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1 | 28Setting the context

A natural starting point in solving linear integer programs

(IP) max{cx : Ax ≤ b, x ∈ Zn
+}

with integral data (A, b) is to ask when one will be so lucky that
the linear programming relaxation

(LP) max{cx : Ax ≤ b, x ∈ Rn
+}

will have an optimal solution that is integral.
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2 | 28Total unimodularity

Definition
A matrix A is totally unimodular (TU) if every square submatrix of
A has determinant +1, −1 or 0

Observation
If A is TU, aij ∈ {+1,−1, 0}
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3 | 28Examples

Matrices not TU

A1 =

(
1 −1
1 1

)

|A1| = 2

A2 =

1 1 0
0 1 1
1 0 1


|A2| = 2

TU matrix

A3 =


1 −1 −1 0
−1 0 0 1
0 1 0 −1
0 0 1 0


|A3| = 0
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4 | 28Propositions

Proposition 1
A matrix A is TU if and only if
- the transpose matrix AT is TU
- the matrix [A|I] is TU
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5 | 28Propositions

Proposition 2 (Sufficient condition)
A matrix A is TU if
(i) aij ∈ {+1,−1, 0}
(ii) Each column contains at most two nonzero coefficients, i.e,∑m

i=1 |aij | ≤ 2
(iii) There is a partition (M1, M2) of the M of rows such that each

column j containing two nonzero coefficients satisfies∑
i∈M1 aij −

∑
i∈M2 aij = 0.

Condition (iii) means that if the nonzeros are in row i and k, and
if aik = −akj , then {i , k} ∈ M1 or {i , k} ∈ M2, whereas if
aik = akj , i ∈ M1 and k ∈ M2 or vice versa.
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6 | 28Example - TU matrix

A =


−1 0 1 0 −1 0 0
0 1 0 1 1 0 1
−1 1 0 0 0 0 0
0 0 1 0 0 1 1
0 0 0 1 0 −1 0


row 1
row 2
row 3
row 4
row 5

1. rows 1 and 3 are not in the same class
2. rows 2 and 3 are not in the same class
3. rows 1 and 4 are not in the same class
4. rows 2 and 5 are not in the same class
5. rows 1 and 2 are in the same class
6. rows 4 and 5 are in the same class
7. rows 2 and 4 are not in the same class

Hence M1 = {1, 2} and M2 = {3, 4, 5}
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7 | 28Examples - TU matrices

Condition is sufficient 1 −1 −1 0
−1 0 0 1
0 1 0 −1
0 0 1 0


1. rows 1 and 2 are in the same class
2. rows 1 and 3 are in the same class
3. rows 1 and 4 are in the same class
4. rows 2 and 3 are in the same class

M1 = {1, 2, 3, 4}, M2 = ∅

Condition is not necessary
1 0 1 0
−1 1 0 0
0 −1 −1 0
0 −1 −1 1
0 0 0 1
0 0 0 1




1 0 0
1 1 0
1 1 1
0 0 1
0 0 1
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8 | 28Propositions

Proposition 3
The linear programming problem max{cx : Ax ≤ b, x ∈ Rn

+}
has an integer optimal solution for all integer vectors b for which
it has a finite optimal value if and only if A is totally unimodular.



Mathematical optimisation 2021

Well solved problems

9 | 28Minimum Cost Network Flow

Given a digraph D = (V , A) with arc capacities hij for all (i , j) ∈ A,
demands bi (positive inflows or negative outflows) at each node i ∈ V ,
and unit flow costs cij for all (i , j) ∈ A, the minimum cost network flow
problem is to find a feasible flow that satisfies all the demands at
minimum cost. This has the formulation

min
∑

(i,j)∈A

cij xij (1)

∑
k∈V+(i)

xik −
∑

k∈V −(i)

xki = bi for i ∈ V (2)

0 ≤ xij ≤ hij for (i , j) ∈ A (3)

where xij denotes the flow in arc (i , j), V+(i) = {k : (i , k) ∈ A} and
V−(i) = {k : (k, i) ∈ A}
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x12 x14 x23 x31 x32 x35 x36 x45 x51 x53 x65

1 1 0 -1 0 0 0 0 -1 0 0 = 3
-1 0 1 0 -1 0 0 0 0 0 0 = 0
0 0 -1 1 1 1 1 0 0 -1 0 = 0
0 -1 0 0 0 0 0 -1 0 0 0 = -2
0 0 0 0 0 -1 0 -1 1 1 -1 = 4
0 0 0 0 0 0 -1 0 0 0 1 = -5

The additional constraints are the capacity constraints 0 ≤ xij ≤ hij
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Proposition 4
The constraint matrix A arising in a minimum cost network flow
problem is totally unimodular.

