes
	Node Selection
	Adjusting the Cutoff Value
	Stopping Criteria
	Integer Preprocessing

	QCQP and SOCP Methods
	Convexity Checking
	Quadratically Constrained and Second Order Cone Problems

	Advanced Usage
	Problem Names
	Manipulating the Matrix
	Reading the Matrix
	Modifying the Matrix

	Working with Presolve
	(Mixed) Integer Programming Problems

	Working with LP Folding
	Working with Heuristics
	Analyzing and Handling Numerical Issues
	Analyzing Models for Numerical Issues
	Scaling
	Solution Refinement
	Other Ways to Handle Numerical Issues

	Common Causes of Confusion
	Using the Callbacks
	Output Callbacks
	LP Callbacks
	Global Search Callbacks

	Working with the Cut Manager
	Cuts and the Cut Pool
	Cut Management Routines
	User Cut Manager Routines

	Solving Problems Using Multiple Threads
	The concurrent solver

	Solving Large Models (the 64 bit Functions)
	Using the Tuner
	Basic Usage
	The Tuner Method
	The Tuner Output
	The Tuner Target
	Restarting the Tuner
	Tuner with Multiple Threads
	Tuner with Problem Permutations
	Tuning a Set of Problems
	Advanced Topics

	Remote Solving with Xpress Insight Compute Interface
	Authentication
	Callbacks
	Licensing
	Advanced Configuration

	Infeasibility, Unboundedness and Instability
	Infeasibility
	Diagnosis in Presolve
	Diagnosis using Primal Simplex
	Irreducible Infeasible Sets
	The Infeasibility Repair Utility
	Integer Infeasibility

	Unboundedness
	Instability
	Scaling
	Accuracy

	Goal Programming
	Overview
	Pre–emptive Goal Programming Using Constraints
	Archimedean Goal Programming Using Constraints
	Pre–emptive Goal Programming Using Objective Functions
	Archimedean Goal Programming Using Objective Functions

	Console and Library Functions
	Console Mode Functions
	Layout for Function Descriptions
	Function Name
	Purpose
	Synopsis
	Arguments
	Error Values
	Associated Controls
	Examples
	Further Information
	Related Topics

