Lorenzo Castelli, Università degli Studi di Trieste.

Use of binary variables (I) 1 | 28

Packing constraint

$$
\sum_j x_j \leq 1
$$

At most one of a set of events is allowed to occur. Cover constraint

> \sum **j** x **j** ≥ 1

At least one of a set of events is allowed to occur. Partitioning constraint

$$
\sum_j x_j = 1
$$

Exactly one of a set of events is allowed to occur.

Modelling with binary variables II **Use of binary variables (II) 2 | 28**

- Neither or both events 1 and 2 must occur

$$
x_2 - x_1 = 0, \text{ i.e., } x_2 = x_1,
$$

- Event 2 can occur only if event 1 occurs

 $x_2 - x_1 \leq 0$, i.e., $x_2 \leq x_1$,

where

 $x_i =$ (**1** if event **i** occurs **0** if event **i** does not occur

for $i = 1, 2$.

Use of binary variables (III) 3 | 28

- Consider an activity that can be operated at any level **y** from **0** to **u**, i.e., **0 ≤ y ≤ u**.
- The activity can be undertaken only if some event represented by the binary variable **x** occurs.

$$
y - ux \leq 0, \text{ i.e., } y \leq ux,
$$

where $x \in \{0, 1\}$ and $y \ge 0$.

 $x = 0$ implies $y = 0$

x = 1 provides the original constraint $0 \le y \le u$.

The Facility Location Problem (FLP) 4 | 28

- We are given a set $N = \{1, \ldots, n\}$ of potential facility locations and a set of clients $I = \{1, \ldots, m\}$.
- A facility placed at **j** costs **c^j** for **j ∈ N**.
- Each client has a demand for a certain good.
- Cost of satisfying the demand of client **i** from a facility at **j** is h_{ii} .

The optimisation problem is to choose a subset of the locations at which to place facilities and then assign the clients to these facilities as to minimise the total cost.

Modelling with binary variables II **Uncapacitated FLP 5 | 28**

$$
5 \mid 28
$$

There is no restriction on the number of clients that a facility can serve.

Decision variables

$$
x_j = \begin{cases} 1 & \text{if a facility is placed at } j \\ 0 & \text{otherwise} \end{cases}
$$

 $\mathbf{y_{ij}} \in \mathbb{R}_{+}^{mn}$ is the fraction of the demand of client \boldsymbol{i} that is satisfied from a facility at **j**.

Modelling with binary variables II **Uncapacitated FLP 6 | 28**

Constraints

- Each client's demand must be satisfied

$$
\sum_{j\in N} y_{ij} = 1 \text{ for } i \in I.
$$

- Client **i** cannot be served from **j** unless a facility is placed at **j**

y i **j** \leq **0** for $i \in I$ and $j \in N$.

Objective function

$$
\min \sum_{j \in N} c_j x_j + \sum_{i \in I} \sum_{j \in N} h_{ij} y_{ij}
$$

Capacitated FLP 7 | 28

It may be unrealistic to assume that a facility can serve any number of clients.

- Let **u^j** be the capacity of the facility located at **j**.
- $-$ Let \mathbf{b}_i be the demand of the *i*th client.
- Let y_{ii} be the quantity of goods sent from facility j to client i
- Let h_{ii} be the shipping cost per unit

$$
\min \sum_{j \in N} c_j x_j + \sum_{i \in I} \sum_{j \in N} h_{ij} y_{ij}
$$
\n
$$
\sum_{j \in N} y_{ij} = b_i \qquad \text{for } i \in I
$$
\n
$$
\sum_{i \in I} y_{ij} - u_j x_j \le 0 \qquad \text{for } j \in N
$$
\n
$$
x_j \in \{0, 1\}, y_{ij} \ge 0 \qquad \text{for } i \in I \text{ and } j \in N
$$

Capacitated FLP - Exercise 8 | 28

Consider a company with three potential sites for installing its facilities/warehouses and five demand points. Each site **j** has a yearly activation cost **f^j** , i.e., an annual leasing expense that is incurred for using it, independently of the volume it services. This volume is limited to a given maximum amount that may be handled yearly, **M^j** . Additionally, there is a transportation cost c_{ii} per unit serviced from facility j to the demand point i .

