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1 | 21A relaxed problem

Consider the standard form problem

mincT x
Ax = b
x ≥ 0,

which we call the primal problem, and let x∗ be an optimal solution,
assumed to exist. We introduce a relaxed problem in which the
constraint Ax = b is replaced by a penalty pT (b − Ax), where p is a
vector of the same dimension as b. We are then faced with the problem

mincT x + pT (b − Ax)
x ≥ 0.
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2 | 21A relaxed problem

Let g(p) be the optimal cost for the relaxed problem, as a function
of vector p. The relaxed problem allows for more options than
those present in the primal problem, and we expect g(p) to be no
larger than the optimal cost cT x∗. Indeed,

g(p) = min
x≥0

[
cT x + pT (b − Ax)

]
≤ cT x∗+pT (b−Ax∗) = cT x∗,

where the last equality follows from the fact that x∗ is a feasible
solution to the primal problem, and satisfies Ax∗ = b. Thus, each
p leads to a lower bound g(p) for the optimal cost cT x∗.
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3 | 21A tight bound

The problem

maxg(p)
subject to no constraints

can be interpreted as a search for the tightest possible lower bound
of this type, and is known as the dual problem.
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4 | 21The dual problem

Using the definition of g(p), we have

g(p) = min
x≥0

[
cT x + pT (b − Ax)

]
= pT b + min

x≥0
(cT − pT A)x

Note that

min
x≥0

(cT − pT A)x =

{
0 if cT − pT A ≥ 0
−∞ otherwise

In maximising g(p) we only need to consider those values of p for which
g(p) is not equal to −∞. We therefore conclude that the dual problem
is the same as

maxpT b
pT A ≤ cT .
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5 | 21The dual problem

In the example, we started with equality constraints Ax = b and we
ended up with no constraints on the sign of the vector p. If the primal
problem had instead inequality constraints of the form Ax ≥ b, they
could be replaced by Ax − s = b, s ≥ 0. The equality constraints can
be written in the form

[A| − I]
[

x
s

]
= b,

which leads to the dual constraints

pT [a| − I] ≤ [cT |0T ],

or equivalently,
pT A ≤ cT , p ≥ 0.
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6 | 21The dual problem

If the vector x is free rather sign-constrained, we use the fact

min
x
(cT − pT A)x =

{
0 if cT − pT A = 0
−∞ otherwise

to end up with the constraints pT A = cT in the dual problem. These
considerations motivate the primal-dual relationships.

PRIMAL maximise minimise DUAL

constraints
≤ bi ≥ 0

variables≥ bi ≤ 0
= bi free

variables
≥ 0 ≥ cj

constraints≤ 0 ≤ cj
free =
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7 | 21Sensitivity analysis

The main purpose of sensitivity analysis is to identify the sensitive
parameters (i.e., those that cannot be changed without changing
the optimal solution). The sensitive parameters are the parameters
that need to be estimated with special care to minimise the risk of
obtaining an erroneous optimal solution.

The model parameters under study are the aij , bi , cj for
i = 1, . . . ,m and j = 1, . . . , n.
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8 | 21Resource availability

• Linear programming problems often can be interpreted as allocating
resources to activities.
• When the constraints are in ≤ form, we interpreted the bi (the right-hand

sides) as the amounts of the respective resources being made available for
the activities under consideration.
• In many cases, the bi values used in the initial model actually may represent

management’s tentative initial decision on how much of the organisation’s
resources will be provided to the activities considered in the model.
• From this broader perspective, some of the bi values can be increased in a

revised model, but only if a sufficiently strong case can be made to
management that this revision would be beneficial.
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9 | 21Shadow price

Definition
The shadow price for resource i (denoted by y∗i ) measures the
marginal value of this resource, i.e., the rate at which Z could be
increased by (slightly) increasing the amount of this resource (bi )
being made available.

In the case of a functional constraint in = or ≥ form, its shadow price is again
defined as the rate at which Z could be increased by (slightly) increasing the
value of bi , although the interpretation of bi now would normally be something
other than the amount of a resource being made available.
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10 | 21Shadow price - example

Here
b1 = 4
b2 = 12
b3 = 18

What if, for
instance, b2
“slightly”
changes, e.g., it
increases by 1,
that is b2 = 13?
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12 | 21Shadow price - example

The graph shows that the shadow price is y∗
2 = 3

2 for resource 2. The
two dots are the optimal solutions for b2 = 12 or b2 = 13, and plugging
these solutions into the objective function reveals that increasing b2 by 1
increases Z by y∗

2 = 3
2 .