	XPRS_bo_addbounds
	XPRS_bo_addbranches
	XPRS_bo_addcuts
	XPRS_bo_addrows
	XPRS_bo_create
	XPRS_bo_destroy
	XPRS_bo_getbounds
	XPRS_bo_getbranches
	XPRS_bo_getid
	XPRS_bo_getlasterror
	XPRS_bo_getrows
	XPRS_bo_setpreferredbranch
	XPRS_bo_setpriority
	XPRS_bo_store
	XPRS_bo_validate
	XPRS_ge_addcbmsghandler
	XPRS_ge_getcbmsghandler
	XPRS_ge_getlasterror
	XPRS_ge_removecbmsghandler
	XPRS_ge_setcbmsghandler
	XPRS_ge_setarchconsistency (SETARCHCONSISTENCY)
	XPRS_nml_addnames
	XPRS_nml_copynames
	XPRS_nml_create
	XPRS_nml_destroy
	XPRS_nml_findname
	XPRS_nml_getlasterror
	XPRS_nml_getmaxnamelen
	XPRS_nml_getnamecount
	XPRS_nml_getnames
	XPRS_nml_removenames
	XPRSaddcbbariteration
	XPRSaddcbbarlog
	XPRSaddcbcomputerestart
	XPRSaddcbpresolve
	XPRSaddcbchecktime
	XPRSaddcbchgbranch
	XPRSaddcbchgbranchobject
	XPRSaddcbchgnode
	XPRSaddcbcutlog
	XPRSaddcbcutmgr
	XPRSaddcbdestroymt
	XPRSaddcbestimate
	XPRSaddcbgapnotify
	XPRSaddcbgloballog
	XPRSaddcbinfnode
	XPRSaddcbintsol
	XPRSaddcblplog
	XPRSaddcbmessage
	XPRSaddcbmipthread
	XPRSaddcbnewnode
	XPRSaddcbnodecutoff
	XPRSaddcboptnode
	XPRSaddcbpreintsol
	XPRSaddcbprenode
	XPRSaddcbsepnode
	XPRSaddcbusersolnotify
	XPRSaddcols, XPRSaddcols64
	XPRSaddcuts, XPRSaddcuts64
	XPRSaddgencons, XPRSaddgencons64
	XPRSaddmipsol
	XPRSaddnames
	XPRSaddpwlcons, XPRSaddpwlcons64
	XPRSaddqmatrix, XPRSaddqmatrix64
	XPRSaddrows, XPRSaddrows64
	XPRSaddsets, XPRSaddsets64
	XPRSaddsetnames
	XPRSalter (ALTER)
	XPRSbasiscondition (BASISCONDITION)
	XPRSbasisstability (BASISSTABILITY)
	XPRSbtran
	XPRScalcobjective
	XPRScalcreducedcosts
	XPRScalcslacks
	XPRScalcsolinfo
	CHECKCONVEXITY
	XPRSchgbounds
	XPRSchgcoef
	XPRSchgcoltype
	XPRSchgglblimit
	XPRSchgmcoef, XPRSchgmcoef64
	XPRSchgmqobj, XPRSchgmqobj64
	XPRSchgobj
	XPRSchgobjsense (CHGOBJSENSE)
	XPRSchgqobj
	XPRSchgqrowcoeff
	XPRSchgrhs
	XPRSchgrhsrange
	XPRSchgrowtype
	XPRScopycallbacks
	XPRScopycontrols
	XPRScopyprob
	XPRScreateprob
	XPRScrossoverlpsol
	XPRSdelcols
	XPRSdelcpcuts
	XPRSdelcuts
	XPRSdelgencons
	XPRSdelindicators
	XPRSdelpwlcons
	XPRSdelqmatrix
	XPRSdelrows
	XPRSdelsets
	XPRSdestroyprob
	XPRSdumpcontrols (DUMPCONTROLS)
	EXIT
	XPRSestimaterowdualranges
	XPRSfeaturequery
	XPRSfixglobals (FIXGLOBALS)
	XPRSfree
	XPRSftran
	XPRSgetattribinfo
	XPRSgetbanner
	XPRSgetbasis
	XPRSgetbasisval
	XPRSgetcheckedmode
	XPRSgetcoef
	XPRSgetcolrange
	XPRSgetcols, XPRSgetcols64
	XPRSgetcoltype
	XPRSgetcontrolinfo
	XPRSgetcpcutlist
	XPRSgetcpcuts, XPRSgetcpcuts64
	XPRSgetcutlist
	XPRSgetcutmap
	XPRSgetcutslack
	XPRSgetdaysleft
	XPRSgetdblattrib
	XPRSgetdblcontrol
	XPRSgetdirs
	XPRSgetdualray
	XPRSgetgencons, XPRSgetgencons64
	XPRSgetglobal, XPRSgetglobal64
	XPRSgetiisdata
	XPRSgetindex
	XPRSgetindicators
	XPRSgetinfeas
	XPRSgetintattrib, XPRSgetintattrib64
	XPRSgetintcontrol, XPRSgetintcontrol64
	XPRSgetlastbarsol
	XPRSgetlasterror
	XPRSgetlb
	XPRSgetlicerrmsg
	XPRSgetlpsol
	XPRSgetlpsolval
	XPRSgetmessagestatus
	XPRSgetmipsol
	XPRSgetmipsolval
	XPRSgetmqobj, XPRSgetmqobj64
	XPRSgetnamelist
	XPRSgetnamelistobject
