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1 | 39Optimality

Given an IP
z = max{c(x) : x ∈ X ⊆ Zn}

how can we prove that a given point x∗ is optimal?

We need to address this question because we saw that solution
enumeration and convex hull identification may not possible,
whereas disregarding variables’ integrality constraints may not
provide useful information.

Therefore we need to find alternatives (i.e., algorithms) to solve an
IP.
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2 | 39Bounds

The most common approach to solve IP problems is to find
sequences of bounds until they are “close enough”.

Upper bound
If z is the optimal value of an IP problem, an upper bound is a
value z such that z ≥ z .

Lower bound
If z is the optimal value of an IP problem, a lower bound is a
value z such that z ≤ z .

Ideally, we would like to find z and z such that z = z = z.
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3 | 39Lower and upper bounds

From a practical point of view, any algorithm will look for a
decreasing sequence of upper bounds

z1 > z2 > . . . > zs ≥ z

and an increasing sequence of lower bounds

z1 < z2 < . . . < zt ≤ z

and stops when
zs − zt ≤ ε

where ε is an appropriate non-negative value.
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4 | 39Lower bounds

Lower bound
Every feasible solution x̂ ∈ X provides a lower (or primal) bound
z = c(x̂) ≤ z .

For the problem
maxZ =1.00x1 + 0.64x2

50x1 + 31x2 ≤ 250
3x1 − 2x2 ≥ −4
x1, x2 ≥ 0 and integer.

we saw, by rounding the optimal linear solution, that x̂ = (2, 4) is
a feasible solution such z = c(x̂) = 4.56 ≤ z.
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5 | 39Upper bounds

Findings upper bounds could be less obvious.
The most common idea is to replace a “difficult” IP problem by
a simpler optimisation problem, whose optimal value is at least
as large as z .
The simpler problem can be obtained by “relaxation”, i.e., by
- enlarging the set of feasible solutions so that one optimises over

a larger set,
- replacing the max objective function by a function that has the

same or a larger value everywhere.
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6 | 39Relaxation

Definition
A problem (RP) zR = max{f (x) : x ∈ T ⊆ Rn} is a relaxation
of (IP) z = max{c(x) : x ∈ X ⊆ Zn} if:
(i) X ⊆ T , and
(ii) f (x) ≥ c(x) for all x ∈ X .

Proposition. If RP is a relaxation of IP , zR ≥ z
If x∗ is an optimal solution of IP , x∗ ∈ X ⊆ T and
z = c(x∗) ≤ f (x∗). As x∗ ∈ T , f (x∗) is a lower bound on zR ,
and so z ≤ f (x∗) ≤ zR . �

Hence, zR is an upper bound!
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7 | 39Linear relaxation

Definition
For the integer program max{cx : x ∈ X = P ∩ Zn} with
formulation P = {x ∈ Rn

+ : Ax ≤ b}, the linear programming
relaxation is the linear program zLP = max{cx : x ∈ P}.

Since X = P ∩ Zn ⊆ P and the objective function is unchanged,
this is clearly a relaxation.
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8 | 39Linear relaxation - example 1

Original IP problem

z = max1.00x1 + 0.64x2

50x1 + 31x2 ≤ 250
3x1 − 2x2 ≥ −4
x1, x2 ≥ 0 and integer.

LP relaxation

zLP = max1.00x1 + 0.64x2

50x1 + 31x2 ≤ 250
3x1 − 2x2 ≥ −4
x1, x2 ≥ 0.

- The optimal integer solution is (5, 0) and z = 5
- The optimal solution of the linear relaxation is
(376/193, 950/193) and zLP = 984/193 = 5.098.
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9 | 39Linear relaxation - example 1
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10 | 39Linear relaxation - example 1

For the IP problem

z = max1.00x1 + 0.64x2

50x1 + 31x2 ≤ 250
3x1 − 2x2 ≥ −4
x1, x2 ≥ 0 and integer.

We know that a lower bound is z = 4.560 and an upper bound is
z = 5.098. The optimal value z therefore lies within

z = 4.560 ≤ z ≤ 5.098 = z.