Proof The matrix A is of the form
(

C
I

)
where C comes from

the flow conservation constraints and I from the capacity
constraints. Therefore it suffices to show that C is TU. The
sufficient conditions of Proposition 2 are satisfied with M1 = M
and M2 = ∅.
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13 | 28Key result

Corollary
In a minimum cost network flow problem, if the demands {bi} and
the capacities {hij} are integral
- Each extreme point is integral.
- The constraints (2) and (3) describe the convex hull of the

integral feasible flows.

This corollary means that the linear relaxation of the minimum
cost network flow problem always provides an integer solution
provided that all capacities {hij} and demands {bi} are integral.
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14 | 28Special minimum cost flows

The Shortest Path Problem Given a digraph D = (V , A), two distinguished
nodes s, t ∈ V , and non-negative arcs costs cij for (i , j) ∈ A, find a
minimum cost s − t path.
The Max Flow Problem Given a digraph D = (V , A), two distinguished
nodes s, t ∈ V , and non-negative capacities hij for (i , j) ∈ A, find a
maximum flow from s to t path.
The Transportation Problem Let there be m suppliers and n consumers. The
i th supplier can provide ai units of a certain good and the j th consumer has
a demand for bj units. If cij is the cost to transport one unit of good from the
i th supplier to the j th consumer, the problem is to transport the goods from
the suppliers to the consumers at minimum cost.
The Assignment Problem It is a special case of the transportation problem,
where the number of suppliers is equal to the number of consumers, each
supplier has unit supply, and each consumer has unit demand.
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15 | 28The Shortest Path Problem

If we set bs = 1 and bt = −1, only one unit of flow can move
from s to t, and the problem is to find the sequence of arcs at
minimum cost that this unit will traverse. An arc (i , j) ∈ A if and
only if hij > 0. Since we assume only integral values, (i , j) ∈ A if
and only if hij ≥ 1. Since exactly one unit flows in the network,
there is no need to explicitly include the capacity constraints.

Decision variables are such that xij = 1 if arc (i , j) is in the
minimum cost (shortest) s − t path. For the total unimodularity,
an optimal solution is always integer. Therefore, we can write
xij ≥ 0.
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17 | 28The Shortest Path Problem

z = min
∑

(i ,j)∈A
cijxij

∑
k∈V+(i)

xik −
∑

k∈V−(i)
xki = 1 for i = s

∑
k∈V+(i)

xik −
∑

k∈V−(i)
xki = 0 for i ∈ V\{s, t}

∑
k∈V+(i)

xik −
∑

k∈V−(i)
xki = −1 for i = t

xij ≥ 0 for (i , j) ∈ A
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18 | 28The Shortest Path Problem
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19 | 28The Maximum Flow Problem

Adding a backward arc from t to s, the maximum s − t flow
problem can be formulated as

z =max xts∑
k∈V+(i)

xik −
∑

k∈V−(i)
xki = 0 for i ∈ V

0 ≤ xij ≤ hij for (i , j) ∈ A

For the total unimodularity, an optimal solution is integer provided
that all capacities hij are integral.
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22 | 28The Transportation Problem

It can be formulated as a minimum cost flow problem on a
bipartite graph D = (V1 ∪ V2, A) where V1 = {1, . . . , m} is the
set of sources, V2 = {1, . . . , n} is the set of sinks, and
A = {(i , j) : i ∈ V1, j ∈ V2}. Without loss of generality, we
assume there is an arc from each supply node to each demand
node. The unit shipping cost from i ∈ V1 to j ∈ V2 is cij . If there
is no arc from i to j , we take cij very large. Node i ∈ V1 has a
positive integral supply ai and j ∈ V2 has a positive integral
demand bj . The flow out of a source is required to equal its
supply, and the flow into a sink must equal its demand. Thus a
necessary condition for feasibility is

∑
i∈V1 ai =

∑
j∈V2 bj
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23 | 28The Transportation Problem
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24 | 28The Transportation Problem

z = min
∑
i∈V1

∑
j∈V2

cijxij∑
j∈V2

xij = ai for i ∈ V1∑
i∈V1

xij = bj for j ∈ V2

xij ≥ 0 for (i , j) ∈ A
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26 | 28The Assignment Problem

When ai = bj = 1 for all i and j and m = n, we have the
assignment problem

z = min
∑
i∈V1

∑
j∈V2

cijxij∑
j∈V2

xij = 1 for i ∈ V1∑
i∈V1

xij = 1 for j ∈ V2

0 ≤ xij ≤ 1 for (i , j) ∈ A
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27 | 28The Assignment Problem
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