	XPRSgetnames
	XPRSgetobj
	XPRSgetobjecttypename
	XPRSgetpivotorder
	XPRSgetpivots
	XPRSgetpresolvebasis
	XPRSgetpresolvemap
	XPRSgetpresolvesol
	XPRSgetprimalray
	XPRSgetprobname
	XPRSgetpwlcons, XPRSgetpwlcons64
	XPRSgetqobj
	XPRSgetqrowcoeff
	XPRSgetqrowqmatrix
	XPRSgetqrowqmatrixtriplets
	XPRSgetqrows
	XPRSgetrhs
	XPRSgetrhsrange
	XPRSgetrowrange
	XPRSgetrows, XPRSgetrows64
	XPRSgetrowtype
	XPRSgetscale
	XPRSgetscaledinfeas
	XPRSgetstrattrib, XPRSgetstringattrib
	XPRSgetstrcontrol, XPRSgetstringcontrol
	XPRSgetub
	XPRSgetunbvec
	XPRSgetversion
	XPRSglobal (GLOBAL)
	XPRSgoal (GOAL)
	HELP
	IIS
	XPRSiisall
	XPRSiisclear
	XPRSiisfirst
	XPRSiisisolations
	XPRSiisnext
	XPRSiisstatus
	XPRSiiswrite
	XPRSinit
	XPRSinitglobal
	XPRSinterrupt
	XPRSloadbasis
	XPRSloadbranchdirs
	XPRSloadcuts
	XPRSloaddelayedrows
	XPRSloaddirs
	XPRSloadglobal, XPRSloadglobal64
	XPRSloadlp, XPRSloadlp64
	XPRSloadlpsol
	XPRSloadmipsol
	XPRSloadmodelcuts
	XPRSloadpresolvebasis
	XPRSloadpresolvedirs
	XPRSloadqcqp, XPRSloadqcqp64
	XPRSloadqcqpglobal, XPRSloadqcqpglobal64
	XPRSloadqglobal, XPRSloadqglobal64
	XPRSloadqp, XPRSloadqp64
	XPRSloadsecurevecs
	XPRSlpoptimize (LPOPTIMIZE)
	XPRSmaxim, XPRSminim (MAXIM, MINIM)
	XPRSmipoptimize (MIPOPTIMIZE)
	XPRSobjsa
	XPRSpivot
	XPRSpostsolve (POSTSOLVE)
	XPRSpresolverow
	PRINTRANGE
	PRINTSOL
	QUIT
	XPRSrange (RANGE)
	XPRSreadbasis (READBASIS)
	XPRSreadbinsol (READBINSOL)
	XPRSreaddirs (READDIRS)
	XPRSreadprob (READPROB)
	XPRSreadslxsol (READSLXSOL)
	XPRSrefinemipsol (REFINEMIPSOL)
	XPRSremovecbbariteration
	XPRSremovecbcomputerestart
	XPRSremovecbpresolve
	XPRSremovecbbarlog
	XPRSremovecbchgbranch
	XPRSremovecbchgbranchobject
	XPRSremovecbchecktime
	XPRSremovecbchgnode
	XPRSremovecbcutlog
	XPRSremovecbcutmgr
	XPRSremovecbdestroymt
	XPRSremovecbestimate
	XPRSremovecbgapnotify
	XPRSremovecbgloballog
	XPRSremovecbinfnode
	XPRSremovecbintsol
	XPRSremovecblplog
	XPRSremovecbmessage
	XPRSremovecbmipthread
	XPRSremovecbnewnode
	XPRSremovecbnodecutoff
	XPRSremovecboptnode
	XPRSremovecbpreintsol
	XPRSremovecbprenode
	XPRSremovecbsepnode
	XPRSremovecbusersolnotify
	XPRSrepairinfeas
	XPRSrepairweightedinfeas
	XPRSrepairweightedinfeasbounds (REPAIRINFEAS)
	XPRSrestore (RESTORE)
	XPRSrhssa
	XPRSsave, XPRSsaveas (SAVE)
	XPRSscale (SCALE)
	XPRSsetbranchbounds
	XPRSsetbranchcuts
	XPRSsetcheckedmode
	XPRSsetdblcontrol
	XPRSsetdefaultcontrol (SETDEFAULTCONTROL)
	XPRSsetdefaults (SETDEFAULTS)
	XPRSsetindicators
	XPRSsetintcontrol, XPRSsetintcontrol64
	XPRSsetlogfile (SETLOGFILE)
	XPRSsetmessagestatus
	XPRSsetprobname (SETPROBNAME)
	XPRSsetstrcontrol
	STOP
	XPRSstorebounds
	XPRSstorecuts, XPRSstorecuts64
	XPRSstrongbranch
	XPRSstrongbranchcb
	TUNE
	XPRStune
	XPRStunerreadmethod
	XPRStunerwritemethod
	XPRSunloadprob
	XPRSwritebasis (WRITEBASIS)
	XPRSwritebinsol (WRITEBINSOL)
	XPRSwritedirs (WRITEDIRS)
	XPRSwriteprob (WRITEPROB)
	XPRSwriteprtrange (WRITEPRTRANGE)
	XPRSwriteprtsol (WRITEPRTSOL)
	XPRSwriterange (WRITERANGE)
	XPRSwriteslxsol (WRITESLXSOL)
	XPRSwritesol (WRITESOL)