In fact, z = 5. The information we get by disregarding variables’
integrality constraints can be very useful indeed.
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11 | 39Linear relaxation - example 2

Consider the IP problem

z = max4x1 − x2

7x1 − 2x2 ≤ 14
x2 ≤ 3
2x1 − 2x2 ≤ 3
x1, x2 ≥ 0 and integer.

It is easy to see that (2, 1) is a feasible solution, thus leading to the lower
bound z = 7. The optimal solution of the linear relaxation is x∗ = (20/7, 3)
producing the upper bound z = 59/7 = 8.43. Since all coefficients of the
objective function are integer (i.e., (4,−1)) the optimal value z must to be
integer as well. Hence, we can take as upper bound z = b8.43c = 8. Therefore

z = 7 ≤ z ≤ 8 = z

.
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12 | 39Linear relaxation - example 2
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13 | 39Better formulations

Proposition
Suppose P1,P2 are two formulations for the IP
max{cx : x ∈ X ⊆ Zn} with P1 a better formulation than P2,
i.e., P1 ⊂ P2. If zLP

i = max{cx : x ∈ Pi} for i = 1, 2 are the
values of the associated linear programming relaxations, then
zLP

1 ≤ zLP
2 for all c .

The better the formulation the tighter the upper bound.
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14 | 39Better formulations - example
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15 | 39Other propositions

If a relaxation RP is infeasible, the original problem IP is
infeasible
As RP is infeasible, T = ∅. Since X ⊆ T also X = ∅.

Let x∗ be an optimal solution of RP . If x∗ ∈ X and
f (x∗) = c(x∗) then x∗ is an optimal solution of IP .
As x∗ ∈ X, z ≥ c(x∗) = f (x∗) = zR . As z ≤ zR , we obtain c(x∗) = z = zR .

- If the optimal solution x∗ of the linear relaxation is integer, x∗ is also the
optimal solution of the original IP problem.

- The optimal solution of conv(x) is always integer because all extreme
points belong to it.
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16 | 39Convex hull - integer solution
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17 | 39Integer solution of linear relaxation

Example 1

max7x1 + 4x2 + 5x3 + 2x4

3x1 + 3x2 + 4x3 + 2x4 ≤ 6
xi ∈ {0, 1} for i = 1, 2, 3, 4.

The linear relaxation has optimal
solution x∗ = (1, 1, 0, 0).
Hence, x∗ is the optimal solution
of the original binary problem.

Example 2

max3x1 + 5x2

x1 ≤ 4
2x2 ≤ 12
3x1 + 2x2 ≤ 18
x1, x2 ≥ 0 and integer

The linear relaxation has optimal
solution x∗ = (2, 6). Hence, x∗
is the optimal solution of the
original integer problem.
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18 | 39Minimisation problems

In case of the minimisation problem IP

z = min{cx : x ∈ X ⊆ Zn}

a feasible solution of X identifies an upper bound for z, while a
relaxation of IP identifies a lower bound for z. In this case, a
relaxation exists if f (x) ≤ c(x) for all x ∈ X - see slide (6).
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19 | 39Finding primal bounds

“Good” bounds greatly help in finding the optimal solution. Hence
the corresponding feasible solutions are determined according to
some rationale, and not randomly.

Definition
A greedy algorithm is one consisting of a sequence of choices
that appear to be best in the short run.

A greedy algorithm starts from scratch and at each iteration sets
the variable that provides the best immediate reward.
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20 | 39Examples

We show three examples to identify a feasible solution
- Knapsack problem (maximisation)
- Travelling salesman problem (minimisation)
- The minimum spanning tree (minimisation)



Mathematical optimisation 2021

Relaxations and Bounds

21 | 39The 0-1 Knapsack problem

Suppose there are n projects. The jth project, j = 1, . . . , n has a
cost of aj and a value of Cj . Each project is either done or not,
that is, it is not possible to do a fraction of any of the projects.
Also there is a budget of b available to fund the projects. The
problem of choosing a subset of the projects to maximise the sum
of the values while not exceeding the budget constraint is the 0-1
knapsack problem

max


n∑

j=1
cjxj :

n∑
j=1

ajxj ≤ b, x ∈ {0, 1}n
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22 | 39Knapsack - lower bound

