
Mathematical optimisation 2021

Modelling with binary variables II

Lorenzo Castelli, Università degli Studi di Trieste.
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1 | 28Use of binary variables (I)

Packing constraint ∑
j

xj ≤ 1

At most one of a set of events is allowed to occur.
Cover constraint ∑

j
xj ≥ 1

At least one of a set of events is allowed to occur.
Partitioning constraint ∑

j
xj = 1

Exactly one of a set of events is allowed to occur.
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2 | 28Use of binary variables (II)

- Neither or both events 1 and 2 must occur

x2 − x1 = 0, i.e., x2 = x1,

- Event 2 can occur only if event 1 occurs

x2 − x1 ≤ 0, i.e., x2 ≤ x1,

where

xi =

{
1 if event i occurs
0 if event i does not occur

for i = 1, 2.
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3 | 28Use of binary variables (III)

- Consider an activity that can be operated at any level y from 0
to u, i.e., 0 ≤ y ≤ u.

- The activity can be undertaken only if some event represented
by the binary variable x occurs.

y − ux ≤ 0, i.e., y ≤ ux,

where x ∈ {0, 1} and y ≥ 0.
x = 0 implies y = 0
x = 1 provides the original constraint 0 ≤ y ≤ u.
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4 | 28The Facility Location Problem (FLP)

- We are given a set N = {1, . . . , n} of potential facility
locations and a set of clients I = {1, . . . , m}.

- A facility placed at j costs cj for j ∈ N .
- Each client has a demand for a certain good.
- Cost of satisfying the demand of client i from a facility at j is

hij .
The optimisation problem is to choose a subset of the locations at
which to place facilities and then assign the clients to these
facilities as to minimise the total cost.
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5 | 28Uncapacitated FLP

There is no restriction on the number of clients that a
facility can serve.

Decision variables

xj =

{
1 if a facility is placed at j
0 otherwise

yij ∈ Rmn
+ is the fraction of the demand of client i that is

satisfied from a facility at j .
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6 | 28Uncapacitated FLP

Constraints
- Each client’s demand must be satisfied∑

j∈N
yij = 1 for i ∈ I.

- Client i cannot be served from j unless a facility is placed at j

yij − xj ≤ 0 for i ∈ I and j ∈ N.

Objective function

min
∑
j∈N

cjxj +
∑
i∈I

∑
j∈N

hijyij
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7 | 28Capacitated FLP

It may be unrealistic to assume that a facility can serve any number of
clients.

- Let uj be the capacity of the facility located at j .
- Let bi be the demand of the i th client.
- Let yij be the quantity of goods sent from facility j to client i
- Let hij be the shipping cost per unit

min
∑
j∈N

cj xj +
∑
i∈I

∑
j∈N

hij yij∑
j∈N

yij = bi for i ∈ I

∑
i∈I

yij − uj xj ≤ 0 for j ∈ N

xj ∈ {0, 1}, yij ≥ 0 for i ∈ I and j ∈ N
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8 | 28Capacitated FLP - Exercise

Consider a company with three potential sites for installing its
facilities/warehouses and five demand points. Each site j has a yearly
activation cost fj , i.e., an annual leasing expense that is incurred for using it,
independently of the volume it services. This volume is limited to a given
maximum amount that may be handled yearly, Mj . Additionally, there is a
transportation cost cij per unit serviced from facility j to the demand point i .

Customer i 1 2 3 4 5
Annual demand di 80 270 250 160 180

Facility j cij fj Mj

1 4 5 6 8 10 1000 500
2 6 4 3 5 8 1000 500
3 9 7 4 3 4 1000 500
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9 | 28Capacitated FLP - Exercise



Mathematical optimisation 2021

Modelling with binary variables II

10 | 28FLP - example

(a) 150 clients (b) 750 clients
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11 | 28The Network Flow Problem (NFP)

- A network is composed of a set on nodes V (e.g., facilities)
and a set of arcs A.

- An arc e = (i , j) that points from node i to node j means that
there is a direct shipping route (i.e., a flow) from node i to
node j .