	Control Parameters
	Retrieving and Changing Control Values
	ALGAFTERCROSSOVER
	ALGAFTERNETWORK
	AUTOSCALING
	AUTOPERTURB
	BACKTRACK
	BACKTRACKTIE
	BARALG
	BARCRASH
	BARDUALSTOP
	BARFREESCALE
	BARGAPSTOP
	BARGAPTARGET
	BARFAILITERLIMIT
	BARINDEFLIMIT
	BARITERLIMIT
	BARKERNEL
	BAROBJSCALE
	BARORDER
	BARORDERTHREADS
	BAROUTPUT
	BARPRESOLVEOPS
	BARPRIMALSTOP
	BARREGULARIZE
	BARRHSSCALE
	BARSOLUTION
	BARSTART
	BARSTARTWEIGHT
	BARSTEPSTOP
	BARTHREADS
	BARCORES
	BIGM
	BIGMMETHOD
	BRANCHCHOICE
	BRANCHDISJ
	BRANCHSTRUCTURAL
	BREADTHFIRST
	CACHESIZE
	CALLBACKFROMMASTERTHREAD
	CHOLESKYALG
	CHOLESKYTOL
	CLAMPING
	COMPUTEEXECSERVICE
	CONFLICTCUTS
	CONCURRENTTHREADS
	CORESPERCPU
	COVERCUTS
	CPUPLATFORM
	CPUTIME
	CRASH
	CROSSOVER
	CROSSOVERACCURACYTOL
	CROSSOVERITERLIMIT
	CROSSOVEROPS
	CROSSOVERTHREADS
	CSTYLE
	CUTDEPTH
	CUTFACTOR
	CUTFREQ
	CUTSTRATEGY
	CUTSELECT
	DEFAULTALG
	DENSECOLLIMIT
	DETERMINISTIC
	DUALGRADIENT
	DUALIZE
	DUALIZEOPS
	DUALPERTURB
	DUALSTRATEGY
	DUALTHREADS
	EIGENVALUETOL
	ELIMFILLIN
	ELIMTOL
	ETATOL
	EXTRACOLS
	EXTRAELEMS
	EXTRAMIPENTS
	EXTRAPRESOLVE
	EXTRAQCELEMENTS
	EXTRAQCROWS
	EXTRAROWS
	EXTRASETELEMS
	EXTRASETS
	FEASIBILITYPUMP
	FEASTOL
	FEASTOLPERTURB
	FEASTOLTARGET
	FORCEOUTPUT
	FORCEPARALLELDUAL
	GENCONSABSTRANSFORMATION
	GENCONSDUALREDUCTIONS
	GLOBALFILEBIAS
	GLOBALFILELOGINTERVAL
	GOMCUTS
	HEURBEFORELP
	HEURDEPTH
	HEURDIVEITERLIMIT
	HEURDIVERANDOMIZE
	HEURDIVESOFTROUNDING
	HEURDIVESPEEDUP
	HEURDIVESTRATEGY
	HEURFORCESPECIALOBJ
	HEURFREQ
	HEURMAXSOL
	HEURNODES
	HEURSEARCHEFFORT
	HEURSEARCHFREQ
	HEURSEARCHROOTCUTFREQ
	HEURSEARCHROOTSELECT
	HEURSEARCHTREESELECT
	HEURSTRATEGY
	HEURTHREADS
	HISTORYCOSTS
	IFCHECKCONVEXITY
	INDLINBIGM
	INDPRELINBIGM
	INVERTFREQ
	INVERTMIN
	KEEPBASIS
	KEEPNROWS
	L1CACHE
	LINELENGTH
	LNPBEST
	LNPITERLIMIT
	LPFLAGS
	LPITERLIMIT
	LPREFINEITERLIMIT
	LOCALCHOICE
	LPFOLDING
	LPLOG
	LPLOGDELAY
	LPLOGSTYLE
	LPTHREADS
	MARKOWITZTOL
	MATRIXTOL
	MAXCHECKSONMAXCUTTIME
	MAXCHECKSONMAXTIME
	MAXMCOEFFBUFFERELEMS
	MAXCUTTIME
	MAXGLOBALFILESIZE
	MAXIIS
	MAXIMPLIEDBOUND