Capacitated FLP - Exercise 9 | 28

Modelling with binary variables II **FLP - example 10 | 28**

(a) 150 clients (b) 750 clients

The Network Flow Problem (NFP) 11 | 28

- A network is composed of a set on nodes **V** (e.g., facilities) and a set of arcs **A**.
- An arc $\mathbf{e} = (\mathbf{i}, \mathbf{j})$ that points from node **i** to node **j** means that there is a direct shipping route (i.e., a flow) from node **i** to node **j**.
- Associated with each node **i**, there is a demand **bⁱ** .
	- $\mathbf{b}_i > 0$ supply node
	- $\mathbf{b}_i < 0$ demand node
	- **transit node**

We assume the net demand is zero, i.e., $\sum_{\boldsymbol{i} \in \boldsymbol{\mathcal{V}}} \boldsymbol{b}_{\boldsymbol{i}} = \boldsymbol{0}$.

- Each arc (**i***,* **j**) has
	- A flow capacity **uij**
	- A unit flow cost **cij**

Modelling with binary variables II **NFP - Example 12 | 28**

The Network Flow Problem (NFP) 13 | 28

If y_{ij} is the flow on arc (i, j) , the NFP is formulated as

$$
\min \sum_{(i,j)\in A} c_{ij} y_{ij} \tag{1}
$$
\n
$$
y_{ij} \le u_{ij} \qquad \text{for } (i,j) \in A \tag{2}
$$
\n
$$
\sum_{j\in V} y_{ij} - \sum_{j\in V} y_{ji} = b_i \qquad \text{for } i \in V \tag{3}
$$
\n
$$
y \in \mathbb{R}_+^{|A|} \tag{4}
$$

Constraints [\(2\)](#page-13-0) are the capacity constraints. Constraints [\(3\)](#page-13-1) are the flow conservation constraints.

The Fixed-Charged NFP 14 | 28

A fixed cost h_{ij} is imposed if there is a positive flow on arc (i, j) . A binary variable x_{ij} indicates whether arc (i, j) is used.

$$
\min \sum_{(i,j)\in A} (\mathbf{h}_{ij}\mathbf{x}_{ij} + c_{ij}\mathbf{y}_{ij})
$$
\n
$$
\mathbf{y}_{ij} - \mathbf{u}_{ij}\mathbf{x}_{ij} \leq \mathbf{0} \qquad \text{for } (i,j) \in \mathcal{A} \qquad (6)
$$
\n
$$
\sum_{j\in V} y_{ij} - \sum_{j\in V} y_{ji} = \mathbf{b}_{i} \qquad \text{for } i \in V \qquad (7)
$$
\n
$$
\mathbf{x} \in \{0,1\}^{|\mathcal{A}|}, \mathbf{y} \in \mathbb{R}_{+}^{|\mathcal{A}|} \qquad (8)
$$

The Travelling Salesman Problem 15 | 28

- We are given a set on nodes $V = \{1, \ldots, n\}$ (e.g., cities) and a set of arcs **A**.
- Arcs represent ordered pairs of cities between which direct travel is possible.
- For (**i***,* **j**) **∈ A***,* **cij** is the direct travel time from city **i** to city **j**.
- The TSP aims at finding a tour, starting at city 1, that a) visits each other city exactly once and then returns to city 1 b) takes the least total travel time

The Travelling Salesman Problem (TSP)

A tour that visits all nodes exactly once is called Hamiltonian tour. The TSP identifies the Hamiltonian tour of minimum cost.