It demonstrates that y∗
2 = 3

2 is the rate at which Z could be increased by
increasing b2 “slightly”. However, it also demonstrates the common
phenomenon that this interpretation holds only for a small increase in b2.
Once b2 is increased beyond 18, the optimal solution stays at (0, 9) with
no further increase in Z .

In other words, Z = 45 for any b2 such that b2 ≥ 18 because the
constraint 2x2 = b2 becomes redundant.
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13 | 21Shadow price - example

Note that y∗
1 = 0. Because the constraint on resource 1, x1 ≤ 4, is not

binding on the optimal solution (2, 6), there is a surplus of this resource.
Therefore, increasing b1 beyond 4 cannot yield a new optimal solution
with a larger value of Z .

By contrast, the constraints on resources 2 and 3, 2x2 ≤ 12 and
3x1 + 2x2 ≤ 18, are binding constraints (constraints that hold with
equality at the optimal solution). Because the limited supply of these
resources (b2 = 12, b3 = 18) binds Z from being increased further, they
have positive shadow prices. We can easily show that y∗

3 = 1.

Economists refer to such resources as scarce goods, whereas resources
available in surplus (such as resource 1) are free goods (resources with a
zero shadow price).
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14 | 21Primal and dual problems

Primal problem

max z =3x1 +5x2

x1 ≤ 4
2x2 ≤ 12

3x1 +2x2 ≤ 18
x1, x2 ≥ 0

The optimal solution is
x∗1 = 2, x∗2 = 6, z∗ = 36.

Dual problem

minw =4π1 +12π2 + 18π3

π1 + 3π3 ≥ 3
2π2 + 2π3 ≥ 5

π1, π2,π3 ≥ 0

By strong duality we know
that w∗ = 36. How to find
the optimal dual variables?
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15 | 21Complementary slackness

Complementary slackness conditions are

π∗
i (bi − aT

i x∗) = 0 ∀i
(πT∗Aj − cj )x∗

j = 0 ∀j ,

which in our case become

π∗
1 (4− x∗

1 ) = 0
π∗

2 (12− 2x∗
2 ) = 0

π∗
3 (18− 3x∗

1 − 2x∗
2 ) = 0

(π∗
1 + 3π∗

3 − 3)x∗
1 = 0

(2π∗
2 + 2π∗

3 − 5)x∗
2 = 0

Since x∗
1 = 2, x∗

2 = 6 then

2× π∗
1 = 0

0× π∗
2 = 0

0× π∗
3 = 0

2× (π∗
1 + 3π∗

3 − 3) = 0
6× (2π∗

2 + 2π∗
3 − 5) = 0
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16 | 21Complementary slackness

It therefore follows that

π∗1 = 0
(π∗1 + 3π∗3 − 3) = 0

(2π∗2 + 2π∗3 − 5) = 0

that is

π∗1 = 0
π∗3 = 1

π∗2 = 3/2

In fact, w∗ = 4× 0 + 12× 3
2 + 18× 1 = 36. In addition, we

notice that
y∗i = π∗i for i = 1, 2, 3.

The optimal dual variables are (equal to) the shadow prices
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17 | 21Dual variables and shadow prices

We have shown that each optimal dual variable represents the rate at which
Z varies by varying the corresponding right-hand side value.
If we vary a right-hand side, the value of the optimal dual variables remains
constant as long as the optimal solution lies on the intersection of the same
constraint boundaries.
In our example,
- if b2 > 18 the optimal solution is always (0, 9). The optimal dual

variables are (0, 0, 5/2)
- if b2 varies in the interval 6 < b2 < 18 the optimal solution lies on the

intersection between 2x2 = b2 and 3x1 + 2x2 = 18 and the optimal
dual variables are (0, 3/2, 1).

- if 0 < b2 < 6 the optimal solution lies on the intersection between
2x2 = b2 and x1 = 4. The optimal dual variables are (3, 5/2, 0).

- if b2 = 6 or b2 = 18 the solution is called degenerate, which we don’t
address in this course.
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18 | 21Optimal solution’s dependence on b2
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19 | 21Optimal value’s dependence on b2

The optimal value z(bi ) is a convex function of bi .
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20 | 21Variation of obj. function’s coefficients
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21 | 21Variation of obj. function’s coefficients

The graph demonstrates the sensitivity analysis of c1 and c2 for
our problem. Starting with the original objective function line
[where c1 = 3, c2 = 5, and the optimal solution is (2, 6)], the
other two black lines show the extremes of how much the slope of
the objective function line can change and still retain (2, 6) as an
optimal solution. Thus,

with c2 = 5, the allowable range for c1 is 0 ≤ c1 ≤ 7.5,
with c1 = 3, the allowable range for c2 is c2 ≥ 2.