	MAXLOCALBACKTRACK
	MAXMEMORYHARD
	MAXMEMORYSOFT
	MAXMIPTASKS
	MAXMIPSOL
	MAXNODE
	MAXPAGELINES
	MAXSCALEFACTOR
	MAXTIME
	MIPABSCUTOFF
	MIPABSGAPNOTIFY
	MIPABSGAPNOTIFYBOUND
	MIPABSGAPNOTIFYOBJ
	MIPABSSTOP
	MIPADDCUTOFF
	MIPCOMPONENTS
	MIPCONCURRENTNODES
	MIPCONCURRENTSOLVES
	MIPDUALREDUCTIONS
	MIPFRACREDUCE
	MIPKAPPAFREQ
	MIPLOG
	MIPPRESOLVE
	MIPRAMPUP
	MIPRESTART
	MIPRESTARTGAPTHRESHOLD
	MIQCPALG
	MIPREFINEITERLIMIT
	MIPRELCUTOFF
	MIPRELGAPNOTIFY
	MIPRELSTOP
	MIPTERMINATIONMETHOD
	MIPTHREADS
	MIPTOL
	MIPTOLTARGET
	MPS18COMPATIBLE
	MPSBOUNDNAME
	MPSECHO
	MPSFORMAT
	MPSOBJNAME
	MPSRANGENAME
	MPSRHSNAME
	MUTEXCALLBACKS
	NETCUTS
	NODEPROBINGEFFORT
	NODESELECTION
	NUMERICALEMPHASIS
	OBJSCALEFACTOR
	OPTIMALITYTOL
	OPTIMALITYTOLTARGET
	OUTPUTCONTROLS
	OUTPUTLOG
	OUTPUTMASK
	OUTPUTTOL
	PENALTY
	PERTURB
	PIVOTTOL
	PPFACTOR
	PREANALYTICCENTER
	PREBASISRED
	PREBNDREDCONE
	PREBNDREDQUAD
	PRECOEFELIM
	PRECOMPONENTS
	PRECOMPONENTSEFFORT
	PRECONEDECOMP
	PRECONVERTSEPARABLE
	PREDOMCOL
	PREDOMROW
	PREDUPROW
	PREELIMQUAD
	PREIMPLICATIONS
	PRELINDEP
	PREOBJCUTDETECT
	PREPERMUTE
	PREPERMUTESEED
	PREPROBING
	PREPROTECTDUAL
	PRESOLVE
	PRESOLVEMAXGROW
	PRESOLVEOPS
	PRESOLVEPASSES
	PRESORT
	PRICINGALG
	PRIMALOPS
	PRIMALPERTURB
	PRIMALUNSHIFT
	PSEUDOCOST
	PWLDUALREDUCTIONS
	PWLNONCONVEXTRANSFORMATION
	QCCUTS
	QCROOTALG
	QSIMPLEXOPS
	QUADRATICUNSHIFT
	RANDOMSEED
	REFACTOR
	REFINEOPS
	RELAXTREEMEMORYLIMIT
	RELPIVOTTOL
	REPAIRINDEFINITEQ
	REPAIRINFEASMAXTIME
	RESOURCESTRATEGY
	ROOTPRESOLVE
	SBBEST
	SBEFFORT
	SBESTIMATE
	SBITERLIMIT
	SBSELECT
	SCALING
	SIFTING
	SIFTSWITCH
	SLEEPONTHREADWAIT
	SOSREFTOL
	SYMMETRY
	SYMSELECT
	THREADS
	TRACE
	TREECOMPRESSION
	TREECOVERCUTS
	TREECUTSELECT
	TREEDIAGNOSTICS
	TREEGOMCUTS
	TREEMEMORYLIMIT
	TREEMEMORYSAVINGTARGET
	TREEPRESOLVE
	TREEPRESOLVE_KEEPBASIS
	TREEQCCUTS
	TUNERHISTORY
	TUNERMAXTIME
	TUNERMETHOD
	TUNERMETHODFILE
	TUNERMODE
	TUNEROUTPUT
	TUNEROUTPUTPATH
	TUNERPERMUTE
	TUNERROOTALG
	TUNERSESSIONNAME
	TUNERTARGET
	TUNERTHREADS
	TUNERVERBOSE
	USERSOLHEURISTIC
	VARSELECTION
	VERSION