Consider the problem

max12x1 + 8x2 + 17x3 + 11x4 + 6x5 + 2x6 + 2x7

4x1 + 3x2 + 7x3 + 5x4 + 3x5 + 2x6 + 3x7 ≤ 9
xj ∈ {0, 1} for i = 1, . . . , 7

Variables are ordered such that cj/aj ≥ cj+1/aj+1 for j = 1, . . . , n − 1.
A large ratio cj/aj means that item j has a “small” weight and a “large
value”. A greedy solution inserts in the knapsack the most valuable
variables, starting from x1 as long as there is enough space, and then
moves to the next one, if possible.
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23 | 39Knapsack - lower bound

max12x1 + 8x2 + 17x3 + 11x4 + 6x5 + 2x6 + 2x7

4x1 + 3x2 + 7x3 + 5x4 + 3x5 + 2x6 + 3x7 ≤ 9
xj ∈ {0, 1} for i = 1, . . . , 7

In this case
1. Item 1 can enter as a1 = 4 ≤ 9, hence x1 = 1
2. Also x2 = 1 because a2 = 3 ≤ 9− a1 = 5
3. x3 = x4 = x5 = 0 because a3, a4, a5 > 9− a1 − a2 = 2
4. x6 = 1 because a6 = 2 and there are just 2 units of space available in the

knapsack
5. x7 = 0 because there is no more room available in the knapsack

The greedy feasible solution is therefore (1, 1, 0, 0, 0, 1, 0) and z = 22.
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24 | 39No guarantee of a good solution

max2x1 + Mx2

x1 + Mx2 ≤ M(> 2)
xj ∈ {0, 1} for i = 1, . . . , 2

1. The optimal solution is x2 = 1 and z∗ = M
2. The greedy solution is x1 = 1 and zg = 2
3. Hence limM→+∞

zg

z∗ = 0
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25 | 39An improvement

Let
z̄g = max{zg , max

1≤j≤n
{pj}}

max2x1 + Mx2 + Mx3

x1 + Mx2 + Mx3 ≤ 2M(> 2)

xj ∈ {0, 1} for i = 1, . . . , 3

1. The optimal solution is x2 = x3 = 1 and z∗ = 2M
2. The greedy solution is x1 = x2 = 1, zg = 2 + M , and

z̄g = max{M + 2,M} = M + 2

3. Hence limM→+∞
z̄g

z∗ = 1
2

The algorithm cannot produce solutions of less than half the optimum value.
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26 | 39TSP - upper bound
Consider the following Symmetric Travelling salesman problem

− 9 2 8 12 11
− 7 19 10 32

− 29 18 6
− 24 3

− 19
−


Multi-fragment algorithm. Insert the arcs in non-decreasing order of length, if possible. i.e., no cycles, no vertex with
degree > 2.

- The cheapest arc is (1, 3) as c13 = 2, hence x13 = 1
- Next arcs are (4, 6) as c46 = 3 (hence x46 = 1) and (3, 6) as c36 = 6 (hence x36 = 1)
- Next cheapest arc is (2, 3) as c23 = 7, but node 3 has already two incident arcs (hence x23 = 0)
- Next cheapest arc is (1, 4) as c14 = 8, but this arc forms a tour with arcs (1, 3) and (4, 6) already chosen

(hence x14 = 0)

By continuing in this way, we get x12 = x25 = x45 = 1. The cost of this solution (upper bound) is

2 + 3 + 6 + 9 + 10 + 24 = 54.
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27 | 39TSP - upper bound
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28 | 39TSP - upper bound
Consider the following Symmetric Travelling salesman problem

− 9 2 8 12 11
− 7 19 10 32

− 29 18 6
− 24 3

− 19
−


Nearest neighbour algorithm. Start from a vertex and at each iteration extend the path by choosing the cheapest
arc among those connected to the last selected vertex that does not go to a vertex already visited.

- Start from vertex 1. The cheapest arc is (1, 3) as c13 = 2, hence x13 = 1
- The cheapest arc from vertex 3 is (3, 6) as c36 = 6 (hence x36 = 1)
- The cheapest arc from vertex 6 is (6, 4) as c64 = 3 (hence x46 = 1)
- The cheapest arc from vertex 4 is (1, 4) as c14 = 8, but if we choose a vertex 1 a sub-cycle (1-3-6-4-1) is formed.