- Associated with each node i , there is a demand bi .
bi > 0 supply node
bi < 0 demand node
bi = 0 transit node

We assume the net demand is zero, i.e.,
∑

i∈V bi = 0.
- Each arc (i , j) has

A flow capacity uij
A unit flow cost cij
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12 | 28NFP - Example
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13 | 28The Network Flow Problem (NFP)

If yij is the flow on arc (i , j), the NFP is formulated as

min
∑

(i ,j)∈A
cijyij (1)

yij ≤ uij for (i , j) ∈ A (2)∑
j∈V

yij −
∑
j∈V

yji = bi for i ∈ V (3)

y ∈ R|A|+ (4)

Constraints (2) are the capacity constraints.
Constraints (3) are the flow conservation constraints.
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14 | 28The Fixed-Charged NFP

A fixed cost hij is imposed if there is a positive flow on arc (i , j).
A binary variable xij indicates whether arc (i , j) is used.

min
∑

(i ,j)∈A
(hijxij + cijyij ) (5)

yij − uijxij ≤ 0 for (i , j) ∈ A (6)∑
j∈V

yij −
∑
j∈V

yji = bi for i ∈ V (7)

x ∈ {0, 1}|A|, y ∈ R|A|+ (8)
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15 | 28The Travelling Salesman Problem

- We are given a set on nodes V = {1, . . . , n} (e.g., cities) and
a set of arcs A.

- Arcs represent ordered pairs of cities between which direct
travel is possible.

- For (i , j) ∈ A, cij is the direct travel time from city i to city j .
- The TSP aims at finding a tour, starting at city 1, that

a) visits each other city exactly once and then returns to city 1
b) takes the least total travel time

The Travelling Salesman Problem (TSP)
A tour that visits all nodes exactly once is called Hamiltonian
tour. The TSP identifies the Hamiltonian tour of minimum cost.
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16 | 28TSP - seems easy

Three tours: A-B-D-C-A: 11; A-D-B-C-A: 23; A-D-C-B-A: 18.
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17 | 28TSP - maybe not too easy
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18 | 28TSP - it’s difficult!!
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19 | 28TSP - Formulation

• Decision Variables

xij =

{
1 if j immediately follows i on the tour
0 otherwise

Hence x ∈ {0, 1}|A|

• Objective function
min

∑
(i ,j)∈A

cijxij
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20 | 28TSP - Constraint formulation

Each city is entered and left exactly once∑
i :(i ,j)∈A

xij = 1 for j ∈ V (9)

∑
j :(i ,j)∈A

xij = 1 for i ∈ V (10)

However, constraints (9) and (10) are not sufficient to define tours
since they are also satisfied by subtours.
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21 | 28TSP - Subtours
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22 | 28TSP - Subtour elimination (i)

In any tour there must be an arc that goes from {1, 2, 3} to
{4, 5, 6} and an arc that goes from {4, 5, 6} to {1, 2, 3}. In
general, for any U ⊂ V with 2 ≤ |U| ≤ |V | − 2, constraints∑

{(i ,j)∈A:i∈U,j∈V\U}
xij ≥ 1 (11)

are satisfied by all tours, but every subtour violates at least one of
them.
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23 | 28TSP - Subtour elimination
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24 | 28TSP - Subtours

(c) 5 nodes (d) 9 nodes
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25 | 28TSP - Subtours
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26 | 28TSP - Too many ways to choose U
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27 | 28TSP - Subtour elimination (ii)

An alternative way to eliminate subtours is to introduce constraints∑
{(i ,j)∈A:i∈U,j∈U}

xij ≤ |U| − 1 ∀U ⊂ V : 2 ≤ |U| ≤ |V | − 2

(12)

But again we need a constraint for each U ⊂ V such that
2 ≤ |U| ≤ |V | − 2.

In both (11) and (12) the number of constraints is nearly 2|V | !!!

1
2

[(
|V |
2

)
+

(
|V |
3

)
+ · · · +

(
|V |
|V | − 2

)]
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28 | 28TSP - Formulation

min
∑

(i,j)∈A

cij xij∑
i :(i,j)∈A

xij = 1 for j ∈ V

∑
j :(i,j)∈A

xij = 1 for i ∈ V

∑
{(i,j)∈A:i∈U,j∈V \U}

xij ≥ 1 ∀U ⊂ V : 2 ≤ |U| ≤ |V | − 2

OR ∑
{(i,j)∈A:i∈U,j∈U}

xij ≤ |U| − 1 ∀U ⊂ V : 2 ≤ |U| ≤ |V | − 2

x ∈ {0, 1}|A|