	Problem Attributes
	Retrieving Problem Attributes
	ACTIVENODES
	ALGORITHM
	ATTENTIONLEVEL
	AVAILABLEMEMORY
	BARAASIZE
	BARCGAP
	BARCONDA
	BARCONDD
	BARCROSSOVER
	BARDENSECOL
	BARDUALINF
	BARDUALOBJ
	BARITER
	BARLSIZE
	BARPRIMALINF
	BARPRIMALOBJ
	BARSING
	BARSINGR
	BESTBOUND
	BOUNDNAME
	BRANCHVALUE
	BRANCHVAR
	CALLBACKCOUNT_CUTMGR
	CALLBACKCOUNT_OPTNODE
	CHECKSONMAXCUTTIME
	CHECKSONMAXTIME
	COLS
	COMPUTEEXECUTIONS
	CONEELEMS
	CONES
	CORESDETECTED
	CORESPERCPUDETECTED
	CPUSDETECTED
	CURRENTMEMORY
	CURRENTNODE
	CURRMIPCUTOFF
	CUTS
	DUALINFEAS
	ELEMS
	ERRORCODE
	GENCONCOLS
	GENCONS
	GENCONVALS
	GLOBALFILESIZE
	GLOBALFILEUSAGE
	INDICATORS
	LPOBJVAL
	LPSTATUS
	MATRIXNAME
	MAXABSDUALINFEAS
	MAXABSPRIMALINFEAS
	MAXKAPPA
	MAXMIPINFEAS
	MAXPROBNAMELENGTH
	MAXRELDUALINFEAS
	MAXRELPRIMALINFEAS
	MIPBESTOBJVAL
	MIPENTS
	MIPINFEAS
	MIPOBJVAL
	MIPSOLNODE
	MIPSOLS
	MIPSTATUS
	MIPTHREADID
	NAMELENGTH
	NODEDEPTH
	NODES
	NUMIIS
	OBJNAME
	OBJRHS
	OBJSENSE
	ORIGINALCOLS
	ORIGINALGENCONS
	ORIGINALGENCONCOLS
	ORIGINALGENCONVALS
	ORIGINALINDICATORS
	ORIGINALMIPENTS
	ORIGINALPWLS
	ORIGINALPWLPOINTS
	ORIGINALQCONSTRAINTS
	ORIGINALQCELEMS
	ORIGINALQELEMS
	ORIGINALSETMEMBERS
	ORIGINALSETS
	ORIGINALROWS
	PARENTNODE
	PEAKMEMORY
	PEAKTOTALTREEMEMORYUSAGE
	PENALTYVALUE
	PHYSICALCORESDETECTED
	PHYSICALCORESPERCPUDETECTED
	PREDICTEDATTLEVEL
	PRESOLVEINDEX
	PRESOLVESTATE
	PRIMALDUALINTEGRAL
	PRIMALINFEAS
	PWLCONS
	PWLPOINTS
	QCELEMS
	QCONSTRAINTS
	QELEMS
	RANGENAME
	RHSNAME
	ROWS
	SIMPLEXITER
	SETMEMBERS
	SETS
	SPARECOLS
	SPAREELEMS
	SPAREMIPENTS
	SPAREROWS
	SPARESETELEMS
	SPARESETS
	STOPSTATUS
	SUMPRIMALINF
	SYSTEMMEMORY
	TIME
	TOTALMEMORY
	TREECOMPLETION
	TREEMEMORYUSAGE
	TREERESTARTS
	UUID
	XPRESSVERSION