Hence we have to consider to the next cheapest arc, which is c(2, 4) = 18. Hence x24 = 1.
- The cheapest available arc from vertex 2 is (2, 5) as c25 = 10 (hence x25 = 1). Neither arc (1, 2) or (2, 3) can

be chosen because it leads to a sub-cycle.
- The last arc is mandatory, as all vertexes have been visited and we need to come back to vertex 1, hence x15 = 1

The cost of this solution (upper bound) is 2 + 6 + 3 + 19 + 10 + 12 = 52.
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29 | 39TSP - upper bound



Mathematical optimisation 2021

Relaxations and Bounds

30 | 39TSP - Nearest neighbour

- Starting from vertex 1 the cycle is 1− 2− 4− 3− 1, which has cost: 6 + 3 + 7 + 15 = 31
- Starting from vertex 2 the cycle is 2− 4− 3− 1− 2, which has cost: 3 + 7 + 15 + 6 = 31
- Starting from vertex 3 the cycle is 3− 2− 4− 1− 3, which has cost: 4 + 3 + 8 + 15 = 30
- Starting from vertex 4 the cycle is 4− 2− 3− 1− 4, which has cost: 3 + 4 + 15 + 8 = 30

However, the optimal solution is 1− 2− 3− 4− 1, which has a cost 6 + 4 + 7 + 8 = 25. The optimal solution is

never identified.
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31 | 39TSP - Nearest neighbour

- The solution is always a− b− d − c − a, which has a cost 2 + 3 + 1 + 5 = 11, whichever is the starting node.
- The other two cycles a − b − c − d − a and a − c − b − d − a have costs 18 and 23, respectively.

In this case, the optimal solution is always identified.



Mathematical optimisation 2021

Relaxations and Bounds

32 | 39Spanning tree

Given a connected undirect graph G = (N , E), let E1 be a subset of E
such that T = (N , E1) is a tree. Such tree is called spanning tree.
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33 | 39Minimum spanning tree

We are given a connected undirect graph G = (N , E), with n nodes and
m edges. For each edge e ∈ E , we are also given a cost coefficient ce . A
minimum spanning tree (MST) is defined as a spanning tree such that
the sum of the costs of its edges is as small as possible.
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34 | 39Minimum spanning tree

The minimum spanning tree problem arises naturally in many
applications. For example, if edges correspond to communication
links, a spanning tree is a set of links that allows every node to
communicate (possibly, indirectly) to every other node. Then, a
minimum spanning tree is a communication network that provides
this type of connectivity, and whose cost is the smallest possible.
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35 | 39MST - Formulation

We define for each e ∈ E a variable xe which is equal to 1 if edge
e is included in the tree and 0 otherwise. Sine a spanning tree
should have n − 1 edges, we introduce the constraint∑

e∈E
xe = n − 1.

Moreover, the chosen edges should not contain a cycle. The for
any S ⊂ N , we define

E(S) = {{i , j} ∈ E|i , j ∈ S}

and we express this set of constraints as∑
e∈E(S)

xe ≤ |S| − 1 S ⊂ N , S 6= ∅,N .
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36 | 39MST - Formulation

An integer programming formulation of the MST problem is

min
∑
e∈E

cexe∑
e∈E

xe = n − 1

∑
e∈E(S)

xe ≤ |S| − 1 S ⊂ N , S 6= ∅,N

xe ∈ {0, 1}
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37 | 39MST - A greedy algorithm

For certain problems, like the MST, short run optimal decisions
turn out to be optimal in the long run as well. The algorithm we
describe builds a MST by progressively adding edges to a current
tree.
- At any stage we have a tree and we add a least expensive

edge that connects a node in the tree with a node outside the
tree.

- Since at each stage we connect a node in the current tree with
a node outside the tree, no cycles are ever formed, and we
always have a tree.
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38 | 39MST - A greedy algorithm
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39 | 39MST - Another greedy algorithm

We insert edges in increasing cost order ensuring that no cycles are formed.