Modelling with binary variables II **TSP - seems easy 16 | 28**

Three tours: A-B-D-C-A: 11; A-D-B-C-A: 23; A-D-C-B-A: 18.

TSP - maybe not too easy 17 | 28

TSP - it's difficult!! 18 | 28

TSP - Formulation 19 | 28

• Decision Variables

 $x_{ij} =$ (**1** if **j** immediately follows **i** on the tour **0** otherwise

Hence
$$
x \in \{0,1\}^{|\mathcal{A}|}
$$

• Objective function

$$
\min \sum_{(i,j)\in \mathcal{A}} c_{ij}x_{ij}
$$

TSP - Constraint formulation 20 | 28

Each city is entered and left exactly once

$$
\sum_{i:(i,j)\in\mathcal{A}} x_{ij} = 1 \text{ for } j \in V
$$
(9)

$$
\sum_{j:(i,j)\in\mathcal{A}} x_{ij} = 1 \text{ for } i \in V
$$
(10)

However, constraints [\(9\)](#page-20-0) and [\(10\)](#page-20-1) are not sufficient to define tours since they are also satisfied by subtours.

TSP - Subtours 21 | 28

TSP - Subtour elimination (i) 22 | 28

In any tour there must be an arc that goes from **{1***,* **2***,* **3}** to **{4***,* **5***,* **6}** and an arc that goes from **{4***,* **5***,* **6}** to **{1***,* **2***,* **3}**. In general, for any $U \subset V$ with $2 \leq |U| \leq |V| - 2$, constraints

$$
\sum_{\{(i,j)\in\mathcal{A}: i\in U, j\in V\setminus U\}} x_{ij} \ge 1 \tag{11}
$$

are satisfied by all tours, but every subtour violates at least one of them.

TSP - Subtour elimination 23 | 28

Modelling with binary variables II **TSP - Subtours 24 | 28**

TSP - Subtours 25 | 28

TSP - Too many ways to choose U 26 | 28

TSP - Subtour elimination (ii) 27 | 28

An alternative way to eliminate subtours is to introduce constraints

 \sum $x_{ij} \leq |U| - 1$ $\forall U \subset V: 2 \leq |U| \leq |V| - 2$ **{**(**i***,***j**)**∈A**:**i∈U***,***j∈U}** (12)

But again we need a constraint for each $U \subset V$ such that $2 \leq |U| \leq |V| - 2$.

In both [\(11\)](#page-22-0) and [\(12\)](#page-27-0) the number of constraints is nearly $2^{|V|}$!!!

$$
\frac{1}{2}\left[\left(\begin{array}{c} |V| \\ 2 \end{array}\right)+\left(\begin{array}{c} |V| \\ 3 \end{array}\right)+\cdots+\left(\begin{array}{c} |V| \\ |V|-2 \end{array}\right)\right]
$$

Modelling with binary variables II **TSP - Formulation 28 | 28**

$$
\min \sum_{(i,j)\in A} c_{ij}x_{ij}
$$
\n
$$
\sum_{i:(i,j)\in A} x_{ij} = 1 \text{ for } j \in V
$$
\n
$$
\sum_{i:(i,j)\in A} x_{ij} = 1 \text{ for } i \in V
$$
\n
$$
\sum_{j:(i,j)\in A:i\in U,j\in V\setminus U} x_{ij} \ge 1 \qquad \forall U \subset V : 2 \le |U| \le |V| - 2
$$
\n
$$
\sum_{\{(i,j)\in A:i\in U,j\in U\}} x_{ij} \le |U| - 1 \qquad \forall U \subset V : 2 \le |U| \le |V| - 2
$$
\n
$$
\sum_{\{(i,j)\in A:i\in U,j\in U\}} x_{ij} \le |U| - 1 \qquad \forall U \subset V : 2 \le |U| \le |V| - 2
$$
\n
$$
x \in \{0,1\}^{|A|}
$$