	Return Codes and Error Messages
	Optimizer Return Codes
	Optimizer Error and Warning Messages

	Appendix
	Log and File Formats
	File Types
	XMPS Matrix Files
	NAME section
	ROWS section
	COLUMNS section
	QUADOBJ / QMATRIX section (Quadratic Programming only)
	QCMATRIX section (Quadratic Constraint Programming only)
	DELAYEDROWS section
	MODELCUTS section
	INDICATORS section
	SETS section (Integer Programming only)
	RHS section
	RANGES section
	BOUNDS section
	GENCONS section
	ENDATA section
	Compatibility
	PWLOBJ section
	PWLNAM section
	PWLCON section

	LP File Format
	Rules for the LP file format
	Comments and blank lines
	File lines, white space and identifiers
	Sections
	Variable names
	Linear expressions
	Objective function
	Constraints
	Delayed rows
	Model cuts
	Indicator contraints
	Bounds
	Generals, Integers and binaries
	Semi-continuous and semi-integer
	Partial integers
	Special ordered sets
	Quadratic programming problems
	Quadratic Constraints
	General Constraints
	Extended naming convention
	Compatibility to other extensions

	ASCII Solution Files
	Solution Header .hdr Files
	CSV Format Solution .asc Files
	Fixed Format Solution (.prt) Files
	ASCII Solution (.slx) Files

	ASCII Range Files
	Solution Header (.hdr) Files
	CSV Format Range (.rsc) Files
	Fixed Format Range (.rrt) Files

	The Directives (.dir) File
	IIS description file in CSV format
	The Matrix Alteration (.alt) File
	Changing Upper or Lower Bounds
	Changing Right Hand Side Coefficients
	Changing Constraint Types

	The Tuner Method (.xtm) File
	The fixed controls
	The tunable controls

	The Simplex Log
	The Barrier Log
	The Global Log
	The Tuner Log
	The Remote Solving Configuration file
	caCertsPath
	cleanupJobs
	executionService
	logLevel
	maxRetries
	trustSrv

	Contacting FICO
	Product support
	Product education
	Product documentation
	Sales and maintenance
	Related services
	FICO Community
	About FICO

	Index

